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Abstract

We provide a detailed analysis of the electronic properties of graphene-like materials with

charge carriers living on a curved substrate, focusing in particular on constant negative-

curvature spacetime. An explicit parametrization is also worked out in the remarkable case

of Beltrami geometry, with an analytic solution for the pseudoparticles modes living on

the curved bidimensional surface. We will then exploit the correspondent massless Dirac

description, to determine how it affects the sample local density of states.
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1 Introduction

The recent developments in material science provide a new connection between condensed matter

and quantum electrodynamics models. In particular, the study of the physics of carbon-based

materials like graphene opens a window on the possibility of a direct observation of quantum

behaviour in the curved background of a solid state system [1–3]. A graphene sheet is a bidimen-

sional system of carbon atoms arranged in a honeycomb lattice of one-atom thickness, one of the

closest possible real two-dimensional objects. In 1984 Semenoff formulated the hypothesis that

graphene could realize the physics of two dimensional massless Dirac fermions [4], this property

discriminating graphene from other 2D system. Graphene crystals were then produced in 2004

as single carbon atom layers [5, 6].

As we will discuss in detail, graphene and other 2D materials realize the physics of spinorial

fields, whose Dirac properties emerge due to the structure of the space (lattice) with which the

charge carriers interact. The peculiar sheet structure then determines a natural description of its

electronic properties in terms of massless pseudoparticles, giving the possibility to study quasi-

relativistic particle behaviour at sub-light speed regime1 [3, 7, 8]. A natural suggestion turns out

to be that the geometric curvature of the two-dimensional sample, combined with the mentioned

special relativistic-like behaviour, naturally leads to a general relativistic-like description for

our pseudoparticles, which will then be regarded as Dirac fields in a 1+2 dimensional curved

spacetime background [9–14]. This gives us a real framework to study what is believed to be

(as close as possible) a quantum field in a curved spacetime, with measurable effects pertaining

to the electronic structure of the sample itself [12, 13, 15–17], so that the understanding of 2D

Dirac materials properties is important in condensed matter as well as in theoretical high energy

physics [1, 2, 17].

The massless formulation is in general robust, since it emerges at the level of non-interacting

system, the vanishing quasiparticle mass (gapless spectrum) protected by the combination of

parity and time-reversal symmetries. In general, interactions are not very efficient in introducing

a gap and/or modifying the quasiparticle behavior [3, 18].

In the context of high energy physics, the emergence of intrinsic and extrinsic curvature

in graphene-like materials can be used to investigate the fundamental physics of the quantum

Dirac dynamics in curved spacetimes, as well as to probe certain quantum gravity scenarios [19,

20]. This formulation follows a bottom-up approach, where suitable condensed matter systems

provide analogues of gravitational effects so that the propagation of quantum fields is dictated

by an effective metric, taking then advantage of mathematical tools from Einstein gravity (or

extensions of the latter). The underlying idea is that suitable variants of this analogue models

can be used as frameworks for different analysis and formulations of quantum gravity theories,

gaining new insights into the corresponding problems.

There are also some theoretical results that conjecture the use of graphene to have alter-

native (unconventional) realizations of Supersymmetry [21, 22], the latter being instrumental

in describing the properties of graphene-like materials at the Dirac points, exploiting an holo-

graphic top-down approach, the substrate description coming from a well-defined geometric

formulation of a suitable gravitational model [23].

Continuum limit and spacetime geometry. The detailed study of suitable curved config-

urations can highlight the peculiar properties of the charge carriers, derived from the discussed

massless Dirac description in a curved background [24–27]: the choice of the geometry, the

1 our framework turns out to be the analog of a relativistic system, with characteristic limiting velocity given
by the Fermi velocity vf rather than the speed of light c (for graphene vf ∼ c

300
)
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corresponding parametrization and the quantization of some physical quantities, can lead to

characteristic observable effects.

In general, we can state that Dirac physics can be realized for our quasiparticles consid-

ering low-lying energy excitations: if we consider energy ranges below E` ∼ vf/` ∼ 4.6 eV,

the electrons wavelength is large compared to the lattice spacing ` ∼ 0.142 nm, so that these

charge carriers see the graphene sheet as a continuum, justifying the quantum description in

1+2 spacetime. Moreover, quasiparticles with large wavelength are sensitive to sheet curvature

effects, claiming for a quantum field formulation in curved spacetime. In particular, this means

that, in the continuum field approximation, we have to demand the charge carrier wavelengths

to be bigger than the lattice typical dimension, λ > 2πvf/E` ∼ 2π` .

With the above prescriptions in mind, the challenge is now to find a suitable curved space-

time where it can be easier to probe and study the relativistic-like quasiparticles quantum

behaviour. As we will see in Section 3, the Beltrami pseudosphere [28] is a promising candi-

date where Dirac’s equation in curved space can be solved analytically, providing an explicit

expression for the Dirac spectrum and its effects on the electronic local density of states (LDOS).

From an historical point of view, the Beltrami surface has been conjectured to provide a

promising spacetime framework where to observe an Hawking–Unruh effect [29, 30], one of the

most interesting predicted phenomena of a quantum field theory in curved background [31, 32].

The possible formation of a Rindler-type horizon in a Beltrami geometry could then lead to a

characteristic thermal behaviour, related to the specific nature of quantum vacua and relativistic

process of measurement [33–35]. In Section 4 we will provide an analytic expression for the Dirac

modes of the charge carriers living in a Beltrami spacetime, so that experimental predictions

related to the electronic structure of the corresponding graphene-like sample can be explicitly

worked out.

Finally, we point out that, although we have primarily graphene in mind, many of the

following considerations can be extended to other two-dimensional Dirac materials, includ-

ing silicene, germanene, graphynes, several boron and carbon sheets, transition-metal oxides

(TiO2/VO2), organic and organometallic crystals (MoS2), artificial lattices (electron gases and

ultracold atoms) [36–44].

2 Dirac formalism

The quantum Dirac formulation introduced above emerges from the graphene lattice structure,

where a unit cell is made of two adjacent atoms belonging to the two inequivalent, interpene-

trating triangular sublattices. This means that we have two inequivalent sites per unit cell, the

distinction related to their topological inequivalence. The single-electron wave function can be

then conveniently arranged in a two-component Dirac spinor, so that the description of its elec-

tronic properties can be given in terms of massless Dirac pseudoparticles [3], the characterization

being resistent to changes of the lattice preserving the topological structure.

In the reciprocal lattice space, the first Brillouin zone (FBZ) results in a structure with the

same hexagonal form of the honeycomb lattice, rotated by a π/2 angle. The relativistic behavior

of the charge carriers can be inferred, in the momentum space, from the linear dispersion relation

between energy and quasimomentum at the corners of the FBZ. The latter can be divided into

two topological inequivalent classes, since only two of the six vertices can be chosen to be

independent, the remaining four connected to them by a reciprocal lattice vector; this means

we can consider only two inequivalent corners, labeled K, K’ (Dirac points).
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Substrate deformations and energy scales. If we consider a graphene layer with hexagonal

lattice, every carbon atom has four electrons available for covalent bonds. Three of them form

the σ-bonds with three different nearest neighbors (merging of atomic 2s orbitals); these bonds

define the elastic properties of the sheet. The fourth electron forms a covalent π-bond with one

of the three neighbors (merging of atomic 2p orbitals): being the latter π-bond much weaker

than the former σ, the involved π-electrons become charge carriers that are much more free to

hop, determining then the electronic properties of the sample.

If we want to construct the action that captures the physics of the π-electrons in the curved

sheet, we need to study the possible deformations that can be encoded in the Dirac description.

In the large wavelength regime [12, 13, 45], we can find three kinds of deformation at work:

extrinsic curvature, intrinsic curvature and strain [3]. The first deformation is an elastic effect

that can be expressed, at first order, using derivatives of the strain tensor [3, 46]; the second is

an inelastic effect coming from the formation of disclination-type defects [47, 48]; the third is

again an elastic deformation that takes into account effects that are proportional to the strain

tensor (not to its derivatives), that turn out to work as potentials for a pseudo-magnetic field

Bµ and a scalar potential Φ [3, 46, 49–52].

Since we are primarily interested in investigating the effects of curvature on the substrate

quantum (electronic) properties, we shall focus on inelastic deformations, since elastic deforma-

tions cannot induce intrinsic sheet curvature [3]. This means that we will have to introduce also

the energy scale ER ∼ vf/R < E` , with R > ` and where 1/R2 is a measure of the intrinsic

curvature. In fact, we want the curvature to be small if compared to the limiting value 1/`2 :

this, in turn, means that we can formulate our theory using a smooth metric, ruling also out the

difficult bending of the strong σ-bonds. The previously introduced E` energy now corresponds

to the high-energy regime for our formulation and, when we are within the ER energy range,

the charge carriers are still sensitive to the global effects of curvature.

The above considerations suggest we should focus on electrons with longer wavelengths than

the corresponding ones for the simple continuum approximation, λ > λR > λ` (with λ` ∼ 2π`,

λR ∼ 2πR), so that our energies range is valid up to ER: in this situation, the elastic properties

of the sample (involving much larger energies, of the order of tens of eV) are decoupled from

the π-electrons dynamics, governed by inelastic effects, and in our mathematical formulation we

will neglect the contributions from Bµ and Φ [53, 54].

Topological defects. The formation of topological defects in 2D materials is the natural

way in which the sample layer heals vacancies and other analogous lattice damages. Among

those, disclinations, dislocations and Stone–Wales defects (special dislocation dipoles) were

found to have the least formation energy and activation barrier, so that they result energet-

ically favourable phenomenons [55, 56]. If we consider graphene-like materials, disclinations and

dislocations are the most important topological sample defects2, related, in the continuum limit,

to curvature and torsion, respectively [47, 57].

A disclination is a crystallographic defect associated with the violation of the (discrete)

rotational symmetry. Positive (negative) disclinations are topological defects obtained by re-

moving (adding) a semi-infinite wedge of material to an otherwise perfect lattice. If we consider

a bidimensional hexagonal lattice, a disclination consists in the substitution of an hexagon with

other polygons: it therefore manifests itself by the presence of an n-sided polygon, with n 6= 6.

2 we do not consider here impurities, Coulomb and resonant scattering or other issues mixing the Fermi points,
with a corresponding chiral term in the action: we can assume that charge carriers mobility is not affected by the
mentioned effects at these energy scales [45]. The local lattice aspects can be then disregarded and the inelastic
effects will dominate, so that only intrinsic curvature must be taken into account (contributions from Bµ and Φ
can be neglected) [53, 54]
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If 3 ≤ n < 6, the associated singularity carries a positive intrinsic curvature, while, in the n > 6

case, it carries a negative intrinsic curvature . A dislocation defect appears in graphene-like lat-

tices as a disclination pair (dipole of disclinations, usually pentagon–heptagon pairs); its effects

manifest themselves in forms similar to those arising from curvature or elastic strain.

Inelastic phenomenons due to geometric curvature can be then generated by the presence of

suitable sample topological defects [12, 13, 47, 57–59]. In the following sections, we will deal in

detail with the case of negative-curvature surfaces; the latter usually carry one of the described

topological defects (for example, heptagon-disclination defects in hexagonal lattice). However,

we will not have to face in detail the local microscopical substrate deformations since, as we

already stated, we are working in continuum limit.

2.1 Dirac equation

Graphene-like flat substrates can be considered as 2D analogs of pseudorelativistic systems with

characteristic velocity vf . The dynamics of the charge carriers ψ in the 1+2 dimensional flat

spacetime can be then described, in the long wavelength continuum limit, by a massless Dirac

action of the form

S0 = i ~ vf
∫
d3x ψ̄ γ̌a ∂aψ , (1)

where a = 1, 2, 3 is the flat spacetime index and where, for the sake of notational simplicity, we

have omitted spinorial indices. A set of three-dimensional (flat) γ̌-matrices can be written in

terms of the Pauli matrices as

γ̌a =
(
i σ3 , σ1 , σ2

)
. (2)

One can easily verify that the γ̌a = ηab γ̌b matrices satisfy the standard Clifford algebra{
γ̌a, γ̌b

}
= 2 ηab 1 , where ηab is the inverse of the flat 1+2 dimensional Minkowski metric

in the mostly plus convention, ηab = diag(−1, 1, 1) .

Curved space. Since we now want to include non-trivial intrinsic curvature effects, we are

naturally led to the customary generalization in a curved spacetime of the action for massless

Dirac spinors in 1+2 dimensions [9, 11]

S = i ~ vf
∫
d3x
√
g ψ̄ γµDµψ , (3)

where µ = 0, 1, 2 is now an index referring to the new curved spacetime with metric gµν , and

the factor
√
g ≡

√
−det(gµν) comes from the request of a diffeomorphic-covariant form of the

action in the presence of curvature. The curved γµ matrices are obtained from the constant γ̌a
matrices of the flat frame by the action of the vielbein eµ

a (see App. A):

γµ = eµ
a γ̌a , (4)

while the inverse vielbein ea
µ performs the transformation in the other direction. The gamma

matrices with upper indices γµ = gµν γν satisfy the correspondent Clifford algebra relation in

curved background, {γµ, γν} = 2 gµν 1 .

The diffeomorphic covariant derivative is written as

Dµ = ∂µ + Ωµ = ∂µ +
1

4
ωµ
abMab , (5)

where Mab = 1
2 [γ̌a, γ̌b] are the Lorentz generators and ωµ

ab defines the spin connection, that

can be seen as the gauge field of the local Lorentz group. Since we are working in a torsionless
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framework, ωµ
ab and eµ

a are not independent [60, 61] and the former can be expressed in terms

of the latter as

ωµ
ab = eν

a ∂µe
νb + eν

a Γµλ
ν eλb , (6)

where Γµν
λ is the affine connection

Γµν
λ =

1

2
gσλ (∂µgνσ + ∂νgµσ − ∂σgµν) . (7)

If we consider the above (5), Ωµ acts as a gauge field able to take into account all deformations

of the geometric kind.

The equations of motion for the pseudorelativistic Dirac spinors coming from action (3)

read3 [9, 10, 12–14]

i γµDµψ = 0 , (8)

that is, the generalized form of the massless Dirac equation in flat Minkowski spacetime obtained

through the substitutions

γ̌a ! γµ , ∂a ! Dµ . (9)

Summarizing, we have constructed the large wavelength continuum description of the Dirac

quasiparticles living on a graphene-like sheet, modelling curvature effects through the coupling

of the Dirac fields to a curved spatial metric, thus obtaining the physical description of the

charge carriers dynamics [12–14, 16, 17, 54]. If we consider a topologically trivial, purely strained

configuration (elastic membrane deformations), there are no relevant physical effects coming

from the spin-connection. If instead the sample features a non-trivial intrinsic curvature, the

spin connection dictates most of the physics for the Dirac fields. In particular, in our large

wavelength continuum limit for the charge carriers, the spin connection can be associated with

disclination-type defects inducing curvature, encoding the physics imposed by the geometric

sheet deformation.

In the following sections we will consider an explicit parametrization of the curved mem-

brane, working out an analytic solution of the Dirac equation in the corresponding curved

background.

3 Constant negative-curvature spaces

Among the class of negative-curvature surfaces, an important role is played by the subset of

surfaces having constant negative Gaussian curvature. When embedded into R3, those surfaces

feature essential singularities [62]: as a consequence of this, we find that it is impossible to

represent the whole Lobachevskian geometry on a real bidimensional surface, so that we are

forced to restrict to mapping only a suitable stripe of the hyperbolic space [28].

Another relevant point will concern explicit parametrization, so that hyperbolic (abstract)

geometry can be expressed, together with the above singular boundaries, in terms of well defined

coordinates. In this regard, we notice that the line element of any surface of constant negative

Gaussian curvature can be reduced to the one of the Beltrami or the hyperbolic or the elliptic

pseudospheres [63]. The advantages of the Beltrami surface are that an embedding parametriza-

tion can be given in terms of smooth, well-behaving single-valued functions and that it has only

one well-defined singular boundary, corresponding to the maximal circle.

3 from now on we work in (pseudo)natural units: ~ = vf = 1
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Below, we provide an embedding for the Beltrami pseudosphere in three spatial dimensions,

the explicit parametrization given in terms of surface coordinates.

3.1 Beltrami spacetime

The Beltrami pseudosphere is a bidimensional surface that we here choose to parameterize as
x = L exp

(
u
R

)
cosϕ ;

y = L exp
(
u
R

)
sinϕ ;

z = R
(

arctanh f(u)− f(u)
)
, f(u) =

√
1−

(
L
R exp

(
u
R

) )2
.

(10)

As we can see by direct inspection, the parameterized Beltrami trumpet exists, in general, for

u ∈
[
−∞, R log

(
R
L

)]
. The surface can be suitably embedded in R3 and it is well-defined over

the whole non-singular part of the surface, the singular boundary being the maximal circle of

radius R corresponding to the limit value u? = R log
(
R
L

)
.

Figure 1 : Beltrami trumpet parametric plot, with u ∈ [0, u?] and v ∈ [0, 2π].

We can also notice that the above equations for the embedding are expressed in terms of

the analogs of polar (or maybe better cylindrical) coordinates u, ϕ, so that we can easily move

along the “meridian” and the “parallel” of the trumpet. Every coordinate is in fact expressed

as a smooth, well-behaving, single-valued function (taking a full turn on a parallel has no effects

on the values of x, y).

Graphene-like substrate. Even if the u–coordinate is unbounded from below (u! −∞
corresponding to z !∞), when we consider a graphene-like membrane we have to take into
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account the considerations we made in Section 1 about the range of validity of the proposed

charge carriers dynamics (not holding for too small radii), the continuum limit approximation

and the difficulties in bending the surface beyond certain limits. All these aspects lead to the

physical assumption of posing a limiting value for the surface (parallel) radius r = Le
u
R . Then,

we should decide to make the natural assumption of minimum radius r ≥ L, being L much larger

than the lattice length ` (r ≥ L� `). This, in turn, means that the u–coordinate is restricted

to the interval u ∈ [0, u?], with u? = R log
(
R
L

)
.

The metric on the pseudosphere (10) has the form

gµν =

 −1 0 0

0 1 0

0 0 L2 e
2u
R

 , (11)

so that the 1+2 spacetime line element reads

ds2 = − dt2 + du2 + L2 e
2u
R dϕ2 , (12)

the resulting Ricci scalar R = − 2
R2 being twice the Gaussian curvature K .

The vielbein can be easily found to be

eµ
a =

 1 0 0

0 1 0

0 0 L e
u
R

 , (13)

and it correctly satisfies the relation gµν = eµ
a eν

b ηab . The curved gamma matrices explicitly

read:

γµ = eµ
a γ̌a =

(
i σ3 , σ1 , L e

u
R σ2

)
, (14)

and the reader can verify that upper-indexed γµ satisfy the Clifford algebra {γµ, γν} = 2 gµν 1 .

Finally, the spin connection ωµ
ab has non vanishing components

ω3
32 = −ω3

23 =
L

R
e
u
R , (15)

so that now we are able to explicitly express the Dirac equation (8) in terms of the covariant

derivative (5).

4 Analytic solutions in Beltrami geometry

Our challenge now is to obtain explicit ψ–solutions for the curved space Dirac fields satisfying

(8), the corresponding relativistic pseudoparticles moving on a Beltrami surface.

The analytic solution of Dirac equation (8) for charge carriers living on the Beltrami space-

time described in previous Subsect. 3.1 has the explicit form

ψ = e−i λE t

(
φa

φb

)
, (16)
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with

φa = C e i
∫
du ξ(u) ei k ϕ

u

R
e−

u
R ,

φb = C e i
∫
du ξ(u) ei k ϕ i

u

R
e−

u
R B(u) ,

(17)

where λ = ±1 labels states having positive/negative energy E, and C is a normalization constant

that can be determined from the condition∫
dΣ
√
g |ψ|2 = 1 , (18)

being
√
g =

√
−det(gµν) . The functions ξ(u) and B(u) are defined as

ξ(u) =

(
1

u
− k

L
e−

u
R − 1

2R

)
− λ E B(u) ,

B(u) =
I

(−)

+ I
(+)

I(−) − I(+)
,

(19)

expressed in terms of the modified Bessel function of the first kind4

I
(±)

= I

(
±1

2
+ i λE R ,

kR

L
e−

u
R

)
. (20)

4.1 Experimental effects: local density of states

We are now going to consider a simple experimental application for the above solution for

pseudorelativistic charge carriers living in a 1+2 dimensional curved background.

Since we have obtained the explicit Dirac solution ψ, we can consider the probability density

P =
√
g |ψ|2, in terms of which the normalization condition (18) in Beltrami geometry can be

explicitly written as ∫
dΣ P(u, ϕ) = 2π

∫
du L e

u
R |ψ(u, ϕ)|2 = 1 . (21)

Using now our new solutions (16), (17) for the Beltrami surface, it is possible to obtain the prop-

erly normalized probability density, as shown in Figures 2 to 4 . We should use the appropriate

precautions discussed in Sections 1 and 3.1, that is considering the proper interval of variation

for the u–coordinate in order to satisfy the correct continuum limit for the membrane.

4 the modified Bessel function of first kind I(n,Z) = Y is the function that satisfies the differential equation
Z2 Y ′′+Z Y ′− (Z2 +n2)Y = 0 ; for certain arguments it has an explicit analytic expression, while it can always
be evaluated to arbitrary numerical precision

9
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Figure 2 : Normalized probability density as a function of u for a Beltrami-shaped sample surface with
parameters E = 4 · 10−4, λ = ±1, R = 5, L = 0.001, C = 1.415 .
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Figure 3 : Normalized probability density as a function of u for a Beltrami-shaped sample surface with
parameters E = 0.002, λ = ±1, R = 1, L = 0.001, C = 3.174 .
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Figure 4 : Normalized probability density as a function of u for a Beltrami-shaped sample surface with
parameters E = 5 · 10−4, λ = ±1, R = 10, L = 0.002, C = 0.455 .

As we can appreciate, for the chosen parameters, the peak is localized in correspondence of

small values for u, the charge carriers being then mainly localized on the throat of the trumpet.

For a given a location X on the layer surface and energy value E, the local density of states

(LDOS) of the sample can be defined as [64]

ρs(E,X , 0) =
1

ε

E∑
E−ε
P(X ) , (22)

for sufficiently small values of ε, where the 0–coordinate means that we are considering pseu-

doparticles on the sample surface (i.e. zero distance from the substrate surface). The physical

meaning of the LDOS for our bidimensional sample is the number of charge carriers per unit

surface and unit energy range of size ε, at a given surface location X and energy E. The sample

LDOS is not only an interesting direct observable for the predicted quantum behaviour, but also

a substrate feature of immense importance for electronic applications, being the availability of

empty valence and conduction states (states below and above the Fermi level) crucial for the

transition rates.

Measurements. The sample LDOS can be detected using a scanning tunneling microscope

(STM). The latter is an experimental device based on quantum mechanical tunneling, in which

the wave-like properties of charge carries allow them to penetrate through a potential barrier,

into regions that are forbidden to them in the classical picture. STM spectroscopy provides in-

sight into the surface electronic properties of the substrate, being the tunneling current strongly

affected by the local density of states ρs . The latter is in turn related to the probability density

P through definition (22).

A typical STM device consists of a very sharp conductive tip which is brought within tun-

neling distance (< nm) from a sample surface, using a three-dimensional piezoelectric scanner.

Let us imagine that electrons fill energy levels up to the Fermi level – which defines an upper

boundary similar to the sea level – above which we find activated charge carriers. The Fermi

level of a material can be raised/lowered with respect to a second material by applying an ap-
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propriate voltage. Thus, to obtain a tunneling current through the gap between the sample and

the tip, a suitable bias voltage V can be applied, causing charge carriers to tunnel across the

gap5. In particular, when a negative bias is applied to the sample, its Fermi level is raised and

the charge carriers of the filled occupied states can tunnel into the unoccupied state of the tip,

while the opposite occurs for a positive bias (filling of the sample empty states).

We are interested in the STM–map setup, where the density of states at some fixed energy,

is mapped as a function of the position (u, ϕ) on the sample surface. Let us assume ε = eV
to be very small with respect to the work function Φw (minimum energy required to extract an

electron from the surface), so that the sample states with energy lying between Ef − ε and Ef

are very close to the Fermi level and have non-zero probability of tunneling into the tip. The

resulting tunneling current I is directly proportional to the number of states on the substrate

within our energy range of width ε, this number depending on the local properties of the surface.

Including all the sample states in the chosen energy range, the measured tunneling current can

be modelled, in first approximation, as [64]

I ∝
Ef∑

Ef−e V

P e−2κ d , (23)

where κ is some decay constant in the barrier separation depending on Φw . The exponential

function gives the suppression for charge carriers tunneling in the classically forbidden region of

width d (sample-tip separation). The tunneling current can be then measured, for constant sep-

aration d, at different X positions and, for sufficiently small V , it can be conveniently expressed

in terms of the LDOS of the sample as [64]:

I(X ) ∝ ρ
s
(Ef,X , 0) e−2κ d eV . (24)

In summary, tunneling current measured by STM mapping, at small bias voltage V and fixed tip-

sample separation d, is proportional to the local density of states of the sample. In particular,

we could scan our Beltrami surface at different positions varying the u–coordinate, mapping

inhomogeneities in the local density of states ρ
s
(Ef, u, 0), that in turn depend on the predicted

surface probability density P(u).

STM can operate in ambient atmosphere as well as in high vacuum; when a high-vacuum

configuration is employed, its purpose is not to improve the performance of the STM but rather

to ensure the cleanliness of the sample surface. We also remark that the LDOS obtained with a

STM is not limited by the position of the Fermi energy, since both occupied and empty states are

accessible [65]. For finite bias voltage and different Fermi levels for the sample and tip material,

the functional form of the tunneling current and its relation with the sample local density of

states can be easily obtained from Bardeen time-dependent perturbation approach [64].

5 Conclusions

A deeper intertwining of different scientific areas can really provide an important step forward

in our understanding of various, fundamental physical aspects of our world. In particular, it

has been shown that the considerable gap between high energy physics and condensed matter

– due to mutually independent mathematical formulation and developments – can be reduced

using a multidisciplinary approach (see e.g. [19, 20, 66–75]). In this article, we have used differ-

ent techniques from high energy physics, differential geometry and general relativity, applying

5 to simplify our discussion, we are assuming that both materials have the same Fermi level
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them to the study of pseudoparticles living in a curved, real bidimensional surface. Similar

approaches where exploited in recent works. For instance, in [23] the authors discuss a 1+2 di-

mensional model featuring an unconventional supersymmetry and defined at the boundary of a

1+3 dimensional supergravity theory in Anti-de Sitter (negative-curvature) spacetime; the study

of this supersymmetric boundary opens the possibility of describing the electronic properties of

graphene-like materials exploiting an holographic top-down approach, in that the effective three-

dimensional model at the boundary (featuring a propagating Dirac fermion) originates from a

well-defined effective supergravity theory living in the bulk. In [76] the evolution of graphene

from a semiconductor to a superconductor is considered, breaking certain symmetries of a de-

signed system, so that an emergent modified F(R) gravity causes a peculiar motion for the

electron charge carriers and a related supercurrent. The work [77] presents a model which

simulates the motion of free charge carriers in graphene by means of the evolution of strings

modes on manifolds, breaking the (gravitational-analogue) symmetry of the substrates lattice;

the construction gives rise to an ideal wormhole (Chern-Simons bridge) connecting two gener-

ated sheets, between which a supercurrent is established. In [78] another model for a graphene

wormhole is presented, where a supercurrent of Cooper pairs is produced as graviphoton states;

the model is then exploited to compute a Chern-Simons current in a Josephson junction of

superconducting states in graphene.

When dealing with graphene-like materials, one immediately realizes the need for a correct

quantum relativistic field description, these special materials implementing the physics of Dirac

relativistic fermions in a real condensate system. As we have discussed, we also gain the concrete

possibility to observe the analogues of gravity effects, driven by the specific curved spacetime,

dictated in turn by the chosen membrane structure. In this work, in particular, we have found

an analytic, explicit expression for the pseudorelativistic charge carriers modes in the notable

framework of the Beltrami geometry, being subsequently able to characterize a simple observable

like the pseudoparticles local density of states. Clearly, the same approach finds application also

in different spacetime geometries; one example is given by the BTZ geometry [79], that under

certain conditions can mimic the background for low-energy electron excitations of a curved

graphene sheet [80, 81].
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A Conventions

Dirac equation. The Dirac equation in Minkowski spacetime is the result of the construction

of a relativistic field equation, whose squared wave function modulus could be consistently

interpreted as a probability density. To satisfy these conditions, the equation is of first order

in time-derivative, while relativistic invariance requires the equation to be first order in space-

derivatives too. The final explicit form must fulfill the requests of Lorentz covariance and satisfy

the Klein-Gordon equation, and reads

(i γ̌a∂a −m1) ψ(x) = 0 , (A.1)

together with the condition {
γ̌a, γ̌b

}
= 2 ηab 1 , (A.2)

that is usually referred to as Clifford algebra, the matrix ηab being the inverse of the Minkowski

flat metric ηab .

For the sake of notational simplicity, in eq. (A.1) we have omitted the spinorial indices of

ψ ≡ ψβ and γ̌a = (γ̌a)αβ . Spinors are objects that transform as scalars under general space-

time coordinate transformations, while they trasform in a spinor representation R under the

local Lorentz group:

ψ′α(x) = R
[
Λ(x)

]α
β
ψβ(x) . (A.3)

Using the explicit form of the Lorentz generators to construct the Pauli-Lubanski operator, it

can be easily shown that the particle has spin s = 1
2 .

A.1 Curved spaces

Einstein’s theory of gravitation relies on the symmetry principle of invariance under general

coordinate transformations, that, in turn, can be viewed as local spacetime transformations

generated by the local translation generators. The gravitational force can be then geometrically

modelled in terms of the spacetime curvature.

In order to conveniently describe general relativity scenarios together with spinorial fields,

one should introduce some tools to describe transformation rules generalized to curved back-

grounds, leading to the so-called vielbein formalism.

Vielbein formalism. Let us consider a set of coordinates that is locally inertial, so that one

can apply the usual Lorentz spinor behaviour, and imagine to find a way to translate back to the

original coordinate frame. More precisely, let ya(x0) denote a coordinate frame that is inertial

at the space-time point x0: we shall call these the “Lorentz” coordinates. Then,

eµ
a(x) =

∂ya(x0)

∂xµ
(A.4)

gives the so-called vielbein: it defines a local set of tangent frames of the spacetime manifold

and, under general coordinate transformations, it transforms covariantly as

e′µ
a
(x′) =

∂xν

∂x′µ
eν
a(x) , (A.5)

while a Lorentz transformation leads to

e′µ
a
(x) = Λ

a
b eµ

b(x) . (A.6)
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The space-time metric, in particular, can be expressed as

gµν(x) = eµ
a(x) eν

b(x) ηab , (A.7)

in terms of the Minkowski flat metric ηab . The original constant γ̌a matrices of the inertial

frame can be converted into the new γµ matrices of the curved background by the action of the

vielbein:

γµ(x) = eµ
a(x) γ̌a , (A.8)

while the inverse vielbein ea
µ performs the transformation in the other direction. The vielbein

thus takes Lorentz (flat) latin indices to coordinate basis (curved) greek indices. The gamma

matrices with upper indices

γµ = gµν γν , (A.9)

satisfy the relation:

{γµ, γν} = 2 gµν 1 , (A.10)

that holds in curved backgrounds and is the equivalent form of the previous, flat Clifford algebra

(A.2).

Covariant derivative, spin connection. The choice of the locally inertial frame ya is defined

up to Lorentz transformations given by the Lorentz generators Mab . In order to couple fields,

we define the covariant derivatives:

Dµ = ∂µ +
1

4
ωµ
abMab , (A.11)

where

Mab =
1

2
[γ̌a, γ̌b] . (A.12)

The ωµ
ab object defines the spin connection, that can be seen as the gauge field of the local

Lorentz group, the corresponding field strength given by the Riemann curvature tensor, and is

determined through the vielbein postulate (tetrad covariantly constant) [47, 48]:

Dµeνa − Γµν
λ eλ

a = 0 . (A.13)

The latter is written in terms of the affine connection Γµν
λ

Γµν
λ =

1

2
gσλ (∂µgνσ + ∂νgµσ − ∂σgµν) . (A.14)

while the explicitly expression for the spin connection is found to be

ωµ
ab = eν

a ∂µe
νb + eν

a Γµλ
ν eλb . (A.15)

Finally, the Dirac equation in curved spacetime can be written as:

(i γµDµ −m1) ψ = 0 . (A.16)
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