
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Density-Based Algorithm for the Detection of Individual Trees from LiDAR Data / Latella, Melissa; Sola, Fabio;
Camporeale, CARLO VINCENZO. - In: REMOTE SENSING. - ISSN 2072-4292. - ELETTRONICO. - 13:2(2021), p. 322.
[10.3390/rs13020322]

Original

A Density-Based Algorithm for the Detection of Individual Trees from LiDAR Data

Publisher:

Published
DOI:10.3390/rs13020322

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2863591 since: 2021-01-19T20:11:52Z

MDPI



remote sensing  

Article

A Density-Based Algorithm for the Detection of Individual
Trees from LiDAR Data

Melissa Latella * , Fabio Sola and Carlo Camporeale

����������
�������

Citation: Latella, M.; Sola, F.;

Camporeale, C. A Density-Based

Algorithm for the Detection of

Individual Trees from LiDAR Data.

Remote Sens. 2021, 13, 322.

https://doi.org/10.3390/rs13020322

Received: 3 December 2020

Accepted: 15 January 2021

Published: 19 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

DIATI—Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino,
10129 Torino, Italy; fabio.sola@polito.it (F.S.); carlo.camporeale@polito.it (C.C.)
* Correspondence: melissa.latella@polito.it

Abstract: Nowadays, LiDAR is widely used for individual tree detection, usually providing higher
accuracy in coniferous stands than in deciduous ones, where the rounded-crown, the presence
of understory vegetation, and the random spatial tree distribution may affect the identification
algorithms. In this work, we propose a novel algorithm that aims to overcome these difficulties and
yield the coordinates and the height of the individual trees on the basis of the point density features of
the input point cloud. The algorithm was tested on twelve deciduous areas, assessing its performance
on both regular-patterned plantations and stands with randomly distributed trees. For all cases, the
algorithm provides high accuracy tree count (F-score > 0.7) and satisfying stem locations (position
error around 1.0 m). In comparison to other common tools, the algorithm is weakly sensitive to the
parameter setup and can be applied with little knowledge of the study site, thus reducing the effort
and cost of field campaigns. Furthermore, it demonstrates to require just 2 points·m−2 as minimum
point density, allowing for the analysis of low-density point clouds. Despite its simplicity, it may
set the basis for more complex tools, such as those for crown segmentation or biomass computation,
with potential applications in forest modeling and management.

Keywords: airborne LiDAR data; individual tree identification; tree counting; deciduous forest

1. Introduction

Light Detection and Ranging (LiDAR) is an active remote sensing system whose
output consists of a three-dimensional point cloud representing the Earth’s surface and all
the objects standing on it.

Starting from the 1990s, LiDAR became commercially available, thus allowing for an
acceleration of its technical improvement and field applications [1,2]. Nowadays, applica-
tions involve terrestrial, airborne, and spaceborne systems and concern agriculture [3,4],
geomatics [5,6], and forestry [7,8], to mention just a few. The ability of LiDAR systems to
capture the complex structure of trees and forests is related to the different returns provided
by the surfaces when they are intercepted by the LiDAR signal. Vegetation partially reflects
and transmits the signal, so multiple returns from a single shot may occur before the last
one from the ground is received. Therefore, the vertical characterization of the vegetation
structures is possible [2,8,9] and LiDAR-derived data can be efficiently used to determine
forest inventory parameters [10].

Thanks to its features, LiDAR is complementary to or more advantageous than other
methods, such as photogrammetry and ground-based data collection, for the character-
ization of some forest attributes. Monoscopic photogrammetry allows for coarse-scale
investigations but does not provide three-dimensional information. Stereoscopy can return
a three-dimensional point cloud, but this cloud just describes the upper surface of the
canopy in forested areas, thus avoiding the investigation of the under-canopy vegeta-
tion structures [11]. Ground-based methods, despite providing numerous information
about individual trees and tree plots, are time-consuming, labour-intensive, expensive,
and circumscribed to relatively small areas [8].
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Forest inventories are fundamental for natural resources management. For instance,
a record of the past and present status of forests can be generated on the basis of inventory
parameters, and used to evaluate forest damage [12,13], plan environmental and commer-
cial activities, and model future forest evolution [14]. Furthermore, data of forest inventory
are essential for carbon accounting and fire-related risk assessment [15,16], and for the
development of a sustainable bio-economy that grounds on renewable resources [2]. Forest
information can be derived by LiDAR data according to two main approaches, namely the
area-based and the individual tree-based approaches (see [16–18] for detailed information
about the features, advantages, and disadvantages of the two approaches). The former
approach generally predicts the mean features at the stand level (e.g., mean tree height
diameter, basal area, volume, and biomass) from the percentiles of the LiDAR-derived
height distribution [19,20]. The individual tree-based approach, instead, aims to collect
specific information from which deriving other attributes, such as the biomass and the
diameter-at-breast height, of each tree by means of existing models [21]. When the es-
timation parameters (area-based) or the LiDAR-derived metrics (individual tree-based)
are calibrated on the basis of ground data, both of the methods generate accurate forest
structural information that can support forest inventory over large areas [22,23].

Within the frame of individual tree-based forest inventories, the identification of trees
and the assessment of their height and position play a fundamental role as they constitute
the basis to derive other tree attributes [24]. Although the literature provides a large
number of works dedicated to the identification of individual trees from LiDAR data, most
of the proposed methodologies rely on the adoption of similar approaches, which can be
roughly classified into two families, namely the canopy height models-based (CHM) and
the cloud-based approaches.

Canopy Height Model (CHM)-based approaches identify the treetops by applying
algorithms to the canopy height model, namely the surface model representing the top
layer of canopies through its relative height with respect to the ground. This family of
approaches can be further divided into classes according to their underlying algorithm:
(i) the local maxima methods, which are the most frequently found in literature [12,25–40];
(ii) the local curvature methods [41]; (iii) the watershed methods, which find the tree
crowns through a pouring mechanism [42–44]; (iv) the morphological methods, which
apply opening operations to isolate the tree crowns within the CHM [13,14,45], and (v)
other methods, which delineate potential crown material so that the individual trees can
be distinguished [18,46–48]. The main difference among these classes is that the former
two carry out the crown segmentation after the treetop identification, whereas the latter
three perform the tree identification by looking for the treetop within the segmented crown
boundaries. The CHM-based approach has proven to be quite effective in very regular
vegetation pattern, especially when only one layer of the tree canopy is present, and in
coniferous stands. Nevertheless, this approach may provide lower-accuracy results when
applied under particular conditions [37,49–53]: the interpolated surfaces can be affected
by the noise of the LiDAR data they derive from and by the complexity of the terrain
and canopy geometry so that the tree counting process can be misleading; moreover, the
presence of mixed-species forests, random tree patterns, and shade-tolerant species can
affect the identification process.

As reported by Richardson and Moskal [50], some attempts have been made to over-
come the aforementioned intrinsic weaknesses of the CHM-based approaches. For instance,
the CHM has been used together with full-waveform LiDAR datasets [54], combined
to a new inventory index [15] or improved by computing correlation surfaces [55,56].
Since these improvements have not led to a satisfactory rise of the accuracy [50,57], at the be-
ginning of the 2010s, a new paradigm for treetop detection promoted the rise of the second
family of approaches, labeled as cloud-based. These methods do not just work on the CHM,
but on the entire three-dimensional point cloud and are further classified in: (i) the top-
bottom methods, where treetops are firstly detected and then all the points belonging to the
same tree are identified on the basis of tree spacing [24,50–52,58–63], and (ii) the bottom-top
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methods, where the stems are firstly detected from the lower layer and then all the points
belonging to the same tree are identified while moving upwards [53,57]. To our knowledge,
the only cloud-based methods that cannot be listed in the aforementioned classes were pro-
vided by Rahman and Gorte [64], Rahman et al. [65], Ferraz et al. [66], Paris et al. [67] and
work either on point density or point clustering. Although the cloud-based approach gener-
ally achieves higher accuracy than the CHM-based [57], it requires a greater computational
effort. Therefore, the CHM-based approach is still the most commonly adopted [44,48].

The described classification is summarized by Figure 1. It grounds on the extensive,
albeit not exhaustive, literature review that is reported in Table S1 of the Supplementary
Material. The review begins from the 2000s, when active remote sensing devices began to
be widely used in forestry [59,68], and only considers the applications of the traditional
airborne discrete-return LiDAR systems, neglecting the multi-spectral e.g., [69] and the
full-waveform ones e.g., [54,70,71]. Furthermore, it does not include the recent branch
of Terrestrial Laser Scanning (TLS) systems. While Airborne Laser Scanning (ALS) sys-
tems provide complementary information for forest inventory in terms of tree number,
areal stem density, and tree height over large areas (up to the regional scale), TLSs give high
point density data and allow for three-dimensional tree reconstruction but can investigate
relatively small areas (see [72–75] for further details).
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operations
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Figure 1. Classification of the methods that have been proposed so far to identify individual trees.
The numbers in red correspond with the labels associated with the classification of the literature
works shown in Table S1 of the Supplementary Material.

The tools and algorithms that have been proposed so far for the individual tree
identification usually lead to more accurate results when applied to coniferous stands
than to deciduous ones. This is mainly due to the particular features of coniferous trees
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since their conical shape makes their tops easy to identify [12,50], but it is also due to the
regular pattern of coniferous stands that avoids the inaccuracies related to the presence of
understory trees. Conversely, deciduous trees assume an umbrella-like shape so that their
crowns are usually very rounded and tend to overlap each other. Moreover, except for the
regular spatial configuration of plantations, trees in natural deciduous stands are usually
located according to random patterns with a strong presence of understory vegetation,
thus affecting the tree detection [30,50,57,76].

Aiming to improve the individual tree detection for the case of deciduous stands,
this work provides a novel, flexible, and simple tool that falls into the category of point
cloud-based approaches and relies on a density-based algorithm.

In the following, we describe the structure of the algorithm and assess its accuracy
by applying it to twelve deciduous stands along the Orco River (Italy). Seven of these
areas show regularly-arranged trees, whereas the others are characterized by trees that
are randomly located. Therefore, the algorithm is tested for, respectively, more and less
favorable tree configurations. The performance of the algorithm is evaluated both in
terms of tree count and stem position by comparing its outcome with a tree census that
was carried out by the authors in February 2019. The influence of input parameters on
the presented algorithm is then investigated through a sensitivity analysis and its results
are discussed. Finally, the algorithm is applied to the datasets that have undergone a
re-sampling process. The evaluation of the outcome accuracy at different re-sampling rates
is then used to define the minimum point density that is required for the input datasets in
order to meet an overall accuracy higher than 0.70.

2. Data and Method
2.1. Study Site and Available Data

The study areas are located in the Orco River floodplain (Northwestern Italy, 45◦14′

22.2′′N–7◦48′45.2′′E), as shown in Figure 2a–c.
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Figure 2. Contextualization of the study site from the continental (a) to the national (b) and the local (c) scale; (c) location of
the twelve study sites: the red, orange, and yellow colors indicate regular, random, and mixed (only a part is regular) tree
patterns, respectively. (d) zoom over a natural tree stand, hereinafter called D1, and (e) a tree plantation, hereinafter called
D2. (f) flight trajectories followed during the acquisition of LiDAR data over the Orco Valley, carried out on 28 February,
2019. Source: Google Earth.
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The Orco River is 89.57 km long and has a catchment area of 930 km2, bounded by
the Gran Paradiso National Park, the Stura di Lanzo Valley, the Vanoise National Park,
and the Canavese Valley at the Northern, Southern, Western, and Eastern side, respectively.
The Orco River floodplain is characterized by a low degree of anthropic activities so that the
river channels and meanders can migrate over time. The study sites are located between
the town of Cuorgnè and the confluence with the Po River and are occupied by stands of
deciduous trees, mainly poplars (Populus alba, Populus nigra), willows (Salix alba), black
locusts (Robinia pseudoacacia), oaks (Quercus robur), and hornbeams (Carpinus betulus). Some
of these stands belong to commercial plantations and are characterized by well-separated
trees of similar age and size and organized according to a regular pattern, such as at the
study area hereinafter called D2 (Figure 2e). Nevertheless, the majority of vegetation
follows the natural life cycle of the riparian forests, being populated by trees of different
sizes and ages, randomly arranged, often with partially-overlapping crowns. An example
of this latter case is shown by the study area hereinafter called D1 (Figure 2d). Table 1
reports the main features of the twelve study areas. No significant topographic variations
are reported for the selected areas since they are generally flat or with very gentle slope
(average slope range from 1 to 5 degrees except for D7, which is close to the river banks).

Table 1. Main features of the twelve study areas. The coordinates refer to the centroid of the area according to the reference system
EPSG:25832. The tree count and information derive from the field survey carried out on February 2019.

Area ID Coordinates Tree Tree Tree Perimeter Area Point NotesPattern Species Age (m) (ha) Density

D1 45◦14′22.27′′N; random Populus spp., mature 240 0.41 8.7 ± 4.4 -07◦48′45.10′′E Robinia Ps.

D2 45◦19′01.73′′N; regular Populus spp. various 620 2.40 7.5 ± 4.2 -07◦44′16.98′′E

D3 45◦12′06.02′′N; mixed Populus spp. young 834 4.39 8.7 ± 3.7 -07◦50′26.61′′E

D4 45◦10′58.61′′N; regular Populus spp. various 332 0.68 5.8 ± 2.1 a warehouse
07◦52′07.15′′E 4 × 4 ×2 m

D5 45◦11′44.09′′N; regular Populus spp. mature 313 0.40 10.2 ± 3.4 -07◦51′36.33′′E

D6 45◦11′40.61′′N; regular Populus spp. mature 308 0.57 9.6 ± 3.6 -07◦51′38.04′′E

D7 45◦20′02.58′′N; random Populus spp. various 339 0.62 13.5 ± 7.5 fence
07◦44′01.05′′E height: 2.5 m

D8 45◦12′25.45′′N; regular Populus spp., mature 316 0.41 17.8 ± 8.1 -07◦50′32.02′′E Quercus spp.

D9 45◦18′06.05′′N; random Robinia Ps. mature 250 0.27 10.1 ± 5.4 power lines07◦46′03.51′′E

D10 45◦18′08.24′′N; mixed Populus spp., mature 357 0.81 8.2 ± 4.6 -07◦45′59.95′′E Robinia Ps.

D11 45◦12′34.08′′N random Populus spp., mature 435 1.20 11.9 ± 7.2 -07◦50′06.51′′E Quercus spp.

D12 45◦12′06.08′′N; regular Populus spp. mature 572 1.93 8.7 ± 3.8 -07◦50′26.58′′E

The LiDAR data associated with these study areas were acquired on 28 February
2019 by the Italian National Council of Research—Research Institute for Geo-Hydrological
Protection (CNR-IRPI) with a LiteMapper 6800 installed on a POD DART certificated by
EASA with a minor/STC approval for Eurocopter AS350 Heliwest. The scanning process
was designed to guarantee: (i) a raw coverage of the twelve surveyed areas equal to
nine points·m−2 on average; (ii) a minimal stereoscopic coverage equal to 60% and 30%
for the forward and sideward overlap between adjacent swaths, respectively, and (iii) an
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average ground sampling distance equal to 10 cm/pixel. The scan frequency was 400 KhZ,
whereas the flight height ranged between 675 and 794 m above sea level. The scan angle
ranges from 4◦ to 19◦ , approximately, for the study areas. The trajectories of the flight are
shown in Figure 2f. The dataset was provided as two separate clouds for the ground and
the vegetation, respectively.

During the LiDAR data acquisition, the authors carried out a tree census within the
study areas. The tree coordinates were taken by means of a Real-Time Kinematic Global
Positioning System (RTK-GPS), model ROVER LEICA 1250, and GNSS smart antenna.
The error position of this device is approximately 1.0 m when performing measurements
within the tree stands because of the reduced availability of satellites for the GNSS-based
positioning and the low signal from the reference station for the kinematic corrections.
After the survey, the acquired tree positions were double-checked with a visual inspection
of the orthophotos deriving from the LiDAR campaign.

2.2. Presentation of the Algorithm

The algorithm is provided in Matlab® code and freely available in the supplementary
material. Unlike most of the other existing methods, it does not look for local height maxima
but local point density maxima, after having defined the point density as the number of the
points’ projections on the plane z = 0 per unit area. The underlying assumption is that the
point cloud becomes denser in correspondence with the tree center. Thus, the principles
upon which the algorithm is based are that: (i) in the lower layers, LiDAR systems tend
to record the highest number of returns when the signal intercepts tree trunks unless
too thick understory vegetation is present, and (ii) above a certain reference height the
density of tree branches is higher at the center of the crown, decreasing towards its edges.
Whereas the former statement is intuitive, the latter has been confirmed by previous
studies e.g., [49,64,65], which have also reported that this feature does not depend on the
crown shape. Accordingly, this assumption holds for LiDAR data acquired in leaf-off
conditions, such as the ones used in this work. We further checked the validity of this
hypothesis, by projecting all the points of the cloud on the plane z = 0 and computing their
areal density. As it can be observed in Figure 3, the density is maximum at the tree center
and gradually decreases towards the tree edges.

z y

y x

2D point density

min max

lateral view top view

b)a)

Figure 3. (a) lateral view of the point cloud representing an individual tree; (b) areal point density
computed for the same tree after that all the point are projected on the ground (plane z = 0) .

The adoption of a density-based approach allows the algorithm to overcome the
limitations of the other approaches when applied to deciduous stands. The upper panels
of Figure 4 provide a graphical explanation of the influence that the spatial distribution of
the trees has on their detection when the local height maxima are looked for, whereas the
lower panels highlight the intrinsic advantage of the density-based approaches.
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Figure 4. Comparison between the performance of the local maxima (upper row) and the density-
based (lower row) approaches when applied to (a) coniferous stands, and to deciduous tree stands in
(b) leaf-on and (c) leaf-off conditions.

2.2.1. Pre-Processing

The required input is a text file containing the {x, y, z} coordinates of the elements
constituting the LiDAR point-cloud, where the vertical coordinate z must be expressed as
relative height with respect to the ground. The generation of the ground surface model
and the computation of the relative heights is required prior to the use of the algorithm.

2.2.2. Workflow

Firstly, the algorithm removes the outliers from the point cloud that are associated
with unrealistic vertical coordinates, as well as the points lower than 1.4 m, which may be
associated with shrubs, bushes, and grasses. In this way, the computational time is reduced.

Secondly, for each point of the ‘cleaned’ cloud, the algorithm computes the most fre-
quent radius, which is a proxy of the crown radius. To this aim, it sorts the inverse distances
from all the surrounding points, applies the periodogram method to obtain the Fourier
transform of the inverse distance signal, and switches from the space to frequency domain.
The computation of the power spectral density of this signal leads to the identification of
the mean spatial frequency of the points, which is the inverse of the most frequent radius.

As the computation of the most frequent radius can be time-consuming for large
clouds, the input file is clipped around the i-th considered point, at a distance equal to Ri.
Then, the algorithm determines the areal density Di according to

Di =
Ni

4R2
i

(1)

For the i-th considered point, Ni is the number of the points’ projections on the plane
z = 0 that are contained in an area of radius Ri. Finally, the algorithm selects the point
associated with the maximum density for each Ai, and generates a list of the coordinates
of the detected stems. The outcome is further refined by applying a filter that eliminates
double-counting, based on the typical spacing of stems.

The highest point density corresponds to the stem location, but it does not always
coincide with the location of the treetop. Optionally, the algorithm detects the closest
local height maximum for each stem and creates a new list of coordinates for the treetops’
location and heights. Another (optional) filter identifies trees with an apparent height close
to that of other objects (e.g., fences) and decides whether to remove them on the basis
of statistical considerations about the surrounding trees (i.e., comparing the mean and
standard deviation of the tree heights).

The algorithm’s output can be imported in Geographic Information Systems (GIS)
and compared to field data, as shown in Figure 5.

As further discussed in Section 4.3, the present algorithm requires two parameters
to be set, namely the radius of the circular area that is used to clip the input file (i.e., Ri),
and the critical length for the double-counted stem filter. In this work, we set the clipping
radius equal to 20 m, whereas we used an optional function, included in the algorithm,
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to automatically compute the latter: the critical length can be interpreted as a proxy of the
typical stem spacing that can be observed in the study area; therefore, for each detected
stems, the function computes the most frequent spacing with respect to the surrounding
trees and then sets the critical length as the median of the resulting spacing values.

4.0678 4.0680 4.0682 4.0684
x10

5

x10
6

5.01026

5.01024

5.01022

5.01020 30 m30 m

Figure 5. Example of the algorithm’s output for D1. The resulting stems’ locations (red dots) can be
imported in GIS and compared to field data (white dots).

The conceptual workflow of the algorithm is reported in Figure 6, whereas the techni-
cal details about the algorithm setup are reported in Appendix A.
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Figure 6. Conceptual representation of the individual tree identification algorithm.
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2.3. Accuracy Assessment

The accuracy for the tree count was assessed by following the same criteria adopted
in the literature: the algorithm-detected trees were classified as true positive TP if correctly
identified, and false positive FP if they do not correspond to the field-mapped ones; the
trees omitted by the algorithm were instead classified as false negative FN e.g., [51,57].
The rate of tree detection is represented by the recall r metric, its correctness by the precision
p, and the overall accuracy by the F-score F [77] that were computed as follows:

r =
TP

TP + FN
p =

TP
TP + FP

F = 2
r · p

r + p
(2)

All of these metrics range from 0 to 1.
The position error, expressed in m, was calculated as the average distance between

the field-measured trees and the algorithm-detected ones.
The correct shift from the stem position to the closest height maxima to define the

treetops was checked by comparing the resulting stem-to-top distances with the typical
values of the crown radius.

2.4. Sensitivity Analysis and the Parameter Setting

As said above, the algorithm requires the setting of two input parameters: (i) the
radius of the area to clip the input file around each element, and (ii) the critical length
to detect the double-counted stems. We performed an analysis to assess the parameter
sensitivity in the outcomes of the algorithm. For this purpose, we tested 10 values of the
clipping radius in the range 10–100 m, and twenty values of the critical length in the range
0.5–10.0 m. In case the clipping radius exceeded the extent of the study areas, all of the
input points were considered.

As we mentioned in the previous paragraphs, the algorithm can optionally compute
the critical length as a proxy of the typical stem spacing on the basis on the statistics of
the distances among the identified stems. We tested the effectiveness of this automatic
function by comparing the real spacing, obtained by site-specific observations, with the
optimal spacing that emerges from the sensitivity analysis and that leads to the highest
accuracy, and the values computed by the algorithm.

2.5. Application to Re-Sampled Point Clouds

Finally, we re-tested the presented algorithm on the same study cases but using lower
resolution input data. The new datasets were obtained through the random re-sampling of
the vegetation point clouds by employing the free software CloudCompare. The rate of
point reduction was of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%, corresponding
to an average density of 8.1, 7.2, 6.3, 5.4, 4.5, 3.6, 2.7, 1.8, and 0.9 points·m−2. This additional
test allowed us to understand the influence of point density on the achieved accuracy and
to define a minimum requirement for the resolution of the input LiDAR data.

3. Results
3.1. Algorithm Performance

Table 2 compares the real tree count with the algorithm-derived one for all the twelve
areas and shows the accuracy metrics, the position error, and the main statistics of the
stem-to-top distance.

A scatter plot reporting algorithm detected versus field-detected is displayed in
Figure 7a, with a fairly good agreement. The accuracy metrics are also reported in Figure 7b.
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Table 2. Comparison between the count of actual trees and the count of the trees detected by the algorithm, the accuracy
metrics, the position error, and the main statistics of the stem-to-top distance for each study area.

Area ID # of Trees # of Detected Trees Recall Precision F-Score Position Error (m) Stem-to-Top Distance (m)
Min Max Mean

D1 98 76 0.78 0.96 0.86 1.25 0 2.12 0.79
D2 284 166 0.58 1.00 0.74 0.80 0 2.08 0.63
D3 543 620 1.00 0.84 0.92 0.81 0 2.06 0.62
D4 102 133 1.00 0.75 0.86 0.86 0 1.67 0.65
D5 132 144 1.00 0.91 0.95 0.82 0 1.79 0.53
D6 151 123 0.81 1.00 0.90 0.74 0 1.35 0.54
D7 130 125 0.96 0.99 0.98 0.78 0 1.70 0.66
D8 109 97 0.89 1.00 0.94 1.00 0 1.31 0.60
D9 65 60 0.92 1.00 0.96 0.91 0 1.19 0.56

D10 185 147 0.79 0.99 0.78 0.91 0 1.91 0.55
D11 210 210 1.00 1.00 1.00 0.73 0 1.50 0.63
D12 305 317 1.00 0.93 0.97 0.86 0 1.83 0.70

a)

# of trees

b)

study area
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ee
s

recall precision F-score

Figure 7. (a) count of the actual trees (# of trees) versus the count provided by the algorithm (# of
detected trees) for the sites D1–D12 (red diamonds). The black line represents a perfect match.
(b) accuracy metrics, where green, blue, and orange indicate recall, precision, and F-score metrics,
respectively.

The algorithm provided a successful tree count in eight of the twelve sites (D3, D5–D9,
D11–D12,), where the percentage error of the tree count did not exceed the 20%. The recall
and precision indices were generally higher than 0.80. The mean overall accuracy of the
algorithm outcomes (F-score) is 0.91. This performance is equal to or higher than the
existing methods (see [57] for a summary about the achieved accuracy).

In more detail, the lowest recall value was recorded for D2 (r = 0.58), where many
trees are missed because of a local decrease of LiDAR points representing the bare young
vegetation in the area. Some trees are represented, in fact, by very few points in the cloud
(see Figure 8), therefore precluding the identification of the point density maxima. In D1
(r = 0.78), some trees were likely lost because of the intense crown interlacing, which misled
the detection of local density maxima. As it will be better explained in Section 3.2, the low
recall of D10 (r=0.79) is due to the presence of two kinds of tree spatial distributions,
regular and random that affected the computation of the spacing parameter and the related
double-stem removal, leading to an excessive reduction of the tree number.

The lowest precision value was found for D3 (p = 0.84) and D4 (p = 0.75). In D3,
this is likely due to the features of the tree pattern. One portion of D3 is indeed regular,
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with equispaced trees that are relatively far between each other. The other portion is
characterized by a random tree distribution, with very short and variable stem spacing.
This aspect likely altered the algorithm’s assessment of the stem spacing that resulted
in being shorter than the effective one in the former portion, thus leading to double-
counting some trees. Similarly, the presence of trees of very different size in D4 affected
the stem spacing computation, so that a too short stem spacing led to impair the double-
stem removal.

0 30 m

D1 D2 D3 D4

D5 D6 D7 D8

D9 D10 D11 D12

Figure 8. View of the twelve study areas from Google Earth. Red and white dots indicate the algorithm-derived and field
measured stem locations, respectively.

The position error of the algorithm-detected trees is similar to the error of the instru-
mentation used to perform the tree mapping. The largest error is recorded for D1 (1.25 m)
and is likely due to the intense interlacing of the tree crowns that can move the density
maxima from the stem towards the crown edges.

The algorithm can detect the treetops associated with the identified stems. As Table 2
shows, the mean stem-to-top shift is always in the range [0.5–0.8 m] that is lower or close
to the minimum crown radius that the literature reports for the species found in the study
areas, as well as the maximum shift is largely lower than the average crown radius [78,79].
The minimum shift is equal to 0 for all the areas, meaning that there is always at least
one treetop perfectly centered over the stem. These values indicate that the stem-to-top
shift worked properly by identifying treetops that effectively belong to the detected stems,
as also a visual inspection of results confirmed.

3.2. Sensitivity Analysis Results

The clipping radius affects the computational times, as the higher the clipping radius,
the larger the analyzed area (and the number of considered points). Table 3 highlights the
direct proportionality between the elapsed time and the number of points that constitute
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the input point cloud, where elapsed time values refer to the use of a personal computer
(RAM 16 GB, processor i7-7700HQ), and the clipping radius is set equal to 20 m.

Table 3. Elapsed time and number of points of the input point cloud for each study area. In the
reported cases, the clipping radius is equal to 20 m.

Area ID Elapsed Time (s) Number of Points

D1 41.87 19,510
D2 4.28 4500
D3 195.09 97,568
D4 36.55 24,679
D5 11.42 9995
D6 17.43 13,391
D7 142.93 45,617
D8 59.91 29,935
D9 34.75 15,860
D10 55.00 31,865
D11 123.91 58,808
D12 413.62 127,192

Figure 9a shows the percentage time reduction of the elapsed time with the increasing
of the clipping radius. A lower bound of the clipping radius must be around 10–20 m, since
at least one tree must be included in the analysis. Since the accuracy is poorly affected by
this quantity (see Figure 9b), a value of approximately 20 m is a fair compromise between
high accuracy and low computational times for both regular and random stands.

b) c)a)

F
-s

co
re

F
-s

co
re

%
 e

la
ps

ed
 ti

m
e 

re
du

ct
io

n

clipping radius (m) clipping radius (m) critical length (m)

-

-

Figure 9. (a) Percentage reduction of the elapsed time for different clipping radii with respect to the case of infinite clipping
radius. F-score for different values of the clipping radius parameter (b), and the critical length parameter (c).

The setting of the critical length allows the algorithm to eliminate false double detec-
tion, namely the stems that are too close to each other to belong to two different plants.
Therefore, it is defined as the typical spacing between stems within a stand. Figure 9c
shows that the accuracy is highly dependent on this parameter. High accuracy is met for
critical lengths between 2 and 6 m, which is consistent with the values observed in the
study areas, as shown in columns 2 and 3 of Table 4.

This result highlights that the algorithm can achieve high accuracy when the correct
tree spacing is set, thus suggesting a significant site-dependency and the need for field
surveys to measure it. In order to overcome this limitation, we included an optional
function that allows the algorithm to quantify this parameter in the case that the average
stem spacing is not known. Table 4 highlights an overall agreement between real, optimal,
and computed values. A few exceptions are: (i) D2 for which computed and real spacing
perfectly agree although they are not associated with the best accuracy (albeit higher than
0.80); D4 and D5, which are both characterized by a large minimum spacing (5 and 8 m,
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respectively). In this latter case, both the optimal and computed spacing do not match
the actual spacing but the tree crown radius, nevertheless giving F-score values higher
than 0.80.

Table 4. Comparison between the measured, the optimal and the computed stem spacing.

Area ID Real Spacing (m) Optimal Spacing (m) Computed Spacing (m)

D1 2.5 2.0 2.8
D2 6.0 1.5 5.8
D3 3.0 3.0 2.5
D4 8.0 4.0 2.8
D5 5.0 3.5 2.8
D6 2.5 2.0 3.1
D7 3.5 3.5 3.3
D8 3.5 3.5 3.8
D9 4.0 4.0 4.1
D10 4.0 4.0 4.2
D11 3.0 3.0 3.1
D12 5.0 4.5 4.4

3.3. Re-Sampling Results

The elapsed time is directly proportional to the number of points that constitute the
input point cloud (see Table 3). Consequently, the point cloud re-sampling leads to the
proportional reduction of the elapsed time, as Figure 10a highlights.

The F-score remains almost steady up to a re-sampling of the 80%, as Figure 10b shows.
Within this range of the re-sampling rate, the slight fluctuations (never exceeding 0.1) of
the F-score are related to the randomness that drives the re-sampling process. F-score
increments indicate that the re-sampling led to a cleaning of the point cloud with respect
to the overlapping crown, thus making the stems more evident. Analogously, F-score
reductions indicate that the random point removal jeopardizes the stem identification by
reducing the point density closer to the stem than at the crown edges. When the re-sampling
rate exceeds 80%, the F-score drastically reduces for eight of the twelve investigated areas,
whereas it increases for D3, D4, D9, and D11, which presents extremely interlaced crowns
both for regular (D4, and part of D3) and random (D9, D11) tree patterns. In terms of
point density, these results translate into accuracy larger than 0.70 for cloud as dense as (or
denser than) 2 points·m−2.

As the F-score reduces the position error increases, therefore, the more intense the
re-sampling the higher the position error, as Figure 10c shows.
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Figure 10. (a) Percentage time reduction, (b) F-score, and (c) position error at different re-sampling rates for considered
twelve study areas.
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4. Discussion
4.1. Data for the Algorithm’s Application

The presented algorithm was designed to process ALS-derived point clouds. Although
photogrammetry can also be used for the generation of point clouds, its products are
not suitable for the algorithm’s application. Photogrammetric point clouds derive from
image processing and represent the top layer of the objects that stand on the ground
surface. In case of forested areas, they can be used to interpolate the canopy surface
but do not provide information about the under-canopy vegetation structures and the
topography [11,80–82], which are instead necessary for the correct implementation of
the algorithm.

The algorithm was not tested on Terrestrial Laser Scanning (TLS) point clouds because
of the non-availability of that kind of data for the study area. However, we presume that
the application to TLS may not be convenient: although the underlying hypothesis may
hold (e.g., the areal point density of the cloud’s projection of the z = 0 axis is higher at the
stem locations and decrease towards the crown edges), the extremely high point density
of the TLS datasets could remarkably increase the computational time. For these reasons,
we encourage the use of one of the method that the literature provides e.g., [72–75] when
dealing with TLS data.

4.2. Achieved Accuracy and the Influence of Data Quality

The presented algorithm provided a high accuracy tree count both in regular-patterned
plantation and stands where the trees naturally established according to a random spatial
distribution. The detection of individual trees is easier for regular stands, as the point
cloud itself already indicates the potential individual elements, as occurs in D12-like areas.
Nevertheless, the algorithm demonstrated good performance also in random areas, where
the point cloud itself does not provide any indication of the individual trees and the visual
inspection of orthophotos can be misleading, as for D1-like areas.

The count error has a slight correlation to the areal extent of the study stands. In
addition, the recall and precision metrics often reduce when the algorithm deals with
heterogeneous areas (both in terms of spatial tree distribution and tree size or age). These
results suggest that the individual tree detection may be improved by previously subdivid-
ing the study site into areas of homogeneous features according to field observations or
visual inspection of satellite images and orthophotos.

The mean shift from the stem to the treetop location is usually lower than the minimum
crown radius of the tree species that can be found within the study areas, indicating that
the algorithm correctly associates the stems with their corresponding treetops.

The position error of the detected trees is generally similar to that of the instrumen-
tation used to map the trees within the stand (1.0 m). However, it must be noted that,
because of the nadir or small off-nadir scan angle and the flight conditions, the available
cloud consists of point arranged almost regularly according to a three-dimensional grid.
As Figure 3 clearly shows, the top view of the acquired LiDAR point clouds results in
a linear pattern where the lines, perpendicular to the flight trajectory, have an average
distance of 0.5 m. Therefore, an additional error of ±0.25 m should be considered in
this case.

The influence of the scan angle in LiDAR-derived tree structures is still debated in
the literature. Some studies have indeed demonstrated that the accuracy of canopy height
and other vegetation parameters decreases with off-nadir angle [83]. Large scan angles
also result in shadow areas where the pulses do not penetrate adjacent tree crowns [84,85],
and, generally, the higher the scan angle the lower the returns from the ground because
of an increment of the tree crown projection to the near nadir crown area [83,84,86,87].
The influence of scan angle is related to the spatial configurations of the trees: it becomes
stronger as the crown height exceeds the crown width (e.g., in coniferous stands) and when
the number of stems per unit area decreases [87].
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With respect to the presented algorithm, the nadiral signal may provide fewer returns
than those obtained in off-nadir conditions, as the literature suggests [88]. Although our
data indicate no correlation between scan angle and point density, we note that an overall
point density reduction is not expected for the performance of the algorithm unless the
point density becomes lower than 2 points·m−2, as shown in Section 3.3. Not even the
three-dimensional point pattern seems to impact the tree count since the algorithm looks
for local maxima of the areal point density by inspecting areas whose radius largely exceeds
the distance between the pattern’s lines.

The stand features (e.g., rounded-shaped crowns and high stems per unit areas)
and the nadir or small off-nadir acquisition suggest a low influence of the scan angle in
the study areas for what concerns the height accuracy. However, it is known that the
LiDAR tends to underestimate the tree height [17,89], especially when the point density
decreases [90,91]. The laser beam may not be intercepted by the highest branches, and this
effect may be exacerbated by leaf-off conditions [92,93]. Moreover, the trees often lean
while growing, thus aggravating the height underestimation. Because of the aforemen-
tioned reasons, the LiDAR-derived treetop heights that our algorithm provides should be
calibrated on the basis of field measurements prior to their use, as it is common practice for
LiDAR applications in forestry e.g., [17].

As mentioned in Section 2, the available LiDAR data already consisted of separated
point clouds for the ground and the vegetation, respectively. Moreover, the topographic
flatness of the study site allowed for a straightforward interpolation of the ground sur-
face that is necessary to compute the relative heights of the vegetation cloud. Complex
topographies do not directly hamper the algorithm, which just works on the vegetation
point cloud, but can indirectly impair the tree identification by affecting the classification
of vegetation and ground points and the following ground surface interpolation [94]. How-
ever, despite the potential inaccuracy of ground interpolation in complex topographies,
the methods to be adopted for the surface interpolation are not the object of this work and
have been extensively discussed in other research e.g., [89,94].

4.3. The Influence of the Parameter Setting

The CHM methods are highly influenced by the parameter setting. For instance,
Chen et al. [32] describes their extreme sensitivity to the size of the cell window that is used
to inspect the CHM and detect the height maxima. The window size, indeed, represents the
main and most critical parameter to achieve satisfactory accuracy. A large window smooths
the variations of canopy height and drastically reduces the detected peaks, whereas a small
one can dramatically increase the number of peaks. The literature does not provide robust
criteria for the window size setting and, therefore, the CHM-methods require site-specific
measurements and calibration [28,30,36].

The cloud-based methods need a proper parameter setting too. For instance, the tools
that ground on the works of Ayrey et al. [62], Rahman and Gorte [64] identify the crown
center by inspecting the point density within vertical cylinders of arbitrary size and gen-
erating a density raster that shows the density peaks e.g., [95]. The cylinder radius has
to be close to the typical tree spacing, whereas the issue of the cell size setting resembles
that of the CHM-based methods. Large cells excessively smooth the density raster and
small ones overestimate the peaks so that the literature suggests values of the same order
of magnitude of 1/(point density)0.5 [32].

Similarly to the other methods, the proposed algorithm requires a set of input param-
eters. Nevertheless, it has the advantage to achieve satisfying accuracy (F-score > 0.70)
also with the default setting. This setting comprises a clipping radius equal to 20 m that,
as the sensitivity analysis highlights, does not affect the results but strongly speeds up the
tree identification process. Moreover, it comprises the automatic estimation of the typical
stem spacing from the point cloud features, which reduces the dependency from costly and
time-consuming site-specific surveys.
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The default setting also includes a threshold to remove outliers above 40 m from the
input point cloud. This threshold was not considered for the sensitivity analysis as its
influence is negligible if realistic values are used (e.g., 40 m is the height limit for the species
found in the study area). We refer the reader to Appendix A for further details.

4.4. Cloud Re-Sampling and Low-Resolution Data

The results shown in Section 3.3 highlight the linear relationship between computa-
tional time and input point number. The performance refers to the features of a personal
computer without the implementation of parallelization techniques, and the order of
magnitude of the elapsed time is that of minutes due to the relatively small size of the
investigated areas. The use of the algorithm for input clouds characterized by millions
of points would require long computation time. Therefore, future works will focus on its
parallelization and application to large domains.

The results shown in Section 3.3 suggest that the algorithm can be applied also to very
low-resolution input clouds since it is able to provide F-scores higher than 0.70 also for
point densities of 2.0 points·m−2. This means that, in the case of large datasets, the user
can re-sample the original point cloud to create one of lower density and, consequently,
drastically reduce the computational effort.

The chance to effectively work with low-density point clouds allows the algorithm’s
user to carry out analyses of data provided by a wide range of LiDAR devices, therefore
avoiding the use of expensive and advanced equipment. In addition, although LiDAR mea-
surements for forestry purposes are often scheduled under leaf-on conditions, topographic
surveys are often carried out in leaf-off conditions. This implies a few points representing
deciduous trees. It is clear that, for this particular case, the capability of the presented algo-
rithm to deal with low-density clouds becomes very important. The proposed algorithm
can, therefore, analyze old point-clouds, whose density is usually lower than the most
recent ones, thus providing time series of tree position and features. This information can
constitute a valuable contribution to forest modeling and management.

It is worth mentioning that the results indicate an increment in the position error as
the point density reduces. Thus, although the re-sampling could speed up the algorithm’s
computation without impairing the tree count, it should be avoided when an accurate
localization of the detected trees is the main target of the LiDAR data processing.

5. Conclusions

In this work, we proposed a novel algorithm for the identification of individual trees
in forest stands from three-dimensional point clouds. The algorithm is designed to process
airborne LiDAR point clouds and grounds on the detection of stems according to local
maxima of the areal point density. It can give the stem coordinates and the treetop height
as output.

The algorithm achieves high accuracy when applied to stands with both regular and
random spatial tree distribution. The achieved F-score is higher than 0.70 and position
error close to 1.0 m, if the input point cloud has a density of at least 2 points·m−2. Thanks
to its capability to deal with relatively low-density clouds, old LiDAR datasets can be also
accurately analyzed, while very dense clouds can be sub-sampled to speed up the process.

A sensitivity analysis highlighted the influence that the parameter describing the
critical stem spacing has on the achieved accuracy. However, the algorithm demonstrated
to be able to automatically compute it on the basis of statistical considerations about the
geometric configuration of the detected trees. This feature allows the algorithm to also be
adopted with little information about the study area.

The main advantages and limitations of the algorithm are summarized in Table 5
along with the precautions that may be taken to obtain better results.
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Table 5. Summary of the main advantages and limitations of the presented algorithm along with notes for its application.

Advantages Limitations Notes

Low sensitivity to the tree spatial ar-
rangement and the presence of un-
derstory vegetation.

Better performance in homogenous
stands.

Splitting of datasets into homogenous
areas before its application.

Working on the entire point clouds. Long computation time for high
number of input points.

In the case of large datasets, algo-
rithm’s parallelization or dataset’s
sub-sampling.

Requiring 2 points·m−2 as mini-
mum point density

Worse performance if dealing with
local data inaccuracies

Data quality inspection before its ap-
plication.

Good accuracy with the default pa-
rameter setting.

Necessity of field calibration for the
derived treetops height.

Visual inspection of the study areas
before its application.

Despite its simplicity, the algorithm can constitute the basis for more complex tools,
such as those for crown segmentation. In addition, it may allow for the biomass estima-
tion if coupled to GIS information about the spatial distribution of tree species and site-
dependent allometric laws. There are many applications for such a coupled methodology,
ranging from forest inventories e.g., [25,96] to the characterization of riparian vegetation
for hydrodynamic modeling e.g., [97–99].

Our results suggest that the accuracy of tree identification relies on the quality of the
input point clouds. Although this is not a limitation of the algorithm itself, it must be
considered when analyzing the region of interest. It is worth noting that the algorithm
performs better in plantations and forest stands with mature vegetation since the mature
trees are better represented in the point clouds and generally more spaced apart from each
other. The application of the algorithm to natural stands is generally good unless the stem
spacing is excessively variable or the crown is very interlaced. We also point out that the
presence of high and thick brambles, as often occurs in the riparian zone, can decrease the
algorithm accuracy since they may be wrongly identified as trees.

Finally, we note that the algorithm was tested on LiDAR data acquired during leaf-off
conditions. Because of a density-based approach, the algorithm is expected to work well in
leaf-on conditions too, if applied to coniferous stands (see Figure 4). In that specific case,
indeed, the underlying hypothesis (i.e., the correspondence between the maximum point
density and the tree center) still holds thanks to the conical shape of these species. Future
works should verify whether this hypothesis holds for point clouds acquired in deciduous
stands with leaf-on conditions and whether the presence of interlacing branches or their
non-symmetric distribution can mislead the stem identification, as is suggested by some
authors e.g., [64] and the large position error of D1.
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Appendix A. Algorithm Setup

The code has been set to run with default parameters that, as shown in this manuscript,
lead to satisfactory accuracy. However, the algorithm also provides a dialog box through
which the user can customize it. In this way, site-specific requirements (e.g., the presence
of anthropic objects or outliers) can be met.

In the following, the parameters (and their default values) are listed: (i) the upper
limit of the height range (default value is 40 m, higher points are removed); (ii) the clipping
radius (default value is 20 m); (iii) the critical length for double-stem detection (the default
value is self-computed); (iv) the user can decide either to obtain the stem locations only
or even treetops and heights (the latter option is usually preferred when the aim is to
obtain the tree features or to compute the biomass according to allometric relationships);
(v) optionally, the user can specify the height interval of not-natural objects that must be
filtered out, e.g., fences (default value is null, but one or more height intervals can be set).

If the last option is chosen, the algorithm identifies the tree (or trees) whose height
belongs to the specified interval and assesses if this height is statistically similar to those of
the surrounding trees. If the height of the investigated tree does not fall within the interval
(mean value ± 2 times the standard deviation), it is considered as an outlier and removed
from the list of the identified trees.

This filter is recommended only where the presence of non-natural objects is well-
known. In this work, for instance, it could be used when analyzing D4 and D7, where a
warehouse 2.0 m high and a fence 2.5 m high were found, respectively. As Figure A1 shows,
the warehouse was filtered out by setting the height interval 1.5–2.0 m, whereas the fence
by setting 2.0–2.5 m, where the lower values account for the potential underestimation of
the LiDAR-derived heights [17,89].

D4 D7

Figure A1. Detected treetops before (black dots) and after (cyan dots) the application of the filter to
remove not-natural objects in D4 and D7.
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