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Abstract
The aim of this paper is to study the associated primes of powers of square-free mono-
mial ideals. Each square-free monomial ideal corresponds uniquely to a finite simple
hypergraph via the cover ideal construction, and vice versa. Let H be a finite simple
hypergraph and J (H) the cover ideal of H . We define the shadows of hypergraph, H ,
described as a collection of smaller hypergraphs related to H under some conditions.
We then investigate how the shadows of H preserve information about the associated
primes of the powers of J (H). Finally, we apply our findings on shadows to study
the persistence property of square-free monomial ideals and construct some examples
exhibiting failure of containment.

Keywords Cover ideals · Associated primes · Powers of ideals · Hypergraphs

Mathematics Subject Classification 05C65 · 13F55 · 05E99 · 13C99

1 Introduction

The primary decomposition of ideals in Noetherian rings is a fundamental result in
commutative algebra and algebraic geometry. Fromaminimal primary decomposition,
one can define the set of the associated primes by taking the radical of each ideal in
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the decomposition. Square-free monomial ideals and powers of ideals are central
objects in combinatorial and commutative algebra and in algebraic geometry due to
the connections they encode between these areas, see for instance [4,6,9,13]. Our goal
in this paper is to investigate the associated primes of powers of square-free monomial
ideals.

There are several ways to relate a square-free monomial ideal to a (finite simple)
hypergraph.To serve our intent,wewill associatewith a hypergraph, H , the square-free
monomial ideal with minimal primes corresponding to the edges of the hypergraph,
and vice versa. This ideal is usually called the cover ideal of the hypergraph and
denoted by J (H). The associated primes of a square-free monomial ideal are easy
to describe, whereas computing the associated primes of a power can prove to be
considerably more difficult. Currently, the set of the associated primes of a power
of any square-free monomial ideal is far from being fully understood. There have
been many attempts to address this problem. For instance, the authors of [2] give a
description of the set Ass(J (H)s) in terms of the coloring properties of the hypergraph
H . Here, we provide another approach and seek to list the elements in Ass(J (H)s).

Themotivating idea is to take knowledge of associated primes of other hypergraphs,
smaller than H , and to lift it to an associated prime of H . For ideals associated with
a combinatorial object, one hopes to explain their behavior in terms of the original
object. With this in mind, we define S(H) the shadow of a hypergraph, Definition 3.1,
as a certain set of smaller hypergraphs related to the original one. We then show that
the shadows preserve information about the associated primes of a power of the cover
ideal of the hypergraph. For instance, we prove the following result.

Theorem 1 (Theorem 3.8) Let H = (V , E) be a hypergraph. If G ∈ S(H) is an odd
cycle (i.e., G = C2n+1 for some positive integer n), then pV ∈ Ass(J (H)2).

Moreover, with the notation of Sect. 4, where H ′ ∈ S(H) and H̃ is a subhypergraph
of H , the following theorem will give us an investigation of a specific case.

Theorem 2 (Theorem 4.5) Let (J (H ′)s : m) = p. Then, we have

(a) (J (H)s : m) = p if and only if (J (H̃)s : m) = p;
(b) (J (H)s : m · m0) = p + (y), for some monomial m0 /∈ p, if and only if (J (H̃)s :

m) �= p.

The early results based on this novel construction are summarized in diagrams in
Sect. 4.

Of particular interest to us are the examples of failure of persistence property. In
[11], Kaiser et al. produced an example of a square-free monomial ideal, precisely
the cover ideal of a graph, which fails the persistence property, i.e., the set of the
associated primes could “lose” some elements from one power to the next. Based on
this example and our findings on the shadows - Theorem 5.1, we construct an example
of failure of persistence property for the case of a proper hypergraph, not being graph.
Organization of the article In Sect. 2, we introduce the terminology and the basic
results. In Sect. 3, we define the shadows of a hypergraph that are the new tool
introduced in this paper. Then, we start an investigation of the associated primes of
a square-free monomial ideal in terms of the shadows of the associated hypergraph.
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In particular, in this section, we deal with the second power. In Sect. 4, under some
restrictive conditions, we broaden our investigation to any power. Finally, in Sect. 5,
we apply the results of Sect. 4 to the persistence property.

2 Notation and basic facts

Let V := {x1, . . . , xn} and R = K [V ] = K [x1, . . . , xn] be the standard polynomial
ring in n variables over a field K . A square-free monomial ideal I ⊆ R always has
a unique minimal primary decomposition, I = p1 ∩ · · · ∩ pt , as an intersection of
square-free prime ideals pi = (xi1 , . . . , xis ). For more details and a full description
of the topic, we refer to Section 1.3 in [8]. This property establishes a one-to-one
correspondence between square-free monomial ideals and finite simple hypergraphs.
First, recall that a (finite simple) hypergraph, H , is a pair H = (V , E), where
V := {x1, . . . , xn} is called the set of vertices of H and E is a collection of subsets of
V . In this paper, we will only consider finite simple hypergraphs, and these are also
called clutters in the literature. For a set U = {xi1 , . . . , xis } ⊆ V , we will denote by

pU := (xi1 , . . . , xis ) ⊆ R

the prime ideal generated by the variables in U , and by

xU := xi1 . . . xis ∈ R

the monomial given by the product of the variables in U.
Then, a hypergraph H = (V , E) unequivocally corresponds to the square-free mono-
mial ideal J (H) := ⋂

e∈E
pe, called the cover ideal of H , and vice versa.

Let H = (V , E) be a hypergraph. A subset T of V is a vertex cover of H if every
edge e ∈ E contains at least one element of T . A vertex cover T is aminimal vertex
cover if no proper subset of T is a vertex cover. Minimal vertex covers are related
to the minimal generators of J (H). Indeed, T is a minimal vertex cover of H if and
only if xT ∈ G(J (H)), the set of monomials which minimally generates J (H). See
[5] and [7] for a further investigation on cover ideals of hypergraphs.

In this paper, we are interested in the study of the associated prime ideals of the
(regular) powers of J (H). Recall the following, classical, definition.

Definition 2.1 Let R be a ring and I an ideal of R. A prime ideal p ⊂ R is called
an associated prime ideal of I if there exists some element m ∈ R/I such that
p = Ann(m), the annihilator of m. Equivalently, a prime ideal p ⊂ R is an associated
prime ideal of I if there exists some element m ∈ R such that p = (I : m). The set of
all associated prime ideals of I is denoted by Ass(I ).

By definition, the hypergraph H = (V , E) easily provides a description of all
elements in Ass(J (H)). Indeed, pU ∈ Ass(J (H)) if and only if U ∈ E . In order
to describe the associated primes of the powers of J (H), Lemma 2.11 in [2] is an
essential tool. We recall that for a hypergraph H = (V , E) and U ⊆ V the induced
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subhypergraph of H onU is the hypergraph HU = (U , E(U )) where E(U ) = {e ∈
E | e ⊆ U }. Lemma 2.11 in [2] shows that, for a hypergraph H = (V , E), and U
subset of the vertex set V , there is a strong relation between the associated primes of
the ideals J (H)s ⊆ R = K [V ] and J (HU )s ⊆ K [U ], that is,

pU ∈ Ass(J (H)s) ⇔ pU ∈ Ass(J (HU )s).

Thus, pU is associatedwith J (H)s , if and only if it is associatedwith J (HU )s ⊆ K [U ],
note that pU is the maximal ideal in K [U ]. So, Lemma 2.11 in [2] ensures that in a
certain sense it is enough to look if the maximal ideal is an associated prime.

Remark 2.2 An immediate consequence of Lemma 2.11 [2] is a first, well known,
step in the description of the elements in Ass(J (H)s). For any hypergraph H , pe ∈
Ass(J (H)s) for each integer s ≥ 1 and each edge e of H .

Remark 2.3 An other consequence of Lemma 2.11 [2] will be useful in Sect. 4. For a
hypergraph H = (V , E) and F ⊆ U ⊆ V , since (HU )F = HF , we have

pF ∈ Ass(J (H)s) ⇔ pF ∈ Ass(J (HU )s),

where J (H)s ⊆ R = K [V ] and J (HU )s ⊆ K [U ].
In the literature, there are only few results explicitly describing the elements in

Ass(J (H)s).Most of them deal with the case that H is a graph, i.e., the edges all have
cardinality 2. If H is a graph, we will often denote it by the letter G. For instance, see
proposition below, the authors of [3] describe the set Ass(J (G)2). They prove that the
new primes match the (minimal) odd cycles of G. Recall that in a graph G = (V , E)

a set of distinct vertices C = {xi1 , xi2 , . . . , xin } ⊆ V is called an n-cycle (or cycle of
length n) if {xi j , xi j+1} ∈ E for each j ∈ {1, . . . , n} and xin+1 := xi1 . We callC an odd
(even) cycle if n is odd (even). The vertices xi j , xi j+1 connected by an edge {xi j , xi j+1}
are called adjacent vertices in C . A chord of C is an edge of G which joins two
non-adjacent vertices. If C has no chord, we shall call it chordless. Corollary 3.4 in
[3] characterizes the elements in Ass(J (G)2), where G is a finite graph. The authors
show that a prime ideal p = (xi1 , . . . , xis ) is in Ass(J (G)2) if and only if:

(a) s = 2 and p ∈ Ass(J (G)); or
(b) s is odd, and after re-indexing, {xi1 , xi2 , . . . , xis } is a chordless cycle of G.

3 Introducing the shadows

In this section, we introduce the definition of the shadows of a hypergraph, give
some illustrative examples and present some early results obtained from our novel
construction.

Definition 3.1 Let H = (V , E) be a hypergraph. We say that a hypergraph H ′ =
(V ′, E ′) is a shadow of H if

(a) V ′ ⊆ V ; and

123



Journal of Algebraic Combinatorics

(b) |E | = |E ′| (same cardinalities) and e ∩ V ′ ∈ E ′ for each e ∈ E .

The condition |E | = |E ′| in the above definition could look very restrictive, but it is
necessary to our purposes. We will show why in Example 3.13, after developing some
background.

We denote byS(H) the set of all the shadows of H .Note that two different elements
in S(H) have different vertex sets. Thus, H ′ = (V ′, E ′) ∈ S(H) will be also called
the shadow of H on V ′. By definition, H is always a shadow of itself on the vertex
set V ; we refer to this as the trivial shadow. However, not every subset of V produces
a shadow of H , as we show in the following example.

Example 3.2 Consider the hypergraph H on the vertex set V := {x1, . . . , x5} with
the edge set E = {{x1, x2, x3}, {x2, x3, x4}, {x1, x4, x5}}. Then, the set S(H) contains
non-trivial elements, namely, shadows on the vertex sets V1 := {x1, x2, x4}, V2 :=
{x1, x3, x4}, V3 := {x1, x2, x3, x4}, V4 := {x1, x3, x4, x5} and V5 := {x1, x2, x4, x5}.
Indeed, we have

(V1, {{x1, x2}, {x2, x4}, {x1, x4}}) ∈ S(H), and

(V2, {{x1, x3}, {x3, x4}, {x1, x4}}) ∈ S(H).

Both of these shadows are graphs, more precisely they are 3-cycles. Additionally, we
also have the following shadows

(V3, {{x1, x2, x3}, {x2, x3, x4}, {x1, x4}}) ∈ S(H),

(V4, {{x1, x3}, {x3, x4}, {x1, x4, x5}}) ∈ S(H) and

(V5, {{x1, x2}, {x2, x4}, {x1, x4, x5}}) ∈ S(H).

Furthermore, for instance, H has no shadow on the set V6 := {x1, x2, x3} since we
get

(V6, {{x1, x2, x3}, {x2, x3}, {x1}}) ,

and this fails to be a simple hypergraph.
The hypergraph H (in two different representations) and its shadows are showed in

Figs. 1 and 2,where an edge {a, b, v1, . . . , vm} is depicted as the segment
v1 . . . vma b

In the following example, we show a hypergraph which only has trivial shadow.

x3

x3

x5

x4 x2

x1

x4 x2

x1

x3

x3x4 x2

x1

x5

x4 x2

x1

Fig. 1 The hypergraph H and its shadows on V1, V3 and V5
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Fig. 2 An other representation
of the hypergraph H and its
shadows on V2 and V4 x2

x2

x5

x4 x3

x1

x4 x3

x1

x5

x4 x3

x1

Example 3.3 Let H be the hypergraph on the vertex set V = {x1, . . . , x5} with edge
set E = {{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x5}, {x4, x5, x1}, {x5, x1, x2}}. In this case,
the set S(H) has only one element, namely H . Indeed, notice that each edge of H
consists of three vertices with “consecutive” indexes. Since any subset of V with two
elements is contained in some edge, then H has no shadow on any set V ′ � V . For
instance, H has no shadow on the subset V ′ obtained from V by removing x1 since
{x4, x5} ⊂ {x3, x4, x5}.

One has J (H ′) is an ideal of K [V ′], and there is a natural inclusion from K [V ′]
into K [V ]. The ideal generated by the image of J (H ′) under this map, i.e., the ideal
generated by G(J (H ′)) ⊆ K [V ], is called cone ideal of J (H ′) in K [V ]. The next
lemma provides a connection between the monomial generators of J (H) and J (H ′)
for a shadow H ′ of H .

Lemma 3.4 Let H = (V , E) be a hypergraph and H ′ = (V ′, E ′) ∈ S(H) a shadow
of H. Then, G(J (H ′)) ⊆ G(J (H)).

Proof The ideal J (H ′) is generated by monomials xU where U is a minimal vertex
cover of H ′. By the definition of shadow, U is also a minimal vertex cover of H , and
U does not involve the variables in V \ V ′. 
�
Remark 3.5 From Lemma 3.4, we have J (H ′) = K [V ′] ∩ J (H). Thus, each element
m in J (H ′) also belongs to J (H).

As a consequence of Lemma 3.4, we get the following result.

Lemma 3.6 If (J (H ′)s : m) = p �= (1) for some prime ideal p, then m /∈ J (H)s .

Proof Suppose that m ∈ J (H)s , then m = m1 . . .msM where the mi ’s are monomial
minimal generators of J (H). Since m only contains the variables in V ′, each mi will
also have this property. That means, mi ∈ J (H ′) for all i ∈ {1, 2, . . . , s}. Hence,
m ∈ J (H ′)s , which contradicts (J (H ′)s : m) �= (1). 
�

The next results show the first evidences that our construction really serves our
purpose. We strongly use the classification in Corollary 3.4 in [3] and assume the
existence of a graph G ∈ S(H). Then, we show that J (H)2 only has associated
primes inherited from J (G)2. The following lemma can be deduced from Corollary
3.4 in [3]. We also include a proof for the convenience of the reader.

Lemma 3.7 Let C2n+1 = (V , E) be a (2n + 1)-cycle. Then, (J (C2n+1)
2 : xV ) = pV .

Proof A minimal cover of C2n+1 involves at least n + 1 vertices, and this implies
that J (C2n+1)

2 does not contain any elements of degree 2n + 1 and in particular,
xV /∈ J (C2n+1)

2. Note that x1 ∈ (J (C2n+1)
2 : xV ), indeed x1 · xV = x{1,2,4,...,2n} ·

x{1,3,5,...,2n+1} ∈ J (C2n+1)
2. Analogously, we get xi xV ∈ J (C2n+1)

2 for each xi ∈ V .


�
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Theorem 3.8 Let H = (V , E) be a hypergraph. If G ∈ S(H) is an odd cycle (i.e.,
G = C2n+1 for some positive integer n), then pV ∈ Ass(J (H)2).

Proof Let E = (e1, . . . , ek). Since G = (V ′, E ′) ∈ S(H), the edges of G are given
by {e′

1, . . . , e
′
k} where e′

i = ei ∩ V ′. By hypothesis, G is an odd cycle, so k = 2n + 1
for some positive integer n. Without loss of generality, we relabel the vertices of G so
that

e′
i =

{ {xi , xi+1}, if 1 ≤ i ≤ 2n,

{x2n+1, x1}, if i = 2n + 1.

From Corollary 3.4 in [3], we know that pV ′ ∈ Ass(J (G)2), and by Lemma 3.7 we
have (J (G)2 : xV ′) = p′

V , where xV ′ = ∏2n+1
i=1 xi . Then, we claim that (J (H)2 :

xV ′) = pV . If x j ∈ V ′, x j xV ′ ∈ J (G)2 ⊆ J (H)2. So x j ∈ (J (H)2 : xV ′). Moreover,
if y j ∈ V \ V ′, then there exists an edge ei ∈ E such that y j ∈ ei . Without loss of
generality, one can assume that i = 1. Thus, we have that

y j xV ′ = y j x1x2 . . . x2n+1 = (y j x3x5 . . . x2n+1)(x1x2x4 . . . x2n).

The right hand side of the above equality is in J (H)2 since it is the product of twovertex
covers of H . Thus, y j ∈ (J (H)2 : xV ′). Finally, xV ′ /∈ J (H)2 since xV ′ /∈ J (H ′)2. 
�
Example 3.9 Let H be the hypergraph in Example 3.2. Since, for instance, the shadow
of H on {x1, x2, x4} is an odd cycle, we can state that

pV = (x1, x2, x3, x4, x5) ∈ Ass(J (H)2).

Now, we show that Theorem 3.8 works in a more general setting. We need some
further notation. Let H = (V , E) be a hypergraph and let G = (V ′, E ′) ∈ S(H) be
a graph. Set e′ := e ∩ V ′ for any e ∈ E . Then, for a subset U ⊂ V ′, we denote by

Û :=
⋃

e′⊆U

e ⊆ V .

The set Û is a subset of V containing all the vertices in e, for any e in correspondence
to an edge e′ that is contained in U .

Corollary 3.10 Let H be a hypergraph and H ′ a shadow of H. If C2n+1 is an odd cycle
that is a subhypergraph of H ′, then pĈ2n+1

∈ Ass(J (H)2).

Proof Say H ′ = (V ′, E ′). We take the subhypergraph H̃ := HĈ2n+1
of H on the

vertex set Ĉ2n+1. Notice that H̃ has a shadow on C2n+1. That is the odd cycle C2n+1.
Thus, from Corollary 3.4 in [3] and Theorem 3.8, pĈ2n+1

∈ Ass(J (H̃)2). Moreover,

from Lemma 2.11 [2], we have pĈ2n+1
∈ Ass(J (H)2). 
�

Corollary 3.11 Let H be a hypergraph and H̃ a subhypergraph of H. If an odd cycle
C2n+1 ∈ S(H̃), then pĈ2n+1

∈ Ass(J (H)2).
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Fig. 3 A representation of the
hypergraph H

H =

x6
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x4

x5

H =

x1

x2

x3

x4

x5 H =

x1

x6

x3

x8

x5

Fig. 4 The shadows of H on V ′ and V ′′

Example 3.12 Let H = (V , E) (see Fig. 3) be the hypergraph with the vertex set

V = {x1, x2, x3, x4, x5, x6, x7, x8}

and the edge set

E = {{x1, x2, x6}, {x2, x3, x6}, {x3, x4, x8}, {x4, x5, x6}, {x1, x5, x7}}.

The shadow of H on the vertex set V ′ = {x1, x2, x3, x4, x5} is

H ′ = (V ′, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}}) ∈ S(H).

We see that H ′ is a graph, precisely it is an odd cycle of length 5, see Fig. 4. By
Theorem 3.8, we have that

pV = (x1, x2, x3, x4, x5, x6, x7, x8) ∈ Ass(J (H)2).

Now, we take the shadow of H on the vertex set V ′′ = {x1, x3, x5, x6, x8}. The shadow
of H on V ′′ is

H ′′ = (V ′′, {{x1, x6}, {x3, x6}, {x3, x8}, {x5, x6}, {x1, x5}}) ∈ S(H).

Note that H ′′, see Fig. 4, has a subhypergraph that is a cycle of length 3, C3 =
{{x1, x6}, {x5, x6}, {x1, x5}}. By Corollary 3.10, this cycle produces an element in
Ass(J (H)2). So, we get

pĈ3
= (x1, x2, x4, x5, x6, x7) ∈ Ass(J (H)2).

123



Journal of Algebraic Combinatorics

In the following example, we show that condition (b) in Definition 3.1 is strictly
necessary for the validity of Theorem 3.8.

Example 3.13 Let H = (V , E) be the hypergraph with the vertex set

V = {x1, x2, x3, x4, x5, x6, x7, x8, x9}

and the edge set

E = {{x1, x2, x6, x8}, {x2, x3, x8, x6}, {x3, x4, x7, x9},
{x4, x5, x6, x8}, {x1, x5, x7, x9}, {x8, x9}, {x6, x7}}.

A Macaulay2 computation [10] shows that

Ass(J (H)2) = {pe | e ∈ E}.

Ignoring the rule |E | = |E ′| in the condition (b) of Definition 3.1, we get on the vertex
set V ′ = {x1, x2, x3, x4, x5} the hypergraph

H ′ = (V ′, {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}}) ∈ S(H).

One has H ′ is a graph, in particular it is an odd cycle and by Lemma 3.7, we have

pV ′ = (x1, x2, x3, x4, x5) ∈ Ass(J (H ′)2).

So, without the condition (b) in Definition 3.1, Theorem 3.8 does not hold.

In the last part of this section, we prove that, under some suitable hypothesis, all
the associated primes of J (H)2 come from some non-trivial shadow (we will see in
Proposition 3.15). We need an auxiliary lemma.

Lemma 3.14 Let H = (V , E) be a hypergraph and suppose that (J (H)s : m) = pV
for some monomial m. Let V ′ � V be a proper subset such that ei ∩ e j ⊆ V ′ for each
ei , e j ∈ E, i �= j . Then, ys−1 does not divide m for each y ∈ V \ V ′.

Proof Let y be an element in V \ V ′. We write m = yam′, where, unless to rename,
y ∈ e1 and y does not divide m′. If a ≥ s then, since ym ∈ J (H)s, we get ym =
m1 . . .msM , wherem j corresponds to aminimal vertex cover of H for j ∈ {1, . . . , s}.
Thus, y dividesM andm = m1 . . .ms(M/y).This contradictsm /∈ J (H)s . Therefore,
we can assume a = s − 1. We work by induction on r = |e1 \ V ′|. If r = 1, i.e.,
e1 = (e1 ∩ V ′) ∪ {y}, then from ym ∈ J (H)s, we get ym = (ym1) . . . (yms)M ,
where ym j are minimal vertex covers of H . Note that, for each x j ∈ e1 ∩ V ′, we can
see that x j does not divide m1, . . . ,ms (these are minimal vertex covers) and x j does
not divide M (otherwise we can just delete y and get m ∈ J (H)s). This implies that
m /∈ (pe1)

s . To get a contradiction, we just take some z /∈ e1 and remember that by
hypothesis zm ∈ J (H)s , but zm /∈ (pe1)

s . If r > 1, i.e., e1 = (e1∩V ′)∪{y1, . . . , yr },
then just note that V ′′ = V ′ ∪ {y1, . . . , ŷi , . . . , yr } satisfies the hypothesis of the
theorem and e1 = (

e1 ∩ V ′′) ∪ {yi }. 
�

123



Journal of Algebraic Combinatorics

Proposition 3.15 Let H = (V , E) be a hypergraph and H ′ = (V ′, E ′) ∈ S(H)

a shadow of H. Assume that ei ∩ e j ⊆ V ′ for each ei , e j ∈ E, where i �= j . If
pV ∈ Ass(J (H)2), then pV ′ ∈ Ass(J (H ′)2).
Proof By the definition of associated primes, there exists a monomialm ∈ K [V ] such
that (J (H)2 : m) = pV . Say V ′ = {x1, . . . , xa} and V \ V ′ = {y1, . . . , yb}. By
Lemma 3.14, y j does not divide m for j = 1, . . . , b. Then, m ∈ K [V ′] and therefore
(J (H ′)2 : m) = pV ′ . 
�

4 A first case

In this section, we investigate the relations between a hypergraph and its shadows in
a particular case of study. Precisely, we consider shadows that only differ from the
starting hypergraph by one edge and one vertex.

Throughout this section, we shall use the following notation.

Notation 4.1 Let H = (V , E) be a hypergraph and H ′ = (X , E ′) a shadow of H
such that

(a) X = {x1, . . . , xn} and V = X ∪ {y}; and
(b) y only belongs to one edge, say ey ∈ E.

After renaming, say ey = {x1, . . . , xt , y}. We set e := e′
y = {x1, . . . , xt }, and then we

have H ′ = {
X , (E \ {ey}) ∪ {e}}. Moreover, to shorten the notation, H̃ will denote

the subhypergraph of H on X.
We denote by pe and pey the prime ideals generated by the variables in e and ey,

respectively.

We remark that, in this setting, the hypergraphs H̃ and H ′ share the vertex set X .
Moreover, they share the same edges except for e. We will abuse notation: given a
subset F ⊆ X ⊆ V , we will write pF to denote both the ideals in K [X ] and in K [V ].

Here, we anticipate the results of this section. In the first part of the section, we
investigate the relation linking associated primes of J (H̃)s and J (H ′)s with the ele-
ments in Ass(J (H)s). We have seen in Lemma 2.11 [2] that if p ∈ Ass(J (H̃)s) then
p ∈ Ass(J (H)s). What about the associated prime of J (H ′)s? We will show that
if p ∈ Ass(J (H ′)s), then either p + (y) ∈ Ass(J (H)s) or p ∈ Ass(J (H)s). This
depends on a further condition of a monomial m such that (J (H ′)s : m) = p. The
diagram in Fig. 5 summarizes these results.

In the second part of the section—see Fig. 6, we will reverse the investigation.
Starting from a prime associated with J (H)s , we will look for which conditions allow
us to find a relation with an element in J (H̃)s or J (H ′)s . Precisely, if p ∈ Ass(J (H)s)

and y /∈ p then p ∈ Ass(J (H̃)s). Moreover, if p = (y) + p′, it seems natural to ask if
p′ ∈ Ass(J (H ′)s), which we positively answer under an extra (restrictive) condition.
We will show in the next section, see Example 5.3, that not all the primes (y) + p′
associated with J (H)s come from a prime p′ in the shadow.

We start with an auxiliary result.

Lemma 4.2 Let m ∈ G(J (H)) be a monomial minimal generator of J (H). If y|m,
then xi � |m for all xi ∈ e.
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p ∈ Ass(J(H̃)s) p ∈ Ass(J(H )s)

p = (J(H )s : m)

p = (J(H̃)s : m) p = (J(H̃)s : m)

p Ass(J(H)s) p+ (y) Ass(J(H)s)

Fig. 5 The chart depicts the steps we follow in the first part of the section

Fig. 6 The chart depicts the
steps we follow in the second
part of the section. The question
mark means that some additional
conditions are necessary for that
implication

p ∈ AssJ(H)s

y /∈ p y ∈ p

p ∈ AssJ(H̃)s p = p + (y)

?

p AssJ(H )s

Proof In our setting, y only belongs to the edge ey = {x1, . . . , xt , y}. Since m is a

minimal vertex cover of H , if xi ∈ e = {x1, . . . , xt } dividesm, then
m

y
is also a vertex

cover. This contradicts the minimality of m. 
�
In order to relate the associated primes of J (H ′)s to the associated primes of J (H)s,

the following proposition will be crucial.

Proposition 4.3 Let (J (H ′)s : m) = pF be a prime ideal, for some F ⊆ X . Then we
have,

(J (H)s : m) = pF + q,
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where q ⊆ (y). In other words, no monomial only involving the variables in X \ F
belongs to (J (H)s : m).

Proof Say F := {xi1 , . . . , xik } and {x�1 , . . . , x�r } = X \ F . Recall that e =
{x1, . . . , xt }. First, we show that pF ⊆ (J (H)s : m) � (1). FromLemma 3.6, we have
m /∈ J (H)s and then (J (H)s : m) �= (1). By hypothesis, for each x j ∈ F we have
x jm ∈ J (H ′)s , i.e., x jm = m1 . . .msM for some monomials mi ∈ J (H ′) ⊆ K [X ].
But these monomials, see Remark 3.5 also belongs to J (H). Hence, x jm ∈ J (H)s

and pF ⊆ (J (H)s : m) ⊆ K [V ].
In order to conclude the proof, take any monomial xa1�1

. . . xat�t
in variables in X \ F .

Suppose that xa1�1
. . . xat�t

m = m1 . . .msM ∈ J (H)s , where the m j ’s are minimal
generators of J (H) in the variables in X . The monomials m j ∈ J (H ′) and then
xa1�1

. . . xat�t
∈ (J (H ′)s : m) = pF , which is a contradiction. 
�

Lemma 4.4 Let (J (H)s : m) = p and y /∈ p. Then, (J (H̃)s : m) = p.

Proof Say p = pF for some F ⊆ X . First note that m /∈ J (H̃)s . Indeed, if m =
m1 . . .ms · M ∈ J (H̃)s with m1, . . . ,ms minimal vertex covers of H̃ , then ysm ∈
J (H)s . This contradicts (J (H)s : m) = p. We claim that (J (H̃)s : m) ⊇ p. Indeed,
if x j ∈ F , then x jm ∈ J (H)s ⊆ J (H̃)s . In order to obtain the assertion, we take a
monomial T /∈ pF and assume that Tm ∈ J (H̃)s . Again from Tm = m1 . . .ms ·M ∈
J (H̃)s with m1, . . . ,ms minimal vertex covers of H̃ , we get T ys ∈ (J (H)s : m)

which contradicts the hypothesis. 
�
Theorem 4.5 Let (J (H ′)s : m) = p. Then, we have

(a) (J (H)s : m) = p if and only if (J (H̃)s : m) = p;
(b) (J (H)s : m · m0) = p + (y), for some monomial m0 /∈ p, if and only if (J (H̃)s :

m) �= p.

Proof Note that y /∈ p, so one has the implication in (a) follows from Lemma 4.4. Set
pF := p = (J (H̃)s : m) and say X \ F = {x�1 , . . . , x�r }. By Proposition 4.3, we have
(J (H)s : m) = p+ q where either q = (0) or q is minimally generated by monomials
ya · xa1�1

xa2�2
. . . xar�r

for some a > 0 and a1, . . . , ar ≥ 0. We claim that q = (0). Indeed,

if T := ya · xa1�1
xa2�2

. . . xar�r
∈ q, we get

T

ya
∈ (J (H̃)s : m) = pF which contradicts

the hypothesis.
Now, we prove item (b). With the notation as above, we have (J (H)s : m) = p+q.

First, we assume that (J (H̃)s : m) �= p. Then, q is not the zero ideal. Consider the
non-empty set

{b ∈ N | yb divides M for some M ∈ q},

and let a be its minimum element. Let T := ya · xa1�1
xa2�2

. . . xar�r
∈ q be a monomial

minimal generator in q. We collect some relevant facts:

• a > 0, by Proposition 4.3;
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• m
T

y
/∈ J (H)s , by the minimality of T ;

• xa1�1
xa2�2

. . . xar�r
· m T

y
/∈ J (H)s , by the minimality of a;

• y · m T

y
= mT ∈ J (H)s .

Then, we get

(

J (H)s : m T

y

)

= p + (y), and p + (y) ∈ Ass(J (H)s).

Vice versa, assume (J (H)s : m · m0) = p + (y), for some monomial m0 /∈ p. So,
we have ymm0 ∈ J (H)s and say ymm0 = ym1 · m2 . . .ms · M ∈ J (H)s with
ym1, . . . ,ms corresponding to minimal vertex covers of H . Then, we get mm0 =
m1 · m2 . . .ms · M ∈ J (H̃)s , i.e., m0 ∈ (J (H̃)s : m). Since m0 does not involve the
variables in p, we get a contradiction. 
�

In particular, the next result shows that item (a) in Theorem 4.5 is always satisfied
if pe � p.

Proposition 4.6 Let (J (H ′)s : m) = p. If pe � p, then (J (H)s : m) = p.

Proof Say p = pF with F := {xi1 , . . . , xik } and {x�1 , . . . , x�r } = X \ F .

By Proposition 4.3, we have (J (H) : m) = p + q where q is an ideal minimally
generated by monomials which are not only in variables {x�1 , . . . , x�r } = X \ F ;
i.e., a minimal generator of q is a monomial ybxa1�1

. . . xar�r
for some a1, . . . , ar ≥ 0

and b > 0. Assume on the contrary that q �= 0. Take any minimal generator in q,
say T := ybxa1�1

. . . xar�r
. Then, m · T = m1 . . .ms · M ∈ J (H)s where the mi ’s

are minimal vertex covers of H . Note that y does not divide M . Otherwise, we get
xa1�1

xa2�2
. . . xar�r

yb−1 ∈ (J (H)s : m), contradicting the minimality of T . Then, we
can write (after relabeling, mi = ym′

i for i = 1, . . . , b) m · T = (ym′
1) . . . (ym′

b) ·
mb+1 . . .ms · M ∈ J (H)s . Say x1 ∈ pe and x1 /∈ p, then we get

m · T xb1
yb

= (x1m
′
1) . . . (x1m

′
b) · mb+1 . . .ms · M ∈ J (H)s .

Additionally, m · T xb1
yb

only contains variables of X . Then, T
xb1
yb

∈ (J (H ′) : m) = p.

By Proposition 4.3, this is a contradiction since T
xb1
yb

only contains variables not in p.


�
Recall that by Lemma 2.11 [2], a prime associated with J (H)s either belongs

to Ass(J (H̃)s) or it contains the variable y. This is summarized in the following
statement.

Corollary 4.7 We have

Ass(J (H)s) = Ass(J (H̃)s) ∪ A,

where if p ∈ A, then y ∈ p.
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Question 4.8 Do the elements inA,mentioned inCorollary 4.7, all come from the shad-
ows? More precisely, if p = p′ + (y) ∈ Ass(J (H)s), then is there p′ ∈ Ass(J (H ′)s)?

Wewill show in the next section, see Example 5.3, that such question has in general
a negative answer. But, in the next theorem, we positively answer this question under
a suitable condition.

Theorem 4.9 Let p = p′ + (y) ∈ Ass(J (H)s). If p /∈ Ass(J (H)s : y), then p′ ∈
Ass(J (H ′)s).

Proof Take the short exact sequence

0 → K [V ]
(J (H)s : y) → K [V ]

J (H)s
→ K [V ]

J (H)s + (y)
→ 0.

By Theorem 6.3 in [12], we have that

Ass(J (H)s) ⊆ Ass(J (H)s : y) ∪ Ass(J (H)s + (y)).

Denoted by J ′ the cone ideal of J (H ′)s in the ring K [V ], we note that

K [V ]/J (H)s + (y) = K [V ]/J ′ + (y).

Since, by hypothesis p ∈ Ass(J (H)s + (y)), then p ∈ Ass(J ′ + (y)), i.e., p′ ∈
Ass(J (H ′)s). 
�
Remark 4.10 Question 4.8 has a positive answer if (J (H)s : m) = p + (y) for some
m ∈ K [X ].

In the next examples, we show how to describe all the associated prime ideals of
J (H)s from Ass(J (H̃)s) and Ass(J (H ′)s).
Example 4.11 Let H be the hypergraph on the vertex set V = {x1, . . . , x5, y} and the
edge set

E = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}, {x1, x3, y}}.

Set X := {x1, x2, x3, x4, x5}. Then, the shadow of H on X is

H ′ = (X , {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}, {x1, x3}}).

Moreover, the subhypergraph of H on X is

H̃ = (X , {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5}, {x1, x5}}).

The software Macaulay2 allows to compute the sets Ass(J (H ′)3) = {(x1, x2),
(x2, x3), (x3, x4), (x4, x5), (x1, x5), (x1, x3)} ∪ {(x1, x2, x3)} and Ass(J (H̃)3) =
{(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x1, x5)} ∪ {(x1, x2, x3, x4, x5)}.
From Theorem 4.5, we know that (x1, x2, x3, y) ∈ Ass(J (H)3). Moreover, one can
check that Ass(J (H)3) = Ass(J (H̃)3) ∪ {(x1, x3, y), (x1, x2, x3, y)}.
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Example 4.12 Let H be the hypergraph on the vertex set V = {x1, . . . , x5, y} given
by

H = (V , {{x1, x2, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}, {x4, x5, y}}).

Set X := {x1, x2, x3, x4, x5}; then, the shadow of H on X is

H ′ = (
X , {{x1, x2, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}, {x4, x5}}

)
.

Moreover, the subhypergraph of H on X is

H̃ = (
X , {{x1, x2, x3}, {x1, x4}, {x2, x4}, {x2, x5}, {x3, x5}}

)
.

Using Macaulay2, we compute that

Ass(J (H ′)2) = {(x1, x2, x3), (x1, x4), (x2, x4), (x2, x5), (x3, x5), (x4, x5)} ∪
∪{(x1, x2, x3, x4), (x1, x2, x3, x5), (x2, x4, x5)}

and

Ass(J (H ′)3) = {(x1, x2, x3), (x1, x4), (x2, x4), (x2, x5), (x3, x5), (x4, x5)} ∪
∪{(x1, x2, x3, x4), (x1, x2, x3, x5), (x2, x4, x5)} ∪
∪{(x1, x2, x3, x4, x5)}.

Wealso know thatAss(J (H̃)3) andAss(J (H̃)2) share the same elements, precisely

{(x1, x2, x3), (x1, x4), (x2, x4), (x2, x5), (x3, x5)}
∪{(x1, x2, x3, x4), (x1, x2, x3, x5), (x1, x2, x3, x4, x5)}.

Then, from Proposition 3.15 and Theorem 4.5, we have

Ass(J (H)2) = Ass(J (H̃)2) ∪ {(x4, x5, y), (x2, x4, x5, y)}.

What about Ass(J (H)3)? The element (x1, x2, x3, x4, x5) appears both in
Ass(J (H̃)3) and Ass(J (H ′)3), and it contains (x4, x5). One can check that

Ass(J (H ′)3 : m) = (x1, x2, x3, x4, x5)

and

Ass(J (H̃)3 : m) = (x1, x2, x3, x4, x5)

where m := x1x22 x3x
2
4 x

2
5 .
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Thus, by Theorem 4.5, (x1, x2, x3, x4, x5, y) /∈ Ass(J (H)3) and one can check
that

Ass(J (H)3) = Ass(J (H̃)3) ∪ {(x4, x5, y), (x2, x4, x5, y)}.

Example 4.13 Let H be the hypergraph on the vertex set V := {x1, . . . , x5, y}, given
by

H = (V , {{x1, x2}, {x1, x3}, {x1, x4}, {x1, x5, y}, {x2, x3, x4, x5}}) .

Let H ′ be the shadow of H on the vertex set X := {x1, x2, x3, x4, x5} and H̃ the
subhypergraph of H on X . Then,

H ′ = (X , {{x1, x2}, {x1, x3}, {x1, x4}, {x1, x5}, {x2, x3, x4, x5}})

and

H̃ = (X , {{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3, x4, x5}}) .

A Macaulay2 computation shows that the elements in Ass(J (H ′)2 are

{(x1, x2), (x1, x3), (x1, x4), (x1, x5), (x2, x3, x4, x5), (x1, x2, x3, x4, x5)}

and also

Ass(J (H̃)2) = {(x1, x2), (x1, x3), (x1, x4), (x2, x3, x4, x5), (x1, x2, x3, x4, x5)}.

Note that the element (x1, x2, x3, x4, x5) belongs to both the sets Ass(J (H̃)3) and
Ass(J (H ′)3), and it contains (x1, x5). One can check that

(J (H ′)2 : x1x2x3x4x5) = (x1, x2, x3, x4, x5)

but x1x2x3x4x5 ∈ J (H̃)2. Thus,

Ass(J (H)2) = Ass(J (H̃)2) ∪ {(x1, x5, y), (x1, x2, x3, x4, x5, y)}.

5 An application to the persistence property

In this section, we apply the results of Sect. 4 to the persistence problem. A square-free
monomial ideal I is said to have the persistence property if Ass(I s) ⊆ Ass(I s+1) for
any integer s > 0. The authors of [11] describe an example of a cover ideal of a graph
failing the persistence property. We show how to construct, starting from a hypergraph
whose cover ideal fails the persistence property, a new hypergraph whose cover ideal
fails such property. We use the notation introduced in Sect. 4.
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Theorem 5.1 Let H = (V , E) be a hypergraph where V = X ∪ {y} such that

(a) there exists only one edge ey ∈ E containing y;
(b) H has a shadow on X, say H ′ = (X , E ′) ∈ S(H).

Suppose that J (H ′) fails the persistence property and let p′ ∈ Ass(J (H ′)s) and
p′ /∈ Ass(J (H ′)s+1) for some s > 0. Set H̃ := HX the subhypergraph of H on X. If
the following conditions hold,

(c) p′ /∈ Ass(J (H̃)s); and
(d) p′ + (y) /∈ Ass(J (H)s+1 : y),
then J (H) fails the persistence property.

Proof By hypothesis, we have p′ ∈ Ass(J (H ′)s) and p′ /∈ Ass(J (H̃)s). So by Theo-
rem 4.5, one gets that

p′ + (y) ∈ Ass(J (H)s).

Moreover, the hypothesis also ensures that p′ ∈ Ass(J (H ′)s+1) and p′ + (y) /∈
Ass(J (H)s+1 : y). Thus, by Theorem 4.9, we have p′ + (y) /∈ Ass(J (H)s+1). 
�
Example 5.2 In [11], Theorem11provides an example of a graph failing the persistence
property. The graph, denoted by H4, has the vertex set on X := {x1, . . . , x12} and the
edge set

E :={{x1, x2}, {x1, x5}, {x1, x9}, {x1, x12}, {x2, x3}, {x2, x6}, {x2, x10},
{x3, x4}, {x3, x7}, {x3, x11}, {x4, x8}, {x4, x9}, {x4, x12}, {x5, x6},
{x5, x8}, {x5, x9}, {x6, x7}, {x6, x10}, {x7, x8}, {x7, x11}, {x8, x12},
{x9, x10}, {x10, x11}, {x11, x12}}.

The persistence property fails since Ass(J (H4)
3) � Ass(J (H4)

4). In particular, pX ∈
Ass(J (H4)

3)\Ass(J (H4)
4).We consider now the hypergraph H (see Fig. 7) on vertex

set V := X ∪ {y}, constructed from H4 by adding the variable “y′′ only to the edge
{x1, x2}:

H = (X ∪ {y}, (E \ {{x1, x2}}) ∪ {{x1, x2, y}}).

With this construction, H4 is the shadow of H on the set X . Moreover, the subhy-
pergraph of H on X is H̃ = (X , E \ {{x1, x2}}).
By Theorem 5.1, H fails the persistence property and

pV ∈ Ass(J (H)3) \ Ass(J (H)4).

One can check that, by using Macaulay2, actually pX /∈ Ass(J (H̃)3) and also pV /∈
Ass(J (H)4 : y).
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yx1 x2 x3 x4

x5
x6 x7

x8

x9
x10 x11

x12

Fig. 7 The hypergraph H constructed from H4 by adding the vertex y

Example 5.3 Take the hypergraph H ′ on the vertex set X = {x1, . . . , x12, x13} and the
edge set

E ={{x1, x2, x13}, {x1, x5}, {x1, x9, x13}, {x1, x12, x13}, {x2, x3, x13},
{x2, x6, x13}, {x2, x10, x13}, {x3, x4, x13}, {x3, x7, x13}, {x3, x11, x13},
{x4, x8, x13}, {x4, x9, x13}, {x4, x12, x13}, {x5, x6, x13}, {x5, x8, x13},
{x5, x9, x13}, {x6, x7, x13}, {x6, x10, x13}, {x7, x8, x13}, {x7, x11, x13},
{x8, x12, x13}, {x9, x10, x13}, {x10, x11, x13}, {x11, x12, x13}}.

It was constructed from H4, see example 5.2, by adding a new variable “x ′′
13 to all

the edges but {x1, x5}. Consider now the hypergraph H on vertex set V := X ∪ {y},
constructed from H ′ by adding the variable “y′′ only to the edge {x1, x5}:

H = (X ∪ {y}, (E \ {{x1, x5}}) ∪ {{x1, x5, y}}).

With this construction, H ′ is the shadow of H on the set X . A computation with
Macaulay2 shows that pV ∈ J (H)4, but pX /∈ J (H ′)4. Indeed, we found two minimal
monomials m1, m2 such that pV = (J (H)4 : m1) = (J (H)4 : m2) that are

m1 := x21 x
3
2 x

3
3 x

2
4 x

2
5 x

3
6 x

2
7 x

3
8 x

3
9 x

2
10x

3
11x

3
12y,

m2 := x21 x
2
2 x

2
3 x

2
4 x

2
5 x

2
6 x

2
7 x

2
8 x

2
9 x

2
10x

2
11x

2
12x13y.

Both are divisible by y.
Then, the conditions in the statement of Theorem 5.1 are not satisfied. ByTheorem 4.9,
we get pV ∈ Ass(J (H)4 : y). Using Macaulay2, one can check that even if the
hypergraph H ′ fails the persistence property, and in particular pX ∈ Ass(J (H ′)3) \
Ass(J (H ′)4), we have Ass(J (H)3) ⊆ Ass(J (H)4).
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