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Sensorless Synchronous Motor Drives: A Review of
Flux Observer-based Position Estimation Schemes

using the Projection Vector Framework
Anantaram Varatharajan, Gianmario Pellegrino, Senior Member, IEEE, Eric Armando, Senior Member, IEEE, and

Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper reviews six fundamental-wave excitation
sensorless techniques for synchronous machines reported in the
literature. All the techniques rely on a hybrid flux observer
scheme, combining the voltage and current-models of the ma-
chine, and use the flux observer error signal to track the
rotor phase angle and the rotational speed. A common math-
ematical framework with magnetic nonlinearity is constructed
for the stability analysis where each of the studied technique
is represented by a unique projection vector. The dynamics
of the flux and the position observer is investigated and the
regions of instability are identified for each scheme under similar
operating conditions. Experimental validation to support the
stability analysis is reported on a 1.1 kW synchronous reluctance
(SyR) machine test-bench.

Index Terms—Sensorless control, synchronous machine, pro-
jection vector framework, stability analysis.

I. INTRODUCTION

Sensorless control of synchronous machines without a posi-
tion transducer finds significance in automotive and industrial
applications for cost reduction and reliability. Low speed
sensorless control techniques rely on high-frequency excita-
tion approach to exploit the differential saliency for position
estimation. This comprises of two main categories: contin-
uous excitation using periodic signal injection [1], [2] and
discontinuous excitation schemes [3], [4]. In medium to high
speed region, the fundamental-wave excitation approaches are
preferred for reliability and absence of acoustic noise.

This work concerns the latter category of fundamental-
wave excitation methods based on back-emf integration for
position estimation at medium to high speeds region. This pa-
per constructs a general mathematical framework for stability
analysis to review six flux observer-based sensorless schemes
in literature. The magnetic saturation in modern synchronous
machines are significant and have been omitted in theoretical
frameworks and comparisons in the existing literature. To fill
the gap, this paper develops a projection vector framework
based on the small-signal machine model accounting for the
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Fig. 1. Hybrid flux observer (HFO) with projection vector-based position
error signal and a phase-locked-loop (PLL) for position tracking.

magnetic saturation. The framework allows a systematical sta-
bility analysis as well as improved gain selection for sensorless
methods. In this work, the position error function ε of each
of the considered schemes is represented as a projection of
the difference in the observed and the current-model flux
estimates, λ̂d̂q − λ

i
d̂q

, along a unique vector φ, as shown in
Fig. 1.

The six flux observer-based sensorless schemes for syn-
chronous machines are: (i) Flux cross-product based position
observer [5]–[7] where the position error function is propor-
tional to the cross-product of the observed and the current-
model estimates; (ii) Active-flux position observer [8]–[11]
where the position error function is proportional to the q-axis
component of the observed active-flux in the estimated rotor
reference frame; (iii) Fundamental saliency-based position ob-
server [12] where the position error function is extracted from
the anisotropic component of the stator flux; (iv) Auxiliary-
flux position observer [13] where the projection vector is
designed along the observed auxiliary-flux vector; (v) Adaptive
projection vector for position error estimation (APP) scheme
[14], [15] where the projection vector is adapted such that the
position error signal is equal to the position error in steady-
state conditions; (vi) Adaptive-gain position observer [16], [17]
where the flux observer gain is adapted such that the dynamics
of the position and the flux observer are decoupled.

This is by no means an exhaustive review; only the subset
of flux observer based schemes are candidate, namely the ones
where the position information is retrieved from the difference
between the back-emf integral model and the current model
flux estimates, complying with the structure in Fig. 1. Among
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others, a common fundamental-wave excitation sensorless
scheme without flux observer is the extended back-emf ap-
proach [18]–[20]. Extended Kalman filter and sliding mode
techniques are reported in [21]–[23]. Sensorless schemes based
on the flux observer with current feedback are investigated in
[24], [25] which are mathematically equivalent to Fig. 1 only
for linear magnetic model (no saturation) with the gains scaled
accordingly.

Section II presents the mathematical model and the flux
observer analysis. Section III introduces the concept of pro-
jection vectors and develops a framework for stability analysis.
Section IV contains the main contributions of the paper,
enumerated as follows:

1) The six flux observer-based position observers under
review are represented in a generalized form where each
technique is characterized by a unique vector, under the
common mathematical definition of projection vector.

2) The different schemes are subjected to an identical
stability analysis to reveal regions of instability under
similar operating conditions.

3) The stability analysis is validated with a control re-
sistance perturbation test on a 1.1 kW synchronous
reluctance (SyR) machine test-bench.

Current vector control is used where the dq current references
are fetched from the MTPA lookup tables (LUTs); the findings
in this paper also applies to other control schemes. Finally,
Section V concludes the paper. The analysis puts in evidence
the different areas of instability of popular approaches such as
the fundamental saliency, the flux cross-product and the active-
flux based position observers, as confirmed by the experiments.

II. SENSORLESS CONTROL SYSTEM

The electrical rotor position is θ and the electrical angular
speed is ω = s θ where s is the differential operator d

dt .
Estimated vectors are represented by the superscript .̂ The
orthogonal rotational matrix is J = [ 0 −1

1 0 ] and I is the identity
matrix.

The machine model is expressed in coordinates of estimated
rotor reference frame, denoted by subscript d̂q, whose d̂-axis
is at θ̂ = θ−θ̃, where θ̃ is the position error. Real space vectors
will be used; for example, the stator current is id̂q = [id̂, iq̂]

T

where id̂ and iq̂ are the vector components in the estimated
rotor reference frame. Space vectors in the stationary reference
frame are denoted by subscript αβ. Note that the convention
of a SyR machine is followed, i.e, d-axis is defined along the
maximum inductance path. This is dictated by the fact that
the experimental validation refers to a SyR machine, but all
conclusions would be valid also with the d-axis conventionally
aligned to PM flux linkage direction.

A. Mathematical Model of a Synchronous Machine

The voltage equation of a synchronous machine in the
estimated rotor reference frame is given by

sλd̂q = vd̂q −Rsid̂q − ω̂ Jλd̂q (1)

where Rs is the stator resistance and λd̂q is the stator flux
linkage. The synchronous machine exhibits nonlinear magnetic

Fig. 2. Flux map of the SyR motor under test exhibiting saturation and cross-
saturation characteristics. Experimentally identified with the constant speed
test, reported in [26].

characteristics due to both saturation and cross-saturation phe-
nomenon. Let Λdq(idq) denote the accurate flux-map LUTs of
the synchronous machine, shown in Fig. 2. Then, the stator flux
in the estimated reference frame can be expressed in terms of
the flux-map LUTs as

λd̂q = eJθ̃ Λdq(e
−Jθ̃id̂q). (2)

Equivalently, the nonlinear stator flux linkage can be expressed
as an operating point dependent linear magnetic model as

λd̂q = eJθ̃ L(idq) e−Jθ̃ id̂q + eJθ̃ λm (3)

where the apparent inductance matrix L is a function of the
operating point idq in the real dq rotor reference frame and
λm is the open circuit permanent-magnet flux vector. They
are given by

L(idq) =

[
Ld 0
0 Lq

]
λm =

[
0
−λm

]
(4)

where λm is the open circuit permanent-magnet flux linkage
and Ld, Lq are the apparent inductances along d and q-axis,
respectively. The electromagnetic torque is given by

T =
3p

2
iT
d̂q

Jλd̂q (5)

where p is the number of pole pairs.

B. Hybrid Flux Observer

Prior to the state equation of the flux observer, it is useful
to introduce the current-model based flux estimation.

1) Current-Model Flux Estimate: The current-model flux
linkage based on the flux-map LUTs, denoted with a super-
script i, in the estimated rotor reference frame is given by

λi
d̂q

= Λdq(id̂q) = Li(id̂q) · id̂q + λm (6)

where Li is the current-model apparent inductance matrix that
is a function of the operating point id̂q in the estimated d̂q
reference frame. The veracity of the current-model flux is
dependent on the position error, i.e., for synchronous machines
with saturation, only in the absence of position error does the
equalities λdq = λidq and L = Li hold.
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2) State Equation: The hybrid flux observer is a combina-
tion of the back-emf integral (voltage-model) and the current-
model fluxes, defined in the stationary reference frame as

sλ̂αβ = vαβ −Rsiαβ + eJθ̂G
(
λi
d̂q
− λ̂d̂q

)
(7)

where G is a 2× 2 gain matrix. Accurate parameter estimate
of stator resistance is assumed. In the estimated rotor reference
frame, (7) transforms to

s λ̂d̂q = vd̂q −Rsid̂q − ω̂J λ̂d̂q +G
(
λi
d̂q
− λ̂d̂q

)
(8)

To aid in further analysis, the nonlinear flux estimation error
dynamics is derived from (1) and (8) as

s λ̃d̂q = −(G+ ω̂J) λ̃d̂q +G (λd̂q − λ
i
d̂q

) (9)

where λ̃d̂q = λd̂q − λ̂d̂q is the flux estimation error. The rela-
tionship between the real stator flux λd̂q and the current model
estimate λi

d̂q
in the estimated reference frame is established

in the following section.

C. Magnetic Model Accounting Position Error (MMAP)

Linearizing the stator flux linkage (2) around an operating
point gives

λd̂q =
(
I + θ̃ J

)(
Λdq(id̂q)− θ̃

∂Λdq

∂id̂q
J id̂q

)
(10)

The time derivative of stator flux can be expressed with the
incremental inductance matrix L∂ as

∂λdq
∂idq

= L∂(idq) =

[
ld ldq
ldq lq

]
(11)

where ld, lq represents the incremental inductance along direct
d and quadrature q axis, respectively, while ldq is the cross-
saturation term.

The first order approximation holds for small position error,
i.e., a constant incremental inductance in the vicinity of the
operating point is assumed. Simplifying (10), the magnetic
model accounting position error (MMAP) is derived as

λd̂q = λi
d̂q

+ θ̃λa
d̂q

(12)

where the auxiliary-flux vector λa
d̂q

for nonlinear magnetic
model is given by

λa
d̂q

= Jλi
d̂q
−L∂ J id̂q. (13)

Using MMAP (12) in (9), the linearized flux estimation
error dynamics as a function of position error is given by

λ̃d̂q = (sI +G+ ωJ)
−1
Gλa

d̂q
θ̃. (14)

This will be used in the following section to formulate the
position error signal.

Fig. 3. Closed loop analysis of the position observer with PLL

III. PROJECTION VECTOR FRAMEWORK

A. Definition

The position error signal ε driving the observer adaptation
law is expressed in a general form as the projection of
difference in the observed and the current-model flux estimates
on a projection vector φ as [14] [16]

ε = φT (λ̂d̂q − λ
i
d̂q

) (15)

Using flux estimation error λ̃d̂q = λd̂q−λ̂d̂q and MMAP (12),
the linearized form of (15) becomes

ε = φT (λa
d̂q
θ̃ − λ̃d̂q

)
(16)

Following the results of flux estimation error dynamics (14),
the transfer function between the error signal and the position
error is derived as

K(s) =
ε

θ̃
= φT (sI +G+ ωJ)

−1
(sI + ωJ)λa

d̂q
. (17)

The transfer function K is depicted in the block diagram of
the closed-loop position observer in Fig. 3.

B. Speed and Position Observer

A conventional phase-locked-loop (PLL) with a
proportional-integral (PI) controller is employed to drive the
position error signal ε to zero as

ω̂ = kp ε+ ωi ωi =

∫
ki ε dt θ̂ =

∫
ω̂ dt (18)

where kp and ki are the respective gains. The gains of the PLL
are tuned for a critically damped response considering ε = θ̃
at s = −Ωω (kp = 2 Ωω & ki = Ω2

ω).

C. Stability Analysis

The system stability analysis comprising of flux and position
observers is designed for a general projection vector. To this
end, the error dynamics of the position observer in (18) can
be expressed as

s θ̃ = ω̃i − kp ε s ω̃i = −ki ε. (19)

The combined dynamics of the flux and the position observers
is given by

sy = Ay (20)

A =

−(G+ ω J) Gλa
d̂q

0
kp φ

T −kp φT λa
d̂q

1

ki φ
T −ki φT λa

d̂q
0
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TABLE I
MOTOR PARAMETERS

Parameters Symbol Values Units

Rated power Pn 1.1 kW
Rated voltage Vn 340 V
Rated speed ωn 1500 rpm
Rated current In 2.3 A
Rated torque Tn 7.1 Nm
Pole pairs p 2 -
Stator resistance Rs 6.8 Ω
Shaft inertia J 0.04 kgm2

where y =
[(
λ̃d̂q
)T

θ̃ ω̃i

]T
. The eigenvalues of (20) are

computed for each operating point to evaluate the system
stability.

D. Experimental Setup

The stability analysis of the sensorless techniques is val-
idated experimentally with a 1.1 kW SyR motor test-bench
on a dSPACE DS1103 control platform running at a sampling
frequency of 10 kHz. The parameters of the SyR motor under
test are tabulated in Table I.

The SyR machine operates in the speed control mode where
the load torque is imposed by an auxiliary drive. A minimum
stator current imin = 1 A (0.25 p.u.) is set for fundamental
excitation at no load. Unless otherwise mentioned, the flux
observer gain G = g I is tuned as g = 2π · 10 rad/s and the
PLL gains are tuned for critical damping at Ωω = 2π ·50 rad/s.

The incremental inductance matrix L∂ is retrieved in real-
time from the flux-map; as an example:

ld(idq) =
Λd(id + δid, iq)−Λd(id, iq)

δid
(21)

where δid is a small value (≈ 10 mA). The other incremental
inductances are computed in a similar fashion.

IV. FLUX OBSERVER-BASED SENSORLESS TECHNIQUES

Six fundamental-wave excitation techniques based on the
flux observer from literature are discussed through the com-
mon prism of projection vector framework. The regions of
instability and operational limits for each technique are iden-
tified. The sensitivity analysis to parameter errors is reported
in [15]; accurate parameter are considered in this work.

A. Flux Cross-Product Position Observer (CP)

1) Projection Vector Definition: The discrepancy in the
phase angle between the observed and the current-model flux
estimates is exploited for position tracking. In [5]–[7], the sine
and cosine of the rotor position are estimated directly as

sin(θ̂) =
λi
d̂
λ̂β − λiq̂ λ̂α
|λi
d̂q
|2

cos(θ̂) =
λi
d̂
λ̂α + λiq̂ λ̂β

|λi
d̂q
|2

. (22)

To access the compatibility of this technique with a PLL, the
position error signal εcp is derived from the cross-product

Fig. 4. The contour plot of the transfer function (26) for the CP position
observer: (a) ω = 2π ·10 rad/s (0.2 p.u.); (b) ω = 2π ·50 rad/s (1 p.u.). Flux
observer gain is g = 2π · 10 rad/s. The red line is the MTPA trajectory.

of the current-model and the observed flux in the estimated
reference frame as

εcp =
λi
d̂
λ̂q̂ − λiq̂ λ̂d̂
|λi
d̂q
|2

=
−1

|λi
d̂q
|2
(
λi
d̂q

)T J λ̂d̂q. (23)

This scheme will be denoted by the acronym CP and the sub-
script cp, implying cross-product. The error signal is expressed
in the projection vector framework as

εcp = φT
cp (λ̂d̂q − λ

i
d̂q

) (24)

where the projection vector φcp corresponding to the error
signal (23) is given by

φT
cp =

−1

|λi
d̂q
|2
(
λi
d̂q

)T J. (25)

2) Stability Analysis: For G = g I and using the CP pro-
jection vector (25) in (17), the dc-gain of the transfer function
between the error signal and the position error becomes

Kcp

∣∣
s=0

=
ω2

g2 + ω2

(
λi
d̂q

)T

|λi
d̂q
|2

[
g

ω
λa
d̂q
− Jλa

d̂q

]
. (26)

The expression (26) can be loosely interpreted as an open-loop
gain, see Fig. 3, i.e., small values indicate poor observability
of the position error and poor resilience to parameter errors.
A negative value implies a positive feedback and is unstable.

The gain (26) is dependent on the operating point idq and
the angular speed ω. The contour of (26) in the dq current
plane for the SyR motor under test is shown in Fig. 4 at
low speed (0.2 p.u.) and rated speed. For speeds below 0.2
p.u., typically, a high-frequency excitation based schemes are
employed. It can be discerned that the braking regions on the
MTPA trajectory are vulnerable, particularly at low speeds.
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Fig. 5. Closed-loop stability analysis of the CP position observer: (a) Locus of
poles of the flux (purple) and the position (green) observer at the rated torque
(MTPA). Markers: ◦ is 0.1 p.u., � is 1 p.u. and � is 2 p.u.; (b) Regions of
instability at different speeds where the marker � denotes rated torque.

Fig. 6. CP position observer stability analysis with resistance perturbation
of ±15% error, R̃s = ± 0.15Rs at 300 rpm (0.2 p.u.) and rated torque: (a)
Motoring; (b) Braking.

Moreover, high speed operations in flux-weakening region
shows poor signal strength and can be potentially unstable.

The locus of poles (20) for the CP projection vector (25) at
rated torque (motoring) is shown in Fig. 5(a) and is observed
to be stable at all speeds. A comprehensive stability analysis
at all operating point in the dq current plane is evaluated and
the regions of instability are sketched in Fig. 5(b). Low speeds
braking and high speeds flux-weakening regions are identified
as critical for stability.

3) Experimental Results: To evaluate the stability of the
sensorless techniques, a small perturbation of ± 15% in the

control stator resistance is introduced as shown in Fig. 6 at
300 rpm. Figs. 6(a) and 6(b) show the motoring and braking
operation at rated torque, respectively.

It can be observed that the motoring operation of the CP
observer is stable while the braking runs into instability. The
results corroborate the stability analysis in Fig. 5(b) where the
rated torque at 300 rpm in braking operation on the MTPA
trajectory (denoted by the marker �) is at close proximity to
the unstable region.

B. Active-Flux Position Observer (AF)

1) Projection Vector Definition: The active-flux observer is
a commonly used technique in literature [8]–[11] for position
estimation. By definition, the active-flux is the torque produc-
ing component of the stator flux that is inherently along the
d-axis, represented in the estimated rotor reference as

λaf
d̂q

= λd̂q − Lq id̂q. (27)

Using (3) and linearzing leads to

λaf
d̂q

=

[
(Ld − Lq) id̂

0

]
+ θ̃ 2L∆

[
iq̂
id̂

]
(28)

where L∆ = (Ld − Lq)/2. The q-axis component λafq̂ is
proportional to the position error; thus, the error signal can
be derived using the observed stator flux (λd̂q → λ̂d̂q) and
the current-model inductance (L→ Li) in (28) as

εaf =
1

2Li∆ id̂

[
0
1

]T (
λ̂d̂q − L

i
q id̂q

)
. (29)

This scheme is denoted by the acronym AF and the subscript
af . The equivalent projection vector for the error signal (29)
of the active-flux position observer is

φT
af =

1

2Li∆ id̂

[
0
1

]T

. (30)

2) Stability Analysis: Using G = g I, the dc-gain of the
transfer function (17) for the AF projection vector (30) is given
by

Kaf

∣∣
s=0

=
ω2

g2 + ω2

1

2L∆ id̂

[
g

ω
λa
d̂

+ λaq̂

]
. (31)

The gain (31) is dependent on the operating point idq and the
angular speed ω. The contour plot is shown in Fig. 7 at two
different speeds where the braking region is observed to have
poor signal strength that deteriorates with decreasing speed.

The locus of poles at the rated torque (motoring) is shown
in Fig. 8(a) which is stable at all speeds. A comprehensive
evaluation for stability in the dq current plane at three different
speeds is shown in Fig. 8(b). As mentioned earlier, the low
speed braking regions is susceptible. It is interesting to point
out that unstable regions exist also at high speeds motoring
despite a healthy signal strength in Fig. 7; this arises due to
the dynamic coupling between flux and position observer [16].
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Fig. 7. The contour plot of the transfer function (31) for the AF position
observer: (a) ω = 2π ·10 rad/s (0.2 p.u.); (b) ω = 2π ·50 rad/s (1 p.u.). Flux
observer gain is g = 2π · 10 rad/s. The red line is the MTPA trajectory.

Fig. 8. Closed-loop stability analysis of the AF position observer: (a) Locus of
poles of the flux (purple) and the position (green) observer at the rated torque
(MTPA). Markers: ◦ is 0.1 p.u., � is 1 p.u. and � is 2 p.u.; (b) Regions of
instability at different speeds where the marker � denotes the rated torque.

3) Experimental Results: Figs. 9(a) and 9(b) show the ex-
perimental validation of the stability of AF position observer
with a control resistance perturbation in motoring and braking
operation, respectively.

The motoring at rated torque and 300 rpm is stable while
the braking becomes unstable. This corroborates the stability
analysis in Fig. 8(b) where the rated torque in braking (denoted
by the marker �) is near the unstable region at operating speed
of 0.2 p.u.

C. Fundamental Saliency-based Position Observer (FS)

1) Projection Vector Definition: This technique aims to
estimate the rotor position from the anisotropic component
of the stator flux. Developed for a SyR machine in [12], it
is extended for a general synchronous machines. To this end,

Fig. 9. AF position observer stability analysis with resistance perturbation
of ±15% error, R̃s = ± 0.15Rs at 300 rpm (0.2 p.u.) and rated torque: (a)
Motoring; (b) Braking.

decomposing the stator flux in the estimated rotor reference
frame (3) to isotropic and anisotropic terms leads to

λd̂q = LΣ id̂q + L∆ e2J θ̃ īd̂q + eJθ̃ λm (32)

where LΣ =
Ld+Lq

2 and īd̂q =
[
id̂ −iq̂

]T
is the conjugate

vector. Linearizing (32), the position error can be extracted as

θ̃ =

(
Jλd̂q −L J id̂q

)T

|Jλd̂q −L J id̂q|2

(
λd̂q −Lid̂q − λm

)
. (33)

This scheme is denoted by the acronym FS and the subscript
fs. To design the position error function following (33), the
real stator flux is replaced by the observed flux (λd̂q → λ̂d̂q)
and the real inductance is replaced by the current-model
inductance (L→ Li) as

εfs = φT
fs (λ̂d̂q − λ

i
d̂q

) (34)

where the FS projection vector is given by

φT
fs =

(
Jλi

d̂q
−Li J id̂q

)T

|Jλi
d̂q
−Li J id̂q|2

. (35)

It is worth pointing out that the FS projection vector is
along the auxiliary-flux (13) at linear unsaturated regions, i.e.,
incremental inductance equal to the apparent inductance.

2) Stability Analysis: The dc-gain of the transfer function
(17) with G = g I for the FS projection vector (35) becomes

Kfs

∣∣
s=0

=
ω2

g2 + ω2

(
Jλi

d̂q
−Li J id̂q

)T

|Jλi
d̂q
−Li J id̂q|2

[
g

ω
J λa

d̂q
+ λa

d̂q

]
.

(36)
The gain (36) is dependent on the operating point idq and the
angular speed ω. The contour in the dq current plane is shown
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Fig. 10. The contour plot of the transfer function (36) for the FS position
observer: (a) ω = 2π ·10 rad/s (0.2 p.u.); (b) ω = 2π ·50 rad/s (1 p.u.). Flux
observer gain is g = 2π · 10 rad/s. The red line is the MTPA trajectory.

Fig. 11. Closed-loop stability analysis of the FS position observer: (a) Locus
of poles of the flux (purple) and the position (green) observer at the rated
torque (MTPA). Markers: ◦ is 0.1 p.u., � is 1 p.u. and � is 2 p.u.; (b) Regions
of instability where the marker � denotes the rated torque.

in Fig. 10 at two different speeds; the motoring operation at the
low speeds region has a poor signal strength and is vulnerable
to instability under parameter errors.

The locus of closed-loop poles (20) at the rated torque
(motoring) is shown in Fig. 11(a) where the poles are seen
moving towards the positive plane at low speeds. The regions
of instability at low speed (0.2 p.u.) are mapped in the dq
current plane in Fig. 11(b); the motoring operation at high load
is susceptible which is coherent with the poor signal quality
in Fig. 10. No unstable regions were identified at medium and
high speeds.

3) Experimental Results: The stability analysis is validated
with the control resistance perturbation at rated torque and 300
rpm in motoring and braking operation as shown in Figs. 12(a)
and 12(b), respectively.

The motoring operation is observed to be unstable while the

Fig. 12. FS position observer stability analysis with resistance perturbation
of ±15% error, R̃s = ± 0.15Rs at 300 rpm (0.2 p.u.) and rated torque: (a)
Motoring; (b) Braking.

braking is stable. This corroborates with the stability analysis
in Fig. 11(b) where the rated torque in motoring (denoted by
the marker �) is at close proximity to the instability region at
300 rpm.

D. Auxiliary-Flux Position Observer (AUX)

1) Projection Vector Definition: To mitigate the instability
problems of active-flux method while retaining the simplicity,
an auxiliary-flux position observer is proposed in [13]. The
auxiliary-flux defined in (13) is the discrepancy between the
voltage and current-model flux estimates scaled by the position
error, i.e.,

θ̃ =

(
λa
d̂q

)T

|λa
d̂q
|2

(
λd̂q − λ

i
d̂q

)
(37)

Hence, using the observed stator flux (λd̂q → λ̂d̂q), a natural
choice for error signal is along the auxiliary-flux vector as

εaux = φT
aux

(
λ̂d̂q − λ

i
d̂q

)
(38)

where the auxiliary-flux projection vector is given by

φT
aux =

(
λa
d̂q

)T

|λa
d̂q
|2
. (39)

This scheme is denoted by the acronym AUX and the subscript
aux.

2) Stability Analysis: The dc-gain of the transfer function
(17) with G = g I for AUX projection vector (39) is given by

Kaux

∣∣
s=0

=
ω2

g2 + ω2
(40)

Differing from the former three schemes, the gain (40) is
only dependent on the square of angular speed ω and not the
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Fig. 13. Locus of poles of the flux (purple) and the position (green) observer:
(a) AUX position observer; (b) APP position observer; (c) AG position
observer. Markers: ◦ is 0.1 p.u., � is 1 p.u. and � is 2 p.u.

operating point idq . Hence, a sufficient strength of the signal
is ensured, with minimum of 0.5 at the low speed ω = g and
progressively increasing at higher speeds.

The locus of the closed-loop poles (20) is a function of
angular speed and independent of operating torque. The poles
are stable at all speeds as shown in Fig. 13(a).

3) Experimental Results: The performance of the AUX
position observer under control resistance perturbation at rated
torque and 300 rpm in motoring and braking operation is
shown in Figs. 14(a) and 14(b), respectively. The control is
stable as ascertained in the former analysis. The position error
and the estimated torque are observed to be susceptible to the
resistance perturbations.

E. APP Position Observer (APP)

1) Projection Vector Definition and Stability Analysis: The
APP projection vector is designed from the linearized error
dynamics of the flux observer such that the dc-gain of the
transfer function (17) is unity, i.e.,

Kapp|s=0 = 1. (41)

This leads to a projection vector of nature:

φT
app =

−1

ω |λa
d̂q
|2
(
λa
d̂q

)T J
(
G+ ω J

)
(42)

This scheme is denoted by the acronym APP and the subscript
app. This choice of projection vector has an unique advantage
of immunity from the voltage errors due to stator resistance
variation and non-ideal inverter compensation [15].

The locus of the closed-loop poles at different speeds is
shown in Fig. 13(b) and is observed to be stable at all operating
regions. The poles, however, differ from the designated value
due to dynamic coupling between the flux and the position
observer.

Fig. 14. AUX position observer stability analysis with resistance perturbation
of ±15% error, R̃s = ± 0.15Rs at 300 rpm (0.2 p.u.) and rated torque: (a)
Motoring; (b) Braking.

2) Experimental Results: The experimental validation of
the APP position observer with control resistance perturbations
at rated torque and 300 rpm is shown in Fig. 15. In addition to
the stability, it can be discerned that the position error remains
unperturbed despite the resistance variations, demonstrating
the resistance immunity property of the APP scheme [15].

F. Adaptive-Gain Position Observer (AG)
1) Projection Vector Definition and Stability Analysis: De-

noted by the acronym AG and the subscript ag, the adaptive-
gain approach proposed in [16] aims to decouple the dynamics
of flux and position observer, i.e.,

Kag(s) = 1 (43)

To this end, the transfer function (17) can be manipulated to

Kag(s) = φT
ag λ

a
d̂q
− φT

ag (sI +G+ ωJ)
−1
Gλa

d̂q
. (44)

The gain G is adapted such that Gλa
d̂q

= 0. Then, it follows
that a projection vector along the auxiliary-flux vector satisfies
the condition (43) as

φT
ag =

(
λa
d̂q

)T

|λa
d̂q
|2

⇒ Kag(s) = 1. (45)

The adaptive-gain to satisfy the condition Gλa
d̂q

= 0 is
given by

G =

[
k1

k2

] (
λa
d̂q

)T

|λa
d̂q
|2

J (46)

where k1 and k2 are the additional degrees of freedom to
design the locus of the flux observer poles. For comparison
with former schemes, the poles are placed at s = −g ± ω as

det
(
s I +G+ ωJ

)
= (s+ g)2 + ω2. (47)
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Fig. 15. APP position observer stability analysis with resistance perturbation
of ±15% error, R̃s = ± 0.15Rs at 300 rpm (0.2 p.u.) and rated torque: (a)
Motoring; (b) Braking.

Solving, the gains are given by[
k1

k2

]
=
g

ω

[
g 2ω
−2ω g

]
λa
d̂q
. (48)

The locus of poles for the adaptive-gain approach are shown
in Fig. 13(c). It can be observed that the poles are coincident
with the design parameter, unlike the APP, due to dynamic
decoupling of the two observers.

2) Experimental Results: The experimental validation of
AG position observer under control resistance perturbation at
rated torque and 300 rpm in Fig. 16 shows that the system
is stable for motoring and braking operations although the
position error is susceptible to the resistance variations.

V. CONCLUSIONS

The paper reviewed six flux observer-based sensorless
techniques using a general mathematical framework. Each
scheme was represented by a unique projection vector and
was subjected to a common stability analysis to identify the
operational limits under similar operating conditions.

Regions of instability were identified for CP scheme at low
speeds braking and at high speeds flux-weakening operation.
The AF scheme is found to be unstable at low speeds braking
and high speeds flux weakening operation while the FS scheme
is unstable at low speeds motoring operation. The latter three
schemes (AUX, APP and AG) are stable at all operating
points. APP scheme has an unique advantage of resistance
immunity while AG scheme has decoupled flux and position
observers with poles at the designated location. The results
of the stability analysis were experimentally validated with a
control resistance perturbation test on a 1.1 kW SyR machine
test-bench.

Fig. 16. AG position observer stability analysis with resistance perturbation
of ±15% error, R̃s = ± 0.15Rs at 300 rpm (0.2 p.u.) and rated torque: (a)
Motoring; (b) Braking.
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