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Abstract: This paper addresses the problem of the design optimization of turbomachinery 

components under thermo-mechanical constraints, with focus on a radial turbine impeller for 

turbocharger applications. Typically, turbine components operate at high temperatures and are 

exposed to important thermal gradients, leading to thermal stresses. Dealing with such structural 

requirements necessitates the optimization algorithms to operate a coupling between fluid and 

structural solvers that is computationally intensive. To reduce the cost during the optimization, a 

novel multiphysics gradient-based approach is developed in this work, integrating a Conjugate 

Heat Transfer procedure by means of a partitioned coupling technique. The discrete adjoint 

framework allows for the efficient computation of the gradients of the thermo-mechanical constraint 

with respect to a large number of design variables. The contribution of the thermal strains to the 

sensitivities of the cost function extends the multidisciplinary outlook of the optimization and the 

accuracy of its predictions, with the aim of reducing the empirical safety factors applied to the 

design process. Finally, a turbine impeller is analyzed in a demanding operative condition and the 

gradient information results in a perturbation of the grid coordinates, reducing the stresses at the 

rotor back-plate, as a demonstration of the suitability of the presented method. 

Keywords: radial turbine; Fluid–Structure Interaction; adjoint method; Conjugate Heat Transfer; 

thermo-mechanical stress; partitioned coupling algorithm 

 

1. Introduction 

Multidisciplinary optimization methods are widely adopted in the development cycle of 

turbomachinery-related technologies, such as in the energy and mobility businesses [1–3]. The 

increasing complexity of the products in terms of geometry and flow characteristics in design and 

off-design conditions, along with the fulfillment of requirements of lifetime, cost, and packaging, is 

reflected in the growth of concurrent design techniques that provide the experts with a 

comprehensive view on the problem [4,5]. The exploration of the design space is enriched by multiple 

physical disciplines whose interactions are captured along the optimization, resulting in accurate 

predictions of the component performance and any possible violation of the structural constraints. 

This holistic approach to the design problem differs from classical staggered methods, presenting a 

series of mono-discipline optimizations performed in cascade, leading typically to significantly 

longer development times. Moreover, such staggered methods may not converge to the same 

optimum as the holistic one and thus lead to suboptimal designs. 
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1.1. Background 

The recent evolution of the market request towards aggressive reductions in emissions and fuel 

consumption offers new challenges to the research community. The need for further advances in 

multidisciplinary design optimization techniques is presented in the NASA 2040 roadmap [6] as one 

of nine core development areas in the context of integrated multiscale modelling frameworks 

contributing to the success in efficient design, manufacturing, and certification of future aerospace 

systems. Similarly, the engineering of advanced turbocharging solutions in the automotive sector 

demands further increases in efficiency to support novel combustion strategies, with no compromise 

on the durability targets [7,8]. 

Enhancements in turbomachinery components performance can be achieved by increasing the 

detail in the geometrical representation of the domain and reflecting it in a higher number of 

parameters engaged during the optimization process. This higher resolution allows the exploration 

of more complex shapes and discloses hidden interactions among features now present in the design 

space. Additionally, an increased fidelity in the physical description of the multidisciplinary problem 

is highly regarded and the aim is twofold. First, the optimizer is able to make more reliable 

predictions of the responses to the geometrical modifications, having access to lumped information 

accounting for the interactions of more disciplines involved in the computation of the objective 

functions and constraints. Therefore, the evolution of the optimization benefits from adhering more 

to the real behavior of the component, finally resulting in a reduced amount of experimental 

validation testing. Second, a more sophisticated physical description opens the path to adopting a 

richer set of constraints, and the safety margins usually applied to the design process can be relaxed 

in favor of more performance-oriented layout choices. Therefore, the optimizer can target more 

diversified paths towards the achievement of the desired solution, thus reducing the stiffness of the 

algorithm in performing the shape modifications. 

The increased complexity in the models is reflected in the choice of a suitable optimization 

method between two major classes, notably denoted as gradient-free and gradient-based techniques. 

Gradient-free methods [9], also known as “zero-order” methods, solely make use of the function 

values for the search of the global optimum, neglecting any knowledge of its gradients. The solution 

is identified after the evaluation of the output values of a large population of candidates with 

characteristics scattered within the boundaries of the selected design space. The larger the population, 

the higher the likelihood of identifying the global optimum. In the case of a multidisciplinary 

problem, each sample in the population must be processed through all the disciplines (FEM and FVM 

analyses, among others) [10]. Therefore, the number of computations necessary to identify a solution 

scales up with the number of involved disciplines and the number of design variables necessary to 

investigate the full domain, resulting quickly in a computationally expensive approach [11,12]. Even 

if, nowadays, gradient-free methods still represent the state-of-the-art approach to optimizations in 

industry because of their robustness and the high quality of the solutions, the advent of more 

stringent requirements and the need of evaluating larger domains are exposing an intrinsic limitation, 

notably referred to as the “curse of dimensionality” [13]. 

Gradient-based methods [14,15], with specific reference to “first-order” methods, make use of 

the gradient information of the function of interest in the search of the optimal solution, and therefore 

are more efficient than zero-order methods. The evaluation of the gradients may be computationally 

intensive if performed by Finite Differences or complex step techniques [16], especially in the 

presence of a large number of design variables and in the case of disciplines involving expensive 

computations. However, if the number of objective functions is lower than the number of 

optimization parameters, an efficient calculation of the gradients can be obtained by the adjoint 

method [17]. This technique, first introduced in [18] for fluid problems, is characterized by a cost for 

the computation of the sensitivity derivatives of the objective function that is essentially independent 

of the number of design variables. Therefore, it is particularly suited for problems requiring detailed 

geometrical descriptions with many degrees of freedom. Moreover, the exploration of the design 

space through its gradients decreases the number of iterations necessary to achieve the local optimal 
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solution. Therefore, the reduced overhead can be traded for the introduction of more computationally 

demanding disciplines, returning a higher accuracy in the numerical solutions. 

A performance comparison between these two techniques is offered in [19], whose application 

to the multi-point optimization of a radial turbine impeller shows that the adjoint method is capable 

of extending the Pareto front identified by a differential evolution (DE) algorithm. In particular, the 

gradient-based approach delivers a solution with a higher total-to-static efficiency, improving also 

the moment of inertia figure at the cost of a fraction of the computational time required by the 

gradient-free method to achieve its global optimum (roughly 6–10%). Other examples of applications 

of the adjoint methods to the optimization of turbines and compressors are reported in [20–25], with 

focus on the opportunity of increasing the number of variables in the design space and the 

multidisciplinary aspect of the physical evaluations (including aerodynamics, stresses, and modal 

analysis). 

The higher maturity recently gained by gradient-based approaches and their improved 

robustness in the analysis of complex flow conditions [26,27] provides evidence of their application 

to problems of industrial relevance. Therefore, adjoint methods are considered a suitable choice to 

address the previously mentioned design advancements in turbomachinery-related applications. 

1.2. Motivation 

The present document focuses on the development of a radial turbine impeller for an automotive 

turbocharger. In contrast to aeronautical applications, the typical duty cycles for passenger cars span 

the entire turbine map, from very low mass flow rates and pressure ratios in urban driving situations 

up to peak power, resulting in requirements stretching the machine design over a wide range of 

operative conditions. Moreover, these turbines present tight clearances between rotor and housing in 

the order of few hundreds of microns, whilst the typical thermal operative range spans from ambient 

temperature up to 1050 °C, without the possibility of any blade-dedicated cooling circuit. Such 

scenario clearly demonstrates the challenges in performance requirements and durability the 

designer is confronted with during the product development process. 

The structural integrity of the rotor experiencing centrifugal and fluid-induced stresses is a 

critical aspect in the search for design solutions fulfilling the efficiency and permeability targets. The 

problem of the Fluid–Structure Interaction (FSI) in radial turbines in relation to the thermal stresses 

induced by the fluid in contact with the blades is discussed in [28], in an effort to accurately predict 

the heat exchange between the two media for a reliable estimation of the rotor lifetime in steady state 

and dynamic operative conditions. The study shows how the incorrect estimation of the thermal 

stresses could impair the robustness of the component, justifying the inclusion of this additional 

constraint on top of the computation of the centrifugal stresses. 

The introduction of thermal analyses in the framework of an optimization process is a topic of 

recent interest [29–31]. The physical phenomenon is described through the application of a Conjugate 

Heat Transfer (CHT) procedure, as originally proposed in [32,33], which involves the thermal 

interaction between a solid body and its surrounding fluid by a coupled solution of the two domains. 

The challenge in the implementation of this analysis within the landscape of a multidisciplinary 

optimization of a complex geometry consists of the trade-off between accuracy and significant 

computational overhead, so far limiting thermal predictions only to the final validation phase in 

industrial design procedures. In fact, it is common practice during an optimization to replace such 

intensive computations with reduced-order models or safety margins based on empirical experience. 

This approach to the evaluation of the thermal stresses would suffer in terms of accuracy or, in the 

case of large safety margins, would over-constrain the optimization problem. 

1.3. Goal of the Paper 

This paper addresses the problem of robust optimizations w.r.t. thermo-mechanical stresses by 

developing a discrete adjoint framework tailored to the implementation of the CHT analysis within 

the in-house multidisciplinary design and optimization platform “CADO” developed at the von 

Karman Institute for Fluid Dynamics [34]. Indeed, the selection of a gradient-based method is 
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justified by its computational efficiency in identifying a local minimum, although the computation of 

the gradients is more convoluted due to the multiple disciplines involved in the performance 

analysis. The calculation of the thermal stresses in the solid domain and their sensitivities with respect 

to the grid coordinates is therefore the subject of the present paper, with the aim of including this 

analysis in a Sequential Quadratic Programming-based optimizer [35]. 

To the best of our knowledge, only a few studies have considered the CHT analysis in adjoint-

based optimizations [36,37], with only a limited number adopting a discrete adjoint formulation [38–

40] and none treating a test case with a complex three-dimensional flow field or extending the 

problem to thermo-mechanical evaluations. Therefore, this work is aimed at covering critical gaps in 

the design of radial turbines with the aim of creating a framework suitable for industrial applications. 

In light of this objective, the remaining portion of the document is structured as follows. First, 

the framework of the primal solver for the execution of the CHT analysis is presented, with extension 

to the computation of the thermo-mechanical stresses. Then, the implementation of the adjoint 

workflow for the calculation of the sensitivities of the constraint function with respect to the solid 

and fluid grid coordinates is discussed, outlining the steps towards the coupling of the domains in 

reverse mode. Finally, the validation of the model and the results of the application of the procedure 

to a radial turbine rotor test case are presented and the conclusions are drawn from this study. 

2. Primal Solver 

The CHT analysis implemented in the current work follows the partitioned coupling approach 

proposed by [41], in which a fluid and a solid solver are sequentially called in an iterative process 

with the mutual exchange of boundary conditions till reaching the convergence of the temperature 

at their interface. The advantage of this strategy is related to the possibility of adopting dedicated 

meshes and specialized numerical methods for the solution of each domain, increasing the robustness 

of the convergence of the two analyses. Moreover, in the case of an unsteady computation, the partial 

decoupling of the two fields, which show very different characteristic time scales, would lead to a 

faster convergence of the assembly [42–45]. 

2.1. Mapping Procedure 

The problem under investigation is represented in Figure 1, in which a turbine rotor is analyzed 

considering a periodic sector. A multi-block structured fluid grid with boundary layer refinement is 

interfaced to an unstructured solid mesh of second-order tetrahedral elements for the computation 

of the heat flux between the two domains. 

 

Figure 1. Radial turbine rotor: fluid and solid sector meshes. 
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Because the meshes are non-matching at the common interface, the exchange of information is 

performed through the distance-weighted interpolation (DWI) technique presented in [46]. The 

procedure implies the mapping of the two regions in order to record the correspondences of each 

fluid cell center with the closest surrounding solid nodes and vice versa. For each fluid cell, the 

information of heat flux or temperature detected in the mating solid nodes is processed by a 

weighting function based on their mutual distances, resulting in the coupling of the two regions. The 

same routine is applied to the solid grid with respect to its fluid counterpart. 

This method exhibits a good level of generality in treating different coupling problems, 

irrespective of their grids characteristics. For instance, in the turbine test case the exchange of 

information is effectively performed also at the blade hub fillet, a feature which is present in the solid 

domain but not detailed in the corresponding fluid region. 

An improvement in the accuracy of this coupling procedure derives from the local labelling of 

the interface. With reference to Figure 2, the surface between the two media is split in sub-regions 

(e.g., hub, blade pressure side, blade suction side, tip, etc.) and the corresponding solid faces and 

fluid blocks boundaries are named accordingly. Therefore, the algorithm searching for the fluid cells–

solid nodes correspondences is separately executed for each sub-region, instead of attempting the 

coupling of the two fields through a global search within the entire domain. This arrangement is 

particularly effective in locations presenting thin walls, such as in proximity of the blade tip, as it 

avoids any erroneous fluid-solid matching between cells and nodes actually sitting on opposite sides 

of the blade (i.e., suction side versus pressure side). 

 

Figure 2. Radial turbine rotor surface split in sub-regions (left), example of FVM-FEM meshes 

correspondence identification (right). 

Additionally, the original algorithm seeks the nodes–cells correspondences through a “search 

radius” delimiting for each grid node a spherical volume within which the neighbors are identified. 

This technique may induce interpolation errors in proximity of the walls, where temperature 

gradients and fluid grid stretching are significant. In fact, the temperature assigned to a solid node 

may result from the weighting of temperature values derived from fluid cells located within the 

boundary layer but not in direct contact with the interface. Moreover, as demonstrated in [46], distinct 

grid refinements at the solid and fluid side may influence the local accuracy of the wall temperature 

information passed to the FEM. In order to cope with these issues, the searching criterion is limited 

to the sole layer of nodes and cells in direct contact with the walls, and the concept of “search radius” 

is dismissed in favor of a ranking assigned to each node or cell according to their mutual distance. 

Finally, consistently with the solution proposed in [46] addressing the problem of the aspect ratio of 
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cells on a wall boundary, additional virtual grid points are introduced on the FVM side between two 

neighboring cell centers. Such virtual points are aimed at improving the uniformity of the local 

distribution of grid points in regions of significant mesh stretching, and their temperature is 

interpolated between the closest “master” cells of the original mesh. Indeed, the goal is to increase 

the density of the attractors in proximity of each solid node, avoiding possible inconsistencies 

generated from capturing the information from too far fluid cells. Thus, the domain coupling is 

executed through the distance-weighting interpolation of information belonging to cells and nodes 

in actual close proximity. 

The quality of the interpolation is referenced in Figure 3. The fluid temperature at the walls 

(Figure 3a) is interpolated by the DWI procedure and passed to the solid nodes laying on the surface 

(Figure 3b). During a CHT iteration, the solid returns the heat flux to the fluid, as discussed in the 

next section. 

 

Figure 3. Distance-weighted interpolation method applied to the exchange of information between 

solid and fluid domains: (a) fluid temperature at walls, (b) interpolated fluid temperature assigned to 

the solid surface.  

2.2. Partitioned Coupling 

The data exchange between the fluid and solid fields is performed through the “heat transfer 

forward flux back” method (hFFB) [47], whose stability properties are discussed in [48]. In summary, 

the convergence rate of the conjugate problem depends on the local Biot number, which expresses 

the ratio between the conductive over the convective thermal resistances. In complex geometries, as 

in the case of a radial turbine impeller, the Biot number may locally change to values greater or lower 

than unity, according to the variations in the blade thickness. Hence, [46] demonstrates that methods 

such as the hFFB or the “heat transfer forward temperature back” (hFTB) method would promote the 

stabilization of the fluid-solid coupling w.r.t. other techniques, such as the “flux forward temperature 

back” (FFTB) or the “temperature forward flux back” (TFFB) methods, which strictly require a 

modulus of the Biot number respectively lower or greater than unity. Instead, the hFTB and hFFB 

methods exhibit a wider range of convergence. Finally, the hFFB method was selected for the present 

study since a heat flux boundary condition imposed to the fluid domain would generally improve 

the convergence stability of the CFD computation more than an imposed wall temperature boundary 

condition. 

Figure 4 reports the partitioned coupling workflow, described as follows. 
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The CHT analysis is addressed with an initial CFD computation considering adiabatic walls. The 

fluid temperature ��� and the heat flux normal to the walls ��� are extracted at the boundaries in 

contact with the solid, and a virtual fluid bulk temperature ���  is calculated as: 

��� � 	��� 	 
��
� , (1)

with ��  indicating a constant user-defined virtual heat transfer coefficient. 

Since the initial fluid simulation is adiabatic, Equation (1) results in a virtual fluid bulk 

temperature equal to the fluid temperature at the walls. The DWI procedure returns the ����  field 

associated with the solid grid nodes. 

Consequently, ��  and ����  are assigned to the FEM heat transfer model, such that the heat flux 

to the solid results from the following boundary condition: 

��� � ���� 	 ���� �, (2)

with T as the unknown solid temperature. After solving the FEM heat transfer problem, the 

temperature and heat flux at this boundary are known. 

 

Figure 4. hFFB coupling method for the CHT analysis. 

The heat flux at the interface is calculated from the temperature field T by means of the Fourier’s 

law applied to all the elements exposing at least one face to the fluid: 

��� � 	� ����, (3)

with �� ��⁄  indicating the temperature gradient normal to the wall and k the thermal conductivity 

coefficient. 

The heat flux ��� is processed by the DWI procedure, returning the heat flux ��� assigned to 

the fluid cells at the interface. The fluid simulation, now accounting for an external heat flux at the 

viscous walls, is recomputed and the entire process is re-iterated for several loops till the achievement 

of the continuity of temperatures at the interface between the two fields. 

The user-imposed virtual heat transfer coefficient ��  influences the predicted wall heat fluxes at 

any intermediate cycle of the CHT procedure, thus determining the path to convergence of the whole 
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coupling. In the case of the hFFB method, [46] shows that a suitable choice of the virtual coefficient �� 	< 2�, with h as the physical value of the heat transfer coefficient, would guarantee the convergence 

of the conjugate problem for any local value of the Biot number. The higher the value of ��  within the 

stable region, the faster the convergence of the partitioned coupling method. A discussion about the 

determination of the ��  value for a problem of industrial relevance is reported in Section 4.2. 

2.3. Solid Heat Transfer Solver 

The steady-state energy balance within the solid domain is described by Equation (4), with q as 

the rate of heat transfer into the system, and is computed through a FEM steady linear solver 

according to [49]. 

∇ ∙ � � 0, (4)

The boundary conditions applied to the problem are classified in three families: �|"#$ � 	%&�'(	�∇�|"#) � �	�∇�|"#* � ����|"#* 		��� ′�, (5)

with the surface of the solid domain defined as -./ ∪	-.1 ∪	-.2 � -.. 

The first equation in (5) implies a fixed temperature imposed at the surface -./.	The second type 

of boundary conditions specifies a heat flux at the surface -.1, while Fourier’s law at LHS describes 

the heat flux through the medium. If q = 0, the adiabatic wall boundary condition is defined. The third 

equation represents the convection condition, whose heat flux through the surface -.2  is 

proportional to the temperature difference w.r.t. the surrounding fluid. The virtual heat transfer 

coefficient ��  and the interpolated thermal field ����  are reported for the sake of consistency with 

Equation (2). 

Once integrated over the entire domain, Equation (4) is discretized, resulting in the linear 

system: 

A	5 � 6, (6)

with the semi-positive definite stiffness matrix A comprising the conductive and convective terms, A 

= [Acond + Aconv] ∈ 8�,�, and the load vector b ∈ 8� accounting for the contribution of the boundary 

conditions. The linear system in (6) is solved by an iterative conjugate gradient method. 

2.4. Fluid Solver 

The compressible Reynolds-Averaged Navier–Stokes solver with cell-centered spatial 

discretization over a structured multi-block grid, developed in [19], is invoked in the CHT 

framework. The solver computes the convective fluxes by Roe’s upwind scheme with MUSCL 

extrapolation, while a central discretization is applied to the calculation of viscous fluxes. The time 

marching technique is implemented according to the JT-KIRK scheme proposed in [26] for the 

improved stabilization of the discrete adjoint solver. The Spalart–Allmaras turbulence model is 

adopted in this study. 

In order to establish the coupling with the solid domain, heat fluxes are imposed at the viscous 

wall boundaries adopting a thin shear layer approximation. The fluid mesh presents two layers of 

ghost cells in order to facilitate the computation of the fluxes at the interfaces [50]. The heat fluxes 

calculated in Equation (3) and processed through the DWI technique are associated with the 

corresponding fluid block boundaries in contact with the solid walls. With reference to Figure 5, D1 

is the first layer of the inner fluid domain; G1 and G2 are the corresponding ghost layers. The fluid 

temperature in D1 is detected from the previous solver iteration, and the ghost cell temperature in 

the first layer is updated according to: 

�9/ � �:/ + ��� ∆�=>? , (7)
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with ∆� as the distance between the cell centers and kfl as the locally computed fluid conductivity. 

Similarly, the temperature in the G2 layer is updated in cascade, with reference to the newly 

computed temperature in G1. The temperature values are used to calculate the corresponding cell 

densities considering a zero-order pressure extrapolation in wall normal direction, while the no-slip 

condition is assured by reversing the fluid tangential velocity components in the ghost layers. 

Equation (7) is linearized and accounted in the implicit scheme. 

The rate of convergence induced by the Neumann boundary condition is influenced by the 

actual magnitude of the imposed heat flux in Equation (7). Since the hFFB method is employed in the 

present development, no under-relaxation factors are invoked for the update of the ghost cells 

temperatures, as they are replaced by the selection of a suitable virtual heat transfer coefficient �� , 

determinant for the stability of the coupling process [46]. 

 

Figure 5. Fluid domain discretization at block boundaries: D1 as the inner domain layer, G1-G2 as the 

ghost layers. 

2.5. Solid Mechanical Solver 

Once the continuity of temperatures and heat flux is achieved at the interface of the two domains, 

an FEM linear elastic solver with quadratic elements presented in [51] is invoked for the solution of 

the von Mises stresses. 

S	A � B	, (8)

with C ∈ 8�,� as the stiffness matrix, D ∈ 8� referencing the vector of nodal displacements, and B ∈8� indicating the load. 

Within the framework of the present analysis, the solid mechanical solver shares the same mesh 

as the heat transfer solver, as remarked in Section 3. Therefore, the previously computed nodal 

temperatures are directly assigned to the new linear system. 

The right-hand side vector accounts for the centrifugal loading and the thermal strains, 

considering the effect of the material contractions and expansions induced by the temperature 

variations, which are computed as: 

EF
GHIJ� � 	KL�MN	��M 	 �HG��	, (9)

with α(Ti) indicating the temperature-dependent thermal expansion coefficient; Ti pointing to the 

node temperatures resulting from the CHT analysis; and Tref as the reference temperature at the initial 

state, at which no thermal stresses are present within the material [52]. In the current study, we refer 

to Tref as the ambient temperature. Through the thermal strains, the stresses in the material are 

dependent on the outcome of the CHT computation, which increases the complexity of the gradient 

calculation, as presented later on. 

The maximum von Mises stress is computed using a p-norm function according to Equation (10), 

with p = 75. 
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OIJP	QR ≈ TU OQRV	Q �WU�WX .	 (10)

Equation (10) fulfills the requirement of global differentiability, as it is a continuous function, 

and is invoked as a constraint within the optimization problem with the aim of keeping the thermo-

mechanical stresses, induced through the Conjugate Heat Transfer, bounded to a prescribed value. 

The gradient of this constraint is computed by an adjoint methodology, as described in the next 

section. 

3. Adjoint Solver 

The structure of the primal solver evaluating the thermo-mechanical stresses is computationally 

expensive because the CHT procedure requires several loops of CFD-FEM analysis to reach the 

equilibrium of the temperatures and heat flux at the fluid–solid interface. For this reason, such a 

framework is less suited for gradient-free optimization methods, as a prohibitive large population of 

candidates would need to be evaluated using this expensive tool. A gradient-based optimization 

technique, on the other hand, may offer a faster convergence through a more guided search in the 

design space. Especially when combined with the adjoint method, the computation of the derivatives 

is very efficient and almost insensitive to the number of design parameters. 

The evaluation of the cost function J in primal mode is a two-step process. The first one considers 

the values of the design variables K ∈ 8�  and generates the correspondent geometry and finally the 

grid, whose points coordinates are expressed by the vector Y ∈ 8I. The second step involves the 

flow solver and some post-processing routines, returning the value of J. Following the same approach 

in reverse mode, also the adjoint evaluation procedure is split in two parts: the first one computing 

the sensitivities of the cost function J w.r.t. the perturbations of the grid coordinates X, and the second 

one calculating the sensitivities of the grid coordinates X w.r.t the changes in the design variable α. 

Therefore, the CAD-based parametrization described in [21] allows transferring the grid sensitivities 

of the cost function to the design variables, controlling the component shape modifications by the 

application of the chain rule of differentiation expressed in Equation (11): �Z�K � 	 -Z-Y 	�Y�K	. (11)

Within the thermo-mechanical analysis process developed in the present work, Equation (11) is 

invoked twice in order to account for the cost function sensitivities w.r.t. the coordinates of the fluid 

grid points and the solid grid nodes, respectively. Therefore, the global sensitivity expression can be 

decomposed as follows: 

[�Z�K\�R � 	 -Z-Y�� 	�Y���K +	 -Z-Y]� 	�Y]��K . (12)

The remaining portion of this section is devoted to the calculation of the cost function 

sensitivities with respect to the fluid and solid grid coordinates, respectively -Z -Y��⁄  and -Z -Y]�⁄ , 

operated through the application of a discrete adjoint method. Such sensitivities provide the descent 

direction for constrained or unconstrained multidisciplinary optimization problems with the aim of 

minimizing the thermally related response functions. 

Consistently with the structure of the primal solver, the adjoint framework treating this 

interdisciplinary problem is formulated according to a “loose-coupling” approach, different from the 

“strong-coupling” techniques as described in [53]. In fact, the latter accounts for cross-discipline 

Jacobian terms implicitly exchanging boundary conditions between the fluid and solid domains, and 

therefore directly solving the global adjoint system at once. Instead, the selected partitioned-coupling 

method is less intrusive in the structure of the existing adjoint CFD solver from [19] and therefore 

more suited to a continuously growing modular multidisciplinary platform. 

Figure 6 reports the framework of the thermo-mechanical evaluation, with the adjoint workflow 

on the RHS. The iterative structure characterizing the solution of the primal problem is maintained 
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in its adjoint counterpart, which walks through the entire chain in reverse mode by the manual 

differentiation of the full process. Therefore, the adjoint branch is discussed starting from the bottom, 

till achieving the final grid sensitivities on the top. 

3.1. Adjoint Variables 

The most demanding terms in the computation of Equation (12) are the sensitivities of the 

response function w.r.t. the grid coordinates. Since: 

Z�Y, DLYN�, (13)

with u denoting the vector of the state variables, the application of the chain rule of differentiation 

results in the following decomposition: �Z�Y � 	 -Z-Y + -Z-D -D-Y. (14)

 

Figure 6. Workflow for the primal and adjoint computations of steady-state thermo-mechanical 

constraints. 

Equation (14) holds for both the fluid and the solid grids. The second term at RHS presents the 

partial derivative of the cost function w.r.t. the state variables -Z -D⁄ . Since the current problem 

exhibits a multidisciplinary footprint, the hierarchical structure of the workflow in Figure 6 implies 

that the output states contributing to the p-norm calculation in Equation (10) depend on the 
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intermediate ones evaluated by the preceding CFD and FEM solvers. Therefore, according to the 

principle of the “reverse differentiation” [54] we choose for instance an output variable D2, whose 

sensitivity �Z �D2⁄  is known, and calculate its sensitivities w.r.t. each intermediate state till the initial 

one, such that: 

Z�D2LD1LD/NN� 				→ 				
�Z�D1 � 	 �Z�D2 	�D2�D1	�Z�D/ � 	 �Z�D1 	�D1�D/

. (15)

Since the work focuses on the single thermo-mechanical output Z�R expressed by Equation (10), 

herein named y, we can associate with any intermediate state variable DM a new variable D_̀, called 

the adjoint variable, defined as: 

D_̀ �	 -a-DM. (16)

The upper bar notation follows the convention for adjoint variables reported in [54]. 

Hence, we apply the chain rule walking throughout the original trace in Figure 6 in backward 

mode, paying attention to the opposite propagation of the adjoint variables with respect to the 

physical ones. This technique finally returns the sensitivities of the response function w.r.t. the initial 

state variables. 

The following sections describe the backward propagation process in detail, with the aim of 

offering a guidance to the development of the adjoint method. 

3.2. Adjoint Response Function 

The adjoint framework is initiated by seeding the maximum von Mises constraint. Since a �Z�R � OIJPQR, the input is: -a-Z�R � Z�Rbbbbb � 	ObcdeQR � 1. (17)

The maximum von Mises stress is function of the components of the Cauchy stress tensor. 

Therefore, in reverse mode the adjoint stress components are calculated as: 

�a�OM,g � 	ObM,g � 	�Z�R�O 	Z�Rbbbbb � 	 ��O	 TU OQRV	Q �WU�WX 	. (18)

On the other hand, Equation (10) shows an explicit dependence over the solid grid coordinates 

through the two volume integrals appearing at the numerator and denominator. Therefore, the 

constraint function sensitivities with respect to the solid grid coordinates are accumulated as follows: 

�a�Y]� �	Y]�bbbb	+� 	�Z�R�Y]� 	Z�Rbbbbb � 	 ��Y]� 	 TU OQRV	Q �WU�WX 	. (19)

In Equation (19), the operator “+=” is reported to emphasize the concept of accumulation of the 

sensitivities w.r.t. the solid grid coordinates that is propagated backwards throughout the adjoint 

workflow till the grid generation procedure. Moreover, the Yb notation is adopted for the sake of 

simplicity, while in reality the sensitivities over the three dimensions (X,Y,Z) are accounted in the 

development. 

Finally, in the remaining portion of the document the notations �a �DM⁄  and �a �Y⁄  will be 

skipped in favor of the more convenient DbM and Yb. 
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3.3. Adjoint Mechanical Solver 

The evaluations through the mechanical solver involve the multi-step approach outlined in 

Figure 7, where the primal mode is represented along with its adjoint counterpart. Notably, the 

reverse computation follows the backward propagation of the adjoint variables, closely resembling 

the primal scheme. The related procedure is discussed in detail in this section. 

 

Figure 7. Evaluation by mechanical solver: primal and adjoint modes. 

In primal mode, the stress components OM,g  are computed from the elasticity matrix of the 

material under consideration and the strain components. Thus, the differentiation in reverse mode 

returns the adjoint strains EM̅,g. 
OM,g � 	iL�N�EI_Mg 		EF
_MgL�N� 								→ 								 k EI̅_Mg � ObM,g 	iL�NEF̅
_Mg	L�N � 			ÒM,g	iL�NibL�N � ObM,g	�EI_Mg 		EF
_MgL�N�. (20)

Here, the adjoint stresses ObM,g are the once computed by the reverse differentiation discussed in 

Section 3.2. 

The adjoint mechanical strains EI̅ and the adjoint thermal strains EF̅
 appear in Equation (20). 

Since the thermal strains exhibit direct dependence from the nodal temperatures through the ��M 	 �HG�� term and indirect dependence through the thermal expansion coefficient α(T), the relative 

contributions to the adjoint solid node temperatures are accumulated and propagated to the next step 

in the reverse workflow. 

EF
_Mg	L�N � 	KL�	N	��	 	 �HG�� 								→ 								 l �b+� 	 EF̅
_Mg 	KL�N�b+� EF̅
_Mg	��	 	 �HG�� �mL�N�� . (21)

Additionally, also the elasticity matrix E depends on the nodal temperature, which leads 

similarly to contributions for the adjoint solid node temperatures. 

iL�N � BL�N 							→ 									 �b+� ibL�N	��L�N�� . (22)

The process of accumulation of the contributes to the adjoint temperatures field is facilitated by 

the commonality of the solid grid coordinates between the mechanical and heat transfer solvers, as 

no re-interpolations are necessary for the backward propagation of the sensitivities. 

Next, recalling that the mechanical strains E in primal mode are calculated from the vector of 

nodal displacements u, the adjoint nodal displacements are derived by the reverse differentiation 

(E ̅ 	→ 	Db) and provided in input to the adjoint mechanical solver. 

The iterative linear system solver adopted in primal mode for the solution of Equation (8) is not 

directly differentiated but, as discussed in [20], a new linear system is formulated with the adjoint 

displacements vector appearing at RHS as: 

C�	B̅ � 	 Db	. (23)

The system (23) is solved for the adjoint load vector B,̅ while the transpose of the stiffness matrix 

S, previously computed in primal mode, appears at LHS. Therefore, the adjoint stiffness matrix is 

obtained from the system (24). 

CM̅g � 		Dg 	BM̅. (24)
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Finally, the system assembly process is algorithmically differentiated, returning the grid 

sensitivity accumulation: 

Yb]�+� 	C̅ 	 �C�Y]� +	B̅ 	 �B�Y]� . (25)

The system (25) accumulates the grid sensitivities attributed to the mechanical solver. The 

adjoint temperatures deriving from Equations (21) and (22) are provided as input to the adjoint heat 

transfer solver at the next section, thus linking the structural solver to the iterative adjoint CHT 

process. 

3.4. Adjoint Heat Transfer Solver 

Consistently with the previous section, the iterative linear system solver adopted in primal mode 

for the solution of Equation (6) is not directly differentiated, whilst the adjoint load vector and the 

adjoint stiffness matrix are computed through the new linear systems in Equation (26). 

n�	6b � 	�b	. (26a)

n̅Mg � 		�g 	6bM 	.	 (26b)

Equation (26a) shows the transposed stiffness matrix n�accounting for the conductive and 

convective terms previously calculated in primal mode, while the adjoint temperature vector �b from 

Section 3.3 is imposed at the RHS. The resulting adjoint load vector 6b is assigned to Equation (26b), 

together with the temperature solution stored at the last CHT loop in primal mode, contributing to 

the calculation of the adjoint stiffness matrix n̅. 

Similarly to Equation (25), the system assembly process is algorithmically differentiated and the 

adjoint contributes to the solid grid coordinates are accumulated. Since the thermal solver and the 

mechanical solver share the same grid, a unique vector of solid grid sensitivities is accumulated and 

propagated backwards throughout the CHT workflow. 

The convective loading at the RHS of the system (6) accounts for the virtual bulk fluid 

temperature. Its adjoint counterpart �′̀�� is computed from 6b (returned by Equation (26a)) and from 

the user-defined virtual heat transfer coefficient �� . 

6M � 	��	�′��o 									→ 										 �′̀��o � 	6bM 	��. (27)

�′̀��  is not accumulated along the entire adjoint workflow but recomputed at every CHT loop in 

reverse mode and then passed to the adjoint hFFB routine. 

3.5. Adjoint hFFB Procedure (Solid → Fluid) 

The adjoint virtual bulk fluid temperature field �′̀�� associated with the solid nodes is processed 

by algorithmic differentiation, returning the adjoint �b��  assigned to the neighboring fluid cells 

centers. Equation (28) reports the DWI procedure in primal mode on the left, with focus on the 

calculation of the solid temperature at node j, leveraging the information of the cluster of i = (1, ..., n) 

neighboring fluid cells. On the right, the backward differentiation of the interpolation procedure 

results in the adjoint temperature field associated to the fluid domain. The operator “+=” stresses the 

fact each fluid cell may belong to the “neighboring cluster” of different solid nodes j, and therefore 

would accumulate their adjoint values. 

����LpN � 	∑ r>?LoNLsotuLoNN)vow$∑ $LsotuLoNN)vow$ 															→ 													 �b��LxN	+� 	� �̀��LpN $LsotuLoNN)∑ $LsotuLoNN)vow$ . (28)

Equation (28) suggests also that additional contributions to the solid grid sensitivities Yb]� and 

to the fluid grid sensitivities Yb�� can be accumulated through the adjoint vector of mapped distances 

between each solid node and the corresponding fluid neighbors, �y'(bbbbbLxN, as detailed in Section 2.1. 

Thus, after deriving the adjoint distances �y'(bbbbbLxN  as � �̀��LpN ∙ 	����� LpN �L�x'(LxNN⁄ , the cells-nodes 

mapping routine is differentiated and the contributions to the two grids are obtained. 
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Finally, the algorithmic differentiation of Equation (1) returns the adjoint temperature at the 

fluid walls �b��, which is used as input to the adjoint CFD solver at the next step, and the adjoint wall 

heat flux �b��, stored for a later accumulation. 

��� � 	��� 	 
��
� 									→ 								 l �b�� � 	�b���b�� �	�b�� 	 ∙ 	 z	 /
�{. (29)

3.6. Adjoint Fluid Solver 

The partitioned coupling technique adopted in this work allows for non-intrusive calls to the in-

house adjoint CFD solver. The flow field is initialized with the converged flow solution U from the 

corresponding CHT loop in primal mode, and the viscous wall temperatures in the ghost cells layers 

are updated again imposing the Neumann boundary condition, as reported in Equation (7). 

The adjoint fluid wall temperature �b�� , resulting from the reverse hFFB procedure at the 

previous step, contributes to the linearization of the constraint function with respect to the 

conservative flow variables U and the fluid grid coordinates Y��. The adjoint equation discussed in 

[19] is repeated here for convenience: 

|"}"~�� � � 	 |"�"~��, (30)

with R as the non-linear residuals of the primal flow solver, ψ indicating the unknown adjoint 

variables, and J the objective or constraint function of interest. Therefore, the RHS term linearized at 

the viscous walls exposed to the heat flux from the solid develops by the chain rule as follows: 

"�"~ � 	 "�"Q�vs 	 "Q�vs"Qs���ov 	"Qs���ov"~s���ov � 	 "�"��� 	 "���"Q�vs 	 "Q�vs"Qs���ov 	"Qs���ov"~s���ov �	�b�� "���"Q�vs 	 "Q�vs"Qs���ov 	"Qs���ov"~s���ov, 
(31)

with Vbnd as the primitive variables computed at the boundary of interest, Vdomain as the corresponding 

variables from the interior of the fluid domain, and the last term -W -�⁄  indicating the 

transformation matrix from primitive to conservative variables. 

Similarly, the linearization of the cost function w.r.t. the fluid grid coordinates is the following: �Z�Y�� � 	 -Z-Y�� 	 �� 	 -8-Y�� 	. (32)

Therefore, the first term at RHS linearized at the viscous walls with heat flux results in: -Z-Y�� �	 -Z-W��� 	-W���-Y�� �	 -Z-��� 	 -���-W��� 	-W���-Y�� � 	�b�� -���-W��� 	-W���-Y�� 	. (33)

Equations (31) and (33) show the contributions of the adjoint fluid wall temperatures �b�� 

calculated in Section 3.5 to the fluid grid sensitivities at the wall boundaries exposed to the heat flux. 

For the principle of the reverse accumulation, the wall heat flux term, entering in primal mode 

as the update of the boundary conditions in Equation (7), results in an adjoint fluid wall heat flux �b�� that is computed once the adjoint CFD solver approaches full convergence. This contribution is 

summed up with the �b�� returned in Section 3.5 by the reversed hFFB procedure. 

�9/ � �:/ + ��� ∆�=>? 								→ 							 �b�� � 	�b������bbbbbbbbb +	�b9/ 	 ∆�=>?. (34)

A further contribution derives also from the second layer of ghost cells, not reported in Equation 

(34) for the sake of simplicity. 
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3.7. Adjoint hFFB Procedure (Fluid → Solid) 

The partitioned coupling scheme in reverse mode completes by transferring the adjoint terms 

from the fluid to the solid domain. �b�� is processed by the differentiated DWI procedure, similarly 

to Equation (28), and returns the adjoint heat flux �b��  associated with the solid grid nodes. 

Consistently with the previous call, additional contributions are accumulated to the solid grid 

sensitivities Yb]�  and to the fluid grid sensitivities Yb��  through the adjoint vector of mapped 

distances between each fluid cell center and the neighboring solid nodes. 

Finally, the routine adopted to calculate the wall heat flux within the solid domain in Equation 

(3) is algorithmically differentiated, accounting only for the nodes laying on the interface. This 

process results in the new field of adjoint solid temperatures �b��, passed to the adjoint heat transfer 

solver described in Section 3.4. 

The whole adjoint CHT process is iteratively repeated from Section 3.4 to Section 3.7 for as many 

loops as the ones performed during the primal computation till convergence. 

Once walked through the entire workflow in reverse mode, Yb��  and Yb]� , enclosing the 

contributions from the entire multidisciplinary chain, are introduced in Equation (12), and the 

constraint function sensitivities w.r.t. the design variables are finally computed. Hence, �Z �K⁄  is 

evaluated by the SQP-based optimizer and the geometry is updated, opening the path to a new 

thermo-mechanical evaluation within the history of the shape optimization problem. 

4. Validation 

4.1. Flat Plate (Primal Mode) 

The validation of the CHT process in primal mode is performed with the consideration of the 

analytic solution offered by [33] for the conjugate problem applied to a flat plate subjected to an 

incompressible flow. The mesh characteristics and boundary conditions are reported in Table 1, while 

the fluid and solid meshes are qualitatively shown in Figure 8. The thermal conductivity adopted for 

the solid phase is aimed at obtaining an average Biot number around unity. 

 

Figure 8. Fluid and solid meshes for the conjugate problem applied to a flat plate. 

Table 1. Flat plate domain characteristics and boundary conditions. 

Domain Settings Value 

Fluid domain length/height 0.25 m/0.1 m 

Fluid mesh cells count 365,000 

Plate thickness/length 0.01 m/0.2 m 

Solid mesh nodes count/elements count 35,000 

Fluid type Air 

Inlet flow total pressure 1.03 × 105 Pa 

Inlet flow temperature 1000 K 

Outlet flow static pressure 1.029 × 105 Pa 

Plate temperature at bottom face 600 K 

Plate thermal conductivity 0.29 W/m K 

Virtual heat transfer coefficient ��  100 W/m2 K 
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The convergence history of the maximum temperature difference between two successive fluid–

solid iterations �� is reported in Figure 9, where a threshold of 1K is selected as the stabilization 

criterion for the model. 

�� � |���/] 		��]|IJP, (35)

The distribution of temperature at the interface between the two domains is presented in Figure 

10a, comparing Luikov’s differential heat transfer (DHT) solution with the numerical one. Figure 10b 

shows the temperature variation in a vertical section located at x = 0.05m. In both cases, a sufficient 

agreement between the numerical results and the analytic solution is obtained within the limitations 

of the DHT approach, which does not capture the effect of the solid conductivity in the streamwise 

direction, as explained in [55]. 

 

Figure 9. Convergence history of L∞. 

 

Figure 10. CHT problem for flat plate: (a) temperature at the domain interface, (b) temperature profile 

at x = 0.05 m. Numerical vs. analytic solution. 

4.2. Rotor Mesh Sensitivity Analysis 

A mesh sensitivity study for the CHT analysis is performed on a three-dimensional test case 

presented in [19], considering a radial turbine impeller with 10 blades and an inlet diameter of 50 

mm. A two-dimensional sketch of the domain on the meridional plane of the rotor is reported in 

Figure 11, along with the locations of the imposed boundary conditions. The method of the 

characteristics [56] is adopted to establish the number of physical conditions to be assigned at the 

inflow and outflow boundaries. The total upstream temperature and pressure are specified at the 

inlet of the domain, along with flow velocity components in the corresponding coordinate system. 

At the subsonic outflow boundary, a single flow variable is imposed, specifically the downstream 
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static pressure. In conclusion, the boundary conditions applied to the problem are summarized in 

Table 2, in which the impeller rotational speed is also included. 

Table 2. Turbine rotor boundary conditions. 

Boundary Conditions Value 

Inlet total pressure p0 173 kPa 

Inlet total temperature T0 1080 K 

Inlet flow angle α from radial direction 62 deg 

Outlet static pressure ps 101 kPa 

Blade rotational speed ω 140,000 RPM 

The interactions of the rotor fluid and solid meshes are explored over three levels of refinement, 

as summarized in Table 3. Additionally, three values of the virtual heat transfer coefficient ��  are 

investigated in order to determine a suitable trade-off between stability and computational time. 

These factors are explored following the combinations expressed by the L9 Orthogonal Array method 

[57], returning nine test cases (Table 4). 

 

Figure 11. Turbine rotor meridional view and boundary condition locations. 

Table 3. Fluid and solid mesh refinements, �� levels. 

Factors Levels Value 

Fluid domain “coarse”—cells count 0.8 M 

Fluid domain “mid”—cells count 1.3 M 

Fluid domain “fine”—cells count 2.1 M 

Solid domain “coarse”—nodes count 105 k 

Solid domain “mid”—nodes count 295 k 

Solid domain “fine”—nodes count 1.1 M ��  low–mid–high (W/m2 K) 800–1000–1300 
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Table 4. L9 Orthogonal Array applied to the turbine rotor CHT analysis. 

Test case number CFD Mesh FEM Mesh ��	[�/�^�	�] 
1 coarse coarse 800 

2 coarse mid 1000 

3 coarse fine 1300 

4 mid coarse 1000 

5 mid mid 1300 

6 mid fine 800 

7 fine coarse 1300 

8 fine mid 800 

9 fine fine 1000 

All the simulations are run till convergence at a relative residual drop of 10−8 for the 

computational fluid dynamics (CFD) solver and 10−10 for the FEM solver, while the CHT workflow is 

stopped for a maximum deviation in wall temperature between two successive fluid-solid iterations 

L∞ below 1K. y+ values below unity are obtained for the “mid” and “fine” levels of the fluid grid 

refinement, while the coarsest one exhibits a peak in y+ around 2.5 at the blade leading edge. 

Concerning the maximum number of nodes in the solid mesh, the code was tested up to the finest 

possible grid before incurring in memory leakage issues with the adopted Conjugate Gradient 

iterative solver.  

The results in Table 5 demonstrate a low sensitivity of the maximum temperature in the solid 

domain due to the settings applied to the coupling process, except for the first test case with coarse 

meshes at both the fluid and solid side. A critical aspect is represented by the quality of the 

interpolation of the information between the two domains realized by the fine-tuned distribution of 

virtual grid points on the interface at fluid side, as discussed in Section 2.1. Moreover, the finest solid 

mesh increases the resolution of the convective loading, resulting in more accurate temperature 

predictions in the material and, therefore, also more reliable heat fluxes returned to the fluid. Figure 

14 shows two cases of solid mesh size, the coarse one (14a) and the intermediate one (14b), with the 

addition of the trailing edge refinement described hereafter. In the case of finer solid grids, the 

interpolation procedure returns a richer temperature pattern at the interface, closely mirroring the 

fluid conditions at the walls, whilst the coarsest one approximates the thermal loading distribution 

with the highest deviations localized in the blade tip region, where large secondary flows and 

leakages are present, and at the trailing edge. In this respect, a surface temperature analysis at a cross 

section located at about 25% of the chord was performed in order to evaluate the integral of the 

temperature deviations between each investigated test case w.r.t. test case 9. The axial position of the 

planar section was chosen in a region of high convective perturbations due to the presence of a 

significant flow detachment at the blade leading edge. The results, summarized in Table 5, are 

supported by the example in Figure 12, showing the temperature contours for case 1 and case 9. It is 

interesting to note that, in both set-ups, the blade tip returns significant thermal gradients because of 

the thinner geometry exposed to the flow vortices. However, the coarsest mesh overestimates the 

temperature drop, resulting in the integral reported in Table 5. 
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Table 5. Fluid–solid grid sensitivity: summary of CHT computations. 

Case

# 

#CHT Loops to 

Convergence [-] 

Norm. Computational 

Time for CHT Iteration 

Computational Time: 

CFD—FEM w.r.t. Total 

Maximum Solid 

Temperature [K] 

Delta 

Temperature 

Integral 

1 11 1.0× 97.0–0.5% 1019 0.121 

2 10 1.02× 95.2–1.9% 1025 0.053 

3 9 1.36× 71.3–25.0% 1027 0.045 

4 8 1.76× 98.3–0.3% 1026 0.092 

5 10 1.78× 97.2–1.1% 1028 0.038 

6 12 2.12× 81.6–16.1% 1028 0.023 

7 11 2.4× 98.6–0.2% 1026 0.074 

8 11 2.44× 97.2–0.8% 1028 0.019 

9 8 2.76× 86.5–12.4% 1028 0.000 

 

Figure 12. Temperature contours for test case 1 and test case 9 at the planar cross section on the 

blade. 

Finally, considerations about the computational time are synthesized in Table 5, with a dominant 

portion covered by the CFD solver and a significant rise in overhead emerging from the FEM heat 

transfer computations at the finest grid level. The normalization refers to the total duration of a single 

CHT iteration, including also the hFFB procedure. The comparison is performed w.r.t. the reference 

duration of test case 1, presenting the coarsest meshes at both fluid and solid side. 

The interactions among the three factors in the Orthogonal Array from Table 4 are studied 

through the compounded signal S, defined as: 

C � 	�	n +	L1 	 �N	�, (36)

with the term A enclosing the normalized difference between the maximum temperature predicted 

by the test case of interest and test case 9 (showing the finest grids), B representing the normalized 

computational time, and ω as the weighting coefficient. In the current study, ω = 0.7 in order to bias 

the objective function towards the accuracy of the coupling process. Indeed, the factors levels finally 

expected from this study are the ones minimizing the signal S. 

The analysis of the Orthogonal Array [57], resulting in Figure 13, reveals the dependence of the 

signal S from the three variables and their correspondent levels. The chart illustrates the virtual heat 
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transfer coefficient ��  is selected at its highest value within the stability region of the Biot number 

discussed in [46], as it influences the B term in Equation (36), determining the rate of convergence of 

the CHT coupling process. Indeed, the current problem exhibits an optimal ��  = 1000 W/m2K, since 

the highest value approaches the limit of the stability region, with incipient oscillations in the value 

of heat flux exchanged at the interface, before reaching convergence. The solid grid size, instead, 

characterizes the accuracy of the interpolation of the quantities passed between the two domains 

through the DWI process and affects the A term in Equation (36). In general, finer solid grids are 

favored by the current analysis. Remarkably, the fluid mesh size follows an opposite trend because 

its influence on the A term is less pronounced, as the coarsest level already provides good-quality 

solutions. On the other hand, the signal S is driven by the increase in computational overhead 

experienced with the fluid mesh refinement. 

 

Figure 13. Normalized signal S dependence from factor levels in the Orthogonal Array. 

Since the weighting coefficient ω privileges the accuracy of the CHT coupling process, the final 

selection of the factors levels results in the intermediate values for the refinements of both the grids 

and for the virtual heat transfer coefficient. However, it is recognized that smaller solid element sizes 

improve the stability of the CHT coupling process because it avoids local poor quality in the 

discretization of the blade surface in correspondence with thin regions (Figure 14a), potentially 

inducing drops in the local Biot number and inconsistencies with the selected ��  value from a stability 

standpoint. Therefore, the issue is addressed by the generation of a “hybrid” configuration (Figure 

14b), envisaging a local solid mesh refinement in correspondence with the blade tip surface and 

trailing edge, whilst maintaining the intermediate element size in the rest of the domain. This last 

setup increases the mesh density to a total node count of about 420 k. 

 

Figure 14. Comparison of solid mesh refinements: (a) coarse grid, (b) hybrid-mid grid. 
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Finally, the Orthogonal Array analysis is repeated, assigning the integral of temperature 

deviations to the A term in Equation (36). The outcome, shown in Figure 15, confirms the previous 

considerations, except for the fluid mesh size, which promotes the trend towards the coarsest mesh 

because it still provides sufficiently accurate results. However, since the difference between the 

coarse and intermediate meshes is moderate, the previous selection of the medium size grid will be 

pursued for the sake of improved prediction accuracy. 

Based on such considerations, the settings returned by the analysis of the Orthogonal Array are 

considered for the further assessments of the coupling problem. 

 

Figure 15. Normalized signal S dependence from factor levels in Orthogonal Array—integral of 

temperate deviation assigned to term A. 

4.3. Gradients Accuracy Evaluation 

The present work accounts for the manual differentiation of the multidisciplinary process shown 

in Figure 6. The sensitivities are accurately computed by the reverse Algorithmic Differentiation 

technique [54] for what concerns the FEM solvers and the hFFB process, while the partitioned 

coupling approach opens the path to the direct integration of the in-house adjoint CFD solver. 

The validation of the differentiated FEM solvers is presented herein with reference to the rotor 

test case from Section 4.2. The adjoint sensitivities -Z -K⁄  of the maximum temperature and of the 

maximum von Mises stress including the thermal strain w.r.t. selected design parameters (referenced 

in Table 6 and Figure 16) are compared to the correspondent gradients computed by the Finite 

Differences (FD) technique. The latter accounts for evaluations by a central differencing scheme, 

whose optimal step size is searched with the aim of accurate gradients computations. An exemplary 

case is reported in Figure 17, showing the identification of a suitable step size at the value of 10−6 m 

for the seventh design variable in the framework of thermal evaluations by the heat transfer solver. 

The magnitude of the perturbation must avoid too-small values, resulting in round-off errors, and 

too large values as well, because they introduce significant truncation errors. This outcome results 

from the evaluation of the cost function at each step size by solving the linear system obtained after 

the perturbation of the mesh through the morphing technique described in [20]. 

The sensitivities of the maximum solid temperature to perturbations of the ten design variables 

are summarized in Figure 18a, which shows a close agreement between the two methods, both in 

sign and magnitude. To understand the sensitivity analysis in detail, let us consider the thermal paths 

in the turbine rotor experiencing the convective loading resulting from the operative condition 

reported in Table 2, along with a convective condition on the back-plate surface with a uniform fluid 

temperature of 950K and a Dirichlet boundary condition of 500K assigned to the extreme section of 

the shaft. 
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Table 6. Design variables adopted in the dJ/dα gradient validation. 

Design Variables α 

1 Rotor hub meridional contour: Y-coordinate at 20% chord; 

2 Rake angle; 

3 Back-plate thickness; 

4 Turbine shaft diameter; 

5 Turbine shaft length; 

6 Rotor maximum diameter; 

7 Blade height at leading edge; 

8 Back-plate/shaft connection axial position; 

9 Blade hub thickness ; 

10 Blade hub fillet radius. 

 

Figure 16. Design variables from Table 2. 

 

Figure 17. Step size evaluation for the computation of dJ/dα by Finite Differences: Heat Transfer 

solver, variable 7. 

Figure 19 reveals that the maximum temperature is detected at the nodes in the region of the 

hub, in proximity with the leading edge. The computation of such constraint through a p-norm 
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function returns a marked sensitivity from the rotor back-plate thickness, whose enlargement would 

reduce the influence of the heat sink located at the back-plate outer surface. Similarly, an increase in 

blade height at the leading edge would extend the thermal path to the colder areas highlighted at the 

tip, while an elongation of the shaft itself would reduce the gradient field. On the contrary, an increase 

in the turbine shaft diameter, an advancement of the axial position of the intersection between the 

rotor back-plate and the shaft, and an enlargement of the blade hub thickness would favor the cooling 

of the hub upper region. Such sensitivities provide the descent direction for a constrained 

optimization problem aimed at limiting the maximum rotor temperature for the sake of extended 

lifetime. 

Similarly, the accuracy of the adjoint structural solver sensitivities is assessed by comparison 

with the same gradients computed by Finite Differences. The results reported in Figure 18b confirm 

the suitability of the manually differentiated framework. 

 

Figure 18. Comparison of the dJ/dα sensitivities of the solid maximum temperature (a) and the 

maximum von Mises stress (b): gradients computed by the adjoint method vs. Finite Differences. 

Moreover, the time for the computation of the adjoint-based gradients for the heat transfer solver 

and the structural solver was measured. If X is the time required for the computation of the 

multidisciplinary workflow in primal mode and the problem accounts for n design variables, the 

calculation of the gradients by Finite Differences would approximately cost n ∙ X. On the contrary, 

the application of the adjoint method herein described costs about 8.6X for the heat transfer module 

and 2.3X for the structural analysis, in fair agreement with the original expectations. Such costs 

mostly depend on the assembly process of the differentiated system (Equation (25)) rather than the 

solver itself. 

Finally, the loose-coupling approach adopted for the development of the CHT workflow allows 

the direct integration of the in-house adjoint CFD solver, and the accuracy of the computed gradients 

was already demonstrated by the same author. 
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Figure 19. Solid temperature on turbine rotor (operative condition from Table 2). 

5. Results and Discussion 

The design work aims at reducing the thermo-mechanical stresses in the turbine impeller 

presented in Section 4.2. The operative condition in Table 2 is considered, along with a Dirichlet 

boundary condition with a temperature of 500 K imposed at the extreme cross section of the shaft, 

emulating the heat sink provided by the oil cooling circuit in the turbocharger bearing housing. The 

contribution of the thermal strains introduced by the present work improves the accuracy of the 

computation of the von Mises stresses, whose gradients provide information for the geometry 

modifications. 

According to the grids selection anticipated in Section 4.2, the fluid domain is discretized with a 

multi-block structured mesh of about 1.3M cells with boundary layer refinement. The solid domain 

accounts for an unstructured grid of approximately 420 k nodes and second-order tetrahedral 

elements. 

Figure 20 presents the temperature distribution in the baseline geometry under the selected 

steady-state operative condition. A significant thermal gradient is identified at the connection 

between the shaft and the rotor back-plate, with a correspondent local variation of thermal strains 

according to Equation (9). This is reflected in increased localized stresses, as demonstrated in Figure 

21. In fact, Figure 21a shows the mechanical pattern of the baseline geometry, whose structural 

computation is performed considering only the centrifugal loading. On the other hand, Figure 21b 

reveals the new stress distribution accounting also for the thermal field, resulting from the convective 

input and the heat sink at the shaft. Indeed, a local deviation in von Mises stresses of about 20% is 

identified in the region around the connection with the back-plate. 

 

Figure 20. Solid temperature distribution with rotor experiencing convective loading from the 

exhaust gases and shaft cooling (baseline geometry). 
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Figure 21. Normalized von Mises stresses pattern comparison in baseline layout: (a) mechanical 

versus (b) thermo-mechanical. 

The suitability of the process described in Section 3 is tested with the computation of the 

sensitivities of the thermo-mechanical constraint w.r.t. the grid coordinates, as reported in Figure 22, 

providing the information for a grid perturbation. Therefore, Figure 23 compares the distribution of 

von Mises stresses in the baseline geometry (left) and in the updated layout (right). A local reduction 

in the maximum von Mises stress in excess of 35% is achieved with the new configuration. Most of 

the advancements can be attributed to the increased curvature of the back-plate contour, in particular 

in the region of the connection with the shaft, originally experiencing the highest concentrated 

stresses. The new shape reveals a more gradual mechanical pattern at such intersection, supported 

also by a smoother temperature evolution lowering the influence of the local thermal strains. The 

new layout returns lower sensitivity values, in line with the goal of satisfying the thermo-structural 

constraint within an optimization problem. 

Other areas of the blade are highlighted in Figure 22, in particular at high blade span and in the 

upper portion of the back-plate. The activation of the sensitivities in such regions is favored by the 

contribution of the thermal input. However, these portions of the rotor present a pattern of smaller 

stresses, not violating the original constraint, and therefore their sensitivity fields are neglected. 

The second positive effect of the implementation of the CHT analysis within the design loop is 

about the more accurate prediction of the actual turbine efficiency, as no more adiabatic walls 

assumptions are in place. The deviation in the total-to-static efficiency w.r.t. an adiabatic simulation 

is about 0.2% in the selected operative condition while considering the sole impeller. However, more 

marked differences are expected in case the CHT analysis is extended to the whole turbine stage, 

including the volute and the nozzle guide vanes. 

 

Figure 22. Sensitivities of the thermo-mechanical constraint w.r.t. grid coordinates. 
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Figure 23. Normalized von Mises stresses distribution in turbine impeller experiencing thermo-

mechanical loading: (a) baseline configuration, (b) updated geometry. 

6. Conclusions 

This paper addresses the problem of the Fluid–Structure Interaction in the design optimization 

of turbomachinery components under thermo-mechanical constraints. The activity focuses on a 

radial turbine rotor for turbocharger applications, with the aim of reducing the maximum von Mises 

stress located in a critical area of the impeller experiencing the influence of the thermal loading. 

The problem of the integration of high-fidelity thermal predictions within the framework of an 

optimization is addressed by the development of a novel multidisciplinary gradient-based approach, 

suitable for the efficient computation of the gradients of the cost function with respect to a large 

number of design variables. The introduction of a Conjugate Heat Transfer evaluation procedure, 

supported by the heat transfer forward flux back method, is undertaken in order to establish the 

energy coupling of the solid domain with its surrounding fluid, according to a partitioned coupling 

approach. The gradient calculation is addressed by a discrete adjoint technique, and the resulting 

sensitivities of the thermo-mechanical constraint w.r.t. the grid coordinates allow for the mechanical 

optimization of the component, including considerations related to the impact of its thermal 

operative environment. 

The solid–fluid grid coupling process, the analysis procedure, and the multidisciplinary 

differentiation technique are described. Moreover, the validation of the conjugate problem is 

discussed with reference to the comparison with an analytic solution and a mesh sensitivity study. 

The accuracy of the computed gradients is also presented. 

The application of the multidisciplinary workflow demonstrates the possibility of controlling 

the local von Mises stresses within admissible ranges, extending the outreach of the original 

mechanical evaluations with the inclusion of the thermal stresses. New regions of the impeller, before 

not affected by such considerations, are now involved, as their relative sensitivities are enhanced by 

the local thermal field. In particular, in the tested sample an improvement exceeding 35% in local von 

Mises stresses is achieved by the application of the presented method. Additionally, more accurate 

performance predictions result from the introduction of the CHT analysis within the design 

optimization process, no more relying on the adiabatic walls assumption. 

This contribution is a new step towards the large-scale optimization of turbomachinery 

components by gradient-based methods, with the goal of the future introduction of fatigue life 

evaluations in transient conditions. 
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Nomenclature 

CFD Computational Fluid Dynamics 

FEM Finite Element Method 

DWI Distance-Weighted Interpolation 

CHT Conjugate Heat Transfer 

FSI Fluid Structure Interaction 

JT-KIRK Jacobian Trained Krylov Implicit Runge Kutta 

MUSCL Monotonic Upstream-centered Scheme for Conservation Laws K design variable KL�N thermal expansion coefficient [K−1] E thermal strain [-] OQR von Mises stresses [Pa] � adjoint variable �x'(LxN	 distance between i-th fluid cell-solid node coupling in DWI procedure [m] �� ��⁄  temperature gradient normal to wall [K/m] iL�N elasticity-strain matrix �� 	 virtual heat transfer coefficient [W/m2K] Z cost function, objective function �	 thermal conductivity coefficient [W/mK] ��� heat flux from fluid domain normal to the wall [W/m2] ��� heat flux in solid domain normal to the wall [W/m2] 8 non-linear residuals in fluid analysis �:/ fluid temperature in first layer of inner domain cells [K] ���  virtual fluid bulk temperature [K] �′��  virtual fluid bulk temperature interpolated by DWI procedure [K] ��� fluid temperature at the wall [K] �9/ fluid temperature in first layer of ghost cells [K] �HG� reference temperature for thermal strains calculation [K] � conservative flow variables in fluid analysis DbM adjoint variable W��� primitive flow variables at domain boundaries in fluid analysis � fluid/solid grid coordinate (x,y,z) [m] 
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