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Sequences of nucleotides (for DNA and RNA) or amino acids (for proteins) are central objects in biology.
Among the most important computational problems is that of sequence alignment, i.e., arranging sequences
from different organisms in such a way to identify similar regions, to detect evolutionary relationships between
sequences, and to predict biomolecular structure and function. This is typically addressed through profile models,
which capture position specificities like conservation in sequences but assume an independent evolution of
different positions. Over recent years, it has been well established that coevolution of different amino-acid
positions is essential for maintaining three-dimensional structure and function. Modeling approaches based on
inverse statistical physics can catch the coevolution signal in sequence ensembles, and they are now widely
used in predicting protein structure, protein-protein interactions, and mutational landscapes. Here, we present
DCAlign, an efficient alignment algorithm based on an approximate message-passing strategy, which is able
to overcome the limitations of profile models, to include coevolution among positions in a general way, and
to be therefore universally applicable to protein- and RNA-sequence alignment without the need of using
complementary structural information. The potential of DCAlign is carefully explored using well-controlled
simulated data, as well as real protein and RNA sequences.

DOI: 10.1103/PhysRevE.102.062409

I. INTRODUCTION

In the course of evolution, biological molecules such
as proteins or RNA undergo substantial changes in their
amino-acid or nucleotide sequences, while keeping their
three-dimensional fold structure and their biological function
remarkably conserved. In computational biology, this struc-
tural and functional conservation is extensively used: When
we can, e.g., establish that two proteins are homologous, i.e.,
they share some common evolutionary ancestor, properties
known for one protein can be translated to its homolog (a
process known as annotation). As an example, suppose that
one is given a sequence of a human protein whose function is
unknown. If this sequence can be properly aligned to a protein
of known function but from a different, even evolutionar-
ily distant organism, we can expect also the human protein
to perform, globally, the same function. Even at the finer
amino-acid scale, a given position in two aligned sequences
of homologous proteins is expected to have the same physical
positioning inside the three-dimensional protein structures of
both proteins and to share common functionality (e.g., as
active sites or in binding interfaces).

Detecting homology, however, is not an easy task. First,
homologous proteins or RNAs may share only 20% or even
less of their residues (i.e., amino acids or nucleotides), the
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others being substituted in evolution, making the detection of
similarity rather involved. Even worse, proteins (and RNA)
may change their length, as amino acids (or nucleotides) may
be inserted into a sequence or deleted from it. Just looking to
a single sequence, we have no information on which positions
might be insertions or deletions and which positions might be
inherited from ancestors, possibly undergoing amino-acid or
nucleotide substitutions.

To solve this problem, sequence alignments have to be
constructed [1]. The objective of sequence alignments is to
identify homologous positions, also called matches, along
with insertions and deletions, such that the aligned sequences
become as similar as possible. In this context, three frequently
used but distinct alignment problems can be identified:

(1) Pairwise alignments compare two sequences. Under
some simplifying assumptions, cf., below, this problem can
be solved efficiently using dynamic programming (i.e., an it-
erative method similar to transfer matrices or message passing
in statistical physics) [2,3]. Detecting homology by pairwise
alignment is limited to rather close homologs.

(2) More distant homology can be detected using multiple-
sequence alignments (MSA) of more than two sequences [4],
which maximize the global sequence similarities by con-
structing a rectangular matrix formed by amino acids (or
nucleotides) and gaps, representing both insertions and dele-
tions, as illustrated in Fig. 1. The rows of this matrix are
the individual sequences; the columns are aligned positions.
Besides being able to detect more distant homology, MSA
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FIG. 1. Example of a multiple sequence alignment. Sequences
from different organisms are aligned to maximize their similarity.
Some sites are fully conserved; others are variable. Coevolving sites
vary in a strongly correlated way. Insertions are indicated by lower-
case letters and dots (.) while deletions are shown by dashes (–).

allow for identifying conserved positions, i.e., columns which
do not (or rarely) change their symbol. These positions are
typically known to be important, either for the functionality
(e.g., active sites in proteins) or for the thermodynamic sta-
bility of the fold. Although dynamic programming methods
can be generalized from pairwise to multiple-sequence align-
ments, their running time grows exponentially in the number
of sequences to be aligned. Many heuristic strategies have
been proposed following the seminal ideas of Ref. [5], cf.,
Refs. [6–9], but the construction of accurate MSA of more
than about 103 sequences remains challenging.

(3) For larger alignments, a simple strategy is widely used.
Instead of constructing a globally optimal sequence align-
ment, sequences are aligned one by one to a well-constructed
seed MSA [10,11]. As in the case of MSA, this strategy allows
for detecting distant homologs and for exploiting conserva-
tion. If the seed MSA is reasonably large (�102 sequences)
and of high quality, very large and rather accurate alignments
of up to 106 sequences can be constructed easily. This strategy
is currently the best choice for constructing large families of
homologous proteins [12] and RNAs [13], and is also the
subject of our work.

Almost all these sequence-alignment methods are based on
the simplifying assumption of independent-site evolution. In
terms of sequence statistics, this amounts to assuming that
the global probability of observing some full-length sequence
can be factorized over site-specific but independent single-site
probabilities, also known as profile models [1]. Profile models
are thus able to capture conservation but not coevolution. For
an alphabet of only two symbols, hence represented by Ising

spins, such a model corresponds to a noninteracting Ising
model with site-dependent local fields only; for more than two
symbols, a profile model corresponds to a noninteracting Potts
model. A successful variant are profile hidden Markov mod-
els [14], which assume independence of matched positions
but take into account that gap stretches are more likely than
many individual gaps to reflect the tendency of homologous
proteins (or RNAs) to accumulate, in the course of evolution,
large-scale modular gene rearrangements. A major advantage
of profile models is their computational efficiency, as they
allow for determining optimal alignments in polynomial time
using dynamic programming (or transfer matrix) methods [1].
They mostly make use of conserved positions, which serve
intuitively as anchoring point in aligning new sequences to
the seed MSA. Variable positions contribute much less to
profile-based sequence alignment, and coevolution is entirely
neglected in these models.

An important exception are so-called covariance mod-
els for functional RNA [15]. Different from proteins, RNA
sequences are characterized by low sequence conservation,
making alignment via profile models unreliable, but highly
conserved secondary structures, due to base pairing inside the
single-stranded RNA molecules, and the formation of local
helices, the so-called stems. Base pairing does not pose con-
straints on the individual bases, but on the correct pairing in
Watson-Crick pairs A:U and G:C, or wobble pairs G:U, which
consequently have to be described by a nonfactorizable pair
distribution. In the case of RNA, the planar structure of the
graph formed by the pairing in the RNA chains still enables
the application of exact but computationally efficient dynamic
programming [15–18]. However, the construction of covari-
ance models requires the secondary structure to be known
a priori.

Suppose now that a MSA has been constructed by some
alignment method. One would then like to extract as much
information as possible from this MSA. In recent decades,
amino-acid coevolution has been established as perhaps
the most important statistical feature of MSAs beyond
conservation [19]. In fact, consider a MSA of M sequences
(a1, . . . , aL ), each of length L (Fig. 1). The statistics of
the MSA are encoded into its one-site frequencies fi(a),
i.e., the frequency of observing ai = a in a sequence;
two-site frequencies fi j (a, b), i.e., the frequency of observing
(ai = a, a j = b) in a same sequence; three-site frequencies
fi jk (a, b, c); and so on. Modeling the MSA statistics by
inverse statistical physics [20–23] consists in assuming that
each sequence in the MSA is an independent realization
from some unknown probability distribution P(a1, . . . , aL ),
such that all multisite frequencies are reproduced. It has been
realized that such a probability can be obtained by a maximum
entropy principle (identical to the one used in equilibrium
statistical mechanics), under the constraint that the one-site
(i.e., conservation) and two-site (i.e., coevolution) frequencies
are correctly reproduced. The resulting P(a1, . . . , aL ) is then
a Potts model with local fields and two-spin interactions only:
Interactions involving more than two spins are not present.
Remarkably, such models turn out to describe very well the
three- and more-site MSA frequencies, even if these have not
been included in their construction. This method of analysis,
called direct-coupling analysis (DCA) because it provides a
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set of two-spin couplings [24–27], has found widespread
applications in extracting protein-structure prediction
from MSAs [28–31], detecting protein-protein interactions
[24,32–38], describing mutational effects [39–43], and even
in data-driven sequence optimization and design [40,44,45].

The resulting situation is somewhat paradoxical: MSAs are
constructed using profile models (noninteracting Potts mod-
els), which neglect coevolution and use conservation only,
but once the MSA is available, one can extract relevant in-
formation from the coevolution signal via the DCA method,
which makes use of pairwise-interacting Potts models. In
other words, important structural and functional information
is contained in the coevolution of amino acids or nucleotides,
but it is neglected in the alignment procedure.

Our work aims at overcoming this paradox, by including
the information contained in amino-acid (or nucleotide) co-
evolution in aligning sequences to a seed MSA. While this
idea shows some similarity to that of covariance models and
RNA alignment, our method is much more general. In fact,
DCA modeling describes coevolution between any possible
pair of sites, and as a consequence, it allows for interactions
between any possible pair of spins in the Potts model. The
resulting interaction graph is fully connected, which makes
an application of dynamic programming (or transfer matrix)
methods impossible. We cope with this problem by propos-
ing an approximate message passing strategy based on belief
propagation [46], further simplified in a high-connectivity
mean-field limit for long-range couplings [47]. We show that
the resulting DCAlign algorithm outperforms state-of-the-art
alignment tools both in well-controlled simulated data and in
real protein and RNA sequences.

In parallel to our work, coevolutionary models have been
recently used to solve related problems, such as the remote
search homology [48] and the alignment of two Potts mod-
els [49]. Still, the statistical mechanics-based approach and
the formalization of the problem proposed here significantly
differ from those in Refs. [48,49].

The plan of the paper is the following: We first formalize
the problem and its statistical-physics description. The latter
allows us to derive DCAlign, a combined belief-propagation
and mean-field algorithm for aligning a sequence to a Potts
model constructed by DCA from the seed MSA. The effi-
ciency of our algorithm is first tested in the case of artificial
data, which allow us to evaluate the influence of conserva-
tion (i.e., single-site statistics) and coevolution (i.e., two-site
couplings) in the alignment procedure. Extensive tests and
positive results are given for a number of real protein and RNA
families. Technical details of the derivation of the algorithm
are provided in the Supplemental Material (SM) [50].

II. SETUP OF THE PROBLEM

A. Alignment

The method we are going to describe can be applied
to align different types of biological sequences (viz., DNA,
RNA, proteins). We discuss here the protein case, but the
extension to the other cases is straightforward and it will
be considered below. Let us consider an amino-acid se-
quence A = (A1, . . . , AN ) containing a protein domain S =

(S1, . . . , SL ) of a known family, which we want to identify.
Note that S may contain amino acids and gaps, while the
original sequence A is composed exclusively by amino acids.
We assume that the protein family is well described by a
direct coupling analysis (DCA) model, or Potts Hamiltonian,
or simply “energy,”

HDCA(S | J, h) = −
1,L∑
i< j

Ji j (Si, S j ) −
L∑

i=1

hi(Si ) . (1)

Here, the sequence S = (S1, . . . , SL ) is assumed to be aligned
to the MSA of length L of the protein family, and the set of
parameters J and h are considered as known, having been
learned from some seed alignment [51]. The energy HDCA

is then considered as a “score” (lower energy corresponds to
higher score) for sequence S to belong to the protein family.
We address the problem of aligning a sequence A to the model
HDCA or, in other words, of detecting the domain in A that
has the best score within the model HDCA. In this setting, the
solution to our problem is the subsequence (cf., below for
the precise definition of a subsequence including insertions
and deletions) that, among all the possible subsequences of
A, minimizes the energy (or, at finite temperature, is a typical
sequence sampled from HDCA). The energy thus serves as a
cost function for comparing different candidate alignments.
Contrary to profile models, which only take into account
conservation of single residues, DCA models also include
pairwise interactions related to residue coevolution (and thus
in particular at any linear separation along the sequence A),
which we hope will lead to more accurate alignments in cases
where conservation alone is insufficient.

However, the DCA model HDCA does not model insertions,
because the parameters J and h are inferred from a seed MSA
where all columns containing inserts have been removed. A
suitable additional cost has thus to be assigned to amino-acid
insertions, which are needed in order to find a low-cost align-
ment. Still, we have to prevent our algorithm from picking
up energetically favorable but isolated amino acids out of the
(possibly long) input sequence A. For modeling this cost, we
will explicitly refer to the insertion statistics in the full seed
alignment.

Note that the DCA model contains position-specific gap
terms in the J and h, so the gap statistics of the seed MSA
is fully described by the DCA model alone. Nonetheless, the
observed statistics deeply depend on how the seed is con-
structed, and it could a priori be nonrepresentative of the gap
statistics of the full alignment. To take into account this degree
of variability, we allow for the introduction of an additional
energy term associated with the presence of gaps. A more
detailed discussion is reported in Sec. II B.

Formally speaking, the alignment problem reduces to find-
ing a subsequence S = (S1, . . . , SL ) of A = (A1, . . . , AN )
such that the following are true:

(1) The subsequence S forms an ordered list of amino
acids in A (“match” states) with the possibility of (a) adding
gaps, denoted as dashes (–), between two consecutive po-
sitions in A and (b) skipping some amino acids of A, i.e.,
interpreting them as insertions.
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FIG. 2. Example of an alignment. On the top we show a full
length sequence A, and on the bottom its alignment S, in which
both gap and insertion events occur. The domain to be aligned is
highlighted in blue. We show explicitly three matched states S1 = A2,
S3 = A3, and S8 = A11 and a gap insertion in S2 = “ − ”. In this
example, we also show a possible way of skipping some amino acids
in the original sequence, that is to assign three insertions, highlighted
in red.

(2) The aligned sequence S minimizes

E (S|J,h,λ,μ) = HDCA(S | J, h) + Hgap(μ) + Hins(λ), (2)

with Hgap(μ) being a penalty for adding gaps that depends on
the number and position of gaps and on the hyperparameters
μ and Hins(λ) being a penalty on insertions, parametrized by
the hyperparameters λ.

We first consider here the case where N � L, i.e., we are
trying to align a domain in a longer sequence, or N < L when
we are trying to align a fragment. The case N � L, i.e., when
we search for a hit of the DCA model in a long sequence,
may be computationally hard for the approach proposed here,
because the alignment time scales roughly as L2N2, as dis-
cussed below. Current state-of-the-art alignment methods like
the Basic local alignment search tool (BLAST) use heuristics
to approximately locate possible hits and perform accurate
alignment search only in these restricted regions to speed
up search. It might be necessary to do this before running
DCAlign, but this is not the objective of the current work. In
general, it will be better if N is not too different from L.

An example of a full sequence and its alignment is given in
Fig. 2. The sequence on the top is a full sequence of N = 19
amino acids, and the highlighted part is the target domain. The
aligned sequence of length L = 10, reported on the bottom,
consists in one gap in position 2 and 9 matched amino acids.

B. Gap and insertion penalties

The hyperparameters μ, λ determine the cost of adding a
gap or an insertion in the aligned sequence. They must be care-
fully determined to allow for these events without affecting
the quality of the alignment. In other words, we would like
to reduce, as much as possible, the number of gaps (when
the statistics of gaps of the seed we use is biased) and to
parsimoniously add insertions when energetically favorable,
avoiding to pick up isolated amino acids in the alignment.

To deal with insertions, we use a so-called affine penalty
function [1] parametrized by λo

i , the cost of adding a first

insertion between positions i − 1 and i, and λe
i , the cost of

extending an existing insertion, with λo
i > λe

i . This results in

Hins(λ) =
L∑

i=2

ϕi(�ni ),

ϕi(�ni ) = (1 − δ�ni,0)
[
λi

o + λi
e(�ni − 1)

]
, (3)

where �ni is the number of insertions between positions i − 1
and i. This set of parameters can be learned from a seed
alignment through a maximum likelihood (ML) approach as
reported in Sec. IV B. Finally, we introduce two types of gap
penalties, denoted by μint and μext, which are associated with
an “internal” gap between two matched states and with an
“external” gap (at the beginning and at the end of the aligned
sequence), respectively. This gives

Hgap(μ) =
L∑

i=1

μi, (4)

where μi = 0 for match states, μi = μint for internal gaps, and
μi = μext for external gaps.

An illustration is given by the aligned sequence in Fig. 2.
Insertions are highlighted in red, and the total insertions
penalty is then given by λ8

o + λ8
e + λ8

e . A gap, which increases
the total energy by μint, is highlighted in green at position 2
of S.

C. Statistical physics model

We now want to construct a discrete statistical-physics
model which defines this alignment. For the positions
1 � i � L, the model has to encode the position of the gaps
and of the match states, with their corresponding symbol
in the sequence (A1, . . . , AN ). We therefore introduce two
variables per site 1 � i � L. The first one is a Boolean
“spin” xi ∈ {0, 1}, which tells us if Si is a gap (xi = 0) or
an amino-acid match (xi = 1). The second one is a “pointer”
ni ∈ {0, . . . , N + 1}, which gives, for the case of match states
xi = 1 and 1 � ni � N , the corresponding position in the orig-
inal sequence (A1, . . . , AN ); note that this allows for insertions
if ni+1 − ni > 1. If matched symbols start to appear only from
a position i > 1, we then fill the previous positions { j : 1 �
j < i} with gaps having pointer nj = 0. Similarly, if the last
matched state appears in i < L, we fill a stretch of gaps in
positions { j : i < j � L} having n j = N + 1. This encoding
allows one to distinguish the “external” gaps at the boundary
of the aligned sequence, whose total number we denote as
Next

gap, from the “internal” ones, i.e., between two consecutive
matched states, whose total number is N int

gap. Formally, the
number of gaps and insertions are

Nins =
L−1∑
i=1

(ni+1 − ni − 1)I[N + 1 > ni+1 > ni > 0],

N int
gap =

L∑
i=1

δxi,0I[0 < ni < N + 1],

Next
gap =

L∑
i=1

δxi,0(δni,0 + δni,N+1), (5)
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FIG. 3. Short-range constraints. We plot in panel (a) a feasible
assignment of two consecutive matched states. If in position i − 1
we assign Si−1 = An, we can then align the next position i to one
of the possible amino acids Si ∈ {An+1, . . . , AN }. As a consequence,
(xi−1, xi ) = (1, 1), ni−1 = n while ni ∈ {n + 1, . . . , N}. In panel (b),
we plot a feasible inclusion of a gap in position i. If the previous
site i − 1 points to ni−1 = n, we then assign (xi, ni ) = (0, n) to keep
memory of the aligned sequence. In the next position, i + 1, we can
match an amino acid in further positions [according to the constraint
in panel (a)] or add another gap with pointer ni+1 = n.

where I[E] is the indicator function of the event E . In-
troducing the short-hand notation A0 = “−” (gap), a model
configuration (x1, . . . , xL, n1, . . . , nL ) results in an aligned
sequence (S1, . . . , SL ) = (Ax1·n1 , . . . , AxL ·nL ). The auxiliary
variables (x, n) must be additionally assigned such that the
positional constraints illustrated in Fig. 2 are satisfied, i.e., the
target subsequence must be ordered, as we now describe.

First of all, in order to correctly set the pointers in presence
of gaps in the first and last positions, it is sufficient to set the
state of node i = 1 as

n1 = 0 if x1 = 0,

N + 1 > n1 > 0 if x1 = 1, (6)

and the state of node i = L as

nL = N + 1 if xL = 0,

N + 1 > nL > 0 if xL = 1 . (7)

These properties can be formally expressed by the following
two single-position constraints

χin(x1, n1) = δx1,0δn1,0 + δx1,1(1 − δn1,0)(1 − δn1,N+1),

χend(xL, nL ) = δxL,0δnL,N+1 + δxL,1(1 − δnL,0)(1 − δnL,N+1) .

(8)

Next, we need to locally impose that, for each position 1 <

i < L,

ni = ni−1 if xi = 0 and ni < N + 1,

ni > ni−1 if xi = 1 or ni = N + 1 ; (9)

i.e., the pointer ni remains constant when xi = 0, and it jumps
to any later position in ni−1 + 1, . . . , N if xi = 1. This jump,
besides determining the amino acid Si to be placed in position
i, also allows for identifying inserts according to Eq. (5). A
pictorial representation of this constraint is shown in Fig. 3.
We can formally encode these constraints in a “short-range”
function χsr (xi−1, ni−1, xi, ni ) that, for each pair of consecu-
tive positions (i − 1, i), indicates the feasible and unfeasible
configurations of the variables (xi−1, ni−1, xi, ni ) and the asso-

ciated cost of insertions, as

χsr (0, ni−1, 0, ni ) = I(ni = ni−1),

χsr (1, ni−1, 0, ni ) = I(ni = ni−1 ∨ ni = N + 1),

χsr (0, ni−1, 1, ni ) = e−ϕi (�ni )I(ni−1>0)

× I(0 � ni−1 < ni < N + 1),

χsr (1, ni−1, 1, ni ) = e−ϕi (�ni )

× I(0 < ni−1 < ni < N + 1), (10)

where the function ϕi(�ni ) is the contribution of the ith po-
sition to the affine insertion penalty, as given in Eq. (3) with
�ni = ni − ni−1 − 1. Note that by combining the constraints
in Eqs. (8) and (10), positions { j > 1} ({ j < L}) can either
have a gap with nj = 0 (n j = N + 1) or the first (last) match
at any position nj > 0 (n j < N + 1) with no insert penalty.

Finally, gap penalties can be encoded in a single-variable
weight,

χgap(xi, ni ) = e−(1−xi )μ(ni ), (11)

with

μ(n) =
{
μext n = 0 ∨ n = N + 1,

μint 1 � n � N .
(12)

The DCA Hamiltonian can be rewritten in terms of the
auxiliary variables as

HDCA(x, n|J, h) = −
∑
i< j

Ji j (Axi·ni , Axj ·n j ) −
∑

i

hi(Axi·ni ),

(13)

while the global cost function E in Eq. (2) is

E (x, n|J, h,λ,μ)

= HDCA(x, n|J, h) +
∑

i

(1 − xi )μ(ni )

+
L∑

i=2

ϕi(�ni )I(ni−1 > 0)I(N + 1 > ni ) . (14)

Collecting all these definitions together, we can associate
a Boltzmann weight W (x, n) with each possible alignment
(x, n) of a given sequence A, which takes into account all
energetic contributions for feasible assignments only,

W (x, n) = 1

Z
e−HDCA(x,n)χin(x1, n1)χend(xL, nL )

×
L∏

i=2

χsr (xi−1, ni−1, xi, ni )
L∏

i=1

χgap(xi, ni ), (15)

where Z is the partition function. Note that the “hard con-
straints” χsr, which can set the weight to zero, live only on the
edges of the linear chain 1, . . . , L, while the interactions Ji j

are in principle fully connected.
Finally, we can map the original minimization problem

in Eq. (2) as the statistical physics problem of finding the
best assignment of the variables (x∗, n∗) that maximizes the
Boltzmann distribution:

(x∗, n∗) = argmax
(x,n)

W (x, n) . (16)
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Alternatively, we could obtain an optimal alignment (x∗, n∗)
from an equilibrium sampling of alignments with weight
W (x, n). Unfortunately, both sampling from W (x, n) and
identifying the constrained optimal assignment are hard and
intractable problems. Note that the space of possible as-
signments has dimension scaling as (N + 2)L, which grows
extremely quickly with N and L. For comparison, the DCA
problem is defined in a space growing “only” as qL. However,
some approximations inspired by statistical physics can be
exploited for seeking an approximate solution.

III. ADVANCED MEAN-FIELD APPROXIMATION

A straightforward approach to make this problem tractable
is to use message-passing approximations of the marginal
probabilities Pi(xi, ni ) of Eq. (15), such as belief propagation
(BP), which are exact for problems defined on graphs without
loops. Note that BP is also exact on linear chains, for which
it coincides with the transfer matrix method (equivalent to
dynamic programming and to the forward-backward algo-
rithm [1]). One can think to BP as treating exactly the linear
chain 1, . . . , L, while the longer range interactions are approx-
imated by message passing. In the case of vanishing couplings
Ji j (A, B) ≡ 0 for all i, j such that |i − j| > 1 and for all A, B,
i.e., in the case of a model with nearest-neighbor interactions
only, this formulation is exact; if all couplings vanish, it is
quite similar to a profile hidden Markov model, which has
the same penalties for opening and extending a sequence of
insertions. However, our interactions are instead typically very
dense (all couplings are nonzero, and hence the associated
graph is very loopy) but weak. We can thus consider a further
approximation of BP [47], in which the linear chain 1, . . . , L
is still treated exactly, while the contribution of more distant
sites is approximated via mean field (MF), in a way similar to
Thouless-Anderson-Palmer (TAP) equations [52], also known
as approximate message passing (AMP) equations. We refer
to this approach simply as MF in the following. In the rest of
this section, we derive the BP and MF equations.

A. Transfer matrix equations for the linear chain

Suppose first that only nearest-neighbor couplings
Ji,i+1(A, B) are nonzero. In this case, the problem is exactly
solved by the transfer matrix method, which corresponds
to a set of recursive equations for the “forward messages”
Fi(xi, ni ) = Fi→i+1(xi, ni ), i.e., the probability distribution
of site i in absence of the link (i, i + 1), and “backward
messages” Bi(xi, ni ) = Bi→i−1(xi, ni ), i.e., the probability
distribution of site i in the absence of the link (i − 1, i).

We give here the transfer matrix equations for the for-
ward and backward messages. For compactness, we define the
single-site weight contribution to Eq. (15):

W1(x1, n1) = χin(x1, n1)eh1(Ax1 ·n1 )−(1−x1 )μ(n1 ),

Wi(xi, ni ) = ehi (Axi ·ni )−(1−xi )μ(ni ),

WL(xL, nL ) = χend(xL, nL )ehL (AxL ·nL )−(1−xL )μ(nL ), (17)

TABLE I. Schematic summary of the transfer matrix and mean-
field equations, which are complemented by the recurrence equations
for Fi and Bi given in Eqs. (18) and (19). For mean field, one should
replace Wi → Ci.

i = 1 i = 2, . . . , L − 1 i = L

P1 = 1
z1
W1B1 Pi = 1

zi
WiFiBi PL = 1

zL
WLFL

F1 = 1
f1
W1 Fi = 1

fi
WiFi

Bi = 1
bi
WiBi BL = 1

bL
WL

where the second line is for i = 2, . . . , L − 1. We then have
for the forward messages

F1(x1, n1) = 1

f1
W1(x1, n1),

Fi(xi, ni ) = 1

fi
Wi(xi, ni )Fi(xi, ni ),

Fi(xi, ni ) =
∑

xi−1,ni−1

Fi−1(xi−1, ni−1)

× eJi−1,i (Axi−1 ·ni−1 ,Axi ·ni )χsr (xi−1, ni−1, xi, ni ), (18)

where Fi is defined for i = 1, . . . , L − 1 and Fi for i =
2, . . . , L, and the fi are normalization constants determined
by the requirement that messages are normalized to one. For
the backward messages, we have

BL(xL, nL ) = 1

bL
WL(xL, nL ),

Bi(xi, ni ) = 1

bi
Wi(xi, ni )Bi(xi, ni ),

Bi(xi, ni ) =
∑

xi+1,ni+1

Bi+1(xi+1, ni+1)

× eJi,i+1(Axi ·ni ,Axi+1 ·ni+1 )χsr (xi, ni, xi+1, ni+1), (19)

where Bi is defined for i = L, L − 1, . . . , 2 and Bi for i =
L − 1, . . . , 1, and bi are normalization constants. Finally, the
marginal probabilities are given by

P1(x1, n1) = 1

z1
W1(x1, n1)B1(x1, n1),

Pi(xi, ni ) = 1

zi
Wi(xi, ni )Fi(xi, ni )Bi(xi, ni ),

PL(xL, nL ) = 1

zL
WL(xL, nL )FL(xL, nL ) . (20)

These equations are summarized in compact form in Table I.
They can be easily implemented on a computer and solved in
a time scaling as L N .

B. Long-range interactions

We now discuss the inclusion of long-range interactions
in the transfer matrix scheme. In order to treat correctly
the long-range interaction in BP, it is important to note that
the same “light-cone” condition expressed by the constraint
χsr in Eq. (10) holds between any pair (i, j). However, this
condition would be violated by the messages of BP due to
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their approximate character on loopy graphs. In order to en-
force it, we can introduce a new constraint

χlr (xi, ni, x j, n j )

= I[i > j + 1]{δxi,0I[ni � n j] + δxi,1I[ni > n j]}
+I[i < j − 1]{δx j ,0I[ni � n j] + δx j ,1I[ni < n j]} .

(21)

Because this constraint is redundant with respect to Eq. (10),
it can be added without changing the weight:

W (x, n) = W (x, n) ×
∏
i< j

χlr (xi, ni, x j, n j ) . (22)

However, adding this constraint ensures that the proper
ordering of the pointers is preserved under the BP
approximation.

The BP equations can be written straightforwardly (see the
SM [50]) and provide an approximation to the marginal prob-
abilities Pi. A naive implementation requires a time scaling
as L3N2, which can be easily reduced to L2N2. In the SM,
we discuss a simplification of the BP equations, under the
assumption that pairs of sites with |i − j| > 1 can be treated
in a mean field [47]. We find that the resulting mean-field
equations are identical to the transfer matrix ones, with the
only replacement of the local weight Wi → Ci, with

Ci(xi, ni ) = Wi(xi, ni ) exp

⎧⎨
⎩

∑
j /∈{i,i±1}

∑
x j ,n j

χlr (xi, ni, x j, n j )Ji, j (Axi·ni , Axj ·n j )Pj (x j, n j )

⎫⎬
⎭ . (23)

As a result, the mean-field equations have the same complex-
ity as the transfer matrix equations (LN ) with an additional
factor LN needed to compute each Ci, resulting in an overall
complexity L2N2, the same scaling of the BP update. How-
ever, while the memory consumption needed by BP to store all
the incoming messages at each node scales as 2L2N , MF has
the advantage of working directly on the 2LN approximated
marginal probabilities.

C. Assignment

After solution of the MF equations, from the marginal
probabilities {P1(x1, n1), . . . , PL(xL, nL )} we have to find the
most probable assignment (x∗, n∗), as defined in Eq. (16). The
simplest way to do so is to assign to each position i the most
probable state according to its marginal, i.e.,

(x∗
i , n∗

i ) = argmax
xi,ni

Pi(xi, ni ), (24)

which is possible whenever the obtained assignment satisfies
all the hard constraints. However, in some cases, the set of
locally optimal positions do not satisfy the short-range con-
straints due to the approximate nature of the MF solution.
We then perform a maximization step, in which we select
the position i∗ and the local assignment (x∗

i∗ , n∗
i∗ ) having the

largest probability among all the marginals, i.e.,

(i∗, x∗
i∗ , n∗

i∗ ) = argmax
i,xi,ni

{P1(x1, n1), . . . , PL(xL, nL )} . (25)

We then set the state of site i∗ in (x∗
i∗ , n∗

i∗ ), and we proceed
with a filtering step, in which we set to zero the marginal
probabilities of the incompatible states of the first nearest
neighbors of i∗. In practice, we multiply the marginals by the
short-range constraints computed at (x∗

i∗ , n∗
i∗ ); i.e., we consider

the new marginals on sites i∗ ± 1:

Pi∗−1(xi∗−1, ni∗−1)χsr (xi∗−1, ni∗−1, n∗
i∗ , x∗

i∗ )

Pi∗+1(xi∗+1, ni∗+1)χsr (x
∗
i∗ , n∗

i∗ , xi∗+1, ni∗+1). (26)

We can now repeat the maximization step in order to find
the state (x∗, n∗) that maximizes the joint set of probabilities
for the positions adjacent to the already aligned part of the

sequence (in this case i∗ − 1 and i∗ + 1, because we only
fixed i∗),

(x∗, n∗) = argmax
x,n

{Pi∗−1(x, n), Pi∗+1(x, n)}, (27)

and we fix this state, in the alignment, in the right posi-
tion (either i∗ + 1 or i∗ − 1). Suppose for simplicity that
we have just specified the state in position i∗ + 1; we now
filter the probability of i∗ + 2 and repeat the choice for
the next (x∗, n∗) considering the set of (modified) marginals
{Pi∗−1(x, n), Pi∗+2(x, n)}. The procedure is repeated until all
the L positions are determined.

Note that this scheme is somehow greedy, because the
assignments are decided step by step and are constrained by
the choices made in the previous positions. Still, the assign-
ment is guided by the marginal probabilities obtained from
considering the global energy function and all the hard con-
straints. Moreover, this assignment procedure is as fast as the
“max-marginals” scheme because it does not require us to
rerun the update of the equations in Sec. III, and thanks to the
step-by-step filtering of the marginals it ensures an outcome
that is always compatible with the constraints.

D. Discussion

In this section, we presented a set of approximate equations
and an assignment procedure that, together, allow us to solve
the alignment problem in polynomial time. In both BP and
MF, the equations can be solved at “temperature” equal to one,
corresponding to a Boltzmann equilibrium sampling from
the weight in Eq. (15), or at zero temperature, correspond-
ing to finding (approximately) the most likely assignment in
Eq. (15) (the full set of equations for MF at zero temperature
is reported in the SM [50]). Of course, any intermediate tem-
perature could also be considered, but we do not explore other
values of temperature in this work.

In all cases, one can compute the free energy associated
with the BP or MF solution, which gives a “score” measuring
the quality of the alignment. This score could be used, in
long sequences with multiple hits, to decide a “best hit.” The
expression of the free energy is given in the SM.
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The MF equations are derived from the BP equations by
assuming that all couplings with |i − j| > 1 are weak enough
to be treated in the mean field. However, we know that
in (good) protein models, stronger couplings correspond to
physical contacts in the three-dimensional structure, while
a background of weaker couplings describe other correla-
tions or even just noise. It could be interesting, therefore,
to use a mixed BP-MF method, in which weaker couplings
with ||Ji j || < K are treated in the mean field, while stronger
couplings with ||Ji j || � K are treated with BP, for a given
threshold K . The case K = 0 corresponds to pure BP, while
the case K → ∞ corresponds to pure MF. One could check
whether an optimal value of K exists, but we leave this for
future work. We show below the results obtained using MF,
which seems preferable to BP in the cases we analyzed. The
MF equations converge faster than BP to their fixed point and,
additionally, BP is more affected by the loopy character of
the graph and often converges to local minima of the energy
landscape. We leave a more systematic comparison of the BP
and MF schemes to future developments.

IV. LEARNING THE MODEL

We now discuss the learning of the model parameters,
namely the couplings and fields of the DCA Hamiltonian, and
the hyperparameters μ, λ.

A. Potts model

Our alignment method is able to cope with different cost
functions, because the implementation of the update equations
described in Sec. III B is as general as possible. When we
introduce a five-state alphabet, the method is also able to treat
RNA alignments.

In this work, we tested several types of maximum entropy
models for DCA, which differ in the choice of fitted observ-
ables. The usual Potts model, in which all first and second
moments of the seed MSA are fitted, is labeled as potts, while
we also consider a “pseudo” hidden Markov model (phmm),
with Hamiltonian

Hphmm(S|J, h) = −
∑
i,i+1

Ji,i+1δSi,−δSi+1,− −
∑

i

hi(Si ) . (28)

The phmm can be thought of as a profile model playing the
role of the emission probabilities of a hidden Markov model
(HMM), plus a pairwise interactions Ji,i+1 between neigh-
boring gaps. This interaction is related, in our mapping to a
HMM, to the probability of switching between two consecu-
tive positions, from a “gap” to a “match” state and vice versa.
We also considered other variations of the Potts model, such as
a model in which we do not fit the second moment statistics of
non-neighboring gaps (i.e., long-range gap-gap couplings are
set to zero). The motivation behind this choice is that, if DCA
couplings are interpreted as predictors for the (conserved)
three-dimensional structure, gapped states do not carry any in-
formation about coevolution of far-away positions. However,
we found that these other variations do not bring additional
insight with respect to the potts and phmm models, so we
restrict here the presentation to these two choices.

All these models are learned on a seed alignment using a
standard Boltzmann machine DCA learning algorithm [51].
We used a constant learning rate of 5 × 10−2 for most protein
families and 10−2 for all RNA families and for the longest
protein families we used. Because the seed often contains very
few sequences, we need to introduce a small pseudocount
of 10−5 to take into account nonobserved empirical second
moments. The Boltzmann machine performs a Monte Carlo
sampling of the model using 1000 independent chains and
sampling 50 points for each chain (in total the statistics is thus
computed using 5 × 104 samples). Equilibration and autocor-
relation tests are performed to increase or decrease, if needed,
the equilibration or the sampling time of the Monte Carlo.

It is important to keep in mind that the models inferred
from the seeds are “nongenerative” because of the reduced
number of sequences (samples generated from these mod-
els, due to a strong overfitting, are extremely close to seed
sequences), but nonetheless they are accurate enough to be
used as proper cost functions for our alignment tool. We
also mention that models inferred from pseudolikelihood
maximization [26,53], which are also known to be nongener-
ative [51], can be equivalently used for the alignment method
described in this work.

B. Insertion penalties

We determine the parameters of the affine insertion penal-
ties using the statistics of the insertions of the seed alignment.
Recall that the number of insertions between positions i and
i − 1 is �n = ni − ni−1 − 1, as illustrated in Fig. 4. Motivated
by the empirical statistics of insertions in true seeds, we model
the probability of �n as

Pi(�n) =
{ 1

z , �n = 0,

e−λi
o−λi

e (�n−1)

z , �n > 0,
(29)

where

z = 1 +
∑
�n>0

e−λi
o−λi

e(�n−1) = 1 + e−λi
o

1 − e−λi
e

(30)

is the normalization constant and λi
o, λi

e are the costs associ-
ated with the opening and the extension of an insertion as in
the score function defined in Eq. (3). Because the learning of
the parameters is done independently for each position i, for
the sake of simplicity we will drop the index i in the following.

We determine the values of λo, λe by maximizing the likeli-
hood L({�n}M

a=1 | λo, λe) of the data, i.e., the M sequences of
the seed, given the parameters, and adding L2-regularization
terms in order to avoid infinite or undetermined parameters.
Imposing the zero-gradient condition on the likelihood leads
to a closed set of nonlinear equations for the maximum like-
lihood estimators, given in the SI. These equations can be
solved, for example, by a gradient ascent scheme in which
we iteratively update

λt+1 ← λt + η
∂Lt

∂λ
(31)

for both λo and λe, until numerical convergence (more pre-
cisely, when the absolute value of the gradient is less then
10−4). The learning rate is η = 10−3. Note that the empirical
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FIG. 4. Inference of insertion penalties. (a) Schematic representation of the �n variables: The number of insertions between two
consecutive positions in the alignment can be computed from the pointer variables n. [(b), (c)] Examples of fitting of the empirical probability
of �n using our maximum likelihood approach for (b) position 25 and (c) position 92 for RF00162. In panel (c), the data distribution does not
show an exponential profile but our approximation fits well the empirical probability for most of the observed �n.

distribution can differ from that of our model: For instance,
we often encounter positions where either no insertion is
present within the seed or the distribution of the positive �n
is not exponential. In the first case, our maximum likelihood
approach cannot be applied as it is: In order to apply it, we
pretend that the probability of observing at least one insertion
is equal to a small parameter ε so that we can slightly modify
Pseed(�n = 0) = 1 − ε. In our work, this parameter has been
set to ε = 10−3. In the second case, we notice that the distri-
bution given by the fit is anyway a nice approximation of the
true one. Some examples are reported in Fig. 4.

C. Gap penalties

The gap state is treated in DCA models as an additional
amino acid but, by construction of the MSA, it is actually an
ad hoc symbol used to fill the vacant positions between well-
aligned amino acids that are close in the full-length sequence
A and should be more distant in the aligned sequence S. Thus,
the proper number of gaps for each candidate alignment is
often sequence dependent and not family dependent: The one-
point and two-point statistics of gaps computed from the seed
may not be representative of the full alignment statistics. Yet,
the couplings and the fields of the DCA models learned from
the seed tend to place gaps in the positions mostly occupied
by gaps in the seed. This may lead to some bias depending on
the seed construction: We notice that if we create seeds using
randomly chosen subsets of Pfam [12] alignments produced
by HMMer [11], our alignment method, DCAlign, is likely to
produce very gapped sequences. In these cases, gaps appear
very often, more often than any other amino acid, indicat-
ing that our cost function encourages the presence of gaps.
Real seeds are instead manually curated and therefore they
generally contain few gaps. Even though the Potts models
learned from this kind of seeds are less biased, we need to
check whether the issue exists anyway and, if needed, treat
it. To do so, our idea is to introduce additional penalties
to gap states, μext and μint, as we discussed in Sec. II B in
the definition of the cost function. Notice that the distinction
between “internal” and “external” gap penalties allows us to
differentiate between gaps that are artificially introduced (as in

the case of the internal ones) and gaps that reflect the presence
of well aligned but shorter domains or fragments, of effective
length Lfrag < L. In this last case, some “external” gaps are
needed to fill the L − Lfrag positions at the beginning or at the
end of the aligned sequence.

Contrary to the insertion penalties, the gap penalties cannot
be directly learned from the seed alignment via an unsu-
pervised training (as their statistics is already included in
the Potts model to begin with), but they can be learned in
a supervised way. A straightforward procedure consists in
realigning the seed sequences using the insertion penalties
and the DCA models (potts or phmm) described in Sec. IV A
for several values of μext and μint. The best values of the
gap parameters are those that minimize the average Hamming
distance between the realigned seed and the original seed se-
quences. We performed this supervised learning by setting the
values of μext ∈ [0.00, 4.00] and μint ∈ [0.00, 4.00]. These
intervals have been chosen after several tests in a larger range
of variability, also including negative values (that favor gaps)
and very large values compared to the typical parameters of
the Potts models. We observed that (i) favoring gaps is always
counterproductive and (ii) there exists a threshold, usually
around 4, beyond which no gap is allowed in the sequence,
which is also counterproductive. For these reasons, and be-
cause of the high computational effort required to realign
the sequences several times, we decided to use the interval
[0.00, 4.00] with sensitivity 0.50 leading to 81 realignments
of the seed sequences.

This method works for seeds that contain a large number
of sequences (typically M > 103) but it fails completely when
dealing with “small” seeds. In this case, whatever the value
of (μext, μint), the realigned sequences are always identical
to the original ones, resulting in an average Hamming dis-
tance equal to zero. Indeed, the energy landscape of models
learned from few sequences is populated by very isolated
and deep local minima centered in the seed sequences. When
the algorithm tries to realign an element of the training set,
it is able to perfectly minimize the local energy and re-
align the sequence with no error whatever the additional gap
penalty. For short seeds, instead of realigning the seed, we
thus extract 1500 sequences from the full set of unaligned
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FIG. 5. Scheme of the training process for DCAlign. In panel (a), we show the first step of the learning. We build the aligned seed of a Pfam
family using hmmbuild -O to detect the matched amino acids (blue line) and the insertions (shown in lowercase letters and “.”). From these
data, we learn the DCA Hamiltonian and the affine insertion penalties. In panel (b), we pictorially describe the learning of the gap penalties.
Here we take into account the seed itself (not only the aligned part but the entire sequences) and we try to align it using the parameters
inferred in step (a) using all the 81 possible combinations of μext and μint , each spanning the interval [0.00, 4.00]. We compare each candidate
alignment to the seed alignment, directly using the Hamming distance. The best set of parameters is that minimizing this metric. The plot in
panel(b) shows the (average) Hamming distance of the true and realigned seed for the PF00677 family.

sequences (a validation set), which we align by varying the
gap penalties, always in the range [0.00, 4.00]. We call H0

seed
the DCA Hamiltonian inferred on the seed, and we infer new
Hamiltonians H0

type,μext,μint
(with type ∈ {phmm, potts, }) on

all the multiple sequence alignments of the validation set.
We then choose the best parameters μext and μint as those
that minimize the symmetric Kullback-Leibler distance be-
tween H0

seed and H0
type,μext,μint

(the precise definition is given
in Sec. V). In other words, we select the best gap penalties as
those that produce a validation MSA as statistically close as
possible to the seed alignment.

We underline that the values of the penalty parameters also
depend on the choice of the gauge for the DCA parameters: In
fact, the advanced mean-field equations are not gauge invari-
ant and depending on the choice of the gauge we can have
different (optimal) values for the gap penalties. All results
shown in this work use the zero-sum gauge for the DCA
parameters.

V. COMPUTATIONAL SETUP

A. Pipeline

The computational setting we propose here is the same
adopted by state-of-the-art alignment softwares such as
HMMer [54] and Infernal [15]. From the seed alignment,
we learn all the parameters that characterize our score func-
tion and we apply our alignment tool to all the unaligned
sequences that contain a domain compatible with the chosen
family. More precisely, once a seed is selected (we used the
hmmbuild -O function of the package HMMer to obtain the
aligned seed), we learn the model, the insertions parameters,
and the gap penalties as described in Sec. IV. A scheme of our
training method is shown in Fig. 5.

After training, our cost function is fully determined.
Unaligned sequences are then taken from the full length se-
quences of the corresponding family in the Pfam database [12]
(we do not face here the problem of detecting homologous
sequences). Note that, like HMMer, we also include the seed
sequences in the sequences to be aligned, in order to ob-
tain a more homogeneous MSA and test the quality of the
realignment of the seed. We do not consider the entire se-
quences, whose length N is often much larger than L, but
a “neighborhood” of the hit selected by HMMer. In prac-
tice, we add 20 amino acids at the beginning and at the
end of the hit, resulting in a final length N = 20 + L + 20.
We performed the same experiment using N = 50 + L + 50
for PF00684 and the resulting sequences were identical to
those obtained from a shorter hit. The method seems to be
stable for reasonable values of N , i.e., N ∼ L. For RNA se-
quences, this preprocessing is not needed, because the full
length sequences downloaded from Rfam already have a rea-
sonable length. For most families, we have aligned all the
full length sequences (the size of the test sets is specified
in Table II) and only in few cases, for particularly large
families, we uniformly pick at random Nseq = 104 sequences
to align.

We then apply DCAlign using the approximations we
discussed in Sec. III, namely the finite-temperature and zero-
temperature MF method, to each candidate sequence and we
add to our MSA the aligned subsequence that has the lower
energy (insertion and gap penalties excluded). Whenever our
algorithms do not converge to an assignment of the variables
that satisfies all the hard constraints, we apply the “nucle-
ation” procedure explained in Sec. III C that, by means of
the approximated marginal probabilities, gives rise to feasible
alignments.
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TABLE II. Features of the protein and RNA families used in this work. We show here the length L of the sequences for each family, the
values of M and Meff [25] for the seed alignment, the number of crystal structures available in the Protein Data Bank (PDB) used to determine
the true contact maps based of real observations of the domains structure, the number of the sequences, Nseq, to be aligned by our methods,
and the value of the gap penalties associated with each family and Hamiltonian. For a subset of 100 uniformly randomly chosen sequences,
we show the average length N of the unaligned sequence (for protein domains, this is set to 20 + L + 20); the last column shows the mean and
median values of the computing time.

μext μint Mean t , median t [s]

Identifier L M seed Meff seed PBD Nseq Hpotts Hphmm Hpotts Hphmm Mean N Hpotts

PF00035 67 81 81 73 19751 2.50 2.00 0.00 2.00 20+L+20 38, 8
PF00677 87 1878 1518 9 14683 0.00 0.50 2.00 2.00 20+L+20 18, 17
PF00684 67 1512 1349 3 10000 0.00 0.00 2.50 2.00 20+L+20 20, 7
PF00763 116 1389 1355 24 10000 1.50 2.50 1.00 1.50 20+L+20 64, 32
RF00162 108 433 241 25 6026 3.50 3.50 3.00 4.00 112 108, 30
RF00167 102 133 105 49 2631 0.50 1.50 2.00 4.00 100 144, 33
RF01734 63 287 287 6 2017 1.00 0.00 2.00 1.50 70 23, 7
RF00059 105 109 83 24 12558 0.00 0.50 1.50 1.50 110 223, 48

B. Observables

To assess the quality of the MSAs generated by DCAlign
(that differ in the score function being used to align) and to
compare them to the state-of-the-art alignments provided by
HMMer (or Infernal), we consider the following observables:

(1) Sequence-based metrics. When comparing two candi-
date MSAs of the same set of sequences (a “reference” and
a “target”), it is possible to compute several sequence-wise
measures such as the following metrics (normalized by L, the
length of the sequences):

(a) The Hamming distance between the two alignments
of the same sequence in the reference and target MSAs;

(b) Gap+: the number of match states in the aligned
sequence of the reference MSA that have been replaced by
a gap in the target MSA;

(c) Gap−: the number of gaps in the aligned sequence
of the reference MSA that have been replaced by match
states in the target MSA;

(d) Mismatch: the number of amino-acid mismatches,
that is, the number of times we have match states in both se-
quences, reference and target, but to different amino acids
(positions) in the full sequence A.
(2) Proximity measure. Consider two different MSAs of

the same protein or RNA family. We can compute, for each
candidate sequence S1

i of the first set, the Hamming distance
dH with respect to all the sequences of the second set. We then
collect the minimum attained value, i.e,

d̂i = min
j

dH
(
S1

i , S2
j

)
, (32)

which gives the distance to the closest sequence in the other
MSA. The distribution of d̂i, or some statistical quantity com-
puted from them (such as the average or the median value)
provides a good measure of “proximity” between the two sets.
We will show below a few examples using the full alignment
of a protein family as a first set, and the seed sequences as the
second one.

(3) Symmetric Kullback-Leibler distance. Another con-
venient global measure is the symmetric Kullback-Leibler
distance between a Boltzmann equilibrium model learned
from the seed alignment (the “seed” model) and another
model learned from a candidate MSA (the “test” model).

In general, the symmetric Kullback-Leibler divergence is a
measure of “distance” between two probability distributions
and it is defined, for arbitrary densities P1(x) and P2(x) of the
variables x, as

Dsym
KL (P1,P2) = DKL(P1||P2) + DKL(P2||P1), (33)

where DKL is the Kullback-Leibler divergence

DKL(P1||P2) =
∑

x

P1(x) log
P1(x)

P2(x)
. (34)

In our context, the symmetric KL distance can be efficiently
computed through averages of energy differences as

Dsym
KL (Pseed,Ptest )

= DKL(Ptest||Pseed ) + DKL(Pseed||Ptest )

= 〈Hseed − Htest〉Ptest
+ 〈Htest − Hseed〉Pseed

, (35)

where P(.) is the Boltzmann distribution associated with the
energy H(.), and the brackets 〈...〉P denote the expectations
with respect to P , which can be easily estimated using a
Monte Carlo sampling (in contrast to the normal DKL, which
depends on the intractable normalization constants, i.e, the
partition functions, of the densities P(.)). We run the compar-
ison using two different models for H, that is a Potts model
and a profile model.

(4) Contact map. The couplings of DCA models can be
used to detect the presence of physical interactions between
pairs of sites, which are distant in the one-dimensional chain
but in close contact in the three-dimensional structure. A good
score that indicates a direct contact is the (average-product
corrected) Frobenius norm of the coupling matrices, defined
as

FAPC
i, j = Fi, j −

∑
m Fi,m

∑
n Fn, j∑

m,n Fm,n
, (36)

where

Fi, j =
√ ∑

A=′−′,B =′−′
Ji, j (A, B)2, (37)

and the couplings are in the zero-sum gauge. We thus compare
predicted contact maps obtained using the parameters learned
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FIG. 6. Comparison between DCAlign and HMMer for synthetic data. Panels (a) and (b) show the histograms of the normalized metrics
(Hamming distance, Gap+, Gap−, and Mismatches), respectively, in the case of conserved sited only, and of correlated pairwise columns only.
Here, the reference is the ground truth and the target is the alignment of DCAlign (blue) or HMMer (red). In panel (b), HMMer results are not
shown because hmmsearch does not find any relevant hit.

from our alignments and those obtained by HMMer. For this
purpose, we use the PlmDCA method to learn the couplings
from the alignments, because it is faster than the Boltzmann
machine and it is known to be reliable for contact predic-
tion [26]. The ground truths denoting the physical interactions
in each protein are obtained running the Pfam interactions
package [55]. Two sites are said to be in contact if the min-
imum atomic distance among all the atoms and among all the
available protein structures is less than 8 Å.

VI. TEST ON SYNTHETIC DATA

Here we describe two experiments on synthetic data,
constructed to compare the performances of DCAlign to state-
of-the-art methods in extreme settings: One data set presents
conserved but not coevolving sites (i.e., strong variations in
amino-acid frequency on each site but no correlation between
distinct sites), while the other presents not conserved but co-
evolving sites (i.e., uniform frequency 1/q of amino acids on
each site, but strong correlations between distinct sites).

A. Conservation

The first MSA is generated from a nontrivial profile model,
in which the empirical probability of observing any of the pos-
sible amino acids is position dependent and it is not uniformly
distributed among the possible states. The generative model
used in this case is the profile model of the PF00018 family,
which can be easily learned from the empirical single-site
frequencies. From this model, we generate 5 × 104 “aligned”
sequences (the “ground truth”), to which we randomly add
some insertions, according to the affine insertion penalty dis-

tributions learned from the PF00018 seed (Sec. IV B) and 20
uniformly randomly chosen symbols at the beginning and at
the end of the aligned sequence. We split this alignment into
a training set of 2.5 × 104 sequences, which we use as seed
alignment to learn the insertion and gap penalties (using the
scheme for abundant seeds) and a Potts model. We align the
remaining 2.5 × 104 sequences, used as test set. For compar-
ison, we build a hidden Markov model using hmmbuild of
the HMMer package on the training set and we align the test
sequences through the hmmsearch tool.

We show in Fig. 6(a) the histograms of the (normalized)
Hamming distances, Gap+, Gap−, and mismatches of the
MSA obtained by DCAlign and HMMer compared to the
ground truth. We observe that DCAlign is able to find the
correct hits and to align them in a more precise way if com-
pared to HMMer. In fact, the Hamming distance distribution
is shifted to smaller values, suggesting that the number of
errors, per sequence, is smaller than that obtained by HMMer.
The nature of the mistakes seems to be linked to the presence
of mismatches in the case of HMMer, while DCAlign (less
often) equally likely inserts more or less gaps, or a match to
the wrong symbol. While DCAlign is in principle constructed
to exploit coevolution, these results show that even in cases
in which, by construction, there is no coevolution signal,
DCAlign is able to perform equally good (or even better) than
state-of-the-art methods.

B. Covariance

The second experiment is instead focused on correlated
data. We ad hoc construct an alignment whose first moment
statistics resemble those of a uniform distribution; i.e., the
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probability of observing any amino acid, in any column of
the seed, is 1/q. In other words, we construct the data in
such a way that no conserved sites are present. At the same
time, we force the sequences to show coevolving (i.e., corre-
lated) sites, such that the empirical probability of observing
a pair of amino acids is different from that obtained in the
uniform distribution, i.e., fi j (S, S′) = δSi,SδS j ,S′ = 1

q2 for some
(i, j), where the overline indicates the empirical average. To
construct a data set with these statistics, we use as gener-
ative model a Potts model with four colors (like the RNA
alphabet, without the gap state) having nonzero couplings
Ji j (Si, S j ) = −δSi,S j (i.e., an antiferromagnetic Potts model)
and no fields. The nonzero couplings are associated with the
links of a random regular graph of 50 nodes and degree 5.
The presence of the links ensures the appearance of nontrivial
second moments while, in order to avoid “polarized” sites, we
sample the model (i.e., the Boltzmann distribution associated
with this Hamiltonian) at temperature T = 1

β
= 0.3, which

is deep in the paramagnetic phase of this model [56]. We
perform the same training pipeline presented in Sec. VI A
except for the learning of the gap penalties: Because there are
no gap states, we set μext = 0 and μint = 0.

In this case, due to the absence of any conservation,
hmmsearch does not find any eligible hit. In fact, HMMer
tries to align the sequences via a computationally exact re-
cursion on a HMM, but it has no information to exploit
while setting up the HMM from the training set, because
all amino acids are equally likely to occur in each column.
This represents, of course, the worst-case scenario for HMM-
based methods. In contrast, the couplings of the learned Potts
model allow DCAlign to align this kind of sequences. We
remark that in contrast to HMMer, DCAlign has complete
information on the statistics of the training alignment, up to
second-order covariances. However, being a heuristic method,
it sometimes fails to achieve the (global) minimum of the cost
function and converges to a local minimum, which depends
on the initialization of the target marginals. Reiterating the
MF equations using 10 different seeds of the random number
generator suffices to reach the proper minimum at least once,
for the majority of sequences. We remark that this issue is
present only when the MSA does not show any conserved
site and thus the algorithm has no easy “anchoring” point,
which surely helps lifting the degeneracies in the alignment
procedure. For protein and RNA families presented below, the
algorithm seems stable and only one minimum emerges upon
reinitialization of the marginal probabilities of the algorithm.
We quantitatively measure the performance of DCAlign us-
ing four sequence-based metrics and the energies associated
with the aligned sequences. For this experiment, we refer to
the output of our algorithm as the aligned sequence that has
the minimum energy among the 10 trial reiterations of the
algorithm. We report the distance metrics in Fig. 6(b): The
distribution of the Hamming distances suggests that DCAlign
can almost perfectly align the majority of the target sequences.
Indeed, as shown in Fig. 7, the energies (the Potts Hamiltonian
alone or the full cost function which includes the gap and
insertion penalties) are identical or very close to the energies
of the true sequences. Only 0.08% of the aligned sequences
have a Hamming distance density larger than 0.30 (i.e., 15
missed positions over 50). This fraction is so low as to be

FIG. 7. Energies of synthetic sequences. We show here the
scatter plots of the DCA energy (or Potts Hamiltonian) in panel
(a) for the true synthetic sequences (x axis) against the ones aligned
by DCAlign(Hpotts) (y axis). (b) Same plot using the total cost
function E .

invisible in the histograms of Fig. 6(b). These extreme cases,
in which our algorithm converged to a local minimum in every
trial we performed, are represented as purple points in the
scatter plots in Fig. 7.

VII. TEST ON PROTEIN AND RNA FAMILIES

A. Choice of families

We show here the performance of our alignment method
for several RNA and protein families. In particular, we se-
lect the families PF00035, PF00677, PF00684, and PF00763
from the Pfam database (release 32.0) [12,57], and RF00059,
RF00162, RF00167, and RF01734 from the Rfam database
(release 14.2) [13,58]. The number of sequences, length of the
models, and gap penalties used in the simulations are reported
in Table II.

We restrict our analysis to “short” families, having L of
at most 100 positions, in order to avoid a significant slowing
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FIG. 8. DCAlign vs state-of-the-art methods for PF00035 and RF00167. We plot here the histograms of the Hamming distances, Gap+,
Gap−, and mismatches for the protein family PF00035 [(a)–(d)] using as reference the HMMer results and as target the DCAlign results, and
for the RNA family RF00167 [(e)–(h)] using as reference the Infernal results and as target the DCAlign results.

down of the alignment process. The seed of PF00035 con-
tains very few sequences, in contrast to PF00677, PF00684,
PF00763, which have been chosen because of their large
effective number of seed sequences Meff > 1000 (after a
standard re-weighting of close-by sequences [25]). We thus
always infer the gap penalties according to the abundant seed
protocol, except for PF00035. As reference for comparison,
we consider the alignments produced by HMMer [54] and
already available in the Pfam database. We also perform the
alignment of several RNA families, for which secondary-
structure knowledge is necessary to obtain good alignments
with standard tools. We compare our estimate against that
obtained by the state-of-the-art package Infernal [15] which,
indeed, employs the secondary structure of the target domains
in order to build the so-called covariance model used to align.
Note that, in contrast, DCAlign does not use any secondary
structure information in the training procedure (but DCA is
able to predict the latter [59]). As a further comparison, we
also learn a hidden Markov model (using hmmbuild) and
we apply hmmalign to the full-length RNA sequences. We
choose precisely these families because of their reasonable
length, the abundance of the seed sequences, and the large
number of available crystal structures, which are useful for
the contact map comparison.

B. Comparison with state-of-the-art methods

As a first comparison, we compute the sequence-based
metrics presented in Sec. V B, comparing our full alignment
to that achieved by HMMer, for protein sequences, or by In-
fernal, when dealing with RNA families. We show the results
for PF00035 in Figs. 8(a)–8(d) and for RF00167 in Figs. 8(e)
and 8(f), which are representative of the typical scenario for
protein and RNA sequences. The distribution of all metrics

is mostly concentrated in the first bins (the bin width is set
here to 0.01) and decays smoothly at larger distances. The
peak in the first bin is more prominent when the Hamiltonian
used for the alignment is phmm, indicating that the sequences
aligned by this method are closer to those obtained by HMMer
(or Infernal) than the outcomes of DCAlign-potts, as one
would expect from the similarity between the two alignment
strategies (see Sec. IV A).

A notably different behavior emerges for the sequences of
the PF00677 family, as shown in Figs. 9(a)–9(d). It is clear
from Fig. 9(a) that a large fraction of the sequences aligned
by DCAlign differs from those aligned by HMMer by about
40% of the symbols when using Hpotts (the percentage is
reduced to about 30% when using Hphmm). The reason seems
to be partially linked to the presence of mismatches and to
a non-negligible fraction of additional gaps, as indicated by
Gap+. We notice that, unlike the other families, the seed of
PF00677 is composed by several clusters of sequences mostly
differing in the gap composition: A copious fraction of them
have generally few gaps while some other show two long
and localized stretches of gaps. The structure of the seed can
be better characterized in the principal component space, as
depicted in Fig. 9(e), where we plot the projections of the seed
sequences in the space of the first two principal components
as filled circles. The colors refer to the density of sequences
in the (discretized) space. To understand the disagreement
between HMMer and our methods, we superimpose the pro-
jections of the sequences responsible for the huge peaks in the
Gap+ histogram in the principal component space of the seed
sequences, using brown crosses for the sequences aligned by
HMMer and pink diamonds for those found by DCAlign-potts
(note that none of these sequences is a realignment of a seed
sequence). Only a small fraction of the HMMer sequences
overlap with the central and poorly populated cluster while

062409-14



ALIGNING BIOLOGICAL SEQUENCES BY EXPLOITING … PHYSICAL REVIEW E 102, 062409 (2020)

potts

FIG. 9. DCAlign vs HMMer for PF00677. In (a, b, c, d) we plot the Hamming distance, Gap+, Gap− and Mismatches using the sequences
aligned by HMMer as reference and those obtained by DCAlign as target. In (e) we plot the projections of the seed sequences in the first two
principal components of the seed space; the color scale denotes the density of the space. The additional sequences (depicted as pink diamonds
if aligned by DCAlign-potts or as brown crosses if aligned by HMMer) are responsible for the red peak around 0.2 in panel (b).

the projections obtained from sequences aligned by DCAlign-
potts lie on a well-defined and populated cluster. We thus
conclude that looking at the gap composition of sequences
is not sufficient in this case to understand the different be-
havior of HMMer and DCAlign. A more accurate analysis in
the principal components space suggests that the sequences
obtained by HMMer are probably miscategorized, at variance
with DCAlign sequences that are in agreement with the seed
structure.

In summary, although for some of the families analyzed
here (the distribution of the four metrics for the remaining
families are shown in the SM [50]) the sequences aligned
by DCAlign are very similar to those obtained by HMMer or
Infernal, the PF00677 family suggests a different scenario, in
which DCAlign is able to learn some nontrivial correlations
present in the seed and to exploit them in order to achieve a
better alignment of the target sequences. DCAlign is then able
to reproduce state-of-the-art performance in most cases and to
improve them in some cases.

C. Comparison with the seed

In this section, we compare the statistical properties of the
MSAs obtained by DCAlign with those of the seed.

1. Kullback-Leibler distances

The statistics of a MSA can be characterized in terms of a
statistical (DCA) model. Depending on the complexity of the
model, a certain set of observables are fitted from the MSA.
For instance, in a profile model only the first moments are
fitted, while in a Potts model we can also fit the informa-
tion about second moments. These statistical models define
a probability measure over the space of sequences and thus
characterize a given protein/RNA family. We consider here
the seed sequences as our ground truth, and we thus consider

that a model learned from the seed is the one that better
characterizes the protein/RNA family under investigation. We
then infer a second model from the full set of aligned se-
quences, and we ask how different this model is from that
learned from the seed. To answer this question, we compute
the symmetric Kullback-Leibler divergence Dsym

KL between the
two models (see Sec. V B), which must be intended as a
statistical measure of distance between the seed and the set
of aligned sequences. In order to fairly compare DCAlign,
HMMer, and Infernal, which by construction treat differently
the pairwise covariation of the MSA sites, we learn, from a
seed and from the test alignment, a profile model HProf and a
Potts model HPotts.

We show in Figs. 10(a) and 10(b) the results for all families
and all methods, when the model learned is a Potts model or
a profile model, respectively. We notice that the alignments
produced by DCAlign-potts always, for the Potts case, and

FIG. 10. Symmetric Kullback-Leibler distances. We plot the
symmetric KL distance between the MSA and the seed alignment,
computed via a Potts model (a) or a profile model (b), for all the
families and all the alignment methods we considered.
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FIG. 11. Distribution of proximity measures. Histograms of the
minimum distances computed according to Eq. (32) for the full set
of aligned sequences obtained by DCAlign-potts, DCAlign-phmm,
HMMer, and Infernal, against the seed. Panels (a), (b), (c), and
(d) refer to the families PF00677, PF00684, RF00162, and RF01734
respectively.

very often, for the profile case, minimize Dsym
KL with respect

to the seed. Infernal is very effective when dealing with RNA
sequences but not as good as DCAlign-potts for the majority
of the cases. HMMer always produces the largest distance
(except for PF00763 where basically all methods perform
equally well), in particular for RNA families. We mention that
alignments produced by hmmalign present aligned sequences
that always show long concatenated gaps at the beginning and
at the end of the sequence, unlike the Rfam full alignment, the
seed sequences, and the outputs of DCAlign. This partially
explains the difference with respect to the other alignment
tools.

These results suggest that the more we use additional in-
formation within the alignment process (in particular, when
learning Hpotts we employ all positions and amino-acid depen-
dent pairwise energy function), the closer the final alignment
will be to the seed. Surprisingly, this feature is retrieved even
when the model learned from the full set of aligned sequences
uses less information than the model used to align, e.g., for the
profile model used in Fig. 10(b). Of course, there is a tradeoff,
because including additional statistical properties of the seed
in the alignment process requires a larger seed.

2. Proximity measures

We present here a sequence-based comparison between a
candidate alignment, i.e., an alignment obtained by DCAlign-
potts, DCAlign-phmm, or HMMer/Infernal, and the seed that
will be considered here as the reference alignment. The metric
we use is the proximity measure introduced in Sec. V B. We
show in Fig. 11 the distribution of the minimum distances
for a representative subset of the families, i.e., PF00677 in

Fig. 11(a), PF00684 in Fig. 11(b), RF00162 in Fig. 11(c),
and RF01734 in Fig. 11(d). Results for PF00035, PF00762,
RF00059, and RF00167 are shown in the SM [50]. We notice
that for the majority of the families (protein or RNA) the
histograms built from DCAlign-potts have a large peak in the
first bin (which collects distances from 0 to 0.02), suggesting
that there exist more sequences in this alignment which are
close to the seed than in any other alignment. A large peak at
small distance is also observed for Infernal when dealing with
RNA families, as seen from the blue histograms in Figs. 11(c)
and 11(d). The Infernal results overlap quite well with those
obtained by DCAlign-phmm. The histograms produced by
HMMer seem to be shifted to larger Hamming distances, thus
reflecting a smaller similarity to the seed than all the other
methods. Although DCAlign-phmm exploits similar informa-
tion to that encoded in HMMer, the corresponding alignment
surprisingly produces, for most of the studied families, results
that are more similar to those obtained by DCAlign-potts or
Infernal.

D. Contact prediction

An important test of the quality of a MSA is related to
the interpretability of the DCA parameters learned from it.
As mentioned in Sec. V B, the largest couplings are a proxy
for the physical contacts in the folded structure of the protein
domains. In Table III, we report a summary of the results
for three observables associated with the contact prediction:
The position of the first false positive in the ranked Frobenius
norms, the value of the true positive rate (TPR) at 2L, and
the position at which the TPR is less than 0.80 for the first
time. The bold number corresponds to the largest value, and
therefore the best performance, among all the methods.

We show in Figs. 12(a)–12(d) the positive predictive value
(PPV) curves (left) and the contact maps (right) for the
PF00035, PF00684, PF00763, and RF00162 families respec-
tively (results for PF00677 and the other RNA families are
shown in the SM [50]). The PPV curves are constructed by
plotting the fraction of true positives TP as a function of the
number of predictions (TP and FP), i.e., PPV = TP/(TP +
FP). The true contact maps are extracted from all the available
PDBs and plotted as gray filled squares, while the predicted
contact maps are constructed by plotting the Frobenius norms
of the DCA couplings that are larger than an arbitrary thresh-
old, here set to 0.20. For RNA sequences, the comparison
between the predictions and the ground truth can be performed
only using the Frobenius norms associated with the central
part of the aligned sequences, because there is no available
structural information about the sites on the boundaries. In
addition to the predictions obtained from the full set of aligned
sequences, we show, for comparison, the predicted contact
map obtained from the Potts model inferred from the seed
sequences alone. As we can notice from Table III and the
plot of the contact maps, there is no strategy that clearly
outperforms the others (except the poor results of seed , which
are easily explained by its limited number of sequences). For
RNA families, Infernal seems to accomplish the best predic-
tions in terms of first FP and TPR but nonetheless all the other
methods, including HMMer, show comparable results. In fact,
although HMMer has the tendency to assign consecutive gaps
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TABLE III. Summary of the contact map results. For each protein or RNA family, we show here three metrics computed from the PPV
curve retrieved from a set of Potts models. Hseed is a Potts model learned using the seed sequences alone, while the others are associated with
the complete alignments obtained by DCAlign-potts, DCAlign-phmm, HMMer, and Infernal. The chosen observables give the position of the
first false positive (first FP), the value of the true positive rate (TPR) computed after 2L predictions and the rank at which the value of the
true positive rate is smaller than 0.80 for the first time. A perfect prediction is obtained if all the true positive contacts are associated with the
highest value of the Frobenius norm, and thus the higher the value of these metrics, the better the prediction of the contact maps. We show in
bold numbers the best performances, for all metrics and among all the methods.

First FP, TPR(2L), TPR < 0.80

Identifier HPotts
seed DCAlign(Hpotts ) DCAlign(Hphmm ) HMMer Infernal

PF00035 9, 0.478, 13 35, 0.754, 98 32, 0.799, 134 28, 0.791, 119
PF00677 22, 0.730, 109 47, 0.759, 147 28, 0.747, 128 31, 0.793, 163
PF00684 20, 0.582, 28 29, 0.672, 101 27, 0.694, 104 23, 0.627, 73
PF00763 80, 0.703, 159 89, 0.828, 288 85, 0.836, 254 106, 0.849, 272
RF00059 18, 0.369, 29 29, 0.531, 57 29, 0.519, 64 37, 0.519, 59 33, 0.566, 64
RF00162 15, 0.306, 52 17, 0.449, 69 25, 0.398, 61 22, 0.426, 67 19, 0.519, 61
RF00167 19, 0.324, 27 27, 0.493, 59 25, 0.556, 53 22, 0.577, 62 28, 0.592, 57
RF01734 10, 0.300, 16 10, 0.380, 16 10, 0.430, 16 10, 0.360, 16 10, 0.400, 17

in the first and last sites of the aligned sequences, these regions
are not considered in the comparison, and the core part of
the alignment suffices to obtain similar results, in terms of
contact prediction, to the other methods. Although in the other
metrics presented above there was no clear difference between
models learned from large or small seeds, in the contact maps
comparison this seems to be an important issue. Indeed, the
amount of sequences in the seed slightly affects the qual-
ity of the contact map for our methods: For the PF00035
family (whose seed contains only 81 sequences), DCAlign
reaches slightly worse performances than HMMer. In contrast,
for the PF00763 all methods produce indistinguishable PPV
curves and contact maps. Finally, we remark on the results
for PF00684 in Fig. 12(b), where DCAlign achieves a better

contact prediction, as manifested by the PPV lines. This result,
not linked to the way of encoding the seed statistics within
the model but shared by both Hpotts and Hphmm, could be
caused by a better treatment of the insertions with respect to
HMMer.

E. Running time

As mentioned in Sec. II A, the running time of DCAlign
scales roughly quadratically on L and N . To give a reference
computing time for each family considered here, we aligned
100 uniformly randomly chosen sequences using a laptop
computer, and we measure the mean and the median running
times as well as the average length of the full-length sequences

FIG. 12. Contact predictions. We show the positive predictive value curves on the top panels, and on the bottom ones, the contact map
retrieved by a set of known crystal structures (gray squares) and the Frobenius norms (computed from the full set of aligned sequences or the
seed), for (a) PF00035, (b) PF00684, (c) PF00763, and (d) RF00162.
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(note that for protein domains this is fixed to 20 + L + 20
while for RNA domains it varies). We show these quantities in
the last columns of Table II. Remarkably, the running time is,
as expected, affected by the length of the unaligned sequence,
but also by the number of sequences of the seed. We notice
that the more copious the seed is, the less time (more precisely,
the less number of iterations of the MF-based algorithm) is
needed to converge. For instance, RF00162 and RF00059
unaligned sequences have roughly the same length L (108 and
102 respectively) and average N (112 and 110) but they differ
in the Meff of the seed (241 and 83 respectively); this seems to
affect the mean computing time, 108 and 223 s for RF00162
and RF00059 respectively. This suggests that accurate models
allow for fast alignment, as DCAlign is able to easily detect
the target domains while models learned from “small” seeds
require more iterations (sometimes the maximum number of
iterations, here set to 1000, as in some RNA domains).

VIII. CONCLUSIONS

In this work, we have developed and tested DCAlign, a
method to align biological sequences to Potts models of a
seed alignment. The set of hyperparameters characterizing the
models are inferred by an inverse statistical-physics based
method known as direct coupling analysis, which captures
both the single- and two-site seed statistics. Single-site statis-
tics often signal residue conservation, i.e., the propensity of
some sites to restrict the variation of residue (amino-acid or
nucleotide) composition because specific residues are func-
tionally and/or structurally important at certain positions.
Two-site statistics are instead related to residue coevolution:
For instance, residues in direct contact in a folded protein
must preserve biophysically compatible properties, leading to
a correlated evolution of pairs of sites.

Most standard alignment algorithms such as HMMer are
based on the assumption of independent-site evolution, which
is statistically encoded via the so-called profile models, and
thus neglect coevolution. In these alignment procedures,
strongly conserved residues serve as anchoring points, and
a mismatch in these positions surely induces bad alignment
scores (i.e., high energies using a physics-like terminology).
Variable sites, characterized by high entropy values in the
seed MSA, do provide little information for aligning a new
sequence to the seed.

However, often residue pairs show a strong degree of
coevolution as reflected in two-site statistics, and as a conse-
quence, this important collective information must be taken
into account. Up to now, the only example in which this
information is exploited in the alignment procedure of RNA
sequences, in which the base pairing (Watson-Crick or wobble
pairs) of the secondary structure is encoded in the covariance
models used to align. Note that this structural information
must be given as input to alignment algorithms like Infernal.

In contrast to more specialized alignment algorithms like
HMMer (using profile HMM) or Infernal (using covariance
models based on secondary RNA structure), DCAlign takes
advantage of both conservation and coevolution information
contained in the seed alignment and does not require any ad-
ditional structural input. The most compatible domain among
all the possible subsequences of a candidate sequence is deter-

mined by maximizing a score, which can be understood as a
probability measure of the domain according to a Boltzmann
distribution carefully built from the DCA model and gap
and/or insertion penalties learned from the seed. We note that
the algorithm is formulated in a very general way, and it can
thus be applied to any kind of sequence, not necessarily of
biological origin.

Using synthetic data at first, we tested the algorithm under
extreme conditions, when all information is contained in con-
servation but none in coevolution, or vice versa. We found that
DCAlign performs very well in both cases. This universal ap-
plicability is well confirmed in the case of real data; we tested
both protein and RNA sequence data, aligning large numbers
of sequences to the seed MSA provided by the Pfam and Rfam
databases. We find that in most cases, our algorithm performs
comparably well to more specialized state-of-the-art methods,
while for example profile HMM applied to RNA performs less
well. Also, DCAlign does not need any structural information,
being based on the seed statistics only.

Remarkably, in one of the studied protein families, we find
a large group of sequences, which are aligned differently by
HMMer and DCAlign. The sequences aligned by DCAlign
show a better coherence with the seed statistics than those
aligned by HMMer, as manifested by the principal component
analysis in Fig. 9, suggesting that the alignment proposed by
DCAlign is to be preferred in this case.

In conclusion, DCAlign provides a general method to solve
one of the most important problems in bioinformatics: align-
ing individual sequences to a reference multiple sequence
alignment, taken as a seed. For the first time, this algorithm
includes general coevolution information into the alignment
process, and it can thus be successfully applied to situations
in which conservation is not enough, as we have shown using
synthetic data. Furthermore, DCAlign performs equally as
well as state-of-the-art methods on protein and RNA data,
and outperforms them in some cases. The main limitation of
DCAlign is that, even if we have shown how to deal with small
seeds, a large enough seed alignment is certainly preferable to
obtain more precise coevolution statistics.

The contact map comparison suggests that the mod-
els learned from multiple sequences alignments, aligned by
DCAlign, are more accurate in predicting real contacts than
the models obtained from the seeds. This is probably due
to a more precise description of the features of the target
family. Therefore, one may think of realigning the full set of
unaligned sequences using the model learned from the MSA
produced by DCAlign, and iterate this procedure to refine
the final MSA. This approach would further slow down the
alignment process (because it would require us to redetermine
all the terms of the energy function, including the gap and
insertion penalties); nonetheless it could have the advantage
of fully exploiting the conservation and coevolution signal of
the data. We leave this investigation for future work.

On a more technical note, we have not discussed here the
problem of detecting homologs from a given long sequence,
but we have restricted our application to the neighborhood
of the hits selected by HMMer. A possible way of iden-
tifying a candidate domain in a long sequence might be
running DCAlign for a very few iterations on the full sequence
and looking at the marginal probabilities of each site: The
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positions associated with the largest probability of matching
may correspond to the anchor points of the possible hits. We
leave this exploration for future work.

The code for aligning to a given seed model is available in
Ref. [60].
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