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TWO CONJECTURES ON RICCI-FLAT KÄHLER METRICS

ANDREA LOI, FILIPPO SALIS, FABIO ZUDDAS

Abstract. We propose two conjectures about Ricci-flat Kähler metrics:

Conjecture 1: A Ricci-flat projectively induced metric is flat.

Conjecture 2: A Ricci-flat metric on an n-dimensional complex manifold such

that the an+1 coefficient of the TYZ expansion vanishes is flat.

We verify Conjecture 1 (see Theorem 1.1) under the assumptions that the

metric is radial and stable-projectively induced and Conjecture 2 (see Theorem

1.2) for complex surfaces whose metric is either radial or complete and ALE.

We end the paper by showing, by means of the Simanca metric, that the

assumption of Ricci-flatness in Conjecture 1 and in Theorem 1.2 cannot be

weakened to scalar-flatness (see Theorem 1.3).
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1. Introduction

An interesting open question in Kähler geometry is concerned with the charac-

terization of Kähler-Einstein projectively induced metrics. Here a Kähler metric

g on a complex manifold M is said to be projectively induced if there exists a

Kähler (isometric and holomorphic) immersion of (M, g) into the complex projec-

tive space (CPN , gFS), N ≤ +∞, endowed with the Fubini–Study metric gFS,

namely the metric whose associated Kähler form is given in homogeneous coordi-

nates by ωFS = i
2∂∂̄ log(|Z0|

2 + · · ·+ |ZN |2).
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When N is finite, the only known examples of complete Kähler-Einstein projec-

tively induced metrics are compact and homogeneous and it is still an open problem

to show that these are the only possibilities (see [11], [36], [19], [2], [3], [37]). Indeed

one can prove (see, e.g. [12]) that, given a compact simply connected homogeneous

Kähler (Einstein) manifold M with integral Kähler form ω, then the Kodaira map

k : M → CPN suitably normalized is a Kähler immersion. One can see [12] that

the assumptions of simply-connectedness and compactness of M and the integrality

of ω are necessary (this excludes for example the compact flat torus to be projec-

tively induced). Moreover, if the Kähler form ω of a compact and simply-connected

homogeneous Kähler manifold (M, g) is integral then there exists a positive integer

k such that kg is projectively induced (see [37] for a proof based on semisimple

Lie groups and Dynkin diagrams). This last assertion is valid also for noncompact

simply-connected homogeneous Kähler (Einstein) manifolds by considering instead

of the Kodaira map the coherent states map (coming from the theory of geomet-

ric quantization) and by allowing the ambient space to be infinite dimensional,

namely by considering Kähler immersion into CP∞ (see [25]). Nevertheless there

exist complete and nonhomogeneous projectively induced Kähler-Einstein metrics

on Cartan-Hartogs domains with negative (constant) scalar curvature (see [27]).

Notice that in the noncompact case, due for example to the fact that λω is always

integral provided M is contractible, the structure of the set of the positive real

numbers λ ∈ R+ for which λg is projectively induced is in general less trivial than

in the compact case (where it is always discrete). For example, in the noncompact

symmetric case one has the following (see also [26] for the more general case of

bounded homogeneous domains):

Theorem A (Theorem 2 in [27]) Let Ω be an irreducible bounded symmetric domain

endowed with its Bergman metric gB. Then there exist a positive real number a and

an integer k (both depending on Ω) such that (Ω, λgB) admits an equivariant Kähler

immersion into CP∞ if and only if λ belongs to the set

{a, 2a, . . . , ka} ∪ (ka,+∞).

From this theorem it follows that the only irreducible bounded symmetric domain

where λgB is projectively induced for all λ > 0 is the complex hyperbolic space.

More generally, for a homogeneous bounded domain (Ω, g) we have that λg is

projectively induced for all λ > 0 if and only if (Ω, g) = CHn1

λ1
× · · · ×CHnr

λr
, where

CH
nj

λj
= (CHnj , λjghyp) ([12], Theorem 4).

Inspired by these results, we give the following definition:
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A Kähler metric g is said to be stable-projectively induced if there exists ǫ > 0

such that λg is projectively induced for all λ ∈ (1 − ǫ, 1 + ǫ). A Kähler metric is

said to be unstable if it is not stable-projectively induced.

Obviously a Kähler metric on a compact complex manifold is always unstable

and Theorem A shows that there exists metrics g which are projectively induced

and unstable and which become stable-projectively induced by multiplying them for

a suitable constant. Notice also that the flat metric g0 on the complex Euclidean

space Cn is stable-projectively induced by the map Ψ : Cn → CP∞, Ψ(z) =
(

. . . ,
√

1
mj !

zm
j

, . . .
)

(see [7]). Consequently, many examples of stable-projectively

induced metrics can be constructed on those complex manifolds M which admit

a holomorphic immersion into Cn (e.g. Stein manifolds) by simply taking the

restriction of the flat metric g0 to M .

For the case of Ricci-flat metrics, namely Kähler-Einstein metrics with Einstein

constant zero, D. Hulin [20] proves that a compact Kähler-Einstein manifold Kähler

immersed into CPN has positive scalar curvature. This result implies for example

that a Calabi-Yau manifold does not admit a Kähler immersion into CPN . On the

other hand there are many interesting examples of Ricci-flat metrics on noncompact

complex manifolds, for example the celebrated Taub-NUT metric, defined as the

family (constructed by C. Le Brun) of complete Kähler forms on C2 given by

ωm = i
2∂∂̄Φm, for m ≥ 0, where Φm(u, v) = u2 + v2 +m(u4 + v4) and u and v are

implicitly defined by |z1| = em(u2+v2)u, |z2| = em(v2−u2)v (notice that for m = 0

one gets the flat metric on C2). Then one can prove [30] that for m > 1
2 there does

not exist a Kähler immersion of (C2, ωm) into CP∞.

Thus, we believe the validity of the following conjecture:

Conjecture 1. A Ricci-flat projectively induced metric is flat.

In this paper we verify Conjecture 1 under the assumptions that the metric

involved is stable-projectively induced and restricting ourselves to radial Kähler

metrics, i.e. those admitting a Kähler potential Φ which depends only on the sum

|z|2 = |z1|
2 + · · · + |zn|

2 of the local coordinates’ moduli. Our first result is then

the following:

Theorem 1.1. The only Ricci-flat, stable-projectively induced and radial Kähler

metric is the flat one.

Notice that without assuming the Ricci-flatness the thesis of the previous theo-

rem does not hold. For example the radial non-flat Kähler metric g = i
2∂∂̄(|z|

2 +

|z|4) on C is stable-projectively induced being the pull-back of the flat metric on

C
2 via the embedding z 7→ (z, z2).

The requirement that a Kähler metric is projectively induced is a somehow strong

assumption. Thus it is natural to try to approximate a Kähler metric g on a complex
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manifold M with projectively induced ones. In the last two decades a lot of work

has been done in this direction both in the noncompact and compact case. Roughly

speaking, if the Kähler form ω associated to g is integral, then for every positive

integer m one can construct a holomorphic map ϕm : M → CPNm into an Nm-

dimensional (Nm ≤ ∞) complex projective space such that

lim
m→∞

1

m
ϕ∗
mgFS = g.

More precisely, under suitable assumptions (automatically satisfied in the compact

case) (see, e.g. [1]) there exists a smooth function ǫmg on M , depending on m and

on the metric g, such that

ϕ∗
mωFS = mω +

i

2
∂∂̄ log ǫmg

and admitting the so called Tian–Yau–Zelditch expansion (TYZ in the sequel)

ǫmg(x) ∼

∞
∑

j=0

aj(x)m
n−j , (1)

where a0(x) = 1 and aj(x), j = 1, . . . are smooth functions on M depending on the

curvature and its covariant derivatives at x of the metric g (see [42] for details). In

particular, Z. Lu [31] computed the first three coeffcients:






























a1(x) =
1
2ρ

a2(x) =
1
3∆ρ+ 1

24 (|R|2 − 4|Ric|2 + 3ρ2)

a3(x) =
1
8∆∆ρ+ 1

24divdiv(R,Ric)− 1
6divdiv(ρRic)+

+ 1
48∆(|R|2 − 4|Ric|2 + 8ρ2) + 1

48ρ(ρ
2 − 4|Ric|2 + |R|2)+

+ 1
24 (σ3(Ric)− Ric(R,R)−R(Ric,Ric)),

(2)

where ρ, R, Ric denote respectively the scalar curvature, the curvature tensor

and the Ricci tensor of (M, g), and we are using the following notations (in local

coordinates z1, . . . , zn):

|D
′

ρ|2 = gjī ∂ρ
∂zi

∂ρ
∂z̄j

,

|D
′

Ric|2 = gαīgjβ̄gγk̄Ricij̄,kRicαβ̄,γ ,

|D
′

R|2 = gαīgjβ̄gγk̄glδ̄gǫp̄Rij̄kl̄,pRαβ̄γδ̄,ǫ,

divdiv(ρRic) = 2|D
′

ρ|2 + gβīgjᾱRicij̄
∂2ρ

∂zα∂z̄β
+ ρ∆ρ,

divdiv(R,Ric) = −gβīgjᾱRicij̄
∂2ρ

∂zα∂z̄β
− 2|D

′

Ric|2+

+gαīgjβ̄gγk̄glδ̄Rij̄,kl̄Rβᾱδγ̄ −R(Ric,Ric)− σ3(Ric),

R(Ric,Ric) = gαīgjβ̄gγk̄glδ̄Rij̄kl̄RicβᾱRicδγ̄ ,

Ric(R,R) = gαīgjβ̄gγk̄gδp̄gqǭRicij̄Rβγ̄pq̄Rkᾱǫδ̄,

σ3(Ric) = gδīgjᾱgβγ̄Ricij̄Ricαβ̄Ricγδ̄,

(3)
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where the gjī’s denote the entries of the inverse matrix of the metric (i.e. gkīg
jī =

δkj), “ ,p” represents the covariant derivative in the direction ∂
∂zp

and we are using

the summation convention for repeated indices.

The reader is also referred to [23] and [24] for a recursive formula for the coeffi-

cients aj ’s and an alternative computation of aj for j ≤ 3 using Calabi’s diastasis

function (see also [40] for a graph-theoretic interpretation of this recursive formula).

Due to Donaldson’s work (cfr. [13, 14, 1]) in the compact case and respectively to

the theory of quantization in the noncompact case (see, e.g. [6, 9, 10]), it is natural

to study metrics with the coefficients of the TYZ expansion being prescribed. In

this regard Z. Lu and G. Tian [32] (see also [16] and [4] for the symmetric and

homogenous case respectively) prove that the PDEs aj = f (j ≥ 2 and f a smooth

function on M) are elliptic and that if the logterm of the Bergman and Szegö kernel

of the unit disk bundle overM vanishes then ak = 0, for k > n (n being the complex

dimension of M). The study of these PDEs makes sense regardless of the existence

of a TYZ expansion and so given any Kähler manifold (M, g) it makes sense to call

the aj ’s the coefficients associated to metric g. In the noncompact case in [30] one

can find a characterization of the flat metric as a Taub-Nut metric with a3 = 0

while Feng and Tu [17] solve a conjecture formulated in [41] by showing that the

complex hyperbolic space is the only Cartan-Hartogs domain where the coefficient

a2 is constant. In a recent paper [28] the first author together with M. Zedda prove

that a locally hermitian symmetric space with vanishing a1 and a2 is flat.

In this paper we address the following:

Conjecture 2. A Ricci-flat metric on an n-dimensional complex manifold such

that an+1 = 0 is flat.

In the following theorem, which represents our second result, we verify Conjec-

ture 2 for (compact or noncompact) complex surfaces under the assumption that

the metric is either ALE (Asymptotically Locally Euclidean) or radial.

Roughly speaking, an n-dimensional complete Riemannian manifold (M, g) is

said to be ALE if there exists a compact subset K ⊂ M such that M \ K is

diffeomorphic to the quotient of Rn \ BR(0) (the ball of radius R > 0) by a finite

group G ⊂ O(n), and such that the metric g on this open subset tends to the

flat euclidean metric at infinity. For the exact definition and construction of ALE

Kähler metrics, which are interesting both from the mathematical and the physical

point of view, the reader is referred to the foundational paper [22] (see also [5], [18],

[34], [33]): in this paper we will need just the fact that the norm of the curvature

tensor of such metrics vanishes at infinity.
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Theorem 1.2. Let (M, g) be a Ricci-flat Kähler surface such that the third coef-

ficient a3 of the TYZ expansion vanishes. Assume that one of the following two

conditions holds true:

1. g is complete and ALE (asymptotically locally Euclidean);

2. g is radial.

Then g is flat.

We end the paper by showing that the assumption of Ricci-flatness in Conjecture

1 and in Theorem 1.2 cannot be weakened to scalar-flatness. Indeed we prove the

following:

Theorem 1.3. The Simanca metric gS on the blown-up CP2♯CP2 of CP2 at one

point is an ALE complete radial projectively induced scalar flat (and not Ricci-flat)

metric with vanishing a3.

The paper is organized as follows. In Section 2 we recall the definition and

properties of Calabi’s diastasis function, which is the main tool for the proof of our

results, and we apply Calabi’s theory to radial metrics defined on open domains of

C
n \ {0} obtaining Lemma 2.2, a fundamental tool in this paper. Finally, Section

3 and 4 are dedicated to the proofs of Theorem 1.1 and Theorems 1.2 and 1.3

respectively.

2. Radial projectively induced metrics

In order to prove our theorems we need to recall the definition of Calabi’s di-

astasis function and some of its properties. Let (M, g) be a Kähler manifold with

a local Kähler potential Φ, i.e. such that ω = i
2∂∂̄Φ, where ω is the Kähler form

associated to g. A Kähler potential is not unique, but it is defined up to an addition

of the real part of a holomorphic function. If g (and hence Φ) is assumed to be

real analytic, by duplicating the variables z and z̄, Φ can be complex analytically

continued to a function Φ̂ defined in a neighbourhood U of the diagonal containing

(p, p̄) ∈ M × M̄ (here M̄ denotes the manifold conjugated to M).

Then the diastasis function Dp(z) for g is defined to be the unique Kähler po-

tential around p given by

Dp(z) = Φ̂(z, z̄) + Φ̂(p, p̄)− Φ̂(z, p̄)− Φ̂(p, z̄).

By shrinking U if necessary we can assume that Dp is defined on U .

As shown by the statement of the following lemma, the diastasis turns out to be

an important tool to study projectively induced metrics.

Lemma 2.1 (Calabi [7]). Let (M, g) be a Kähler manifold. There exists a neigh-

borhood of a point p ∈ M that admits a Kähler immersion into (CPN , gFS), with
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N ≤ ∞, if and only if the metric g is 1-resolvable at p of rank at most N . If M is

connected the 1-resolvability does not depend on the point chosen. Moreover, if M

is simply-connected and g is 1-resolvable at a point then there exists a global Kähler

immersion from (M, g) into (CPN , gFS).

A Kähler metric with diastasis Dp(z) is 1-resolvable at p of rank N if the ma-

trix Bi,j , defined by considering the expansion around the point p of the function

eDp(z)−1 =
∑

mi,mj∈Nn Bi,j(z−p)mi(z− p̄)mj , is positive semidefinite and its rank

is N . Here, zmj denotes the monomial in n variables
∏n

α=1 z
mα,j
α and we arrange

every n-tuple of nonnegative integers as a sequence mj = (m1,j , . . . ,mn,j) such that

m0 = (0, . . . , 0), |mj | ≤ |mj+1| for all positive integer j and all the mj’s with the

same |mj | using lexicographic order.

In particular, we are going to study metrics which admit a Kähler potential

Φ : U → R that depends only on the sum of the local coordinates’ moduli defined

on a domain that does not contain the origin. Namely, there exists f : Ũ → R,

Ũ ⊂ R+, such that

f(x) = Φ(z), z = (z1, . . . , zn), (4)

where

Ũ = {x = |z|2 = |z1|
2 + · · ·+ |zn|

2 | z ∈ U}.

Unlike the case in which the origin is contained in the domain of definition of the

diastasis, the matrix Bi,j is not diagonal, so it is more difficult to apply Lemma 2.1

(see, e.g. [29] for the case on which the origin is contained). The following lemma

is the key ingredient for the proof of our results.

Lemma 2.2. Let n ≥ 2 and p = (s, 0, . . . , 0), with s ∈ R, s 6= 0, be a point

of the complex domain U ⊂ Cn \ {0} on which is defined a radial metric g with

radial Kähler potential Φ : U → R and corresponding diastasis Dp : U → R. Let

f : Ũ → R defined by (4) and, for h ∈ N, let gh : Ũ → R given by:

gh(x) =
dhef(x)

dxh
e−f(x). (5)

Assume that the entries of the following infinite matrix

(

det
( 1

i!j!

∂i+j(eDp(z)gh(|z|
2))

∂zi1∂z
j
1

)

0≤i,j≤l

)

l,h∈N

(6)

are positive when evaluated in p. Then the metric g is 1-resolvable at p of infinite

rank.
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Proof. Let z = (z1, z2, . . . , zn) = (z1, z
∗), let mi = (m1,i,m

∗
i ) ∈ Nn and let Dp(z)

be the diastasis function. We observe that if m∗
i 6= m∗

j ∈ Nn−1 then

∂|mi|+|mj |

∂zmi∂zmj
(eDp(z) − 1)

∣

∣

p
= 0. (7)

In fact, by definition of diastasis, Dp(z) is the the sum of the Kähler potential

f(|z|2), the constant f(s2) and the real part of a holomorphic function which de-

pends only on z1 and which is equal to −2f(s2) if evaluated in s. Therefore

∂|mi|+|mj|(eDp(z) − 1)

∂z
m1,i

1 ∂z
m1,j

1 ∂z∗m
∗
i ∂z∗m

∗
j

∣

∣

∣

p
=

∂|mi|+m1,j

∂z
m1,i

1 ∂z
m1,j

1 ∂z∗m
∗
i

(z∗m
∗
j eDp(z)−f d|mj |

dx|mj |
ef)
∣

∣

p
, (8)

where x = |z|2. From which we can deduce obviously (7) and also

∂|m∗
j |+|m∗

j |

∂z∗m
∗
j ∂z∗m

∗
j

(eDp(z) − 1)
∣

∣

p
= m∗

j !g|m∗
j
|(s

2). (9)

Now, notice that in order to check if a metric is 1-resolvable, we are free to

change the above arrangement of the multiindices mi’s, because this has just the

effect to apply the same permutation to both rows and columns of the matrix

Bi,j = 1
mi!mj !

∂|mi|+|mj |(eDp(z)−1)
∂zmi∂zmj

∣

∣

p
defined by the expansion around the point p

of the function (eDp(z) − 1), and then yields a similar matrix, which is positive

definite if and only if the original one is. In particular, let us change the ordering

of the mi’s as follows: m0 = (0, . . . , 0), |mj | ≤ |mj+1| for all positive integer j,

if |mi| = |mj | and m1,i > m1,j then i < j.

With this order, the square submatrix Eh of Bi,j relative to multi-indices mi

such that |mi| ≤ h assumes the following form

(

Ah 0

0 Dh

)

(10)

where Ah is the square matrix relative to multi-indices mi such that |mi| < h or

|mi| = h and m1,i 6= 0, while Dh is the matrix relative to multi-indices mi such

that |mi| = h and m1,i = 0. Indeed, if |mi| < h and |mj| = h,m1,j = 0, then

m∗
i 6= m∗

j because, if not, we would have |mi| ≥ |mj |; similarly we clearly have

m∗
i 6= m∗

j provided |mi| = |mj | = h and m1,i 6= 0,m1,j = 0. This, by (7), explains

the null blocks in (10). Moreover, it follows again by (7), combined with the fact

that mi 6= mj , |mi| = |mj | = h and m1,i = m1,j = 0 imply m∗
i 6= m∗

j , that Dh

is diagonal (and the entries on the diagonal are described by (9)) Now, if every

matrix Eh is positive definite, namely if for every positive integer h the matrix

Ah is positive definite and the entries of Dh are positive, the metric examined is

1-resolvable at p of infinite rank.



9

Since we obtain the entries of Dh by multiplying gh|p for a positive constant,

these are positive for every integer h if and only if the entries of the first row (l = 0)

of the matrix (6), given by eDp(z)gh, h = 0, 1, . . . , are positive.

Now we consider the matrix Ah and we change again the order of the mi’s as

follows: |m∗
j | < |m∗

j+1| for all positive integer j, if |m∗
i | = |m∗

j | and m∗
i precedes

m∗
j with respect to the lexicographical order or if m∗

i = m∗
j and m1,i < m1,j then

i < j. Then, after the corresponding rows and columns exchanges on Ah and by

using (7) we obtain a block matrix of the following form:






















Mh
0 0 · · · · · · 0

0
. . .

. . .
...

...
. . . Mh

|m∗
j
|

. . .
...

...
. . .

. . . 0

0 · · · · · · 0 Mh
h−1























where Mh
k are square matrices whose main diagonal belongs to the main diagonal

of the whole matrix and, for the same reason, are themselves block matrices of the

same type. By (8), each block of Mh
k is equal to

( 1

i!j!

∂i+j(eDp(z)gk)

∂zi1∂z
j
1

)

0≤i,j≤h−k

multiplied by a positive constant. Therefore, by using Sylvester’s criterion, if the

entries from the second row onwards of the matrix (6) are positive, Ah is positive

definite for every integer h. �

Corollary 2.3. Under the same assumptions of Lemma 2.2, if there exists x ∈ Ũ

and h ∈ N such that the function given by (5) is negative, namely gh(x) < 0, then

the metric g is not projectively induced.

Proof. If follows by combining Lemma 2.1, Lemma 2.2 and the observation that

the entries of the first row of the matrix (6) are given by eDp(z)gh(|z|
2), h ∈ N. �

3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we need the following (well-known) classification

of the potentials of radial Ricci-flat metrics (cfr. [8]).

Lemma 3.1. Let U be a complex domain of Cn equipped with a radial Kähler

Ricci-flat metric g. Then there esist λ ∈ R+ and ǫ = −1, 0, 1 such that the function

f : Ũ → R defined by (4) has the following expression

f(x) = λ

∫

(ǫx−n + 1)
1
n dx. (11)
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Proof. The Kähler form ω associated to g reads as:

ω =
i

2

∑

α,β̄

gαβ̄dzα ∧ dz̄β =
i

2
∂∂̄Φ,

Sinces g Ricci-flat its Ricci form vanishes, namely

ρ = −i∂∂̄ log det(g) = 0 (12)

where

g = (gαβ̄) =













f ′ + f ′′|z1|
2 f ′′z̄1z2 . . . f ′′z̄1zn

f ′′z̄2z1 f ′ + f ′′|z2|
2 . . . f ′′z̄2zn

. . .

f ′′z̄nz1 f ′′z̄nz2 . . . f ′ + f ′′|zn|
2













.

Thus, one easily sees that

det(g) = (f ′)n−1(f ′ + f ′′x), x = |z|2.

If we denote Ψ(x) = log det(g), equation (12) is equivalent to the following

equations

∂2Ψ

∂zα∂z̄β
= Ψ′′z̄αzβ = 0 (α 6= β),

∂2Ψ

∂zα∂z̄α
= Ψ′ +Ψ′′|zα|

2 = 0, α, β̄ = 1, . . . , n.

This yields Ψ′ = 0, i.e.

log det(g) = log[(f ′)n−1(f ′ + f ′′x)] = c,

for some constant c.

Setting f ′ = y and c̃ = ec > 0, we get

yn−1(y + xy′) = yn + xy′yn−1 = yn +
x

n
(yn)′ = c̃

which rewrites as the following linear O.D.E. in ξ = yn

ξ′ = −
n

x
ξ + c̃

n

x
.

Therefore, one finds

yn = ξ = Cx−n + c̃

that is

f ′ = (Cx−n + c̃)
1
n

and then the general solution is

f(x) =

∫

(Cx−n + c̃)
1
n dt, C ∈ R, c̃ > 0, (13)

which is equivalent to (11) after a change of variables. �
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Remark 3.2. It is known that the metrics corresponding to the Kähler potentials

(11) are non-complete and non-flat except in the case of the Euclidean metric

(ǫ = 0).

Proof of Theorem 1.1. Let us denote by ωǫ the Kähler form corresponding to the

potential (11) with λ = 1, namely

ωǫ =
i

2
∂∂̄fǫ, (14)

where

fǫ(x) =

∫

(ǫx−n + 1)
1
n dx, ǫ = −1, 0, 1. (15)

Notice that ωǫ is flat either for n = 1 or ǫ = 0. We will show that for n ≥ 2 we

have the following:

(a) λω−1 is not projectively induced for any λ ∈ R+;

(b) λω1 is not projectively induced for any λ ∈ R+ \ Z.

Then the proof of Theorem 1.1 will follow by the very definition of stable-projectively

induced metric.

A simple computation shows that the function g3(x) (namely (5) for h = 3) for

the potential f = λf−1 is given by:

g3(x) = λ
(xn − 1)

1−2n
n

x3

(

λ2(xn − 1)
2+2n

n + 3λ(xn − 1)
1+n
n − (xn(n+ 1)− 2)

)

.

Hence, one has limx→1+ g3(x) = −∞ and the proof of (a) follows by Corollary 2.3.

In order to prove (b) we first show by induction that the function gh(x) for the

potential f = λf1 is given by:

gh(x) =
λ

xh

(

Ψ(x)

h−1
∏

j=1

(

λΨ(x)− j
)

+ ϕh(x)x
)

, (16)

where Ψ(x) = (xn + 1)1/n and ϕh ∈ C∞([0,+∞)). This statement is trivially true

for g1, because it is equal to λ
xΨ. The functions gh can be defined recursively as

gh+1 = g′h + g1gh,

where g1 = f ′. Hence

gh+1 =
λ

xh+1

(

Ψ

h
∏

j=1

(λΨ − j) + ϕh+1x
)

,

with

ϕh+1 =
d

dx

(

Ψ

h−1
∏

j=1

(λΨ− j)
)

+ (1− h+ λΨ)ϕh + ϕ′
hx ∈ C∞([0,+∞))
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and (16) is proved. Therefore, if λ ∈ R+ \ Z

lim
x→0+

g[λ]+2(x) = −∞,

where [λ] denotes the integral part of λ. Thus, Corollary 2.3 implies (b) and this

concludes the proof of the theorem. �

Notice that we are able to extend the proof of (b) also for some fixed integer

values of λ with a case by case analysis. For example when λ = 1 one obtains the

following table which expresses gh(x), for suitable values of x, depending on the

dimension n of the domain, for n = 2, 3, 4, 5:

x h n gh(x)

3/4 7 2 − 12294367331
2373046875

3/4 5 3 ≈ −2.81

3/4 5 4 ≈ −10.3

6/5 4 5 ≈ −0.14

Moreover, for any n, we have:

g4(1) = 2
1−3n

n (8(2
1
n )3 − 24(2

1
n )2 + 30(2

1
n )− 15 + 8n2

1
n − 9n)

which is seen to be negative for n ≥ 6. We believe (in accordance with Conjecture

1) that λω1 is not projectively induced for all integer values of λ even if we are not

able to provide a general proof.

Notice that for n = 2 and ǫ = 1 one can explicitly express a Kähler potential for

the Kähler metric ω1 on C2 \ {0}, namely

f1(x) =
√

x2 + 1 + log x− log(1 +
√

x2 + 1), x = |z1|
2 + |z2|

2 (17)

If M denotes the blow-up of C2 at the origin and E denotes the exceptional divisor

one can prove (see [15]) that there exists a complete Ricci-flat and ALE Kähler

metric gEH on M whose restriction to C2 \ {0} has Kähler potential given by (17).

This metric is known in the literature as the Eguchi–Hanson metric and denoted

here by gEH .

Therefore as a byproduct of our analysis one gets the following:

Corollary 3.3. The Eguchi–Hanson metric gEH is not projectively induced.

Remark 3.4. Notice that if one will be able to prove that λgEH is not projectively

induced for all λ > 0 (in accordance with our conjecture), this will provide an

example of Ricci-flat and complete Kähler metric which does not admit a Kähler

immersion into any finite or infinite dimensional complex space form (the reader is

referred to [29] for details related to this issue).
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4. Proof of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2. By (2) the assumption a3 = 0 implies ∆|R|2 = 0. By a

celebrated result of Yau [39] (being M complete) (M, g) does not admit a noncon-

stant positive harmonic function. Hence |R|2 is constant. Being g an ALE metric

|R|2 = 0 and so the metric g is forced to be flat. This proves 1.

In order to prove 2. it is enough to show that the vanishing of the term a3 for

the Kähler metric g associated to the Kähler form ωǫ given by (14) implies g is flat,

i.e. either n = 1 or ǫ = 0. Since

Rij̄kl̄ =
∂2gil̄
∂zk∂z̄j

−
∑

pq

gpq̄
∂gip̄
∂zk

∂gql̄
∂z̄j

. (18)

one easily sees that the non-vanishing components of the curvature tensor of the

metric g at (z1, 0, . . . , 0) are:

R11̄11̄ = 2f ′′
ǫ + 4f ′′′

ǫ |z1|
2 + f ′′′′

ǫ |z1|
4 − 1

(f ′
ǫ+f ′′

ǫ |z1|2)
(2f ′′

ǫ + f ′′′
ǫ |z1|

2)2|z1|
2,

R11̄īi = f ′′
ǫ + f ′′′

ǫ |z1|
2 − 1

f ′
ǫ
(f ′′

ǫ )
2|z1|

2,

Rīiīi = 2Rīijj̄ = 2f ′′
ǫ ,

where i, j 6= 1 and i 6= j.

Therefore, after a straightforward but long computation, taking into account the

curvature tensors symmetries and the invariance of |R|2 under unitary transforma-

tions, we get

|R|2 = n(n− 1)(n+ 1)(n+ 2)ǫ2(|z|2n + ǫ)−2(n+1)/n.

Since

∆|R|2 = g11̄(
d|R|2

dx
+

d2|R|2

dx2
x) + (n− 1)gīi

d

dx
|R|2, x = |z|2

this yields (by Ricci-flatness)

a3 = ∆|R|2 = 2n(n− 1)(n+ 2)(n+ 1)2ǫ2((|z|2n + ǫ)−3(n+1)/n(|z|2n(n+ 3)− nǫ),

which vanishes either for ǫ = 0 or n = 1. �

In order to prove Theorem 1.3 we recall the definition of Simanca’s metric.

Let M = CP2♯CP2 be the blow-up of C2 at the origin and denote by E the

exceptional divisor. Let (z1, z2) be the standard coordinates of C2. In [35] Simanca

constructs a scalar flat Kähler complete (not Ricci-flat) metric g on M , whose

Kähler potential on M \ E = C
2 \ {0} can be written as

ΦS(|z|
2) = |z|2 + log |z|2. (19)

Proof of Theorem 1.3. The holomorphic map

ϕ : C2 \ {0} → CP∞
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given by

(z1, z2) 7→ (z1, z2, . . . ,

√

j + k

j!k!
zj1z

k
2 , . . .), j + k 6= 0,

is a Kähler immersion from (C2 \ {0}, gS) into (CP∞, gFS), where gS denotes the

restriction of the Simanca metric gS to C
2 \ {0} . Indeed

ϕ∗ωFS =
i

2
∂∂̄ log

∑

j,k∈N, j+k 6=0

j + k

j!k!
|z1|

2j |z2|
2k =

i

2
∂∂̄ log(|z|2e|z|

2

) =
i

2
∂∂̄ΦS = ωS

Since M = CP2♯CP2 is simply-connected it follows by Lemma 2.1 that ϕ extends to

a Kähler immersion from (M, gS) into (CP∞, gFS). It remains to show that a3 = 0.

By (2) and (3) and taking into account that a2 = 0 and hence |R|2 = 4|Ric|2

(see [28, Example 1]) one gets:

a3 =
1

24

(

− 2gαīgjβ̄gγk̄Ricij̄,kRicαβ̄,γ + gαīgjβ̄gγk̄glδ̄Ricij̄,kl̄Rβᾱδγ̄−

−gαīgjβ̄gγk̄gδp̄gqǭRβγ̄pq̄Rkᾱǫδ̄Ricij̄ − 2gαīgjβ̄gγk̄glδ̄Rij̄kl̄RicβᾱRicδγ̄
)

. (20)

Since a3 is invariant under unitary transformations, we only need to compute a3 in

(z1, 0). By (19) we have

g =

(

1 + |z2|
2

(|z1|2+|z2|2)2
− z2z̄1

(|z1|2+|z2|2)2

− z1z̄2
(|z1|2+|z2|2)2

1 + |z1|
2

(|z1|2+|z2|2)2

)

so that, for z2 = 0,

g =

(

1 0

0 |z1|
2+1

|z1|2

)

, g−1 =

(

1 0

0 |z1|
2

|z1|2+1

)

.

Combining this with (18) we deduce that the unique components different from

zero when evaluated at (z1, 0) are:

R11̄11̄ = 2Φ′′
S + 4Φ′′′

S |z1|
2 +Φ′′′′

S |z1|
4 − 1

(Φ′
S
+Φ′′

S
|z1|2)

(2Φ′′
S +Φ′′′

S |z1|
2)2|z1|

2 = 0

R11̄22̄ = Φ′′
S +Φ′′′

S |z1|
2 − 1

Φ′
S

(Φ′′
S)

2|z1|
2 = 1

|z1|2(|z1|2+1)

R22̄22̄ = 2Φ′′
S = − 2

|z1|4

By recalling that Ricij̄ = −∂2 log det g
∂zi∂z̄j

one gets:

Ric =

(

− 1
(|z1|2+1)2 0

0 1
(|z1|2+1)|z1|2

)

By definition Ricij̄,k = ∂kRicij̄ − Ricpj̄Γ
p
ki, where Γp

ki are Christoffel’s symbols,

given by Γp
ki = gpq̄

∂giq̄
∂zk

.

A straightforward computation gives that the unique first covariant derivatives

different from zero are
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Ric11̄,1 = 2
(|z1|2+1)3 z̄1

Ric22̄,1 = Ric12̄,2 = − 2
|z1|2(|z1|2+1)2 z̄1

Finally, we compute only the following second covariant derivatives (by definition

Ricij̄,kl̄ = ∂l̄∂kRicij̄ + Γq
kiΓ

p̄

l̄j̄
Ricqp̄ − Γp

ki∂l̄Ricpj̄ − ∂l̄Γ
p
kiRicpj̄ − Γp̄

l̄j̄
∂kRicip̄).

Ric11̄,22̄ = Ric21̄,12̄ = 4(4|z1|
2−1)

|z1|2(|z1|2+1)6 − 1
|z1|2(|z1|2+1)3

Ric22̄,11̄ = Ric12̄,21̄ = 4(4|z1|
2−1)

|z1|2(|z1|2+1)6 + 1
|z1|2(|z1|2+1)3

Ric22̄,22̄ = − 4
|z1|2(|z1|2+1)2

Substituting in (4), after a long but straightforward computation one gets a3 = 0,

and we are done. �
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[16] M. Englǐs, G. Zhang, Ramadanov conjecture and line bundles over compact Hermitian sym-

metric spaces, Math. Z., vol. 264, no. 4 (2010), 901-912.

[17] Z. Feng, Z. Tu, On canonical metrics on Cartan-Hartogs domains, Math. Zeit. 278 (2014),

Issue 1-2, 301–320.



16 ANDREA LOI, FILIPPO SALIS, FABIO ZUDDAS

[18] D. Joyce, Asymptotically locally euclidean metrics with holonomy SU(m), Annals of Global

Analysis and Geometry, Vol. 19 No.1 (2001) 55-73.

[19] J. Hano, Einstein complete intersections in complex projective space, Math. Ann. 216 (1975),

no. 3, 197-208.

[20] D. Hulin, Kähler–Einstein metrics and projective embeddings, J. Geom. Anal. 10 (2000), no.

3, 525–528.

[21] C. LeBrun, Counter-examples to the generalized positive action conjecture, Comm. Math.

Phys. 118 (1988), 591-596.

[22] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Diff. Geom.

29 (1989), no. 3, 665-683.

[23] A. Loi, The Tian–Yau–Zelditch asymptotic expansion for real analytic Kähler metrics, Int.

J. of Geom. Methods Mod. Phys. 1 (2004), 253-263.

[24] A. Loi, A Laplace integral, the T-Y-Z expansion and Berezin’s transform on a Kaehler man-

ifold, Int. J. of Geom. Methods Mod. Phys. 2 (2005), 359-371.

[25] A. Loi, R. Mossa, Berezin quantization of homogeneous bounded domains, Geom. Ded. 161

(2012), 1, 119-128.

[26] A. Loi, R. Mossa, Some remarks on homogeneous Kähler manifolds, Geom. Ded. 179 (2015),

377–383.s

[27] A. Loi, M. Zedda, Kähler-Einstein submanifolds of the infinite dimensional projective space,

Math. Ann. 350 (2011), 145-154.

[28] A. Loi, M. Zedda, On the coefficients of TYZ expansion of locally Hermitian symmetric

spaces, Manuscr. Math., 148 (2015), no. 3, 303-315.

[29] A. Loi , M. Zedda, The diastasis function of the Cigar metric, J. Geom. Phys. 110, 269-276

(2016).

[30] A. Loi, M. Zedda, F. Zuddas, Some remarks on the Kähler geometry of the Taub-NUT

metrics, Ann. Global Anal. Geom. 41 (2012), no. 4, 515-533.

[31] Z. Lu, On the lower terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math.

122 (2000), 235-273.
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