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Abstract The aim of this paper is to study the associated primes of powers
of square-free monomial ideals. Each square-free monomial ideal corresponds
uniquely to a finite simple hypergraph via the cover ideal construction, and
vice versa. Let H be a finite simple hypergraph and J(H) the cover ideal
of H. We define the shadows of hypergraph, H, described as a collection of
smaller hypergraphs related to H under some conditions. We then investigate
how the shadows of H preserve information about the associated primes of the
powers of J(H). Finally, we apply our findings on shadows to study the per-
sistence property of square-free monomial ideals and construct some examples
exhibiting failure of containment.
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1 Introduction

The primary decomposition of ideals in Noetherian rings is a fundamental re-
sult in commutative algebra and algebraic geometry. From a minimal primary
decomposition, one can define the set of the associated primes by taking the
radical of each ideal in the decomposition. Square-free monomial ideals and
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powers of ideals are central objects in combinatorial and commutative alge-
bra and in algebraic geometry due to the connections they encode between
these areas, see for instance [12]. Our goal in this paper is to investigate the
associated primes of powers of square-free monomial ideals.

There are several ways to relate a square-free monomial ideal to a (finite
simple) hypergraph. To serve our intent, we will associate to a hypergraph, H,
the square-free monomial ideal with minimal primes corresponding to the edges
of the hypergraph, and vice versa. This ideal is usually called the cover ideal
of the hypergraph and denoted by J(H). The associated primes of a square-
free monomial ideal are easy to describe, whereas, computing the associated
primes of a power can prove to be considerably more difficult. Currently, the
set of the associated primes of a power of any square-free monomial ideal is
far from being fully understood. There have been many attempts to address
this problem. For instance, the authors of [2] give a description of the set
Ass(J(H)s) in terms of the coloring properties of the hypergraph H. Here we
provide another approach, and seek to list the elements in Ass(J(H)s).

The motivating idea is to take knowledge of associated primes of other
hypergraphs, smaller than H, and to lift it to an associated prime of H. For
ideals associated to a combinatorial object, one hopes to explain their behavior
in terms of the original object. With this in mind, we define S(H) the shadow of
a hypergraph, Definition 3.1, as a certain set of smaller hypergraphs related to
the original one. We then show that the shadows preserve information about
the associated primes of a power of the cover ideal of the hypergraph. For
instance, we prove the following result.

Theorem 1 (Theorem 3.8) Let H = (V,E) be a hypergraph. If G ∈ S(H)
is an odd cycle (i.e., G = C2n+1 for some positive integer n), then pV ∈
Ass(J(H)2).

Moreover, with the notation of Section 4, where H ′ ∈ S(H) and H̃ is a subhy-
pergraph of H, the following theorem will give us an investigation of a specific
case.

Theorem 2 (Theorem 4.5) Let (J(H ′)s : m) = p. Then, we have

(a) (J(H)s : m) = p if and only if (J(H̃)s : m) = p;
(b) (J(H)s : m · m0) = p + (y), for some monomial m0 /∈ p, if and only if

(J(H̃)s : m) 6= p.

The early results based on this novel construction are summarized in diagrams
in Section 4.

Of particular interest to us are the examples of failure of persistence prop-
erty. In [13] Kaiser et al. produced an example of a square-free monomial ideal,
precisely the cover ideal of a graph, which fails the persistence property, i.e.,
the set of the associated primes could “lose” some elements from one power to
the next. Based on this example and our findings on the shadows - Theorem
5.1, we construct an example of failure of persistence property for the case of
a proper hypergraph, not being graph.
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Organization of the article. In Section 2, we introduce the terminology
and the basic results. In Section 3, we define the shadows of a hypergraph that
are the new tool introduced in this paper. Then we start an investigation of
the associated primes of a square-free monomial ideal in terms of the shadows
of the associated hypergraph. In particular, in this section, we deal with the
second power. In Section 4, under some restrictive conditions, we broaden our
investigation to any power. Finally, in Section 5, we apply the results of Section
4 to the persistence property.

2 Notation and basic facts

Let V := {x1, . . . , xn} and R = K[V ] = K[x1, . . . , xn] be the standard poly-
nomial ring in n variables over a field K. A square-free monomial ideal I ⊆ R
always has a unique minimal primary decomposition, I = p1 ∩ · · · ∩ pt, as an
intersection of square-free prime ideals pi = (xi1 , . . . , xis). For more details
and a full description of the topic we refer to Section 1.3 in [8]. This property
establishes a one-to-one correspondence between square-free monomial ideals
and finite simple hypergraphs. First, recall that a (finite simple) hypergraph,
H, is a pair H = (V,E), where V := {x1, . . . , xn} is called the set of vertices
of H and E is a collection of subsets of V . In this paper, we will only consider
finite simple hypergraphs, these are also called clutters in the literature. For
a set U = {xi1 , . . . , xis} ⊆ V , we will denote by

pU := (xi1 , . . . , xis) ⊆ R

the prime ideal generated by the variables in U , and by

xU := xi1 · · ·xis ∈ R

the monomial given by the product of the variables in U.
Then, a hypergraph H = (V,E) unequivocally corresponds to the square-free
monomial ideal J(H) :=

⋂
e∈E

pe, called the cover ideal of H, and vice versa.

Let H = (V,E) be a hypergraph. A subset T of V is a vertex cover of
H if every edge e ∈ E contains at least one element of T . A vertex cover T is
a minimal vertex cover if no proper subset of T is a vertex cover. Minimal
vertex covers are related to the minimal generators of J(H). Indeed, T is a
minimal vertex cover of H if and only if xT ∈ G(J(H)), the set of monomials
which minimally generates J(H). See [5] and [7] for a further investigation on
cover ideals of hypergraphs.

In this paper we are interested in the study of the associated prime ideals
of the (regular) powers of J(H). Recall the following, classical, definition.

Definition 2.1 Let R be a ring and I an ideal of R. A prime ideal p ⊂ R is
called an associated prime ideal of I if there exists some element m ∈ R/I
such that p = Ann(m), the annihilator of m. Equivalently, a prime ideal p ⊂ R
is an associated prime ideal of I if there exists some element m ∈ R such that
p = (I : m). The set of all associated prime ideals of I is denoted by Ass(I).
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By definition, the hypergraph H = (V,E) easily provides a description of
all elements in Ass(J(H)). Indeed, pU ∈ Ass(J(H)) if and only if U ∈ E.
In order to describe the associated primes of the powers of J(H), Lemma
2.11 in [2] is an essential tool. We recall that for a hypergraph H = (V,E)
and U ⊆ V the induced subhypergraph of H on U is the hypergraph
HU = (U,E(U)) where E(U) = {e ∈ E | e ⊆ U}. Lemma 2.11 in [2] shows
that, for a hypergraph H = (V,E), and U subset of the vertex set V , there is a
strong relation between the associated primes of the ideals J(H)s ⊆ R = K[V ]
and J(HU )s ⊆ K[U ], that is,

pU ∈ Ass(J(H)s)⇔ pU ∈ Ass(J(HU )s).

Thus, pU is associated to J(H)s, if and only if it is associated to J(HU )s ⊆
K[U ], note that pU is the maximal ideal in K[U ]. So, Lemma 2.11 in [2] ensures
that in a certain sense it is enough to look if the maximal ideal is an associated
prime.

Remark 2.2 An immediate consequence of Lemma 2.11 [2] is a first, well
known, step in the description of the elements in Ass(J(H)s). For any hy-
pergraph H, pe ∈ Ass(J(H)s) for each integer s ≥ 1 and each edge e of H.

Remark 2.3 An other consequence of Lemma 2.11 [2] will be useful in Section
4. For a hypergraph H = (V,E) and F ⊆ U ⊆ V , since (HU )F = HF , we have

pF ∈ Ass(J(H)s)⇔ pF ∈ Ass(J(HU )s),

where J(H)s ⊆ R = K[V ] and J(HU )s ⊆ K[U ].

In the literature there are only few results explicitly describing the ele-
ments in Ass(J(H)s). Most of them deal with the case that H is a graph, i.e.,
the edges all have cardinality 2. If H is a graph, we will often denote it by
the letter G. For instance, see proposition below, the authors of [3] describe
the set Ass(J(G)2). They prove that the new primes match the (minimal)
odd cycles of G. Recall that in a graph G = (V,E) a set of distinct vertices
C = {xi1 , xi2 , . . . , xin} ⊆ V is called an n-cycle (or cycle of length n) if
{xij , xij+1

} ∈ E for each j ∈ {1, . . . , n} and xin+1
:= xi1 . We call C an odd

(even) cycle if n is odd (even). The vertices xij , xij+1 connected by an edge
{xij , xij+1} are called adjacent vertices in C. A chord of C is an edge of G
which joins two non-adjacent vertices. If C has no chord, we shall call it chord-
less. Corollary 3.4 in [3] characterizes the elements in Ass(J(G)2), where G
is a finite graph. The authors show that a prime ideal p = (xi1 , . . . , xis) is in
Ass(J(G)2) if and only if:

(a) s = 2 and p ∈ Ass(J(G)); or
(b) s is odd, and after re-indexing, {xi1 , xi2 , . . . , xis} is a chordless cycle of G.
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3 Introducing the shadows

In this section, we introduce the definition of the shadows of a hypergraph,
give some illustrative examples and present some early results obtained from
our novel construction.

Definition 3.1 Let H = (V,E) be a hypergraph. We say that a hypergraph
H ′ = (V ′, E′) is a shadow of H if

(a) V ′ ⊆ V ; and
(b) |E| = |E′| (same cardinalities) and e ∩ V ′ ∈ E′ for each e ∈ E.

The condition |E| = |E′| in the above definition could look very restrictive,
but it is necessary to our purposes. We will show why in Example 3.13, after
developing some background.

We denote by S(H) the set of all the shadows of H. Note that two different
elements in S(H) have different vertex sets. Thus H ′ = (V ′, E′) ∈ S(H) will
be also called the shadow of H on V ′. By definition, H is always a shadow
of itself on the vertex set V ; we refer to this as the trivial shadow. However,
not every subset of V produces a shadow of H, as we show in the following
example.

Example 3.2 Consider the hypergraph H on the vertex set V := {x1, . . . , x5}
with the edge set E = {{x1, x2, x3}, {x2, x3, x4}, {x1, x4, x5}}. Then, the set
S(H) contains non-trivial elements, namely, shadows on the vertex sets V1 :=
{x1, x2, x4}, V2 := {x1, x3, x4}, V3 := {x1, x2, x3, x4}, V4 := {x1, x3, x4, x5}
and V5 := {x1, x2, x4, x5}. Indeed, we have

(V1, {{x1, x2}, {x2, x4}, {x1, x4}}) ∈ S(H), and

(V2, {{x1, x3}, {x3, x4}, {x1, x4}}) ∈ S(H).

Both of these shadows are graphs, more precisely they are 3-cycles. Addition-
ally, we also have the following shadows

(V3, {{x1, x2, x3}, {x2, x3, x4}, {x1, x4}}) ∈ S(H),

(V4, {{x1, x3}, {x3, x4}, {x1, x4, x5}}) ∈ S(H) and

(V5, {{x1, x2}, {x2, x4}, {x1, x4, x5}}) ∈ S(H).

Furthermore, for instance, H has no shadow on the set V6 := {x1, x2, x3} since
we get

(V6, {{x1, x2, x3}, {x2, x3}, {x1}}) ,
and this fails to be a simple hypergraph.
The hypergraph H (in two different representations) and its shadows are
showed in Figure 1 and Figure 2, where an edge {a, b, v1, . . . , vm} is depicted

as the segment
v1 . . . vm
a b

In the following example, we show a hypergraph which only has trivial
shadow.
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Fig. 1: The hypergraph H and its shadows on V1, V3 and V5.
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Fig. 2: An other representation of the hypergraph H and its shadows on V2 and V4.

Example 3.3 Let H be the hypergraph on the vertex set V = {x1, . . . , x5} with
edge set E = {{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x4, x5, x1}, {x5, x1, x2}}.
In this case, the set S(H) has only one element, namely H. Indeed, notice that
each edge of H consists of three vertices with “consecutive” indexes. Since any
subset of V with two elements is contained in some edge, then H has no shadow
on any set V ′ ( V . For instance, H has no shadow on the subset V ′ obtained
from V by removing x1 since {x4, x5} ⊂ {x3, x4, x5}.

One has J(H ′) is an ideal of K[V ′] and there is a natural inclusion from
K[V ′] into K[V ]. The ideal generated by the image of J(H ′) under this map,
i.e., the ideal generated by G(J(H ′)) ⊆ K[V ], is called cone ideal of J(H ′)
in K[V ]. The next lemma provides a connection between the monomial gen-
erators of J(H) and J(H ′) for a shadow H ′ of H.

Lemma 3.4 Let H = (V,E) be a hypergraph and H ′ = (V ′, E′) ∈ S(H) a
shadow of H. Then G(J(H ′)) ⊆ G(J(H)).

Proof The ideal J(H ′) is generated by monomials xU where U is a minimal
vertex cover of H ′. By the definition of shadow, U is also a minimal vertex
cover of H, and U does not involve the variables in V \ V ′. ut

Remark 3.5 From Lemma 3.4, we have J(H ′) = K[V ′] ∩ J(H). Thus, each
element m in J(H ′) also belongs to J(H).

As a consequence of Lemma 3.4, we get the following result.

Lemma 3.6 If (J(H ′)s : m) = p 6= (1) for some prime ideal p, then m /∈
J(H)s.

Proof Suppose that m ∈ J(H)s, then m = m1 · · ·msM where the mi’s are
monomial minimal generators of J(H). Since m only contains the variables
in V ′, each mi will also have this property. That means, mi ∈ J(H ′) for all
i ∈ {1, 2, . . . , s}. Hence m ∈ J(H ′)s, which contradicts (J(H ′)s : m) 6= (1). ut
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The next results show the first evidences that our construction really serves
our purpose. We strongly use the classification in Corollary 3.4 in [3] and
assume the existence of a graph G ∈ S(H). Then, we show that J(H)2 only has
associated primes inherited from J(G)2. The following lemma can be deduced
from Corollary 3.4 in [3]. We also include a proof for the convenience of the
reader.

Lemma 3.7 Let C2n+1 = (V,E) be a (2n+1)-cycle. Then (J(C2n+1)2 : xV ) =
pV .

Proof A minimal cover of C2n+1 involves at least n + 1 vertices, this im-
plies that J(C2n+1)2 does not contain any elements of degree 2n + 1 and
in particular, xV /∈ J(C2n+1)2. Note that x1 ∈ (J(C2n+1)2 : xV ), indeed
x1 · xV = x{1,2,4,...,2n} · x{1,3,5,...,2n+1} ∈ J(C2n+1)2. Analogously, we get
xixV ∈ J(C2n+1)2 for each xi ∈ V. ut

Theorem 3.8 Let H = (V,E) be a hypergraph. If G ∈ S(H) is an odd cycle
(i.e., G = C2n+1 for some positive integer n), then pV ∈ Ass(J(H)2).

Proof Let E = (e1, . . . , ek). Since G = (V ′, E′) ∈ S(H), the edges of G are
given by {e′1, . . . , e′k} where e′i = ei ∩ V ′. By hypothesis, G is an odd cycle, so
k = 2n + 1 for some positive integer n. Without loss of generality, we relabel
the vertices of G so that

e′i =

{
{xi, xi+1}, if 1 ≤ i ≤ 2n,
{x2n+1, x1}, if i = 2n + 1.

From Corollary 3.4 in [3], we know that pV ′ ∈ Ass(J(G)2), and by Lemma

3.7 we have (J(G)2 : xV ′) = p′V , where xV ′ =
∏2n+1

i=1 xi. Then, we claim that
(J(H)2 : xV ′) = pV . If xj ∈ V ′, xjxV ′ ∈ J(G)2 ⊆ J(H)2. So xj ∈ (J(H)2 :
xV ′). Moreover, if yj ∈ V \ V ′, then there exists an edge ei ∈ E such that
yj ∈ ei. Without loss of generality, one can assume that i = 1. Thus we have
that

yjxV ′ = yjx1x2 · · ·x2n+1 = (yjx3x5 · · ·x2n+1)(x1x2x4 · · ·x2n).

The right hand side of the above equality is in J(H)2 since it is the product of
two vertex covers of H. Thus, yj ∈ (J(H)2 : xV ′). Finally, xV ′ /∈ J(H)2 since
xV ′ /∈ J(H ′)2. ut

Example 3.9 Let H be the hypergraph in Example 3.2. Since, for instance, the
shadow of H on {x1, x2, x4} is an odd cycle, we can state that

pV = (x1, x2, x3, x4, x5) ∈ Ass(J(H)2).

Now we show that Theorem 3.8 works in a more general setting. We need
some further notation. Let H = (V,E) be a hypergraph and let G = (V ′, E′) ∈
S(H) be a graph. Set e′ := e ∩ V ′ for any e ∈ E. Then, for a subset U ⊂ V ′,
we denote by

Û :=
⋃

e′⊆U

e ⊆ V.
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The set Û is a subset of V containing all the vertices in e, for any e in corre-
spondence to an edge e′ that is contained in U.

Corollary 3.10 Let H be a hypergraph and H ′ a shadow of H. If C2n+1 is
an odd cycle that is a subhypergraph of H ′, then pĈ2n+1

∈ Ass(J(H)2).

Proof Say H ′ = (V ′, E′). We take the subhypergraph H̃ := HĈ2n+1
of H on the

vertex set Ĉ2n+1. Notice that H̃ has a shadow on C2n+1. That is the odd cycle
C2n+1. Thus, from Corollary 3.4 in [3] and Theorem 3.8, pĈ2n+1

∈ Ass(J(H̃)2).

Moreover, from Lemma 2.11 [2], we have pĈ2n+1
∈ Ass(J(H)2). ut

Corollary 3.11 Let H be a hypergraph and H̃ a subhypergraph of H. If an
odd cycle C2n+1 ∈ S(H̃), then pĈ2n+1

∈ Ass(J(H)2).

Example 3.12 Let H = (V,E) (see Figure 3) be the hypergraph with the
vertex set

V = {x1, x2, x3, x4, x5, x6, x7, x8}

and the edge set

E = {{x1, x2, x6}, {x2, x3, x6}, {x3, x4, x8}, {x4, x5, x6}, {x1, x5, x7}}.

H =

x6

x6

x8
x6

x7

x1

x2

x3

x4

x5

Fig. 3: A representation of the hypergraph H.

The shadow of H on the vertex set V ′ = {x1, x2, x3, x4, x5} is

H ′ = (V ′, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}}) ∈ S(H).

We see that H ′ is a graph, precisely it is an odd cycle of length 5, see Figure
4. By Theorem 3.8, we have that

pV = (x1, x2, x3, x4, x5, x6, x7, x8) ∈ Ass(J(H)2).

Now, we take the shadow of H on the vertex set V ′′ = {x1, x3, x5, x6, x8}. The
shadow of H on V ′′ is

H ′′ = (V ′′, {{x1, x6}, {x3, x6}, {x3, x8}, {x5, x6}, {x1, x5}}) ∈ S(H).
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H′ =

x1

x2

x3

x4

x5 H′′ =

x1

x6

x3

x8

x5

Fig. 4: The shadows of H on V ′ and V ′′.

Note that H ′′, see Figure 4, has a subhypergraph that is a cycle of length 3,
C3 = {{x1, x6}, {x5, x6}, {x1, x5}}. By Corollary 3.10, this cycle produces an
element in Ass(J(H)2). So, we get

pĈ3
= (x1, x2, x4, x5, x6, x7) ∈ Ass(J(H)2).

In the following example we show that condition (b) in Definition 3.1 is
strictly necessary for the validity of Theorem 3.8.

Example 3.13 Let H = (V,E) be the hypergraph with the vertex set

V = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

and the edge set

E = {{x1, x2, x6, x8}, {x2, x3, x8, x6}, {x3, x4, x7, x9},
{x4, x5, x6, x8}, {x1, x5, x7, x9}, {x8, x9}, {x6, x7}}.

A Macaulay2 computation [10] shows that

Ass(J(H)2) = {pe | e ∈ E}.

Ignoring the rule |E| = |E′| in the condition (b) of Definition 3.1, we get on
the vertex set V ′ = {x1, x2, x3, x4, x5} the hypergraph

H ′ = (V ′, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}}) ∈ S(H).

One has H ′ is a graph, in particular it is an odd cycle and by Lemma 3.7, we
have

pV ′ = (x1, x2, x3, x4, x5) ∈ Ass(J(H ′)2).

So, without the condition (b) in Definition 3.1, Theorem 3.8 does not hold.

In the last part of this section we prove that, under some suitable hypoth-
esis, all the associated primes of J(H)2 come from some non-trivial shadow
(we will see in Proposition 3.15). We need an auxiliary lemma.

Lemma 3.14 Let H = (V,E) be a hypergraph, and suppose that (J(H)s : m) =
pV for some monomial m. Let V ′ ( V be a proper subset such that ei∩ej ⊆ V ′

for each ei, ej ∈ E, i 6= j. Then ys−1 does not divide m for each y ∈ V \ V ′.
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Proof Let y be an element in V \ V ′. We write m = yam′, where, unless
to rename, y ∈ e1 and y does not divide m′. If a ≥ s then, since ym ∈
J(H)s, we get ym = m1 · · ·msM , where mj corresponds to a minimal vertex
cover of H for j ∈ {1, . . . , s}. Thus y divides M and m = m1 · · ·ms(M/y).
This contradicts m /∈ J(H)s. Therefore, we can assume a = s − 1. We work
by induction on r = |e1 \ V ′|. If r = 1, i.e., e1 = (e1 ∩ V ′) ∪ {y}, then
from ym ∈ J(H)s, we get ym = (ym1) · · · (yms)M , where ymj are minimal
vertex covers of H. Note that, for each xj ∈ e1 ∩ V ′, we can see that xj

does not divide m1, . . . ,ms (these are minimal vertex covers) and xj does
not divide M (otherwise we can just delete y and get m ∈ J(H)s). This
implies that m /∈ (pe1)s. To get a contradiction, we just take some z /∈ e1 and
remember that by hypothesis zm ∈ J(H)s but zm /∈ (pe1)s. If r > 1, i.e.,
e1 = (e1∩V ′)∪{y1, . . . , yr}, then just note that V ′′ = V ′∪{y1, . . . , ŷi, . . . , yr}
satisfies the hypothesis of the theorem and e1 = (e1 ∩ V ′′) ∪ {yi}. ut

Proposition 3.15 Let H = (V,E) be a hypergraph and H ′ = (V ′, E′) ∈ S(H)
a shadow of H. Assume that ei ∩ ej ⊆ V ′ for each ei, ej ∈ E, where i 6= j. If
pV ∈ Ass(J(H)2), then pV ′ ∈ Ass(J(H ′)2).

Proof By the definition of associated primes, there exists a monomial m ∈
K[V ] such that (J(H)2 : m) = pV . Say V ′ = {x1, . . . , xa} and V \ V ′ =
{y1, . . . , yb}. By Lemma 3.14 yj does not divide m for j = 1, . . . , b. Then
m ∈ K[V ′] and therefore (J(H ′)2 : m) = pV ′ . ut

4 A first case

In this section we investigate the relations between a hypergraph and its shad-
ows in a particular case of study. Precisely, we consider shadows that only
differ from the starting hypergraph by one edge and one vertex.

Throughout this section, we shall use the following notation.

Notation 4.1 Let H = (V,E) be a hypergraph and H ′ = (X,E′) a shadow of
H such that

(a) X = {x1, . . . , xn} and V = X ∪ {y}; and
(b) y only belongs to one edge, say ey ∈ E.

After renaming, say ey = {x1, . . . , xt, y}. We set e := e′y = {x1, . . . , xt}, then
we have H ′ = {X, (E \ {ey}) ∪ {e}}. Moreover, to shorten the notation, H̃
will denote the subhypergraph of H on X. We denote by pe and pey the prime
ideals generated by the variables in e and ey respectively.

We remark that, in this setting, the hypergraphs H̃ and H ′ share the vertex set
X. Moreover, they share the same edges except for e. We will abuse notation:
given a subset F ⊆ X ⊆ V , we will write pF to denote both the ideals in K[X]
and in K[V ].

Here, we anticipate the results of this section. In the first part of the section,
we investigate the relation linking associated primes of J(H̃)s and J(H ′)s
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with the elements in Ass(J(H)s). We have seen in Lemma 2.11 [2] that if
p ∈ Ass(J(H̃)s) then p ∈ Ass(J(H)s). What about the associated prime of
J(H ′)s? We will show that if p ∈ Ass(J(H ′)s), then either p+(y) ∈ Ass(J(H)s)
or p ∈ Ass(J(H)s). This depends on a further condition of a monomial m such
that (J(H ′)s : m) = p. The diagram in Figure 5 summarizes these results.

p ∈ Ass(J(H̃)s) p ∈ Ass(J(H′)s)

p = (J(H′)s : m)

p = (J(H̃)s : m) p 6= (J(H̃)s : m)

p ∈ Ass(J(H)s) p + (y) ∈ Ass(J(H)s)

Fig. 5: The chart depicts the steps we follow in the first part of the section.

p ∈ Ass J(H)s

y /∈ p y ∈ p

p ∈ Ass J(H̃)s p = p′ + (y)

?

p′ ∈ Ass J(H′)s

Fig. 6: The chart depicts the steps we follow in the second part of the section. The question
mark means that some additional conditions are necessary for that implication.

In the second part of the section - see Figure 6, we will reverse the inves-
tigation. Starting from a prime associated to J(H)s, we will look for which



12 Erin Bela et al.

conditions allow us to find a relation with an element in J(H̃)s or J(H ′)s.
Precisely, if p ∈ Ass(J(H)s) and y /∈ p then p ∈ Ass(J(H̃)s). Moreover, if
p = (y) + p′, it seems natural to ask if p′ ∈ Ass(J(H ′)s), which we positively
answer under an extra (restrictive) condition. We will show in the next section,
see Example 5.3, that not all the primes (y) + p′ associated to J(H)s come
from a prime p′ in the shadow.

We start with an auxiliary result.

Lemma 4.2 Let m ∈ G(J(H)) be a monomial minimal generator of J(H). If
y|m, then xi 6 |m for all xi ∈ e.

Proof In our setting, y only belongs to the edge ey = {x1, . . . , xt, y}. Since m

is a minimal vertex cover of H, if xi ∈ e = {x1, . . . , xt} divides m, then
m

y
is

also a vertex cover. This contradicts the minimality of m. ut

In order to relate the associated primes of J(H ′)s to the associated primes
of J(H)s, the following proposition will be crucial.

Proposition 4.3 Let (J(H ′)s : m) = pF be a prime ideal, for some F ⊆ X.
Then we have,

(J(H)s : m) = pF + q,

where q ⊆ (y). In other words, no monomial only involving the variables in
X \ F belongs to (J(H)s : m).

Proof Say F := {xi1 , . . . , xik} and {x`1 , . . . , x`r} = X \ F. Recall that e =
{x1, . . . , xt}. First we show that pF ⊆ (J(H)s : m) ( (1). From Lemma 3.6
we have m /∈ J(H)s and then (J(H)s : m) 6= (1). By hypothesis, for each
xj ∈ F we have xjm ∈ J(H ′)s i.e. m = m1 · · ·msM for some monomials
mi ∈ J(H ′) ⊆ K[X]. But these monomials, see Remark 3.5 also belongs to
J(H). Hence, xjm ∈ J(H)s and pF ⊆ (J(H)s : m) ⊆ K[V ].

In order to conclude the proof, take any monomial xa1

`1
· · ·xat

`t
in variables in

X \ F . Suppose that xa1

`1
· · ·xat

`t
m = m1 · · ·msM ∈ J(H)s, where the mj ’s are

minimal generators of J(H) in the variables in X. The monomials mj ∈ J(H ′)
and then xa1

`1
· · ·xat

`t
∈ (J(H ′)s : m) = pF , which is a contradiction. ut

Lemma 4.4 Let (J(H)s : m) = p and y /∈ p. Then (J(H̃)s : m) = p.

Proof Say p = pF for some F ⊆ X. First note that m /∈ J(H̃)s. Indeed, if
m = m1 · · ·ms · M ∈ J(H̃)s with m1, . . . ,ms minimal vertex covers of H̃,
then ysm ∈ J(H)s. This contradicts (J(H)s : m) = p. We claim that (J(H̃)s :
m) ⊇ p. Indeed, if xj ∈ F , then xjm ∈ J(H)s ⊆ J(H̃)s. In order to obtain the

assertion, we take a monomial T /∈ pF and assume that Tm ∈ J(H̃)s. Again
from Tm = m1 · · ·ms ·M ∈ J(H̃)s with m1, . . . ,ms minimal vertex covers of
H̃, we get Tys ∈ (J(H)s : m) which contradicts the hypothesis. ut

Theorem 4.5 Let (J(H ′)s : m) = p. Then, we have

(a) (J(H)s : m) = p if and only if (J(H̃)s : m) = p;
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(b) (J(H)s : m · m0) = p + (y), for some monomial m0 /∈ p, if and only if
(J(H̃)s : m) 6= p.

Proof Note that y /∈ p, so one has the implication in (a) follows from Lemma
4.4. Set pF := p = (J(H̃)s : m) and say X \F = {x`1 , . . . , x`r}. By Proposition
4.3, we have (J(H)s : m) = p + q where either q = (0) or q is minimally
generated by monomials ya · xa1

`1
xa2

`2
· · ·xar

`r
for some a > 0 and a1, . . . , ar ≥ 0.

We claim that q = (0). Indeed, if T := ya · xa1

`1
xa2

`2
· · ·xar

`r
∈ q, we get

T

ya
∈

(J(H̃)s : m) = pF which contradicts the hypothesis.
Now we prove item (b). With the notation as above, we have (J(H)s : m) =

p + q. First we assume that (J(H̃)s : m) 6= p. Then q is not the zero ideal.
Consider the non-empty set

{b ∈ N | yb divides M for some M ∈ q},

and let a be its minimum element. Let T := ya · xa1

`1
xa2

`2
· · ·xar

`r
∈ q be a

monomial minimal generator in q. We collect some relevant facts:

• a > 0, by Proposition 4.3;

• m
T

y
/∈ J(H)s, by the minimality of T ;

• xa1

`1
xa2

`2
· · ·xar

`r
·mT

y
/∈ J(H)s, by the minimality of a;

• y ·mT

y
= mT ∈ J(H)s.

Then, we get

(
J(H)s : m

T

y

)
= p + (y), and p + (y) ∈ Ass(J(H)s).

Vice versa, assume (J(H)s : m ·m0) = p + (y), for some monomial m0 /∈ p.
So, we have ymm0 ∈ J(H)s and say ymm0 = ym1 ·m2 · · ·ms ·M ∈ J(H)s

with ym1, . . . ,ms corresponding to minimal vertex covers of H. Then, we get
mm0 = m1 ·m2 · · ·ms ·M ∈ J(H̃)s, i.e., m0 ∈ (J(H̃)s : m). Since m0 does
not involve the variables in p, we get a contradiction. ut

In particular, the next result shows that item (a) in Theorem 4.5 is always
satisfied if pe 6⊆ p.

Proposition 4.6 Let (J(H ′)s : m) = p. If pe 6⊆ p, then (J(H)s : m) = p.

Proof Say p = pF with F := {xi1 , . . . , xik} and {x`1 , . . . , x`r} = X \ F. By
Proposition 4.3 we have (J(H) : m) = p + q where q is an ideal minimally
generated by monomials which are not only in variables {x`1 , . . . , x`r} = X\F ;
i.e., a minimal generator of q is a monomial ybxa1

`1
· · ·xar

`r
for some a1, . . . , ar ≥

0 and b > 0. Assume on the contrary that q 6= 0. Take any minimal generator
in q, say T := ybxa1

`1
· · ·xar

`r
. Then m·T = m1 · · ·ms ·M ∈ J(H)s where the mi’s

are minimal vertex covers of H. Note that y does not divide M . Otherwise,
we get xa1

`1
xa2

`2
· · ·xar

`r
yb−1 ∈ (J(H)s : m), contradicting the minimality of T.

Then we can write (after relabeling, mi = ym′i for i = 1, . . . , b) m · T =
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(ym′1) · · · (ym′b) ·mb+1 · · ·ms ·M ∈ J(H)s. Say x1 ∈ pe and x1 /∈ p, then we
get

m · T xb
1

yb
= (x1m

′
1) · · · (x1m

′
b) ·mb+1 · · ·ms ·M ∈ J(H)s.

Additionally, m · T xb
1

yb
only contains variables of X. Then T

xb
1

yb
∈ (J(H ′) :

m) = p. By Proposition 4.3, this is a contradiction since T
xb
1

yb
only contains

variables not in p. ut

Recall that by Lemma 2.11 [2], a prime associated to J(H)s either belongs
to Ass(J(H̃)s) or it contains the variable y. This is summarized in the following
statement.

Corollary 4.7 We have

Ass(J(H)s) = Ass(J(H̃)s) ∪ A,

where if p ∈ A, then y ∈ p.

Question 4.8 Do the elements in A, mentioned in Corollary 4.7, all come from
the shadows? More precisely, if p = p′ + (y) ∈ Ass(J(H)s), then is there
p′ ∈ Ass(J(H ′)s)?

We will show in the next section, see Example 5.3, that such question has
in general a negative answer. But, in the next theorem, we positively answer
this question under a suitable condition.

Theorem 4.9 Let p = p′ + (y) ∈ Ass(J(H)s). If p /∈ Ass(J(H)s : y), then
p′ ∈ Ass(J(H ′)s).

Proof Take the short exact sequence

0→ K[V ]

(J(H)s : y)
→ K[V ]

J(H)s
→ K[V ]

J(H)s + (y)
→ 0.

By Theorem 6.3 in [11] we have that

Ass(J(H)s) ⊆ Ass(J(H)s : y) ∪ Ass(J(H)s + (y)).

Denoted by J ′ the cone ideal of J(H ′)s in the ring K[V ], we note that

K[V ]/J(H)s + (y) = K[V ]/J ′ + (y).

Since, by hypothesis p ∈ Ass(J(H)s + (y)), then p ∈ Ass(J ′ + (y)), i.e. p′ ∈
Ass(J(H ′)s). ut

Remark 4.10 Question 4.8 has a positive answer if (J(H)s : m) = p + (y) for
some m ∈ K[X].
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In the next examples we show how to describe all the associated prime
ideals of J(H)s from Ass(J(H̃)s) and Ass(J(H ′)s).

Example 4.11 Let H be the hypergraph on the vertex set V = {x1, . . . , x5, y}
and the edge set

E = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}, {x1, x3, y}}.

Set X := {x1, x2, x3, x4, x5}. Then the shadow of H on X is

H ′ = (X, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}, {x1, x3}}).

Moreover, the subhypergraph of H on X is

H̃ = (X, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}}).

The software Macaulay2 allows to compute the sets Ass(J(H ′)3) = {(x1, x2),
(x2, x3), (x3, x4), (x4, x5), (x1, x5), (x1, x3)} ∪ {(x1, x2, x3)} and Ass(J(H̃)3) =
{(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x1, x5)} ∪ {(x1, x2, x3, x4, x5)}.
From Theorem 4.5, we know that (x1, x2, x3, y) ∈ Ass(J(H)3). Moreover, one
can check that Ass(J(H)3) = Ass(J(H̃)3) ∪ {(x1, x3, y), (x1, x2, x3, y)}.

Example 4.12 Let H be the hypergraph on the vertex set V = {x1, . . . , x5, y}
given by

H = (V, {{x1, x2, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}, {x4, x5, y}}).

Set X := {x1, x2, x3, x4, x5}; then the shadow of H on X is

H ′ =
(
X, {{x1, x2, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}, {x4, x5}}

)
.

Moreover, the subhypergraph of H on X is

H̃ =
(
X, {{x1, x2, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}}

)
.

Using Macaulay2, we compute that

Ass(J(H ′)2) = {(x1, x2, x3), (x1, x4), (x2, x4), (x2, x5), (x3, x5), (x4, x5)}∪

∪{(x1, x2, x3, x4), (x1, x2, x3, x5), (x2, x4, x5)}

and

Ass(J(H ′)3) = {(x1, x2, x3), (x1, x4), (x2, x4), (x2, x5), (x3, x5), (x4, x5)}∪

∪{(x1, x2, x3, x4), (x1, x2, x3, x5), (x2, x4, x5)}∪

∪{(x1, x2, x3, x4, x5)}.

We also know that Ass(J(H̃)3) and Ass(J(H̃)2) share the same elements,
precisely

{(x1, x2, x3), (x1, x4), (x2, x4), (x2, x5), (x3, x5)}

∪{(x1, x2, x3, x4), (x1, x2, x3, x5), (x1, x2, x3, x4, x5)}.
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Then, from Proposition 3.15 and Theorem 4.5, we have

Ass(J(H)2) = Ass(J(H̃)2) ∪ {(x4, x5, y), (x2, x4, x5, y)}.

What about Ass(J(H)3)? The element (x1, x2, x3, x4, x5) appears both in
Ass(J(H̃)3) and Ass(J(H ′)3) and it contains (x4, x5). One can check that

Ass(J(H ′)3 : m) = (x1, x2, x3, x4, x5)

and

Ass(J(H̃)3 : m) = (x1, x2, x3, x4, x5)

where m := x1x
2
2x3x

2
4x

2
5.

Thus, by Theorem 4.5, (x1, x2, x3, x4, x5, y) /∈ Ass(J(H)3) and one can
check that

Ass(J(H)3) = Ass(J(H̃)3) ∪ {(x4, x5, y), (x2, x4, x5, y)}.

Example 4.13 Let H be the hypergraph on the vertex set V := {x1, . . . , x5, y},
given by

H = (V, {{x1, x2}, {x1, x3}, {x1, x4}, {x1, x5, y}, {x2, x3, x4, x5}}) .

Let H ′ be the shadow of H on the vertex set X := {x1, x2, x3, x4, x5} and H̃
the subhypergraph of H on X. Then

H ′ = (X, {{x1, x2}, {x1, x3}, {x1, x4}, {x1, x5}, {x2, x3, x4, x5}})

and

H̃ = (X, {{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3, x4, x5}}) .

A Macaulay2 computation shows that the elements in Ass(J(H ′)2 are

{(x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x3, x4, x5), (x1, x2, x3, x4, x5)}

and also

Ass(J(H̃)2) = {(x1, x2), (x1, x3), (x1, x4), (x2, x3, x4, x5), (x1, x2, x3, x4, x5)}.

Note that the element (x1, x2, x3, x4, x5) belongs to both the sets Ass(J(H̃)3)
and Ass(J(H ′)3), and it contains (x1, x5). One can check that

(J(H ′)2 : x1x2x3x4x5) = (x1, x2, x3, x4, x5)

but x1x2x3x4x5 ∈ J(H̃)2. Thus

Ass(J(H)2) = Ass(J(H̃)2) ∪ {(x1, x5, y), (x1, x2, x3, x4, x5, y)}.
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5 An application to the persistence property

In this section, we apply the results of Section 4 to the persistence problem.
A square-free monomial ideal I is said to have the persistence property if
Ass(Is) ⊆ Ass(Is+1) for any integer s > 0. The authors of [13] describe an
example of a cover ideal of a graph failing the persistence property. We show
how to construct, starting from a hypergraph whose cover ideal fails the per-
sistence property, a new hypergraph whose cover ideal fails such property. We
use the notation introduced in Section 4.

Theorem 5.1 Let H = (V,E) be a hypergraph where V = X ∪ {y} such that

(a) there exists only one edge ey ∈ E containing y;
(b) H has a shadow on X, say H ′ = (X,E′) ∈ S(H).

Suppose that J(H ′) fails the persistence property and let p′ ∈ Ass(J(H ′)s) and
p′ /∈ Ass(J(H ′)s+1) for some s > 0. Set H̃ := HX the subhypergraph of H on
X. If the following conditions hold,

(c) p′ /∈ Ass(J(H̃)s); and
(d) p′ + (y) /∈ Ass(J(H)s+1 : y),

then J(H) fails the persistence property.

Proof By hypothesis we have p′ ∈ Ass(J(H ′)s) and p′ /∈ Ass(J(H̃)s). So by
Theorem 4.5, one gets that

p′ + (y) ∈ Ass(J(H)s).

Moreover, the hypothesis also ensures that p′ ∈ Ass(J(H ′)s+1) and p′ + (y) /∈
Ass(J(H)s+1 : y). Thus, by Theorem 4.9 we have p′+(y) /∈ Ass(J(H)s+1). ut

Example 5.2 In [13], Theorem 11 provides an example of a graph failing the
persistence property. The graph, denoted by H4, has the vertex set on X :=
{x1, . . . , x12} and the edge set

E := {{x1, x2}, {x1, x5}, {x1, x9}, {x1, x12}, {x2, x3}, {x2, x6}, {x2, x10},
{x3, x4}, {x3, x7}, {x3, x11}, {x4, x8}, {x4, x9}, {x4, x12}, {x5, x6},
{x5, x8}, {x5, x9}, {x6, x7}, {x6, x10}, {x7, x8}, {x7, x11}, {x8, x12},
{x9, x10}, {x10, x11}, {x11, x12}}.

The persistence property fails since Ass(J(H4)3) 6⊆ Ass(J(H4)4). In particular,
pX ∈ Ass(J(H4)3) \ Ass(J(H4)4).We consider now the hypergraph H (see
Figure 7) on vertex set V := X ∪ {y}, constructed from H4 by adding the
variable “y” only to the edge {x1, x2}:

H = (X ∪ {y}, (E \ {{x1, x2}}) ∪ {{x1, x2, y}}).

With this construction, H4 is the shadow of H on the set X. Moreover, the
subhypergraph of H on X is H̃ = (X,E \ {{x1, x2}}).
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yx1 x2 x3 x4

x5
x6 x7

x8

x9
x10 x11

x12

Fig. 7: The hypergraph H constructed from H4 by adding the vertex y.

By Theorem 5.1, H fails the persistence property and

pV ∈ Ass(J(H)3) \Ass(J(H)4).

One can check that, by using Macaulay2, actually pX /∈ Ass(J(H̃)3) and also
pV /∈ Ass(J(H)4 : y).

Example 5.3 Take the hypergraph H ′ on the vertex set X = {x1, . . . , x12, x13}
and the edge set

E = {{x1, x2, x13}, {x1, x5}, {x1, x9, x13}, {x1, x12, x13}, {x2, x3, x13},
{x2, x6, x13}, {x2, x10, x13}, {x3, x4, x13}, {x3, x7, x13}, {x3, x11, x13},
{x4, x8, x13}, {x4, x9, x13}, {x4, x12, x13}, {x5, x6, x13}, {x5, x8, x13},
{x5, x9, x13}, {x6, x7, x13}, {x6, x10, x13}, {x7, x8, x13}, {x7, x11, x13},
{x8, x12, x13}, {x9, x10, x13}, {x10, x11, x13}, {x11, x12, x13}}.

It was constructed from H4, see example 5.2, by adding a new variable “x13”
to all the edges but {x1, x5}. Consider now the hypergraph H on vertex set
V := X ∪ {y}, constructed from H ′ by adding the variable “y” only to the
edge {x1, x5}:

H = (X ∪ {y}, (E \ {{x1, x5}}) ∪ {{x1, x5, y}}).

With this construction, H ′ is the shadow of H on the set X. A computation
with Macaulay2 shows that pV ∈ J(H)4, but pX /∈ J(H ′)4. Indeed, we found
two minimal monomials m1, m2 such that pV = (J(H)4 : m1) = (J(H)4 : m2)
that are

m1 := x2
1x

3
2x

3
3x

2
4x

2
5x

3
6x

2
7x

3
8x

3
9x

2
10x

3
11x

3
12y,

m2 := x2
1x

2
2x

2
3x

2
4x

2
5x

2
6x

2
7x

2
8x

2
9x

2
10x

2
11x

2
12x13y.

Both are divisible by y.
Then the conditions in the statement of Theorem 5.1 are not satisfied. By
Theorem 4.9, we get pV ∈ Ass(J(H)4 : y). Using Macaulay2, one can check
that even if the hypergraph H ′ fails the persistence property, and in particular
pX ∈ Ass(J(H ′)3) \Ass(J(H ′)4), we have Ass(J(H)3) ⊆ Ass(J(H)4).
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