
18 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dynamic VNF Placement, Resource Allocation and Traffic Routing in 5G / Golkarifarda, Morteza; Chiasserini, Carla
Fabiana; Malandrino, Francesco; Movaghar, Ali. - In: COMPUTER NETWORKS. - ISSN 1389-1286. - STAMPA. -
(2021). [10.1016/j.comnet.2021.107830]

Original

Dynamic VNF Placement, Resource Allocation and Traffic Routing in 5G

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.comnet.2021.107830

Terms of use:

Publisher copyright

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.comnet.2021.107830

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2859962 since: 2021-02-17T12:31:22Z

Elsevier

Dynamic VNF Placement, Resource Allocation and Traffic Routing in 5G

Morteza Golkarifarda,∗, Carla Fabiana Chiasserinib,c,d, Francesco Malandrinoc,d, Ali Movaghara

aSharif University of Technology, Tehran, Iran
bPolitecnico di Torino, Torino, Italy

cCNR-IEIIT, Italy
dCNIT, Italy

Abstract

5G networks are going to support a variety of vertical services, with a diverse set of key performance indicators (KPIs),
by using enabling technologies such as software-defined networking and network function virtualization. It is the respon-
sibility of the network operator to efficiently allocate the available resources to the service requests in such a way to honor
KPI requirements, while accounting for the limited quantity of available resources and their cost. A critical challenge
is that requests may be highly varying over time, requiring a solution that accounts for their dynamic generation and
termination. With this motivation, we seek to make joint decisions for request admission, resource activation, VNF
placement, resource allocation, and traffic routing. We do so by considering real-world aspects such as the setup times
of virtual machines, with the goal of maximizing the mobile network operator profit. To this end, first, we formulate
a one-shot optimization problem which can attain the optimum solution for small size problems given the complete
knowledge of arrival and departure times of requests over the entire system lifespan. We then propose an efficient and
practical heuristic solution that only requires this knowledge for the next time period and works for realistically-sized
scenarios. Finally, we evaluate the performance of these solutions using real-world services and large-scale network
topologies. Results demonstrate that our heuristic solution performs better than a state-of-the-art online approach and
close to the optimum.

1. Introduction

5G networks are envisioned to support a variety of ser-
vices belonging to vertical industries (e.g., autonomous
driving, media, and entertainment) with a diverse set of
requirements. Services are defined as a directed graph of
virtual network functions (VNFs) with specific and vary-
ing key performance indicators (KPIs), e.g., throughput,
and delay. Requests for these services arrive over time and
mobile network operators (MNOs) are responsible for effi-
ciently satisfy such a demand, by fulfilling their associated
KPI while minimizing the cost for themselves.

As a result of the softwarization of 5G-and-beyond net-
works, enabled by software-defined networking (SDN) and
network function virtualization (NFV), it is now feasible
to use general-purpose resources (e.g., virtual machines) to
implement the VNFs required by the different service. The
decision on which resources to associate with which VNF
and service is made by a network component called orches-
trator, as standardized by ETSI [1]. Without loss of gener-
ality, we focus only on computational and communication
resources (e.g., virtual machines and the links connecting
them); notice, however, that our proposed framework is
applicable to other resource types (e.g., storage).

∗Corresponding author.
Email address: golkari@ce.sharif.edu (Morteza Golkarifard)

The network orchestrator makes the following deci-
sions [1]:

• admission of requests;

• activation/deactivation of VMs;

• placement of VNF instances therein;

• assignment of CPU to VMs for running the hosted
VNF instances;

• routing of traffic through physical links.

These decisions are clearly mutually dependent, and there-
fore should be made jointly, in order to account for the – of-
ten nontrivial – ways in which they influence one another.
The focus of this paper is thus to consider the joint re-
quests admission, VM activation/deactivation, VNF place-
ment, CPU assignment, and traffic routing problem in or-
der to maximize the MNO profit, while considering:

• the properties of each VNF,

• the KPI requirements of each service,

• the capabilities of VMs and PoPs (points of presence,
e.g., datacenters) and their latency,

• the capacity and latency of physical links,

Preprint submitted to Computer Networks November 6, 2020

• the VMs setup times,

• the arrival and departure times of service requests.

As better discussed in Sec. 2, some of these factors
are simplified, or even neglected, in existing works on 5G
orchestration. Notably, we account for the VM setup time,
which becomes a significant factor in (for example) IoT
applications, when requests are often short-lived. Ignoring
setup (and tear-down) times can reduce the optimality of
existing solutions.

Furthermore, we account for the fact that different
VNFs may have different levels of complexity, therefore,
different quantities of computational resources may be needed
to attain the same KPI target. Inspired by several works
in the literature [2], we model individual VNFs as queues
and services as queuing networks. Critically, unlike tradi-
tional queuing networks, the quantity of traffic (i.e., the
number of clients in queues) can change across queues, as
VNFs can drop some packets (e.g., firewalls) or change the
quantity thereof (e.g., video transcoders). Our model ac-
counts for this important aspect by replacing traditional
flow conservation constraints with a generalized flow con-
servation law, allowing us to describe arbitrary services
with arbitrary VNF graphs.

Given this model, we formulate a one-shot optimiza-
tion problem which, assuming perfect knowledge of future
requests, allows us to maximize the MNO profit. Given the
NP-hardness of such a problem and the fact that knowl-
edge of future requests is usually not available, we pro-
pose MaxSR, an efficient heuristic algorithm which will be
invoked periodically based on the knowledge of requests
within each time period. The proposed method can achieve
a near-optimal solution for large-scale network scenarios.
We evaluate MaxSR compared to the optimum and other
benchmarks using real-world services and different net-
work scenarios.

In summary, the main contributions of this paper are
as follows:

• we propose a complete model for the main compo-
nents of 5G, both in terms of vertical services (dy-
namic requests, VNFs, and services KPIs) and in
terms of resources (e.g. VMs and links);

• our model accounts for the time variations of ser-
vice requests, and dynamically allocates the com-
putational and network resources while considering
VMs setup times. It can also accommodate a diverse
set of VNFs in terms of computational complexity
and KPI requirements, multiple VNF instances, and
arbitrary VNF graphs with several ingress and egress
VNFs, rather than a simple chain or directed acyclic
graph (DAG);

• we formulate a one-shot optimization problem as a
Mixed-Integer Non-linear Programming (MINLP) to
make a joint decision on VM state, VNF placement,
CPU assignment, and traffic routing based on the

complete requests statistics over the entire system
lifespan;

• we propose MaxSR, an efficient near-optimal heuris-
tic algorithm to solve the aforementioned problem
based on the knowledge of the near future for large
scale network scenarios;

• finally, we compare MaxSR with optimum and the
online approach Best-Fit, through extensive experi-
ments using synthetic services and requests, and dif-
ferent network scenarios.

The rest of the paper is organized as follows. Sec. 2
reviews related works. Sec. 3 describes the system model
and problem formulation, while Sec. 4 clarifies our solution
strategy. Finally, Sec. 5 presents our numerical evaluation
under different network scenarios, Sec. 6 discusses the ap-
plicability and scalability of the proposed solution, and
Sec. 7 concludes the paper.

2. Related Work

Several works have addressed VNF placement and traf-
fic routing, as exemplified by the survey paper [3]. In
most of these works, the problem is formulated as a Mixed-
Integer Linear Program (MILP) with a different set of ob-
jectives and constraints. Such an approach can yield exact
solutions, but merely works for small instances; therefore,
heuristic algorithms that offer a near-optimal solution have
also been presented.

In particular, a first body of works provides a one-
time VNFs placement, given the incoming service requests.
Since this method leaves already placed VNFs intact, it
can lead to a sub-optimal solution when the traffic varies
over time. Examples of such an approach can be found in
[4–10], which aim at minimizing a cost function, e.g., op-
erational cost, QoS degradation cost, server utilization, or
a combination of them, and assume that there are always
enough resources to serve the incoming requests. Among
them, Cohen et al. [4] propose an approximation algorithm
to place sets of VNFs in an optimal manner, while approx-
imating to the constraints by a constant factor. Pham et
al. [8] introduce a distributed solution based on a Markov
approximation technique to place chains of VNFs where
the cost enfolds the delay cost, in addition to the cost of
traffic and server. [9], instead, addresses the same prob-
lem but aims at minimizing the energy consumption, given
constraints on end-to-end latency for each flow and server
utilization. Pei et al. [10] propose an online heuristic for
this problem, by which VNF instances are deployed and
connected using the shortest path algorithm, in order to
minimize the number of VNF instances and satisfy their
end-to-end delay constraint.

Another thread of works focuses on an efficient admis-
sion policy that maximizes the throughput or revenue of
admitted requests [11–14]. In particular, Sallam et al. [11]
formulate joint VNF placement and resource allocation

2

problem to maximize the number of fully served flows con-
sidering the budget and capacity constraints. They lever-
age the sub-modularity property for a relaxed version of
the problem and propose two heuristics with a constant ap-
proximation ratio. [12] studies the joint VNF placement
and service chain embedding problem, so as to maximize
the revenue from the admitted requests. A similar prob-
lem is tackled in [14] and [13] but for an online setting
where the requests should be admitted and served upon
their arrival. Zhou et al. [13], on the other hand, first
formulate a one-shot optimization problem over the entire
system lifespan and then leverage the primal-dual method
to design an online solution with a theoretically proved
upper bound on the competitive ratio.

A different approach is adopted in [15–21] where VNF
placement can be readjusted through VNF sharing and
migration, to optimally fit time-varying service demands.
[15] and [16] propose algorithms that properly scale over-
utilized or under-utilized VNF instances based on the es-
timation of future service demands. Jia et al. [17] pro-
pose an online algorithm with a bounded competitive ratio
that dynamically deploys delay constrained service func-
tion chains across geo-distributed datacenters minimizing
operational costs.

Request admission control has instead been considered
in [18–21]. More in detail, Li et al. [18] propose a proactive
algorithm that dynamically provisions resources to admit
as many requests as possible with a timing guarantee. Sim-
ilarly, [19] admits requests and places their VNFs in the
peak interval, but minimizes the energy cost of VNF in-
stances by migration and turning off empty ones in the
off-peak interval. Liu et al. [20] envision an algorithm that
maximizes the service provider’s profit by periodically ad-
mitting new requests and rearranging the current-served
ones, while accounting for the operational overhead of mi-
gration. Finally, leveraging VNF migration and sharing,
[21] proposes an online algorithm to maximize throughput
while minimizing service cost and meeting latency con-
straints.

Relevant to our work are also studies that target specif-
ically 5G systems, although they merely consider the link
delay and neglect processing delays in the servers. An ex-
ample can be found in [2], which models VMs as M/M/1
PS queues, and proposes an optimization formulation and
a heuristic solution to minimize the average service de-
lay, while meeting the constraints on the links and host
capacities. The works in [22] and [23] aim instead to min-
imize, respectively, the operational cost and the energy
consumption of VMs and links while ensuring end-to-end
delay KPI. [22] also allows for VNF sharing and studies the
impact of applying priorities to different services within a
shared VNF. Zhang et al. [24] tackle the request admission
problem to maximize the total throughput, neglecting in-
stead queuing delay at VMs. We summarize most related
solutions and compare them with our work in Table 1.

We remark that most of the above works present proac-
tive approaches, and only deal with either cost minimiza-

tion or request admission. On the contrary, we focus on
dynamic resource activation, VNF placement, and CPU
assignment to maximize the revenue from admitted re-
quests over the entire system lifespan, while minimizing
the deployment costs and accounting for some practical
issues. Our proactive MINLP formulation of the problem
extends existing models by accounting for the maximum
end-to-end delay as the main KPI, while our heuristic is a
practical and scalable solution, which periodically admits
new requests and readjusts the existing VNF deployment.
To the best of our knowledge, this is the first dynamic
solution for service orchestration in 5G networks.

3. System Model and Problem Formulation

In this section, first we describe our system model sup-
ported by a simple example. Later, we formulate the joint
requests admission, VM activation, VNF placement, CPU
assignment, and traffic routing problem; a discussion of
the problem time complexity follows. The frequently used
notation is summarized in Table 2.

3.1. System Model

Physical infrastructure. Let G = (M, E) be a di-
rected graph representing the physical infrastructure net-
work, where each node m ∈ M is either a VM or a net-
work node (i.e., a router or a switch). A VM m has max-
imum computational capacity Cvm(m). Set E denotes the
physical links connecting the network nodes. We define
B(e) and Dphy(e) as, respectively, the bandwidth and de-
lay of physical link e ∈ E . Time is discretized into steps,
T = {1, 2, . . . , T}, and we assume that at every time step
a VM may be in one of the following states: terminated,
turning-on, or active. Specifically, VMs can only be used
when they are active, and they need to be turned-on one
time step before being active. Based on the measurements
reported in [16], we also consider the traffic flow migration
time to be negligible with respect to the VM setup time.

Each VM can host one VNF and belongs to a datacen-
ter d ∈ D; we denote the available amount of computa-
tional resources in datacenter d by Cdc(d) and the set of
VMs within d with Md. In the physical graph G, physi-
cal links within datacenters are assumed to be ideal, i.e.,
they have no capacity limit and zero delay. Let logical link
l ∈ L be a sequence of physical links connecting two VMs,
src(l) and destination dst(l), then we define end-to-end
path p ∈ P as a sequence of logical links.

Services. We represent each service s ∈ S with a
VNF Forwarding Graph (VNFFG), where the nodes are
VNFs q ∈ Q, and the directed edges show how traffic
traverses the VNFs. VNFFG can be any general graph
with possibly several ingress and egress VNFs. We denote
the total new traffic, entering the ingress VNFs of service s,
by λnew(s). A traffic packet of service s, processed in VNF
q1, is forwarded to VNF q2 at time t with probability of
P(s, q1, q2, t). Similarly, P(s, ◦, q, t) is the probability that

3

Table 1: Summary of related solutions

Ref. Objective re
q
u

es
t

a
d

m
is

si
on

re
so

u
rc

e
ac

ti
va

ti
on

V
N

F
p

la
ce

m
en

t

tr
a
ffi

c
ro

u
ti

n
g

C
P

U
as

si
gn

m
en

t

ar
b

it
ra

ry
V

N
F

F
G

V
N

F
co

m
p

le
x
it

y
a

V
N

F
tr

a
ffi

c
sc

al
in

gb

ta
rg

et
m

a
x
.

d
el

ay
c

li
n

k
la

te
n

cy

p
ro

ce
ss

in
g

d
el

ay

q
u

eu
in

g
m

o
d

el

li
n

k
ca

p
ac

it
y

n
o
d

e
ca

p
a
ci

ty

V
M

se
tu

p
ti

m
e

o
n

li
n

e
so

lu
ti

o
n

d
y
n

a
m

ic
w

o
rk

lo
a
d

ours maximize revenue while mini-
mizing cost

X X X X X X X X X X X X X X X X X

[2] minimize service average delay × × X × X X × × ×1 X X X X X × × ×
[8] minimize operational and de-

lay costs
× × X × × × × × × X × × X X × × X

[9] minimize energy × X X X × × × × X X × × X X × X X
[10] minimize embedding cost X × X X × × × × × X X × X X × × X
[11] maximize served traffic × × X × X × × × × × × × × X × × ×
[12] maximize revenue X × X X × X × × × × × × X X × × X
[13] maximize revenue X × X × × × × × × × × × X X × X X
[14] maximize revenue X × X X × × × × × × × × X X × X X
[15] minimize cost × × X X × × × × × × × × X X × X X
[16] minimize # of used VMs × × X × X × × × × × × × × X X × X
[17] minimize operational and de-

lay costs
× × X X × × × X × X × × × X × X X

[18] maximize # of admitted reqs. X × X X × × × × X X X × X X × X X
[19] minimize energy and VNF re-

configuration costs
X × X X X × × × × × × × X X X × X

[20] maximize profit X × X X × X × × × × × × X X × × X
[21] maximize throughput while

minimizing operational cost
X × X X × × × × X X × × × X × × X

[22] minimize operational cost × X X × X X X × ×1 × X X × X × × ×
[23] minimize energy × X X X X X X X ×1 X X × X X × × ×
[24] maximize total throughput X × X × × × × × X X X × X X × × ×
a VNFs can have different computational complexities.
b VNFs can change the quantity of outgoing traffic.
c maximum end-to-end delay which traffic packets of a service can tolerate.
1 average tolerable end-to-end delay is considered.

a new traffic packet of service s starts getting service in
ingress VNF q at time t, and P(s, q, ◦, t) is the probability
that a traffic packet of service s, already served at egress
VNF q, departs service s at time t. For each service s,
we consider its target delay, DQoS(s), as the most critical
KPI, specifying the maximum tolerable end-to-end delay
for the traffic packets of s.

VNFs can have different processing requirements de-
pending on their computational complexity. We denote
by ω(q) the computational capability that VNF q needs
to process one unit of traffic. Some VNFs may not find
sufficient resources on a single VM to completely serve the
traffic while satisfying the target delay. Thus, multiple in-
stances can be created, with N(s, q) being the maximum
number of instances of VNF q at each point in time. In-
stances of the same VNF can be deployed either within the
same datacenter or at different datacenters; in the latter

case, the traffic between each pair of VNFs must be split-
ted through different logical links that connect the VMs
running the corresponding VNF instances.

Different requests for the same services may arrive over
time; we denote with Ks the set of all service requests
for service s, and characterize the generic service request
k ∈ K with its arrival time tarv(k) and departure time
tdpr(k). Due to slice isolation requirements [25], we assume
that the VNF instances of different service requests are not
shared with other service requests.

Example. Figure 1 represents a possible deployment
of two sample services, vehicle collision detection (VCD)
and video on-demand (VoD), on the physical graph (Fig-
ure 1c) in a single time step. VCD is a low-latency service
with a very low target delay DQoS, and VoD is a traffic
intensive service with a high λnew. Figure 1a and Fig-
ure 1b depict the VNFFGs of the VCD and VoD services,

4

Table 2: Notation (sets, variables, and parameters)

Symbol Description

D Set of datacenters
E Set of physical links
K Set of service requests
L Set of logical links
M Set of VMs
P Set of end-to-end paths
Q Set of VNFs
S Set of services
T Set of time steps
Ws Set of paths from ingress VNFs to egress

VNFs in VNF graph of service s

A(k,m, q, t) Whether to deploy VNF q of service re-
quest k at VM m at time t

D(k,m, q, t) Traffic departing VM m for VNF q of ser-
vice request k at time t

F (k, l, q1, q2, t) Equal to 1 when ρ(k, l, q1, q2, t) > 0
I(k,m, q, t) Traffic entering VM m for VNF q of ser-

vice request k at time t
L(e, t) Traffic on physical link e at time t
O(m, t) Whether VM m is active at time t
R(m, t) Average time for a request to be processed

at VM m at time t
U(m, t) Whether VM m is turning-on at time t
V (k, t) Whether service request k is active at

time t
µ(k,m, q, t) Service rate to assign to VM m for VNF

q of service request k at time t
ρ(k, l, q1, q2, t) Fraction of traffic from VNF q1 to q2 of

service request k, through logical link l at
time t

Symbol Description

B(e) Bandwidth of physical link e
Cdc(d) Computational capacity of datacenter d
Cvm(m) Computational capacity of VM m
DQoS(s) Target delay for service s
Dlog(l) Delay of logical link l
Dphy(e) Delay of physical link e
N(s, q) Maximum number of instances for VNF q

of service s
Xcpu(m) Cost for VM m to process one unit of com-

putation in one time step
Xidle(m) Fixed cost incurred when VM m is

turning-on or active in one time step
Xlink(e) Cost of data transmission through physical

link e in one time step
Xrev(s) Revenue from serving one traffic unit of

service s
Λ(s, q1, q2, t) Traffic from VNF q1 to q2 for service s at

time t
P(s, q1, q2, t) Probability that traffic processed at VNF

q1 is forwarded to VNF q2 of service s at
time t

α(s, q) Ratio of outgoing traffic to incoming traffic
for VNF q of service s

λnew(s) New traffic for service s
ω(q) Computation capability required for one

traffic unit at VNF q
tarv(k) Arrival time of service request k
tdpr(k) Departure time of service request k

respectively, where the numbers on the edges represent
the transition probability of traffic packets between cor-
responding VNFs. The physical graph contains a set of
datacenters D = {d1, d2, d3} with computational capabil-
ity Cdc. Datacenters are connected to each other using
a switch and physical links with bandwidth B and a la-
tency Dphy. VMs within each datacenter are denoted by
sets Md1 = {m1,m2}, Md2 = {m3,m4}, and Md3 =
{m5,m6,m7}, each with computational capability Cvm.
As depicted in Figure 1c, service VCD is deployed within
datacenter d2 to avoid inter-datacenter network latency.
Service VoD is deployed across datacenter d1 and third-
party datacenter d3. VNF transcoder, having high compu-
tational complexity ω, requires two instances in datacen-
ters d3 to fully serve the traffic.

3.2. Problem Formulation

In this section, we first describe the decisions that have
to be made to map the service requests onto network re-
sources. Then we formalize the system constraints and

the objective using the model presented in Sec. 3.1, along
with the decision variables we define. In general, given
the knowledge of the future arrival and departure times of
service requests, we should make the following decisions:

• service request activation, i.e., when service requests
get served;

• VM activation/deactivation, i.e., when VMs are set
up or terminated;

• VNF instance placement, i.e., which VMs have to
run VNF instances;

• CPU assignment, i.e., how much computational ca-
pability shall be assigned to a VM to run the de-
ployed VNF;

• traffic routing, i.e., how traffic between VNFs is routed
through physical links.

Service request activation. Let binary variable V (k, t) ∈
{0, 1} denote whether service request k is being served at

5

firewall collision	detector
11 1

(a)

0.3

0.7

load	balancer

cache

download transcoder
1 1

1

0.6

10.4

(b)

datacenterVMVNF switch

download

transcoder

transcoderfirewall

coll.	detection

load	balancer

cache

(c)

Figure 1: VNFFG of (a) vehicle collision detection (VCD) service
and (b) video on-demand (VoD) service. The number on edges
represents transition probability of traffic packets. (c) Physical

graph including three datacenters connected using a switch.

time t. Once admitted, a service request has to be pro-
vided for all its lifetime duration. Given service request
arrival time tarv(k) and departure time tdpr(k), this trans-
lates into:

V (k, t) = 0,∀k ∈ K, t ∈ T : t < tarv(k)∨t ≥ tdpr(k). (1)

VNF instances. The following constraint limits the
number of deployed instances of VNF q of any service re-
quest k ∈ Ks to be less than N(s, q) at any point in time:∑

m∈M
A(k,m, q, t) ≤ N(s, q),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q, (2)

where binary variableA(k,m, q, t) represents whether VNF
q of service request k is placed on VM m at time t. The
network slice isolation property of 5G networks prevents
VNF sharing among requests for different services. In ad-
dition, at most one VNF instance can be deployed on any
VM, i.e.,∑

k∈K

∑
q∈Q

A(k,m, q, t) ≤ 1, ∀m ∈M, t ∈ T . (3)

VM states. We define two binary variables U(m, t)
and O(m, t) to represent whether VM m is turning-on or
active at time t, respectively. We formulate a simple con-
straint to prevent VMs from being concurrently turning-on
and active at any time, i.e.,

O(m, t) + U(m, t) ≤ 1, ∀m ∈M, t ∈ T . (4)

The following constraint enforces that VM m can be active
at time t only if it has been turning-on or active in the

previous time step:

O(m, t) ≤ O(m, t− 1) + U(m, t− 1), ∀m ∈M, t ∈ T .
(5)

VMs are able to run VNFs only when they are active, i.e.,∑
k∈K

∑
q∈Q

A(k,m, q, t) ≤ O(m, t), ∀m ∈M, t ∈ T . (6)

Computational capacity. Let real variable µ(k,m, q, t)
represent the service rate assigned to VM m to run VNF
q of service request k at time t. Multiplying it by ω(q),
we have the amount of computation capability assigned to
VM m to run VNF q at time t. The limited computational
capability of datacenters and VMs denoted, respectively,
by Cdc(d) and Cvm(m), should not be exceeded at any
point in time. We describe such a limitation by imposing:∑

m∈Md

∑
k∈K

∑
q∈Q

µ(k,m, q, t) · ω(q) ≤ Cdc(d),

∀t ∈ T , d ∈ D, (7)

where the sum on the left-hand side of the inequality is
over all VMs within datacenter d. Similarly, for the VMs
we have

µ(k,m, q, t) · ω(q) ≤ A(k,m, q, t) · Cvm(m),

∀t ∈ T , k ∈ K, q ∈ Q,m ∈M, (8)

where A(k,m, q, t) on the right-hand side of the inequality
enforces zero service rate for VM m when no VNF is placed
therein.

KPI target fulfillment. Whenever a service request
is being served, i.e., V (k, t) = 1, all the traffic in the cor-
responding VNFFG should be carried by the underlying
physical links. The following constraint ensures this con-
dition for the traffic between each pair of VNFs at any
point in time:∑

l∈L

ρ(k, l, q1, q2, t) ≥ V (k, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q1, q2 ∈ Q : P(s, q1, q2, t) > 0. (9)

Real variable ρ(k, l, q1, q2, t) shows the fraction of traf-
fic from VNF q1 to q2 of service request k that is routed
through logical link l at time t. As mentioned, the traffic
flow from VNF q1 to VNF q2 may be splitted into several
logical links (see Eq. (2)). Moreover, since we consider
multi-path routing, there may be multiple logical links be-
tween each pair of VNF instances. Therefore, constraint
(9) implies that for any service request k requesting traffic
from VNF q1 to q2 at time t (i.e., P(s, q1, q2, t) > 0), the
sum of all fractional traffic going though any logical link,
should be equal to 1 at any time when the service request
is being served.

6

The above constraint does not include ingress and egress
traffic. To account for such contributions, we need to intro-
duce dummy nodes in the VNFFG and the physical graph.
We add an end-point dummy VNF, ◦ in every VNFFG,
which is directly connected to all ingress and egress VNFs
and a dummy VM in the physical graph which is directly
connected to all VMs. We define L◦ as the set of dummy
logical links which start from or end at the dummy VM.
We assume that dummy logical links are ideal, i.e., they
have no capacity limit and zero delay and cost. We can
now formulate the associated traffic constraints as:∑

l∈L◦

ρ(k, l, ◦, q, t) ≥ V (k, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q : P(s, ◦, q, t) > 0, (10)

∑
l∈L◦

ρ(k, l, q, ◦, t) ≥ V (k, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q : P(s, q, ◦, t) > 0, (11)

where ρ(k, l, ◦, q, t) and ρ(k, l, q, ◦, t) are the fraction of
new traffic entering ingress VNF q and the fraction of
traffic departing from egress VNF q, respectively, going
through logical link l at time t.

Placement. We can now correlate the routing deci-
sions ρ and the placement decisions A as

ρ(k, l, q1, q2, t) ≤ A(k,m, q2, t),

∀t ∈ T , k ∈ K, q1 ∈ Q ∪ {◦}, q2 ∈ Q,
m ∈M, l ∈ L ∪ L◦ : dst(l) = m. (12)

The above constraint implies that whenever there is an
incoming traffic to VNF q2 through logical link l whose
destination is VM m, i.e., dst(l) = m, VNF q2 is deployed
at VM m. Similarly, whenever there is an outgoing traffic
from VNF q1 through logical link l whose source is VM m,
i.e., src(l) = m, VNF q1 is deployed at VM m:

ρ(k, l, q1, q2, t) ≤ A(k,m, q1, t),

∀t ∈ T , k ∈ K, q1 ∈ Q, q2 ∈ Q ∪ {◦}
m ∈M, l ∈ L ∪ L◦ : src(l) = m. (13)

System stability. Let λ(s, q, t) denote the total in-
coming traffic of VNF q of service s at time t. λ(s, q, t)
equals the sum of ingress traffic and the traffic coming
from other VNFs to VNF q of service s at time t:

λ(s, q, t) = λnew(s) · P(s, ◦, q, t)+

+
∑

q′∈Q\{q}

λ(s, q′, t) · P(s, q′, q, t). (14)

Using λ(s, q, t), the amount of traffic from VNF q1 to
VNF q2 of service s at time t can be represented as:

Λ(s, q1, q2, t) = λ(s, q1, t) · P(s, q1, q2, t). (15)

We can now define an auxiliary variable to represent the
incoming traffic of VNF q of service request k, which enters
VM m at time t:

I(k,m, q, t) =
∑

q′∈Q∪{◦}

∑
l∈L∪L◦:
dst(l)=m

ρ(k, l, q′, q, t) · Λ(s, q′, q, t),

t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q,m ∈M, (16)

where the summation is over all logical links ending at
VM m. Finally, we describe the system stability require-
ment, which imposes the incoming traffic not to exceed the
assigned service rate for each VNF q of service request k
on VM m, at any point in time:

I(k,m, q, t) ≤ µ(k,m, q, t),

∀t ∈ T , k ∈ K, q ∈ Q,m ∈M. (17)

Generalized flow conservation. Our model cap-
tures the possibility of having VNFs for which, due to
processing, the amount of incoming and that of outgoing
traffic are different. We define the scaling factor α(s, q, t)
as the ratio of outgoing traffic to incoming traffic for VNF
q of service s at time t:

α(s, q, t) =

∑
q′∈Q∪{◦} Λ(s, q, q′, t)∑
q′∈Q∪{◦} Λ(s, q′, q, t)

, t ∈ T , s ∈ S, q ∈ Q.

(18)

We also define auxiliary variable D(k,m, q, t) to represent
the outgoing traffic of VNF q of service request k departing
VM m at time t:

D(k,m, q, t) =
∑

q′∈Q∪{◦}

∑
l∈L∪L◦:
src(l)=m

ρ(k, l, q, q′, t) · Λ(s, q, q′, t),

t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q,m ∈M, (19)

where the right-hand side enfolds all traffic flowing through
logical links starting from VM m. We can then formulate
the generalized flow conservation law for each VNF q of
service request k on VM m at time t:

D(k,m, q, t) = α(s, q, t) · I(k,m, q, t),

∀t ∈ T , s ∈ S, k ∈ Ks, q ∈ Q,m ∈M, (20)

which implies that for each VNF q of service request k
on VM m, at any time, the outgoing traffic is equal to the
incoming traffic multiplied by the scaling factor α(s, q, t).

Latency. End-to-end network latency for a traffic
packet of a service request is the time it takes to the packet
to be served by all VNFs along the path from the ingress
to the egress VNFs. Such a latency includes two contribu-
tions, namely, the network delay between pairs of VMs on
which subsequent VNFs are deployed and the processing
time at the VNFs themselves. The former can be defined
based on the delay of the logical links l, denoted by Dlog(l).

7

Such a delay is the sum of the delay of the underlying phys-
ical links:

Dlog(l) =
∑
e∈l

Dphy(e). (21)

We also introduce binary variable F (k, l, q1, q2, t) to rep-
resent whether logical link l is used for routing the traffic
from VNF q1 to q2 of service request k at time t. F can
be described as

ρ(k, l, q1, q2, t) ≤ F (k, l, q1, q2, t),

∀t ∈ T , k ∈ K, q1, q2 ∈ Q, l ∈ L. (22)

The traffic packets in the VNFFG follow a path p of log-
ical links in the underlying physical graph, which connect
all VNFs in the VNFFG. Let w ∈ Ws be the sequence
of VNFs, from an ingress VNF to an egress VNF in the
VNFFG of service s. The network delay of traffic packets
of service request k, which traverse the VNFs as specified
by w and go through the links belonging to p, is given by:∑

(q1,q2)∈w

∑
l∈p

F (k, l, q1, q2, t) ·Dlog(l). (23)

The processing time of VM m, denoted by R(m, t),
is the time it takes for a traffic packet to be completely
processed in the VM. Modeling each VM as a queue with
discipline PS (or, equivalently, FIFO), the processing time
of VM m at time t is [2]:

R(m, t) =
1∑

k∈K
∑
q∈Q (µ(k,m, q, t)− I(k,m, q, t))

,

m ∈M, t ∈ T . (24)

Then, the processing time incurred by the traffic packets
following the VNF sequence w, is given by:∑

q∈w

∑
m∈p

A(k,m, q, t) ·R(m, t). (25)

Finally, the experienced delay must be less than the target
delay, i.e.,∑

(q1,q2)∈w

∑
l∈p

F (k, l, q1, q2, t) ·Dlog(l)+

+
∑
q∈w

∑
m∈p

A(k,m, q, t) ·R(m, t) ≤ DQoS(s),

∀t ∈ T , s ∈ S, k ∈ Ks, w ∈ Ws, p ∈ P. (26)

Our model supports the case where a sequence of VNFs
in the VNFFG enforces a specific delay requirement. Let
w ∈ Ws be a sequence of VNFs in the VNFFG of service
s that requires additional delay requirement DQoS(s, w).
The experienced delay in w must be less than DQoS(s, w),

i.e., ∑
(q1,q2)∈w

∑
l∈p

F (k, l, q1, q2, t) ·Dlog(l)+

+
∑
q∈w

∑
m∈p

A(k,m, q, t) ·R(m, t) ≤ DQoS(s, w),

∀t ∈ T , s ∈ S, k ∈ Ks, w ∈ Ws, p ∈ P. (27)

Link capacity. The traffic on any physical link should
not exceed the maximum link capacity, B(e). To formalize
this constraint, we define the auxiliary variable L(e, t) to
represent the traffic on physical link e at time t. This
variable is equal to the total traffic between each pair of
VNFs which goes through the logical link l containing the
physical link e:

L(e, t) =
∑
s∈S

∑
k∈Ks

∑
q1,q2∈Q

∑
l∈L:
e∈l

Λ(s, q1, q2, t) · ρ(k, l, q1, q2, t).

(28)

The link capacity constraint is expressed as

L(e, t) ≤ B(e), ∀e ∈ E , t ∈ T . (29)

Objective. The goal of the optimization problem is to
maximize the service revenue while minimizing the total
cost. Services may belong to different categories such as
ultra-reliable low-latency communications (URLLC), en-
hanced mobile broadband (eMBB), or massive machine-
type communications (mMTC) with different requirements
for which the revenue should account. The revenue ob-
tained by serving one unit of traffic of service s is indicated
as Xrev(s), which allows for the support of any arbitrary
revenue scenario. For example, such a quantity can be in-
versely proportional to the target delay of service s, i.e.,
1/DQoS(s), implying that serving services with lower tar-
get delay yield higher revenue for the MNO. The total
revenue is expressed as

R =
∑
t∈T

∑
s∈S

∑
k∈Ks

Xrev(s) · V (k, t) · λnew(s). (30)

The total cost is the sum of the transmission cost in phys-
ical links, computational and idle costs in VMs, which are
described, respectively, as:

Clink =
∑
t∈T

∑
e∈E

Xlink(e) · L(e, t), (31)

Ccpu =
∑
t∈T

∑
m∈M

∑
k∈K

∑
q∈Q

Xcpu(m) · µ(k,m, q, t) · ω(q),

(32)

Cidle =
∑
t∈T

∑
m∈M

Xidle(m) · (U(m, t) +O(m, t)). (33)

The above costs are expressed per unit of time and de-
pend, respectively, on a proportional cost Xlink(e) paid

8

for each physical link e per unit of traffic, a proportional
cost Xcpu(m) for each VM m paid per unit of computation,
and a fixed cost Xidle(m) for each VM m paid if VM m
is turning-on or active. Finally, we write the optimization
formulation as:

max [R− (Clink + Ccpu + Cidle)]

subject to (1)–(13), (17), (20), (26) and (29) (34)

We note that the above optimization contains both
continuous (e.g., µ(k,m, q, t)) and integer (e.g., A(k,m, q, t))
variables with non-linear constraints (26) and (27), hence
it is an MINLP.

3.3. Problem Complexity

The problem of jointly making decisions about VM
activation, VNF placement, CPU assignment, and traffic
routing formulated above contains both integer and real
decision variables, hence it is non-convex. In the following,
we prove that the problem is NP-hard, through a reduc-
tion from the weight constrained shortest path problem
(WCSPP) to a simpler version of our own.

Theorem 1. The problem mentioned in Sec. 3.1 is NP-
hard when the objective value is greater than zero.

Proof. We reduce an NP-hard problem, called weight
constrained shortest path problem (WCSPP) [26], to our
problem. Given a graph G(V,E), and the cost and weight
associated with the edges, the WCSPP asks to find the
minimum cost route between two specified nodes while en-
suring that the total weight is less than a given value. We
consider a special case of our problem where only one ser-
vice request with a chain of two VNFs arrives at t = 1
and departs in the next time step. We set the maximum
number of instances for both VNFs to one. There are only
two VMs in the physical infrastructure, with Cvm(m) =∞
and Xcpu(m) = Xidle(m) = 0; the remaining are network
nodes. We set Cdc(d) = ∞,∀d ∈ D. Then, it is easy to
see that WCSPP is equivalent to the special case of our
problem when the objective value is greater than zero.

Beside complexity, solving the problem formulated in Sec. 3.2
assumes that the entire knowledge of arrival and departure
times of all service requests is available, which is not real-
istic in many scenarios. As detailed below, to cope with
this issue, our strategy is to periodically solve our problem,
with each problem instance leveraging only the informa-
tion about the past and the current service requests.

4. The MaxSR Solution

In light of the problem complexity discussed above, we
propose a heuristic solution called MaxSR, which makes
decisions (i) only concerning a subsequent time interval
encompassing the present and the near future, which can

be predicted with high accuracy (as it will be discussed
in Sec. 6), and (ii) based on the knowledge of the service
requests occurring within such time interval. More pre-
cisely, starting from time step t, MaxSR makes decisions
concerning the current service requests and accounting for
a time horizon H, i.e., extending till t + H. After τ time
steps, where τ ≤ H, MaxSR is executed again account-
ing for the next time interval, i.e., [t+ τ, t+ τ +H). This
implies that, although decisions are made accounting for a
time horizon equal to H, they will be enacted just until the
next execution of MaxSR. In other words, τ specifies the
number of time steps between consecutive executions of
the algorithm. At each execution, the algorithm computes
the decisions, even for the current service requests allowing
them to migrate to released cheaper resources. Note that
a migration cost can be accounted for by incorporating
this value into the cost of the resources towards which a
migration could take place. Even with such a limited time
horizon, directly solving the problem defined in Sec. 3.2
is still NP-hard. To walk around this limitation, at every
execution, MaxSR processes the service requests received
in the last τ time steps sequentially, i.e., one request at a
time. In the following, we provide an overview of MaxSR
in Sec. 4.1, and we detail the algorithms composing our
heuristic in Sec. 4.2.

4.1. Overview

At every execution, MaxSR first considers service re-
quests in decreasing order based on the corresponding ser-
vice revenue. It then activates the necessary VMs for serv-
ing the first service request, trying to map the VNF se-
quence w onto a path p connecting the VMs deemed to
host the required VNFs. While doing this, more than
one instance can be created for a VNF if necessary to
meet the service target delay. To this end, we associate
with each VNF a delay budget, which is proportional to
the VNF computational complexity ω(q). Such budget,
however, is flexible, since the delay contribution of a VNF
exceeding its delay budget may be compensated for by a
subsequent VNF on w, which is deployed in a VM able to
process traffic faster than what indicated by the VNF bud-
get. Additionally, MaxSR exploits a backtrack approach:
in case of lack of sufficient resources at a certain point
of current path p, the algorithm can go back to the last
successfully deployed VNF and looks for an alternative
deployment (hence path), leaving more spare budget for
subsequent VNFs. None the less, it may prove impossible
to find enough resources to accommodate the traffic and
delay constraint of a given VNF instance; in this case, the
service request is rejected.

The decisions that MaxSR makes are summarized be-
low.

Placement. MaxSR aims to minimize the placement
cost. This implies that the number of deployed VNF in-
stances should be low, and the selected VMs should have
a low cost. The algorithm thus starts from one instance
and chooses the lowest-cost VM among the available ones.

9

If this placement is not feasible, it tries the highest ca-
pacity VM to avoid the use of an extra instance. If the
latter strategy is also infeasible, it increases the number
of instances and repeats the process until a successful de-
ployment is possible, or the limit on the maximum number
of instances is reached (Alg. 2 and Alg. 3).

Routing. Recall that each VNF may have several in-
stances and that such instances may be deployed on VMs
connected through multiple logical links. MaxSR adopts
a water-filling approach to route the traffic between each
pair of VNFs through different logical links between a pair
of VMs. To limit the processing time at each VM, the
traffic entering each VM is properly set based on the VM
available capacity (Alg. 3).

CPU assignment. MaxSR aims to keep the service rate
of the used VMs as low as possible, in order to reduce the
consumption of computing resources, hence the cost. This
means setting the lowest service rate compatible with the
per-VNF delay budget, except when we have to compen-
sate for a VNF exceeding its delay budget; in the latter
case, the algorithm opts for the maximum service rate on
the VM (Alg. 4).

Algorithm 1: Main body of MaxSR algorithm

Input: t,H, Kt,H ← {k ∈ K :
[t, t+H) ∩

[
tarv(k), tdpr(k)

)
6= ∅}

Output: result sets Rp := {µ(k,m, q)},
Rr := {r(k, l, q1, q2)}, VM states

1 Rp ← ∅,Rr ← ∅
2 R(k)← Xrev(s) · (min {t+H, tdpr(k)} −

max {t, tarv(k)}) · λnew(s),∀s ∈ S, k ∈ Ks ∩ Kt,H
3 sort k ∈ Kt,H by R(k) in desc. order
4 forall k ∈ Kt,H do
5 call BSRD(k) and update Rp and Rr
6 VM-Activation(Rp)

4.2. Algorithms

Alg. 1. It is the main body of the MaxSR heuristic,
taking as input time horizon H, the current time step t,
and the set Kt,H of service requests which should be served
in the time horizon [t, t+H). Line 2 calculates service rev-
enue R(k) for each request k, based on the expected traffic
to be served in the time horizon and the expected revenue,
i.e., Xrev(s) for service s. The algorithm sorts the service
requests in Line 3 in descending order, according to R(k).
It then calls BSRD for each request, in order to determine
whether and how to serve it within the time horizon. If the
request can be served, the resulting VNF placement/CPU
assignment and routing decisions are stored in Rp and in
Rr, respectively. For each served request, Rp will then
contain a tuple per each VNF instance that specifies the
allocated VM and its assigned service rate, while Rr will
contain a tuple for each pair of VNF instances, determin-
ing the amount of traffic on their connecting logical link(s).

Finally, the VMs required for running the service request
are activated if not already active; we recall that it takes
one time step to activate them (turning-on state), and they
will remain up till the service departure time.

Algorithm 2: Backtracking-based service re-
quest deployment (BSRD)

Input: service request k of service s
Output: Rp,Rr

1 i← 1; status← normal; can-backtrack← false;
C ← ∅, Rp ← ∅; Rr ← ∅

2 ∆(s, q)← ω(q)/
∑|Qs|
j=1 ω(Qs(j)),∀q ∈ VNF chain

of s
3 while i ≤ number of VNFs do
4 if status is normal then
5 for n← 1 to N(s,Qs(i)) do
6 for strategy ∈ {cheapest, largest} do
7 call VPTR(k, i, n, strategy) and

CA(k, i)
8 if deployment is successful then

break

9 else if status is critical then
10 can-backtrack← false

11 call VPTR(k, i,N(s,Qs(i)), largest) and
CA(k, i)

12 if i-th VNF is successfully deployed then
13 if status is normal then can-backtrack ←

true

14 Update Rp,Rr, status← normal, i← i+ 1

15 else . i-th VNF is not deployed
16 status ← critical

17 if can-backtrack then
18 Discard Rp,Rr for (i− 1)-th VNF,

i← i− 1

19 else if fail is due to delay budget then
20 Update Rp,Rr, i← i+ 1

21 else . fail is due to traffic
22 terminate and discard Rp and Rr

23 if result sets are not feasible then
24 terminate and discard Rp and Rr

Alg. 2. Given service request k for service s as an in-
put, the goal of Alg. 2 is to check whether all VNFs of s
can be deployed with the available resources. If it is pos-
sible, the request is served and the result sets Rp and Rr
are returned. The global boolean variables status and can-
backtrack represent the deployment status and the possi-
bility of backtracking, respectively. status is critical if
the last VNF deployment has failed, and normal other-
wise. The global cache C is a set of results that facilitates
the backtracking operation (see Alg. 3). The algorithm
starts in normal mode; clearly, backtracking is not allowed

10

for the first VNF in the VNFFG and cache C is empty
(Line 1). The algorithm starts by assigning a delay bud-
get to each VNF of the service, which is proportional to
the VNF computational complexity (Line 2), where Qs(j)
denotes the j-th VNF in the VNFFG. Then, it goes across
the sequence of VNFs starting from the ingress VNF and
deploys them one by one.

For each VNF, Lines 4-11 decide on the number of
required instances and the VM selection strategy, based
on the deployment status. The strategy can be cheapest

or largest: the algorithm selects VMs with the lowest
cost when the strategy is cheapest, and with the high-
est capacity when the strategy is largest. The first part
(Lines 5-8) deploys the VNF in the normal mode. Since
the algorithm aims to keep the number of required VNF
instances as low as possible, it starts with one instance
and the cheapest strategy and calls VPTR to determine
placement and routing, and CA to determine the CPU as-
signment. The deployment is successful if neither of these
algorithms fails. If the cheapest strategy does not yield
a successful deployment for the VNF, the algorithm keeps
the number of instances fixed and tries the largest strat-
egy. If both strategies fail, the number of instances is in-
creased by one and the process is repeated. The algorithm
ends whenever a successful deployment is found (Line 8),
or the maximum number of instances is reached.

Lines 12-22 decide how to proceed in the VNF sequence
according to the result of deployment, status and can-
bakctrack. If the deployment is successful (Line 12), the
algorithm updates the result set, sets status to normal

and proceeds to the next VNF in the VNFFG (Line 14).
can-backtrack is also updated in Line 13, which means
that backtracking is allowed for the next VNFs only when
we have a successful deployment in the normal mode for
the current VNF: this prevents the algorithm to back-
track again to a VNF, which has already been deployed
in critical mode. Otherwise (Line 15), status is set to
critical and the algorithm proceeds as follows. As the
first attempt, it tries to refine the placement in the previ-
ous step. Thus, if backtracking is allowed, it reverts the
result sets related to the previous VNF in the VNFFG
and goes back to deploy it again (Line 18). When the de-
ployment fails but backtracking is not possible, due to a
violation of the delay budget, the algorithm preserves the
current deployment in the result set and proceeds to the
next VNF, hoping to compensate for the exceeded delay
budget (Line 20). If neither option is viable, the algorithm
decides not to serve the current service request and reverts
all result sets related to its deployment (Line 22).

Lines 10-11 deploy the VNF when status is critical,
i.e., when the previous VNF deployment has failed. This
VNF is either the next VNF in the VNFFG when the algo-
rithm is in the backtracking phase, or the previous VNF
when the algorithm is going to compensate for the ex-
ceeded delay budget by the current deployment. In either
case, the algorithm chooses the fastest option to deploy the
VNF, regardless of the cost, using the maximum number

of instances and largest strategy. Finally, the algorithm
checks the feasibility of the decisions made with regard
to the datacenter capacity and service target delay after
each VNF deployment in Line 23. For the former, it is
enough to check that the total computational capability
assigned to VMs within each datacenter does not exceed
its maximum capacity, i.e., for each datacenter d,∑

µ(k,m,q)∈Rp:m∈Md

µ(k,m, q) · ω(q) ≤ Cdc(d). (35)

Traffic packets belonging to a service may go through dif-
ferent end-to-end paths in the physical network and ex-
perience different end-to-end delays. We define δ̄(k,m, q)
as the maximum end-to-end delay that traffic packets be-
longing to service request k experience from the ingress
VNF until they depart VM m which hosts an instance of
VNF q. Thus, after deploying VNF q of service request
k ∈ Ks, it is enough to check that this delay for any VM
m, hosting an instance of q, does not exceed the service
target delay:

δ̄(k,m, q) ≤ DQoS(s). (36)

Alg. 3. It determines the placement and traffic routing
for the i-th VNF of request k of service s, using n instances
and the given strategy. Line 1 initializes (q1, q2) to the i-th
VNFs pair in the VNFFG of service s, the routing result
set Rr to ∅, and the remaining unserved traffic between
q1 and q2, i.e., Λ′, to Λ(k, q1, q2, t). The first pair of VNFs
is (◦, q1) with the assumption that the dummy VNF ◦ is
placed on the dummy VM. In Lines 2-3, first the remaining
capacity of each logical link l is calculated and stored in
B′log(l) and then the ones that have a remaining capacity
greater than zero, host VNF q1 on their source VM, and
host no VNF on their destination, are picked and stored
in the set Ltop. The links in Ltop and their destination
VMs are the only potential candidates for this algorithm
to place instances of the i-th VNF and accommodate its
incoming traffic Λ′. In other words, in the rest of the algo-
rithm, we consider the joint logical link and its destination
VM as one entity and pick the best ones according to the
strategy and n. If the selected entities cannot fit the in-
coming traffic, the placement fails; none the less, we still
preserve the amount of satisfied traffic in the cache and
exploit this information in the backtracking phase.

The implementation speed of the backtrack operation
is greatly improved by caching. Specifically, when Alg. 3 is
called in the backtracking phase to refine the placement of
i-th VNF, the cache contains results which determine the
routing of a portion of the outgoing traffic of the (i + 1)-
th VNF to the (i+ 2)-th VNF, which was satisfied by the
previous deployment of the (i+1)-th VNF in the VNFFG.
Lines 4-6 exploit the cached results and accommodate the
unserved portion of incoming traffic by using different in-
stances, which helps the next deployment of the (i + 1)-
th VNF to fully serve its traffic. For instance, assuming
α(s,Qs(i+ 1)) = 1 and that the placement of the (i+ 1)-
th VNF has failed by Λ′ unserved traffic, the backtrack-

11

Algorithm 3: VNF placement and traffic routing
(VPTR)

Input: k ∈ Ks, i, n, strategy
1 (q1, q2)← (Qs(i− 1), Qs(i)); Rr ← ∅;

Λ′ ← Λ(s, q1, q2, t);
2 B′log(l)← remaining capacity of l,∀l ∈ L
3 L′ ← {l ∈ L ∪ L◦ :

q1 is on src(l) ∧ dst(l) is free ∧B′log(l) > 0}
4 if C 6= ∅ then . cache is not empty
5 Fill l ∈ L′ : dst(l) = m, consiedring limit

D(k,m,q)
α(s,q) , ∀D(k,m, q) ∈ C : q = q2

6 Update Rr,Λ′, n,L′; C ← ∅
7 if strategy is cheapest then
8 sort l ∈ L′ by

ω(q2) ·Xcpu(dst(l)) +
∑
e∈lXlink(e) in asc.

order
9 else if strategy is largest then

10 sort l ∈ L′ by min {B′log(l),
Cvm((dst(l))

ω(q2) } in

desc. order
11 Ltop ← Pick top l ∈ L′ as much as possible such

that |{dst(l) : l ∈ Ltop}| = n
12 Mtop ← {dst(l) : l ∈ Ltop}
13 Î(k,m, q2)← Cvm(m)∑

m′∈Mtop
Cvm(m′) · Λ

′,∀m ∈Mtop

14 C ′vm(m)← Cvm(m),∀m ∈Mtop

15 forall l ∈ Ltop do

16 c(l)← min{B′log(l),
C′vm(dst(l))
ω(q2) }

17 r(k, l, q1, q2)← Fill l by remaining outgoing
traffic of q1 on src(l) considering c(l) and
limit Î(k, dst(l), q2)

18 Update Λ′, B′log(l), C
′
vm(dst(l));

Rr ← Rr ∪ {r(k, l, q1, q2)}
19 if Λ′ > 0 then
20 Preserve D(k,m, q1) in cache C such that q1 is

on m
21 return fail, ∅
22 return success, Rr

ing step will have to accommodate only Λ′ traffic on extra
VMs, i.e., the routing and placement results for the served
traffic portion, D(k,m, q2) ∈ C, will not change.

The pairs of logical links and the connected VMs will
be selected for placement and routing based on the given
strategy. If the strategy is cheapest, they will be sorted
according to the cost of the logical link plus the VM CPU
cost in ascending order (Line 8). If the strategy is largest,
we sort them in descending order by the minimum of the
remaining capacity of the logical link and the VM (Line 10).
Line 11 picks the biggest set of top logical links such that
the number of unique destination VMs is equal to the num-
ber of instances, i.e., n, and stores them in Ltop. Note that
there may be multiple logical links with the same desti-
nation VM in this set, and therefore we should pick the

largest set to increase the chance of fitting the traffic. If
the number of unique destination VMs is less than n, Ltop

will be empty and the placement fails. Otherwise, we store
destination VMs corresponding to logical links l ∈ Ltop in
set Mtop (Line 12).

To avoid an exceedingly high processing time, Line 13
introduces a limit for the amount of traffic entering a given
VM m ∈ Mtop, proportional to the VM maximum com-
putational capacity. Notice that all logical links ending
at the same destination VM have the same limit. The
remaining computational capacity of each selected VM,
C ′vm(m), is initialized to its maximum Cvm(m) (Line 14).
The algorithm adopts a water-filling approach to fill the
logical links in Lines 15-18. First, for each logical link l
and its connected VM dst(l), the remaining capacity, i.e.,
the minimum of the remaining capacities of l and dst(l),
is stored in c(l) (Line 16). Then, logical link l is filled by
the remaining unserved outgoing traffic of VNF q1 on VM
src(l), so that neither c(l) limit on the capacity of logical
link l nor the Î(k,m, q2) limit on the incoming traffic of
VM dst(l) are violated. Line 18 updates the remaining
unserved traffic from q1 to q2 (Λ′), the remaining capacity
of logical link l (B′log(l)), the remaining capacity of des-
tination VM (C ′vm(dst(l))), and routing result set (Rr).
Finally, if there is still some unserved traffic from VNF q1

to q2 (i.e., not all the traffic can be served), the algorithm
returns fail (Lines 19-21). Line 20 preserves the satis-
fied outgoing traffic of VM m hosting an instance of VNF
q1, i.e., D(k,m, q1), in the cache, so as to use it later on
in case of backtracking. Otherwise, the algorithm returns
success with the placement result set Rp.

Alg. 4. It is called in Line 7 and Line 11 of Alg. 2 when
the deployment of VNF q in Alg. 3 is successful. Given the
result setRr, this algorithm is responsible for assigning the
service rates to VMs for running the deployed instances of
VNF q. After initialization, in Line 2, Ldep defines the
set of the logical links used for routing a part of traffic
from any instance of VNF q1 to any instance of VNF q2.
We store the VMs on which VNF q2 is already deployed
in the set Mdep (Line 3). Then, for each m ∈ Mdep, we
calculate the incoming traffic through the sum of traffic
from all logical links ending in VM m, and store it in
I(k,m, q2) in Line 5.

δ̌(k,m, q2) represents the maximum end-to-end delay
that traffic packets experience from the ingress VM to VM
m, which hosts an instance of VNF q2, but before being
processed by m. For each logical link l ∈ Ldep where
dst(l) = m, this delay is equal to the sum of the maximum
end-to-end delay of traffic packets after being processed by
VNF q1 on VM src(l), i.e., δ̄(q1, src(l)), and the delay of
logical link l, i.e., Dlog(l). Taking the maximum over all
such logical links, we have δ̌(k,m, q2) in Line 6.

Similar to the VNF deployment in Alg. 3, the algo-
rithm assigns service rates to VMs based on the deploy-
ment status. In the critical mode, the algorithm aims
to reduce the delay contribution, which depends on logi-
cal links delay and processing time on VMs. The logical

12

Algorithm 4: CPU assignment (CA)

Input: k ∈ Ks, i,Rr
1 (q1, q2)← (Qs(i− 1), Qs(i)); Rp ← ∅;
2 Ldep ← {l ∈ L : ∃r(k′, q′1, q′2, l) ∈ Rr : k′ =

k ∧ q′1 = q1 ∧ q′2 = q2 ∧ r(k′, q′1, q′2, l) > 0}
3 Mdep ← {m ∈M : ∃l ∈ Ldep : dst(l) = m}
4 for m ∈Mdep do
5 I(k,m, q2)←∑

r(k,l,q1,q2)∈Rr:dst(l)=m r(k, l, q1, q2)

6 δ̌(k,m, q2)←
max

l∈Ldep:dst(l)=m

(
δ̄(k, src(l), q1) +Dlog(l)

)
7 if status is critical then

8 µ(k,m, q2)← Cvm(m)
ω(q2)

9 else . status is normal

10 µ(k,m, q2)←
I(k,m, q2) + 1∑i

j=1 ∆(s,Qs(j))−δ̌(k,m,q2)

11 if µ(k,m, q2) /∈ (I(k,m, q2), Cvm(m)
ω(q2)] then

12 µ(k,m, q2)← Cvm(m)
ω(q2)

13 Rp ← Rp ∪ {µ(k,m, q2)}
14 δ̄(k,m, q2)← δ̌(k,m, q2) + 1

µ(k,m,q2)−I(k,m,q2)

15 if maxm∈Mdep
δ̄(k,m, q2) >

∑i
j=1 ∆(s,Qs(j))

then
16 return fail, Rp
17 return success, Rp

links are already selected by the VPTR algorithm, thus
here we assign the maximum possible service rate for the
VM to reduce the processing time (Line 8). Instead, when
the algorithm is in normal mode, it chooses the minimum
possible service rates for VM m (Line 10), such that the
VNFs delay budget do not violate, i.e.

i∑
j=1

∆(s,Qs(j))− δ̌(k,m, q2) =
1

µ(k,m, q2)− I(k,m, q2)
.

(37)
In the above equation, the right- and left-hand sides repre-
sent the processing time of VM m and the remaining delay
budget of VNFs, respectively. To compute the latter, first
it is calculated the total delay budget of the VNFs up to
the i-th one (i.e., the current one). Then, it is subtracted
by the maximum end-to-end delay of traffic packets, before
being processed by VNF q2 on VM m, i.e., δ̌(k,m, q2).

The computed service rate for VM m may be invalid
because (i) no delay budget is left to process the cur-
rent VNF on VM m, i.e., the left-hand side of equality
in (37) becomes non-positive, or (ii) the assigned service
rate exceeds the maximum capability of the VM. In both
cases, the CA algorithm fails, however, the VM is assigned
to its maximum computational capability to process the
VNF (Line 12). Recall that, although the CPU assign-

ment failed for the current VNF, the algorithm keeps the
results to be used in Alg. 2 (Line 19) when backtracking
is not allowed. In this case, the algorithm continues with
the next VNF and tries to compensate for the exceeded
delay budget. Line 13 stores the results, and Line 14 up-
dates δ̄(k,m, q2) for this VM that shows the maximum
end-to-end delay after the packets are processed by VM
m. Finally, when all service rates have been assigned, the
algorithm returns fail if the remaining delay budget is
violated for at least one VM (Line 15), and success oth-
erwise.

4.3. Computational Complexity

The MaxSR heuristic takes the set of physical links E ,
service requests K, and their VNFFG Qs, VMs M, and
logical links L as inputs. Note that L is considered as
an input since it is computed once for all executions of
MaxSR algorithm. Below, we prove that this algorithm
has a worst-case polynomial complexity in terms of input
parameters.

Theorem 2. The MaxSR algorithm has a worst-case poly-
nomial computation complexity.

Proof. First, we determine the complexity of the VPTR
and CA algorithms. VPTR constructs and sorts the set L′
in O(|L| log |L|) and adopts water filling to fill the logi-
cal links in O(L), thus the total time complexity of this
algorithm is O(|L| log |L|). CA also has O(L) complexity,
hence the total computational complexity of VPTR and
CA remains equal to that of VPTR. Alg. 1 sorts the service
requests in O(|K| log |K|) and calls BSRD for each service
request. In the worst-case, BSRD tries every possible num-
ber of instances and strategies for all VNFs in the VNFFG
of the given service request. Let N and Q be upper bounds
on the maximum number of instances, i.e. N(s, q),∀s ∈
S, q ∈ Q, and the number of VNFs in a VNFFG, i.e.
|Qs|,∀s ∈ S, respectively. Thus, the total time complex-
ity of BSRD is O(NQ|L| log |L|) and total time complexity
of Alg. 1 is O

(
|K|NQ|L| log |L| + |K| log |K|

)
. Therefore,

the worst-case total time complexity is polynomial in terms
of input parameters. In other words, the complexity of the
heuristic depends primarily on the number of service re-
quests, the number of VNFs in each VNFFG, the number
of deployment attempts for each VNF, and the number of
logical links.

5. Numerical Results

We now present the results of the numerical experi-
ments we conducted, and show that the proposed scheme
consistently outperforms a state-of-the-art approach and
closely matches the optimum. We take the well-known
Best-Fit approach as a baseline, as this is followed by many
state-of-the-art works (e.g., [5, 8, 15, 18]). We compare our
heuristic algorithm against the following benchmarks:

13

Table 3: List of services

Service DQoS λnew Xrev Application
(ms) (Mb/s) (e/Gb)

s1 10 3 100 safety apps. (e.g.,
vehicle collision
detection)

s2 45 10 22.2 real-time apps (e.g.,
gaming)

s3 80 15 12.5 soft real-time apps
s4 2500 400 0.4 delay-tolerant apps

(e.g., video
streaming)

• Global optimum. The solution of the optimization
problem defined in Sec. 3.2 obtained by brute-force
search, assuming exact knowledge of arrival and de-
parture times of all service requests.

• Best-fit. It is an online algorithm which decides
about each service request upon its arrival, without
any information about the future service requests.
Best-Fit deploys VNFs of a service request one by
one, using a single instance of each VNF and the
cheapest strategy. If the request can be served, the
selected resources will be dedicated to the service
request until its departure.

In our performance evaluation, we use the following per-
formance metrics:

• Service revenue, defined as the sum of revenues
achieved by serving service requests. For a single
request of service s, this metric equals the amount
of served traffic multiplied by Xrev(s).

• Cost/traffic, which reflects the average cost incurred
to serve a unit of traffic.

In the following, we first consider a small-scale network
scenario, for which the optimum solution can be obtained
in a reasonable time. This scenario will give interesting
and easy-to-interpret insights regarding how each service
type impacts the revenue and cost/traffic ratio. Then,
we run MaxSR and Best-Fit in a large-scale real network
scenario, where achieving the optimum solution is imprac-
tical. Table 3 summarizes the services we consider for our
performance evaluation, inspired to real-world 5G appli-
cations. The revenue gained from serving one unit of traf-
fic of service s, i.e., Xrev(s), is set inversely proportional
to the service target delays. We assume that the service
requests arrive according to a Poisson process, and the
duration of requests follows an exponential distribution.

In both scenarios, we study the impact of traffic and
delay on the performance metrics by multiplying traffic ar-
rival rates λnew and physical link delays Dphy(e) by differ-
ent factors. We run each experiment 50 times and report

Table 4: Different VM types in datacenters

VM type Cvm Xcpu Xidle

(MIPS) (e/MIPS/hour) (e/hour)

Small 600 2× 10−5 0.018
Medium 1200 4× 10−5 0.036

Large 1800 6× 10−5 0.054

 0

 2

 4

 6

 8

 10

 12

 14

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

S
er

v
ic

e
re

v
eu

e
(€

)

Arrival traffic multiplier

Optimum
MaxSR
Best-Fit

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o
st

/t
ra

ff
ic

 (
€

/G
b
)

Arrival traffic multiplier

Optimum
MaxSR
Best-Fit

(b)

Figure 2: Small-scale scenario. Impact of service requests arrival
traffic on absolute value of service revenue and cost/traffic ratio.

Physical link delay = 2 ms.

the average value for each point in the figures. In general,
MaxSR, taking advantage of backtracking, achieves close
to the optimum service revenue better than Best-Fit. How-
ever, the value of cost/traffic ratio depends on how tight
the target delay is. When the target delay is small, the
chance of backtracking increases; therefore, MaxSR incurs
more cost to serve the requests.

5.1. Small-scale Scenario

We consider two pairs of VMs of different types, i.e.,
small and medium as described in Table 4. Pairs of VMs
inside are connected using a physical link: physical links
between small and medium types VMs have cost of 0.02 e/Gb
and 0.04 e/Gb per hour, respectively, while their latency
varies from 1 ms to 7 ms with the default value set to 2 ms,
and we disregard the link capacity. The time needed to
setup a VM is one minute.

We consider two simple services s1 and s2, each having
a chain of two VNFs with target delays 10 ms and 45 ms,
and with input traffic rates 3 Mb/s and 15 Mb/s, respec-
tively (as summarized in Table 3). In this scenario, we set
N(s, q) = 1 for all VNFs, an average duration of 3 min-
utes for each service, and we assign them randomly to the
arrival points of a Poisson process with an average rate of
0.5 requests per minute, while the total system lifespan is
set to 10 minutes.

Impact of Physical Link latency and Arrival Traf-
fic. Figure 2 shows the impact of the traffic arrival inten-
sity on the service revenue and cost/traffic ratio. MaxSR
matches the optimum, and Best-Fit performs close to the
optimum in both service revenue and cost/traffic ratio.
As it has no backtracking mechanism, Best-Fit does not
serve a request whenever any of its VNFs cannot be served
within its delay budget, i.e., it has no budget flexibility;

14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7

S
er

v
ic

e
re

v
eu

e
(€

)

Physical link delay (ms)

Optimum
MaxSR
Best-Fit

(a)

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7

C
o
st

/t
ra

ff
ic

 (
€

/G
b
)

Physical link delay (ms)

Optimum
MaxSR
Best-Fit

(b)

Figure 3: Small-scale scenario. Impact of physical link latecy on
absolute value of service revenue and cost/traffic ratio. Arrival

traffic multiplier = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s1 s2 s1 s2

F
ra

c.
 o

f
d
ep

.
se

rv
ic

e
re

q
s.

Low cost resources
High cost resources

OptimumMaxSRBest-Fit

(a) Physical link delay = 3 ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s1 s2 s1 s2

F
ra

c.
 o

f
d
ep

.
se

rv
ic

e
re

q
s.

Low cost resources
High cost resources

OptimumMaxSRBest-Fit

(b) Phsysical link delay = 7 ms.

Figure 4: Fraction of deployed service requests for each service and
algorithm. Arrival traffic multiplier = 1.

therefore, it achieves lower service revenue than the opti-
mum. While the cost of physical links increases propor-
tionally to the traffic, the costs of VMs in turning-on mode
remains constant, and their cost in active mode increases
less than proportionally with the traffic; the resulting ef-
fect is that cost/traffic ratio decreases with the traffic –
which conforms to the intuitive notion that serving larger
amounts of traffic is more cost-efficient. Best-Fit incurs
more cost compared to MaxSR and optimum because it
does not support VNF migration, causing a VNF to con-
tinue running on a high-cost VM even if a low-cost VM
becomes available. The excess VMs CPU cost and trans-
mission cost scale with the traffic, whereas the excess VMs
idle cost remains constant; therefore, the difference be-
tween Best-Fit and optimum becomes smaller as traffic
increases.

Figure 3 shows the impact of physical link latency on
the service revenue and cost/traffic ratio. For all latency
values, MaxSR is still able to achieve optimum service rev-
enue. As shown in Figure 4a, no strategy (not even opti-
mum) can serve all requests when the physical link delay
is 3 ms especially, for service s2. The reason is that when
the number of concurrent requests becomes more than two,
both optimum and MaxSR give the priority to the high-
revenue service s1 and requests for s2 will only be pro-
cessed if resources are available. When the physical link
delay increases, service requests need more computational
capacity on VMs to meet their target delay, in order to off-
set longer network delays. Specifically, when the physical
link delay is 7 ms, requests of type s1 can only be served
on high-capacity VMs, and therefore, concurrent requests

Figure 5: Cogent Network Topology.

of this type can not be served. This is confirmed by the
degradation of the optimum in Figure 3a, and in Figure 4b,
where the fraction of served requests of type s1 becomes
less than 1 when the physical link delay is 7 ms.

Best-Fit gains substantially lower service revenue com-
pared to others, especially for higher values of physical link
delay. As shown in Figure 4b, this is due to the fact that
Best-Fit cannot deploy requests of type s1 in those cases.
This, in turn, is due to the fact that it does not support
backtracking: when the delay budget for the second VNF
in the chain of s1 is violated, no corrective action is taken
and the whole request fails.

Figure 3b shows MaxSR has a higher cost/traffic ratio
when the physical link delay is over 4 ms. The reason is
that the need for backtracking increases with the physical
link delay, and VMs become more likely to be scaled to
their maximum capacity, which results in a higher cost.
As one might expect, the cost/traffic ratio for Best-Fit
decreases when physical link delay ≥ 4 ms because it does
not serve requests of higher cost service s1. Recall that the
cost of a service depends on the amount of required CPU
on VMs, and therefore services with lower target delays
incur more costs to serve one unit of traffic.

Large-scale scenario. We consider the real-world
inter-datacenter network Cogent, a tier 1 Internet service
provider (Figure 5). This network topology contains 197
access nodes with 245 physical links and 32 datacenters.
We set the cost of links connecting the datacenters to
0.02 e/GB. The delay of logical links connecting the dat-
acenters is set to be proportional to their geographical
lengths, while the links inside each datacenter are assumed
to be ideal having no capacity limit, latency, and cost. We
assume each datacenter hosts 42 VMs, each of which is con-
nected to some edge switches. We categorize VMs within
each datacenter in small, medium, and large types accord-
ing to their capacity and cost, as described in Table 4. We
assume VMs need one minute to setup before being active.

We consider the four different services described in Ta-
ble 3, each of which is a representative of a category of
real 5G applications. In this scenario, we assume that the
VNFFG of each service is a chain of five VNFs. We fur-
ther assume that the computational complexity, i.e., ω and
maximum number of instances, i.e., N(s, q) for two VNFs
of service s4 are three, while other VNFs have ω = 1 and
N(s, q) = 1. Similar to the previous scenario, we consider

15

 0

 5

 10

 15

 20

 25

 30

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
er

v
ic

e
re

v
eu

e
(K

€
)

Arrival traffic multiplier

MaxSR
Best-Fit

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
st

/t
ra

ff
ic

 (
€

/G
b
)

Arrival traffic multiplier

MaxSR
Best-Fit

(b)

Figure 6: Large-scale scenario. Impact of service requests arrival
traffic on absolute value of service revenue and cost/traffic ratio.

Physical link delay multiplier = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s3 s4 s1 s2 s3 s4

F
ra

c.
 o

f
d
ep

.
se

rv
ic

e
re

q
s.

Low cost resources
Medium cost resources

High cost resources

MaxSRBest-Fit

(a) Traffic multiplier = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s3 s4 s1 s2 s3 s4

F
ra

c.
 o

f
d
ep

.
se

rv
ic

e
re

q
s.

Low cost resources
Medium cost resources

High cost resources

MaxSRBest-Fit

(b) Traffic multiplier = 1.6

Figure 7: Fraction of deployed service requests for each service and
algorithm. Physical link delay multiplier = 1.

an equal number of requests for each service where requests
arrive across time steps with the average inter-arrival time
of three minutes and end after an average duration of two
hours, and the total system lifespan is assumed to be one
day. In this experiment, we set H to 40 minutes and τ to
20 minutes.

Impact of Physical Link latency and Arrival Traf-
fic. As explained above, the optimum values cannot be
obtained for this scenario in a reasonable time and there-
fore we rely on results for MaxSR and Best-Fit. Figure 6a
shows the effect of arrival traffic on the service revenue,
while Figure 7 shows the fraction of requests of each ser-
vice that can be successfully deployed. We observe that
service revenue for MaxSR changes almost proportionally
with the traffic because increasing the traffic almost does
not impact the fraction of served requests by this algo-
rithm. Best-Fit serves a lower fraction of service requests,
and therefore achieves lower revenue. Besides, Best-Fit
shows a drop-off in service revenue when the arrival traffic
multiplier is 1.6: as confirmed by Figure 7b, this is because
Best-Fit does not serve requests of high traffic service s4

when the traffic multiplier is over 1.6, due to its lack of
support for multiple VNF instances.

Figure 6b shows the impact of arrival traffic on the
cost/traffic ratio. Best-Fit has lower cost/traffic ratio when
arrival traffic multiplier is less than 1.4, since MaxSR must
use resources with higher cost and higher computational
capabilities to serve more service requests; in other words,
Best-Fit serves less traffic but that traffic is served cheaply.
Similar to service revenue the values of cost/traffic ratio
for Best-Fit have a significant rise when the arrival traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

low
m

ed
high

not dep.

low
m

ed
high

not dep.

F
ra

c.
 o

f
o
ff

er
ed

 t
ra

ff
ic

MaxSRBest-Fit

(a) Traffic multiplier = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

low
m

ed
high

not dep.

low
m

ed
high

not dep.

F
ra

c.
 o

f
o
ff

er
ed

 t
ra

ff
ic

MaxSRBest-Fit

(b) Traffic multiplier = 1.6

Figure 8: Fraction of offered traffic deployed on each resource type
for each algorithm. low, med, high and not dep. mean the fraction

of offered traffic served on low-cost resources, medium-cost
resources, high-cost resources, and which is not served, respectively.

Physical link delay multiplier = 1.

 0

 2

 4

 6

 8

 10

 12

 14

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

S
er

v
ic

e
re

v
eu

e
(K

€
)

Physical link delay multiplier

MaxSR
Best-Fit

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
st

/t
ra

ff
ic

 (
€

/G
b
)

Physical link delay multiplier

MaxSR
Best-Fit

(b)

Figure 9: Large-scale scenario. Impact of physical link delay on
absolute value of service revenue and cost/traffic ratio. Arrival

traffic multiplier = 1.

multiplier is 1.6, as confirmed by Figure 8, when the traffic
multiplier increases from 1.0 to 1.6, Best-Fit is no longer
able to serve a significant fraction of the total traffic. As
shown by Figure 7, the traffic Best-Fit is unable to serve
mainly belongs to the low-cost service s4, which results in
a higher cost for served traffic.

Figure 9a shows the impact of physical link latency on
the service revenue. Similar to the small-scale scenario,
MaxSR outperforms Best-Fit especially for higher values
of physical link delays, because the latter cannot serve the
requests for services with low target delay (hence, higher
revenue). As these service types have a higher cost, they
will also cause the cost/traffic ratio for Best-Fit to be lower
than MaxSR as shown in Figure 9b.

Running Time. We run our experiments using a
server with 40-core Intel Xeon E5-2690 v2 3.00GHz CPU
and 64 GB of memory. To compare the running time of
different algorithms, we consider the case where the ar-
rival traffic and physical link delay multipliers are equal
to one. For each scenario, we run the algorithm 50 times
and report the average running time in Table 5. MaxSR
and Best-Fit are substantially faster than brute-force in
the small-scale scenario. The prohibitively long running
time for brute-force highlights its poor scalability, and
makes it inapplicable for the large-scale scenario in prac-
tice. The results for the large-scale scenario show that
although MaxSR has a higher running time compared to
Best-Fit due to backtracking, both of them are scalable

16

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s3 s4 s1 s2 s3 s4

F
ra

c.
 o

f
d
ep

.
se

rv
ic

e
re

q
s.

Low cost resources
Medium cost resources

High cost resources

MaxSRBest-Fit

(a) Physical link delay multiplier
= 0.6

 0

 0.2

 0.4

 0.6

 0.8

 1

s1 s2 s3 s4 s1 s2 s3 s4

F
ra

c.
 o

f
d
ep

.
se

rv
ic

e
re

q
s.

Low cost resources
Medium cost resources

High cost resources

MaxSRBest-Fit

(b) Physical link delay multiplier
= 1.2

Figure 10: Fraction of deployed service requests for each service
and algorithm. Arrival traffic multiplier = 1.

Table 5: Running time (in seconds)

Scenario Brute-force MaxSR Best-Fit

Small-scale 399 0.2 0.14
Large-scale - 21 2

and adequately fast for large-scale networks.

6. Discussion

In this section, we discuss the applicability and scala-
bility of MaxSR algorithm.

Applicability. The MaxSR solution is based on the
assumption that the knowledge of upcoming service re-
quests is available for the near future. However, in some
practical scenarios, the arrival time and service type of
requests are unknown beforehand. Thus, we need to fore-
cast them based on previous network statistics. A broad
spectrum of related work on traffic prediction [27–36] con-
firm that the high-quality prediction of future traffic exists.
Especially, by taking advantage of deep learning [29–36],
predictions are evolving to be more accurate and reliable,
and further improvements of prediction techniques are cur-
rently under study. In particular, He et al. [31] propose an
efficient deep learning-based solution to predict the net-
work traffic at the user level over a short horizon, which
dynamically adapts to highly varying data traffic and per-
forms very close to the oracle case. Thus, upcoming service
requests in a short time horizon can be reasonably well es-
timated in advance.

Scalability. As shown in Sec. 4.3, MaxSR algorithm
has a worst-case polynomial computation complexity, and
its scalability is highlighted by the running times reported
in the previous section. It is important to highlight how
such a scalability is achieved without resorting to dis-
tributed solutions (e.g., [8]), which represent an alterna-
tive strategy to achieve scalability and short runtimes, at
the cost of potentially conflicting decisions by different
decision-makers.

7. Conclusion

We proposed a dynamic service deployment strategy in
5G networks, accounting for real-world aspects such as VM
setup times, and jointly making all the required decisions.
We first formulated the problem of joint requests admis-
sion, VM activation, VNF placement, resource allocation,
and traffic routing as an MINLP based on the complete
knowledge of requests arrival and departure times. We
took the MNO profit as the main objective to be opti-
mized over the entire system lifespan, leveraging a queue-
ing model to ensure all requests adhere to their latency
targets. Our model also accounted for the key features of
5G services such as complex VNF graphs and arbitrary
input traffic.

Due to the problem complexity, we further proposed a
heuristic, MaxSR, which has polynomial complexity and
attains near-optimal solutions, while only needing the knowl-
edge/prediction of the upcoming service requests in a short
time horizon. The algorithm works in a sliding-horizon
fashion, rearranging the current-served requests across ex-
isting VMs to reduce the deployment costs, and admit-
ting the new ones as they arrive at the system. Further-
more, the parameters of MaxSR allow for different trade-
offs between solution optimality and running time. We
demonstrated the effectiveness and efficiency of our ap-
proach through a numerical evaluation including different
network scenarios.

Acknowledgments

This work was partially supported by the EU 5GROWTH
project (Grant No. 856709).

References

[1] ETSI, Network Functions Virtualisation (NFV); Management
and Orchestration (2017).

[2] S. Agarwal, F. Malandrino, C. F. Chiasserini, S. De, Vnf place-
ment and resource allocation for the support of vertical services
in 5g networks, IEEE/ACM Transactions on Networking 27 (1)
(2019) 433–446.

[3] B. Yi, X. Wang, K. Li, M. Huang, et al., A comprehensive
survey of network function virtualization, Computer Networks
133 (2018) 212–262.

[4] R. Cohen, L. Lewin-Eytan, J. S. Naor, D. Raz, Near optimal
placement of virtual network functions, in: IEEE Conference on
Computer Communications (INFOCOM), 2015, pp. 1346–1354.

[5] M. Xia, M. Shirazipour, Y. Zhang, H. Green, A. Takacs, Net-
work function placement for nfv chaining in packet/optical dat-
acenters, Journal of Lightwave Technology 33 (8) (2015) 1565–
1570.

[6] Lin Gu, Sheng Tao, Deze Zeng, Hai Jin, Communication cost ef-
ficient virtualized network function placement for big data pro-
cessing, in: IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2016, pp. 604–609.

[7] M. Mechtri, C. Ghribi, D. Zeghlache, A scalable algorithm for
the placement of service function chains, IEEE Transactions on
Network and Service Management 13 (3) (2016) 533–546.

[8] C. Pham, N. H. Tran, S. Ren, W. Saad, C. S. Hong, Traffic-
aware and energy-efficient vnf placement for service chaining:
Joint sampling and matching approach, IEEE Transactions on
Services Computing 13 (1) (2020) 172–185.

17

[9] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, B. Ak-
bari, Joint energy efficient and qos-aware path allocation and
vnf placement for service function chaining, IEEE Transactions
on Network and Service Management 16 (1) (2019) 374–388.

[10] J. Pei, P. Hong, K. Xue, D. Li, Efficiently embedding service
function chains with dynamic virtual network function place-
ment in geo-distributed cloud system, IEEE Transactions on
Parallel and Distributed Systems 30 (10) (2019) 2179–2192.

[11] G. Sallam, B. Ji, Joint placement and allocation of virtual net-
work functions with budget and capacity constraints, in: IEEE
Conference on Computer Communications (INFOCOM), 2019,
pp. 523–531.

[12] M. A. Tahmasbi Nejad, S. Parsaeefard, M. A. Maddah-Ali,
T. Mahmoodi, B. H. Khalaj, vspace: Vnf simultaneous place-
ment, admission control and embedding, IEEE Journal on Se-
lected Areas in Communications 36 (3) (2018) 542–557.

[13] R. Zhou, Z. Li, C. Wu, An efficient online placement scheme
for cloud container clusters, IEEE Journal on Selected Areas in
Communications 37 (5) (2019) 1046–1058.

[14] T. Kuo, B. Liou, K. C. Lin, M. Tsai, Deploying chains of vir-
tual network functions: On the relation between link and server
usage, IEEE/ACM Transactions on Networking 26 (4) (2018)
1562–1576.

[15] X. Fei, F. Liu, H. Xu, H. Jin, Adaptive vnf scaling and flow rout-
ing with proactive demand prediction, in: IEEE Conference on
Computer Communications (INFOCOM), 2018, pp. 486–494.

[16] H. Tang, D. Zhou, D. Chen, Dynamic network function instance
scaling based on traffic forecasting and vnf placement in opera-
tor data centers, IEEE Transactions on Parallel and Distributed
Systems 30 (3) (2019) 530–543.

[17] Y. Jia, C. Wu, Z. Li, F. Le, A. Liu, Online scaling of nfv service
chains across geo-distributed datacenters, IEEE/ACM Transac-
tions on Networking 26 (2) (2018) 699–710.

[18] Y. Li, L. T. X. Phan, B. T. Loo, Network functions virtual-
ization with soft real-time guarantees, in: IEEE Conference on
Computer Communications (INFOCOM), IEEE, 2016, pp. 1–9.

[19] V. Eramo, E. Miucci, M. Ammar, F. G. Lavacca, An approach
for service function chain routing and virtual function network
instance migration in network function virtualization architec-
tures, IEEE/ACM Transactions on Networking 25 (4) (2017)
2008–2025.

[20] J. Liu, W. Lu, F. Zhou, P. Lu, Z. Zhu, On dynamic service func-
tion chain deployment and readjustment, IEEE Transactions on
Network and Service Management 14 (3) (2017) 543–553.

[21] M. Huang, W. Liang, Y. Ma, S. Guo, Maximizing throughput
of delay-sensitive nfv-enabled request admissions via virtualized
network function placement, IEEE Transactions on Cloud Com-
puting (2019) 1–1.

[22] F. Malandrino, C. F. Chiasserini, G. Einziger, G. Scalo-
sub, Reducing service deployment cost through vnf sharing,
IEEE/ACM Transactions on Networking 27 (6) (2019) 2363–
2376.

[23] F. Malandrino, C. F. Chiasserini, C. Casetti, G. Landi, M. Cap-
itani, An optimization-enhanced mano for energy-efficient 5g
networks, IEEE/ACM Transactions on Networking 27 (4)
(2019) 1756–1769.

[24] Q. Zhang, F. Liu, C. Zeng, Adaptive interference-aware vnf
placement for service-customized 5g network slices, in: IEEE
Conference on Computer Communications (INFOCOM), 2019,
pp. 2449–2457.

[25] N. Alliance, Description of network slicing concept, NGMN 5G
P 1 (2016) 1.

[26] I. Dumitrescu, N. Boland, Algorithms for the weight constrained
shortest path problem, International Transactions in Opera-
tional Research 8 (1) (2001) 15–29.

[27] K. Papagiannaki, N. Taft, Zhi-Li Zhang, C. Diot, Long-term
forecasting of internet backbone traffic, IEEE Transactions on
Neural Networks 16 (5) (2005) 1110–1124.

[28] F. Xu, Y. Lin, J. Huang, D. Wu, H. Shi, J. Song, Y. Li, Big data
driven mobile traffic understanding and forecasting: A time se-
ries approach, IEEE Transactions on Services Computing 9 (5)

(2016) 796–805.
[29] Y. Xu, F. Yin, W. Xu, J. Lin, S. Cui, Wireless traffic pre-

diction with scalable gaussian process: Framework, algorithms,
and verification, IEEE Journal on Selected Areas in Communi-
cations 37 (6) (2019) 1291–1306.

[30] J. Feng, X. Chen, R. Gao, M. Zeng, Y. Li, Deeptp: An end-to-
end neural network for mobile cellular traffic prediction, IEEE
Network 32 (6) (2018) 108–115.

[31] Q. He, A. Moayyedi, G. Dán, G. P. Koudouridis, P. Tengkvist,
A meta-learning scheme for adaptive short-term network traffic
prediction, IEEE Journal on Selected Areas in Communications
38 (10) (2020) 2271–2283.

[32] K. Gao, D. Li, L. Chen, J. Geng, F. Gui, Y. Cheng, Y. Gu,
Predicting traffic demand matrix by considering inter-flow cor-
relations, in: IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2020, pp. 165–170.

[33] A. Rago, G. Piro, G. Boggia, P. Dini, Multi-task learning at
the mobile edge: An effective way to combine traffic classifica-
tion and prediction, IEEE Transactions on Vehicular Technol-
ogy 69 (9) (2020) 10362–10374.

[34] A. Azari, P. Papapetrou, S. Denic, G. Peters, User traffic pre-
diction for proactive resource management: Learning-powered
approaches, in: 2019 IEEE Global Communications Conference
(GLOBECOM), 2019, pp. 1–6.

[35] Q. Zeng, Q. Sun, G. Chen, H. Duan, C. Li, G. Song, Traffic
prediction of wireless cellular networks based on deep transfer
learning and cross-domain data, IEEE Access 8 (2020) 172387–
172397.

[36] M. Li, Y. Wang, Z. Wang, H. Zheng, A deep learning method
based on an attention mechanism for wireless network traffic
prediction, Ad Hoc Networks 107.

18

