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exploiting graphlet decomposition 
to explain the structure of complex 
networks: the GHuSt framework
Rafael espejo1, Guillermo Mestre1, fernando postigo1*, Sara Lumbreras1, Andres Ramos1, 
tao Huang2 & ettore Bompard2

the characterization of topology is crucial in understanding network evolution and behavior. this 
paper presents an innovative approach, the GHuSt framework to describe complex-network topology 
from graphlet decomposition. this new framework exploits the local information provided by 
graphlets to give a global explanation of network topology. The GHuST framework is comprised of 12 
metrics that analyze how 2- and 3-node graphlets shape the structure of networks. The main strengths 
of the GHuSt framework are enhanced topological description, size independence, and computational 
simplicity. It allows for straight comparison among different networks disregarding their size. It 
also reduces the complexity of graphlet counting, since it does not use 4- and 5-node graphlets. The 
application of the novel framework to a large set of networks shows that it can classify networks of 
distinct nature based on their topological properties. To ease network classification and enhance the 
graphical representation of them, we reduce the 12 dimensions to their main principal components. 
Furthermore, the 12 dimensions are easily interpretable. This enables the connection between 
complex-network analyses and diverse real applications.

The analysis of complex-network topology can support the understanding of the principles that guide network 
evolution and that condition network  behavior1. The characterization of network structure has traditionally 
been done through a set of global or local statistics such as degree distribution or  motifs2,3. Both global and local 
metrics complement each other, since different communities may coexist in the same network with different 
topological properties (what is known as structural subunits)4. Global metrics, such as network diameter or 
characteristic path length, provide a panoramic view of networks that may have implications on their dynamics. 
For instance, the particular degree distribution of computing networks, they are scale-free networks, makes them 
relatively resistant to accidental failures but vulnerable to targeted  attacks5. However, global metrics disregard 
the complexity of local structures that might be crucial to understand the behavior of networks, as it has been 
shown for the case of the internet  network6. Furthermore, local processes condition the development of network 
 topology7. Consequently, topological analyses should include the use of local statistics that zoom in the local 
structure of complex networks.

An example of a local-topological statistic is the motif distribution. Motifs are recurring subgraphs patterns 
that appear more often in a given network than in a random one. Motifs were proposed to understand the evo-
lutionary design principles of complex networks from a local  perspective8. They search for key local structures 
that determine network behavior. However, the choice of the null model (random networks to which a network 
is compared) to detect motifs in real networks may be  misleading9. Furthermore, motifs are partial subgraphs 
(they do not necessarily include all the connections between a set of considered nodes); this leads to a loss of 
information that may be compelling to understand network  structure10.

Unlike motifs, graphlets allow for network decomposition in small subgraphs that preserve all connections 
among nodes. Graphlets are small connected induced subgraphs of a large  network11. The presence of graphlets 
in a network is not conditioned by a null model; they can appear at any frequency. This is a strength with respect 
to motifs studies. Although graphlets may be comprised of an arbitrary number of nodes, the most commonly 
studied graphlets are 2- to 5-node subgraphs, given that higher degrees entail higher computational complex-
ity. The automorphism orbit of a graphlet is defined as the set of nodes that are topologically symmetric in the 
 graphlet12. Orbits, therefore, define the relative position of nodes with respect to the rest of the nodes in the 
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graphlets. Figure 1 shows all 2- to 5-node graphlets and their automorphism orbits. Finally, the description of 
network topology is limited by graphlet size. Although larger graphlets may complete the description of network 
topology, this would be unmanageable from a computational point of view. Recent works have proposed efficient 
algorithms for graphlet  counting13–17.

Several models developed for the network alignment problem prove the adequacy of graphlet as a local 
topology  descriptor18–21. The network alignment problem aims to find corresponding nodes between different 
networks. Nodes that play a similar role in both networks from a topological point of view. In this field, graphlet 
decomposition has been revealed as a crucial tool with a view to solving the problem. The basis of those models is 
the degree signature of a  graphlet12. The graphlet degree signature is an extension of the node degree that quanti-
fies the number of times a node in the network appears in an orbit (referred to as “touch an orbit”). Consequently, 
graphlets provide a complete description of local network topology (the orbits each node touches) that enhances 
the solution of network alignment problem. Similarly, graphlets might support the comparison among networks 
or the study of the role played by nodes in the  network22,23. Despite being a good descriptor of local properties, 
the use of graphlet distribution (or graphlet degree signature) is not enough to have an insight into the global 
topological properties of networks. Yaveroğlu et al. propose the analysis of orbit correlation to characterize 
network structure and to ease the interpretation and implications of topological properties in real  applications24.

This paper improves the characterization and understanding of network topology by proposing the GHuST 
framework that extends graphlet analysis. The advantages of this novel method are enhanced topological descrip-
tion, size independence, and computationally simplicity. First, the 12 dimensions fully describe the structure of 
networks, covering the most relevant aspects of local and global topology from a systematic manner. Second, the 
GHuST framework explains network properties regardless of network size. This supports the comparison among 
networks with different number of nodes and edges. Third, it only considers 2-node and 3-node graphlets and 
they follow easily from the adjacency matrix. It reduces computational complexity with respect to prior analyses 
that require counting higher-node graphlets.

The application of the method to a set of five real networks demonstrates the accuracy of the framework to 
explain network topology. Furthermore, this new metric enhances network classification and can be used as a 
tool to confirm the topological accuracy of synthetic networks. This validation is usually missing in the gen-
eration of synthetic power grids, where there is a weak topological validation or it is done only by a few global 
 statistics25. Therefore, this tool can be introduced to compare the topology of both real and synthetic networks 
in a systematic manner.

Figure 1.  2- to 5-node graphlets (from G0 to G29 ) and their automorphism orbits (from 0 to 72). For each 
graphlet, nodes in the same automorphism orbits are identified with the same color (e.g. all blue nodes in G1 are 
in O1 , they are in a symmetric position in the graphlet, the green node is in a different topological position, it is 
in O2).
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The rest of the paper is organized as follows: “Understanding network structure from local properties” section 
presents the GHuST framework. “Explaining the topology of real networks” section illustrates its application to 
explain the topological structure of networks from different nature. “A panoramic view offered by local proper-
ties” section uses dimensionality reduction methods to evaluate the performance of the proposed metric when 
applied to a large sample of networks. Finally, “Conclusion” section presents paper conclusions.

Understanding network structure from local properties
As explained above, graphlets can be a convenient tool for explaining the local structure of networks. Unfortu-
nately, graphlet decomposition does not consider any interaction between graphlets. In addition, in large net-
works, counting graphlets is computationally intensive. It also supplies a substantial number of dimensions that 
are difficult to interpret (30 graphlets and 73 orbits in the case of using from 2- to 5-node graphlets). Motivated 
by this desire to simplify and improve topological analyses through graphlet decomposition, this section pro-
poses a novel method that reduces the topological analysis of networks to a 12-dimensional metric, the GHuST 
framework. This metric can be calculated in any non-directed and unweighted network.

The 12 dimensions are obtained from the decomposition of networks in 2-node and 3-node graphlets, com-
prising three graphlets ( G0,G1 and G2 ) and four orbits ( O0 , O1 , O2 , O3 ). The adjacency matrix succinctly reveals 
the number of times a node touches those orbits (see Supplementary Information Sect. 1). As explained in the 
prior section, recent works focused on counting graphlets efficiently in large  networks13–17.

In addition, for the four orbits, Pt,i is a binary variable that is 1 if node i is at least once in orbit t  or 0 other-
wise (1).

To enhance readability, the 12 dimensions are classified into four categories: Global connectivity, Hubs, 
Strings, and Triangles. Those categories cover different aspects of network structure that might condition net-
work behavior. Furthermore, these categories allow for an intuitive interpretation of topology implications in 
real-world applications. For instance, in power networks, the higher presence of strings might mean a lower level 
of network robustness (higher probability of having energy not supplied in the network in case of line failure, 
given that when there is a failure in a string all the downstream nodes will be affected). Similarly, the presence 
of large strings in an email graph (nodes stands for community members and edges connect the people who 
send an email with the people who receive the email) will show that the community may follow a clearly defined 
hierarchical structure.

To enhance network comparison, it is desirable that the 12 dimensions of the metric range between 0 and 1. 
In cases where a dimension does not do it, we propose a scaling factor. The 12 dimensions are defined as follows.

Global connectivity. Line‑surplus coefficient, ρ1. It stands for the surplus of lines in the network with re-
spect to the minimum number of lines needed to build a connected graph (2). Given a set of nodes, N , the mini-
mum number of lines, L0 , to have a connected graph is L0 = N − 1 , in case of large networks L0 ≈ N . As we only 
consider connected graphs, N =

∑

i P0,i . The number of lines installed in a network is 
∑

i O0,i

2
 . This dimension is 

therefore related to the average node degree and it supplies information about line density in a network. In net-
works with a radial structure (trees), ρ′

1 tends to zero. The higher the value of ρ′
1 the more meshed a network is.

We define ρ1 (3) to scale ρ′
1 between 0 and 1. Networks with ρ1 close to 1 have a highly meshed structure.

ρ1 can be rewritten as (4).

Leaf rate, ρ2. This ratio compares the proportion of nodes with just one connection, known as leaf nodes, to 
the rest of nodes in the network that are not vertices of a triangle. This ratio discerns between networks in which 
edges may form a homogenous mesh that touches most nodes and networks characterized by the presence of 
hubs connecting low-degree nodes. This metric is calculated as the complementary of the ratio between the 
number of nodes that touches O1 but does not touch O3 and the number of nodes that touches O2 but does not 
touch O3 (5).

All sets of three-connected nodes are either in graphlets G1 or G2 . For those nodes that belong to G2 and they 
are not part of G3 , they may touch O1,O2 or both simultaneously. A node is only in O2 if it is the center of an 
isolated star, that is, the rest of the network nodes are connected to it. By assuming that networks have a more 
complex structure, no nodes can touch exclusively O2 . However, a node can touch exclusively O1 . This occurs 
in cases where nodes have only one connection, or they are the non-common vertex of two triangles that share 
one or two vertices. Accordingly, leaf nodes are defined by: P1,i = 1 , P2,i = 0 and P3,i = 0 . Nodes that are not 

(1)Pt,i =

{

1,Ot,i > 0

0,Ot,i = 0

(2)ρ
′
1 =

1

2

∑

i O0,i
∑

i P0,i
− 1

(3)ρ1 = 1−
1

ρ′
1 + 1

(4)ρ1 = 1−
2
∑

i P0,i
∑

i O0,i
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leaf nodes or vertices of a triangle are defined by: P1,i = 1 , P2,i = 1 and P3,i = 0 . When ρ2 is close to one, the 
presence of leaf nodes is high. The lower this coefficient, the lower the number of nodes that have just one con-
nection; this is characteristic of star graphs.

Leaf‑base strength, ρ3. This ratio analyses if leaf nodes are connected to either hubs or low-degree nodes. This 
is the average number of times leaf nodes touch O1(6). The value of O1 for leaf nodes is equal to the degree of its 
neighbor. Thus, the higher the value of O1 , the higher the degree of the node to which they are connected. Large 
values of ρ′

3 may signal the presence of hubs in the network.

This dimension might be scaled with the maximum value of node degree, max(O0,i) , in the network (7). ρ3 
can be rewritten as (8). If ρ3 tends to zero, leaf nodes are connected to low-degree nodes. They may be the end 
nodes of node strings.

Hubs. Hub coefficient, ρ4. This dimension studies whether there is a tendency to form hubs in the network 
or not. It measures the average number of times nodes touch O2 (9). All nodes touch O2 except for leaf nodes and 
nodes that are only in G2(they are only vertices of triangles). The larger the number of connections of a node, 
the larger the value of O2,i . Large values of ρ′

4 therefore shows there is a tendency to make hubs in the network. 
Unlike ρ3 , the hub coefficient does not linearly correlate with node degree; O2,i is given by the binomial coef-
ficient 

( n
2

)

 where n is the number of non-connected edges attached to node i when the O0,i is greater than 2. If 
two networks have similar values of ρ1 , but different values of ρ′

4 , there is a higher tendency to make hubs in one 
network than in the other.

To range between 0 and 1, ρ′
4 can scale with the maximum value of O2,i in the network (10). ρ4 can be rewrit-

ten as (11).

Hub‑connectivity coefficient, ρ5. It analyzes if hubs tend to connect among them. This dimension is defined by 
the Spearman’s rank correlation between O1 and O2 , (12) where cov(rgO1

, rgO2
) is the covariance of the rank vari-

ables of O1 and O2 and σrgO1,σrgO2 are the standard deviation of both rank variables. This is one of the correlations 
proposed by Yaveroğlu et al.24. If ρ′

5 tends to 1 means that nodes with high O2 are also nodes with high values of 
O1 . The number of times a node touches O1,i increases with the degree of a node and its neighbors’ degree. How-
ever, the value of O2,i only depends on node degree; the higher the number of connections of a node, the higher 
the value of O2,i . Consequently, nodes with a high value for O1 and O2 have a high node degree, they are hubs, 
and they are connected to other hubs. Therefore, a value close to 1 means that hubs tend to connect among them.

This dimension is also scaled to range from 0 to 1 (13). ρ5 can be rewritten as (14).

(5)ρ2 = 1−

∑

i P2,i(1− P3,i)
∑

i P1,i(1− P3,i)

(6)ρ
′
3 =

∑

i O1,iP1,i(1− P2,i)(1− P3,i)
∑

i P1,i(1− P2,i)(1− P3,i)

(7)ρ3 =
ρ
′
3

max(O0,i)

(8)ρ3 =

∑

i O1,iP1,i(1− P2,i)(1− P3,i)
∑

i P1,i(1− P2,i)(1− P3,i)

1

max(O0)

(9)ρ
′
4 =

∑

i O2,i
∑

i P2,i

(10)ρ4 =
ρ
′
4

max(O2,i)

(11)ρ4 =

∑

i O2,i
∑

i P2,i

1

max(O2)

(12)ρ
′
5 =

cov(rgO1
, rgO2

)

σrgO1
σrgO2

(13)ρ5 =
ρ
′
5

2
+

1

2
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Strings. String coefficient, ρ6. This coefficient measures the proportion of nodes in the network that are 
in the middle of a string. A string is formed by two end nodes (one or both nodes are linked to the rest of the 
network and there is no edge connecting them) and a set of intermediate nodes that are connected consecutively 
and have no links with the rest of the network. Consequently, a node is in the middle of a string if it has two con-
nections, it touches O2,i only once ( U2,i = 1) and it is not a vertex of a triangle ( U3,i = 1 ). Therefore, ρ6 is the ratio 
between the number of nodes that are in the middle of a node string and the total number of nodes that touch 
O2 (15). Not all degree-two nodes touch O2 once (triangle vertices do not touch O2 ). In addition, not all nodes 
that touch O2 once are in the middle of a node string. A node might touch O2 only once if it is a shared vertex of 
a triangle ( O3,i > 0 and U3,i = 0) , so the node is not part of a string.

Characteristic string length, ρ7. This dimension is the average length of node strings (considering only middle 
nodes and disregarding the end nodes of the string) in the network as shown in (18), where n is the number of 
node strings in the network.

To enhance network comparison, ρ′
7 is scaled as its inverse (19). If ρ7 is equal to zero, it means that all node 

strings have two end nodes and only one middle node.

triangles. Triangle rate, ρ8. This coefficient studies whether there is a tendency to make triangles in the 
network or not. It measures the proportion of triangles ( G2 ) in a network with respect to the total three-node 
graphlets (20). The number of G2 in the network is equal to 

∑

i O3,i

3
 and the number of G1 is equal to 

∑

i O2,i . This 
ratio is similar to the global clustering coefficient. However, many works in the literature use the network aver-
age clustering coefficient to analyze network properties. The network average clustering coefficient weights more 
nodes with a low degree (as discussed in the Supplementary Information Sect. 2). Thus, it is not a correct meas-
ure to analyze network with a non-homogenous degree distribution. The average network clustering coefficient, 
therefore, differs from the value of ρ8 which considers the whole topology of the network.

Triangle concentration, ρ9. This coefficient shows if triangles tend to be concentrated in networks. Triangles are 
concentrated when there are nodes that are vertices of two or more triangles. The dimension ρ9 is complemen-
tary to the ratio between the number of nodes that are vertices of triangles and the number of triangles in the 
network (21). The higher the number of triangles that share some vertices the lower the value of ρ9 . If triangles 
have no shared vertices, the maximum value of O3,i is 1, and O3,i = P3,i . Therefore, the number of nodes that are 
in a triangle is three times the number of G2 in the network ( 3G2 =

∑

i O3,i =
∑

i P3,i). However, if triangles 
share vertices, 

∑

i P3,i < 3G2 . As ρ9 converges to 0, the number of graphlets of type G7 , G8 , G17 , G19 , G22 , G23 , G24 , 
G25 , G26 , G27 , G28 and G29 (graphlets composed of triangles with shared vertices) converges to 0 too.

Triangle pervasiveness, ρ10. This dimension analyzes if triangles tend to cover the whole network or if they are 
concentrated around a few nodes. It measures the proportion of nodes in the network that are vertices of trian-
gles (22). If a node is a vertex of a triangle, P3,i = 1. As explained, in connected graphs, the number of nodes in a 
network is 

∑

i P0,i . This coefficient compliments ρ8 and ρ9 , since it sheds light on whether triangles form a mesh 

(14)ρ5 =
1

2

cov(rgO1
, rgO2

)

σrgO1
σrgO2

+
1

2

(15)ρ6 =

∑

i U2,iU3,i
∑

i P2,i

(16)U2,i =

{

1,O2,i = 1

0,O2,i �= 1

(17)U3,i =

{

1,O3,i = 0

0,O3,i �= 0

(18)ρ
′
7 =

∑

i U2,iU3,i

n

(19)ρ7 = 1−
n

∑

i U2,iU3,i

(20)ρ8 =

∑

i O3,i

3
∑

i O2,i +
∑

i O3,i

(21)ρ9 = 1−

∑

i P3,i
∑

i O3,i
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that comprises most nodes in a network or not. A high value of ρ8 might be a consequence of networks in which 
triangles are connected to hubs and low-degree nodes have a non-meshed structure or networks in which all 
nodes are connected by a triangle mesh. Therefore, ρ10 allows for the discernment between those types of net-
works, this coefficient would have a low value in the first case, and it would be close to one in the second network.

Triangle connectivity, ρ11. It measures if triangles are isolated in the network or they are part of a highly meshed 
structure. A triangle is isolated if one or two of its vertices are not connected to the rest of the network. Conse-
quently, those vertices have only two connections, they touch O1,i and O3,i and they do not touch O2,i . Thus, ρ11 
is the ratio between the number of triangle vertices that are not connected to other nodes ( U2,i = 1) and the total 
number of nodes that are vertices of triangles ( 

∑

i P3,i ) (23). The lower the value of ρ11 , the lower the number of 
isolated triangles in the network.

Triangle degree, ρ12. This dimension shows if triangles tend to be connected to hubs or to low-degree nodes. It 
is the average degree of triangle vertices (24). That is the mean value of O0,i for those nodes that are in a triangle 
( P3,i = 1 ). High values of ρ12 mean that triangles are connected to hubs. The lower the value of ρ′

12 , the lower 
the average node degree of triangle vertices.

To range between 0 and 1, ρ′
12 is scaled with the maximum value of node degree (25). ρ′

12 can be rewritten 
as (26).

A summary table for the dimensions of the GHuST framework is shown in Supplementary Information 
Table S1.

explaining the topology of real networks
To prove the accuracy of the proposed method, this section applies the 12-dimensional metric to a set of five real 
networks. It aims to prove if the information provided by ρ is consistent with the global-topological statistics 
usually used to describe network structure. These five networks have different sizes and display completely dif-
ferent structures, as shown in Supplementary Information Fig. S1. The two social networks and the metabolic 
network are in the range of 1,000 to 1,500 nodes, and the two infrastructure networks are two and five times 
larger, respectively. However, the number of edges is much higher in the social networks; in the case of the Face-
book network, the number of edges is twenty times larger than in the road networks. Differences in network 
size obscure the comparison among networks with global statistics. In some cases, as in distance-based metrics, 
it is not always possible to infer if there is a change in a variable because of network size or network structure.

The five real networks are modeled as non-directed and unweighted networks to apply the GHuST frame-
work. This framework does not consider edge direction or edge weight. Although an extension to weighted and 
directed networks is not the scope of this paper, the GHuST framework may include potentially both properties. 
On the one hand, edge direction leads to a different graphlet decomposition as pointed by Aparício et al.26. They 
propose 39 non-bidirectional directed graphlets of 2, 3, and 4 nodes. Then, graphlet and orbit definitions differ 
between directed and non-directed networks and new GHuST dimensions would apply. Those new dimensions, 
therefore, incorporate edge direction. While this will increase the complexity of the GHuST framework, it will 
provide a sounder analysis of network structure in the case of directed graphs. For instance, the inclusion of 
edge direction in the analysis of power networks will explain the role of leaf nodes in the network. That is, if leaf 
nodes inject or withdrawn power in the network. Consequently, the explanation given by the leaf rate ( ρ2 ), will 
be completed with the direction of network edges that might represent power flow through lines. By defining 
new GHuST dimensions, we will differ between radial networks in which leaf nodes withdrawn power in the 
network, demand nodes, or nodes that inject power, power plants.

On the other hand, the inclusion of edge weight in the analysis of graphlet decomposition was covered by 
Azari and  Airoldi27. However, the expansion of the GHuST framework to weighted networks would not be as 
straightforward as in the case of edge direction. The 12 GHuST dimensions should be completed with a set of 
coefficients that weight the importance of the edge in the network. Regarding the example above, values for the 
leaf rate should vary between networks with small power plants (e.g., wind and solar farms) and bigger power 

(22)ρ10 =

∑

i P3,i
∑

i P0,i

(23)ρ11 =

∑

i P3,iU2,i
∑

i P3,i

(24)ρ
′
12 =

∑

i O0,iP3,i
∑

i P3,i

(25)ρ12 =
ρ
′
12

max(O0,i)

(26)ρ12 =

∑

i O0,iP3,i
∑

i P3,i

1

max(O0)
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plants (e.g., thermal power plants) connected to the network through a single line. However, as stated, the inclu-
sion of edge weight requires additional research to be effectively included in the GHuST framework.

This paper highlights the simplicity of the GHuST framework, which has been coded in Matlab as well as 
the code to count graphlets and orbits. This claims result from the need to count 2-node and 3-node graphlets, 
that is four orbits ( O0 , O1 , O2 , O3 ). Since the GHuST framework only analyzes graphlets of orders 3 and below, it 
can be calculated in affordable times. As Hočevar et Demšar show, an increase in the number of graphlet nodes 
triggers the computation time in all the analyzed methods to count graphlets covered in their study (FANMOD, 
GraphCrunch, and Orca) 15,16,28. For example, the time needed to count the 5-node graphlets is between 10 and 
100 times higher than the time required to count the 4-node graphlets. The same increase is observed by Melck-
enbeeck et al. in their comparison when going from 5-node to 6-node  graphlets29. Keeping the counting to order 
3 and below allows for a manageable computational burden. The computational complexity of this counting is 
approximately of the order of O

(

|V |dk−1
)

 , where V  is the set of vertices, d is the maximum degree and k is the 
order of the graphlet counting, therefore yielding O

(

|V |d2
)

 for our case. In addition, the calculation is easily 
parallelizable as expressed in published  works30.

A thoughtful analysis of the graphlet distribution of each network has been carried out (see Supplementary 
Information Sect. 2). The results show that in our case, graphlet distribution is not an accurate tool to infer 
the topological properties of such complex networks, providing an incomplete description of the underlying 
network structure.

The proposed method overcomes the limitations of graphlet distributions to explain network topology by 
a 12-dimensional metric. To analyze results, Table 1 shows a set of global statistics used to analyze the five real 
networks, and Table 2 shows the value of the GHuST framework for those networks. (Values in Table 2 are not 
scaled, the reader is referred to Supplementary Information Sect. 2 for an in-depth analysis). The description 
provided by the GHuST framework of the topological structure of the networks is consistent with global statistics 
traditionally used in complex networks, overcoming their main drawbacks. 

A panoramic view offered by local properties. The previous section has illustrated the application of 
the proposed metric as a tool for summarizing the main topological features of complex networks. This section 
aims at evaluating the performance of this technique using a large sample, 1,404 graphs, of real networks from 
different domains: Autonomous Systems, Enzymes, Facebook, Power Network, Retweet, Roads, and Web.

The autonomous-systems set stands for 733 daily instances of graphs of routers comprising the  internet31. 
The enzymes, Facebook, retweet, roads, web, and some power-network graphs are obtained from an open-
access network  repository32. The enzyme dataset includes 476 samples (the analysis only considers graphs with 
more than 20 nodes). The Facebook set consists of 108 networks of friendship connections. The power-network 
graphs comprise the transmission (220 kV and 400 kV) power networks of fifteen European countries, and a set 
of power networks (7 graphs) obtained from the open-access repository (voltages levels are not specified)32,33. 
The retweet networks form a set of 32 graphs. The road set includes 16 instances. Finally, 17 networks are part 
of the web graphs.

Once we compute the 12-dimensional metric for each network, Principal Component Analysis (PCA) is 
used to validate the usefulness of the proposed statistic. In addition, to enabling visual inspection of our data, 
it can be used to verify if some dimensions of the 12-dimensional metric could be removed. PCA is a statistical 
technique that seeks to obtain a linear combination of the original variables in such a way that the maximum 
variance is explained. This allows us to obtain a low-dimensional representation of the data that captures most of 

Table 1.  Global topological properties of five real networks.

N L D (%) 〈k〉 max(k) Ass. coeff 〈l〉 d 〈BC〉 max(BC) 〈cc〉

Road 2,642 3,303 0.02 2.5 5  − 0.187 35.35 99 4.52 × 104 6.95 × 105 0.016

Power-grid 4,941 6,594 0.03 2.7 19 0.004 18.98 46 4.44 × 104 3.51 × 106 0.080

Mail 1,133 5,451 0.43 9.6 71 0.078 7.21 8 1.47 × 103 2.52 × 104 0.220

Social 1,446 59,589 2.85 82.5 375 0.067 2.22 6 887 1.88 × 104 0.323

Metabolic 1,039 4,741 0.44 9.13 638  − 0.251 2.47 6 766 2.46 × 105 0.377

Table 2.  Values of GHuST dimensions for a set of five real networks. ρi is the dimension i of the GHuST 
framework. Dimensions 1, 3, 4, 5, 7, and 12 are not scaled, this table shows the values for ρ′

i.

ρ
′

1 ρ2 ρ′
3 ρ′

4 ρ′
5 ρ6 ρ′

7 ρ8 ρ9 ρ10 ρ11 ρ′
12

Road 0.25 0.04 1.85 2.18 0.72 0.57 1.55 0.01 0.03 0.05 0.01 3.42

Power grid 0.34 0.31 3.520 4.86 0.78 0.42 1.53 0.04 0.51 0.19 0.23 4.43

Email 3.81 0.51 16.25 85.97 0.96 0.08 1.04 0.06 0.95 0.74 0.06 12.34

Social 40.21 0.61 93.06 3,965.03 0.98 0.01 1.00 0.10 1.00 0.98 0.01 84.02

Metabolic 3.56 0.04 321.00 472.05 0.80 0.06 1.06 0.01 0.96 0.84 0.05 10.31
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the original information. As there are no null coefficients in the PCA loadings, it can be concluded that there are 
no redundant dimensions in the proposed metric. Furthermore, any network with unusual topological proper-
ties will be highlighted in our analysis, providing a tool for detecting outliers. Varimax rotation was applied to 
improve the understanding of PCA analysis. The varimax technique pursues obtaining principal components 
that are easier to interpret, by rotating the original principal components in such a way that each one is strongly 
correlated with as few of the original variables as possible. However, results obtained with varimax rotation did 
not improve the results shown in this section.

Figure 2a shows the proportion of variance explained by the principal components. By selecting the first 
three components, we are able to capture 93.4% of the variance of the original data, allowing us to obtain a 
low-dimensional view of the distribution of our data. The weights of the 12 dimensions of our metric for each 
component are shown in Fig. 2d, and they can be used to obtain an interpretation of each component. The first 
component (68.7% of variance), accounts for a positive contribution of ρ4 , ρ10 , ρ12 and a negative contribution 
of ρ2 , ρ6 and ρ11 . Therefore, the main topological differences among the networks analyzed lie on the proportion 
of leaf-nodes, presence of hubs and strings, as well as the triangle pervasiveness and connectivity coefficients and 
triangle degree. A similar interpretation can be obtained for the second component (19.4% of variance) and the 
third component (5.3% of variance) based on Fig. 2d. 

By projecting the coordinates of our 12-dimensional data on the space spanned by the first 3 principal 
components, we can visualize the distribution of the metric for each network in this new axis system. As seen 
in Fig. 2b,c, networks from different processes tend to have similar topological properties, hence showing clear 
groupings in the principal-component space.

The autonomous-system and Facebook networks form two clearly bounded clusters in the three-first prin-
cipal-component space. Despite being the category with more instances, all the autonomous-system instances 
are close to − 0.5 in the first component and to 0 in the second and third components. Since in the first principal 
component, ρi have positive and negative loadings, we cannot state if those values close to zero are the conse-
quence of low values of all components, or they are the consequence of the balance between positive and negative 
loadings. Tables include in Supplementary Information Sect. 4 show the range in which the 12 dimensions vary. 
The analysis of ranges for each type of network allows for the classification of graphs. In the case of Facebook 
graphs, most analyzed instances have values of ρ3 , ρ4 , ρ6 , ρ7 , ρ8 , ρ11 , ρ12 that are close to zero and the values of 
ρ1 , ρ5 , ρ9 , ρ10 are close to one. In Supplementary Information, the reader can find a detailed explanation of ρi 
distribution for each type of network.

Regarding the two infrastructure networks, roads and power networks comprise two independent clusters. 
Although some road networks are close to some power grids in the space defined by the first and second princi-
pal components, they are clearly delimited in the other two projections of the three first principal components.

Both roads and power networks have low values for the second component, that is low values of ρ1 , ρ9 and 
ρ10 . Accordingly, the number of connections in comparison with the minimum spanning tree is low, there is a 
low number of triangles in the network and they do not tend to share vertices. The instances of roads and power 
networks that have similar values for the second principal component have a similar number of edges per node. 
They are the power networks with the lowest number of lines per node with respect to other power networks 
and the roads with a higher number of lines per node in their category.

Unlike social networks, connections in infrastructure networks are cost-intensive and they are conditioned 
by topological, morphological, technical, economical, permitting, environmental, managerial, and political 
 factors34. Consequently, the influence of all those factors may lead to different topological properties depending 
on regions. Furthermore, in the case of power networks, graphs may include different voltage levels or they may 
be the result of different model  assumptions35. This uncertainty leads to a lack of consensus about some of the 
topological properties of power  networks36.

The cluster with the most variation among its members belongs to the enzymes group. This shows that a 
network cannot be classified in the enzyme group as clearly as, for instance, Facebook networks. The green area 
that shows the range in Fig. 3 almost covers all the dodecagon. The topological properties of enzymes are clearly 
case dependent.

Finally, we can also see two clusters considering the web and retweet group. In the case of web networks, 
there is a large variation in the third component. It ranges from − 0.3 to 0.7. This variation is caused by the sig-
nificant difference in ρ11 (triangle-connectivity coefficient). Although the median of the analyzed instances has 
a low value, this coefficient ranges from 0 to 1. In the web case, we also see that although most instances have a 
triangle coefficient ( ρ8 ) close to zero, there is an instance in which ρ8 tends to 1 (the network is mainly formed 
by triangles). This coefficient is coherent with the network average clustering  coefficient32. Accordingly, this 
framework also supports the quick detection of potential outliers.

PCA analysis can be used for each set of networks independently. Therefore, the dimensions with larger load-
ings for the first components are the ones that exhibit the most variance in each original set, hence those dimen-
sions will provide information about the topological differences between networks of the same set. Dimensions 
that have similar values for all networks in the set will have a low contribution to the first components as they 
are characteristics of those networks. The explained variance for each principal component and the coefficient 
that shape the first component are shown in Figs. 4 and 5 respectively. A low dimensional representation of the 
projections of the metrics in the three first principal components for each set of networks can be seen in (Sup-
plementary Information Sect. 3). In the case of the road networks, the first component explains 88.5% of the 
variance. This component is mainly defined by ρ6 and ρ7 . Therefore, the difference among roads networks lies 
on the number of nodes that are part of a node string in the network and the length of those strings.

When analyzing power networks, we observe that the first component only explains 44% of the variation. 
Consequently, the number of coefficients to describe and to explain differences among power networks is 
larger. The first component is mainly described by ρ1 , ρ2 , ρ3 , ρ4 , ρ9 , ρ12 . It is necessary to include five principal 
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Figure 2.  (a) Variance explained (%) and accumulated variance explained (%) by each of the principal 
components resulting from the PCA analysis to a set of 1,404 networks. As can be seen, the first 3 principal 
components summarize more than 90% of the variance of the original data. (b) Graphical representation of the 
1,404 networks in the 3-d space defined by the three first principal components. In this representation, several 
clusters can be appreciated, corresponding to networks with similar topological structure. (c) 2-d projections 
of the 3-d representation of the 1,404 networks in the space defined by the three first principal components. (d) 
Loadings of ρ for the three first principal components. As there are no null coefficients, it can be concluded that 
there are no irrelevant dimensions in the proposed 12 dimensional metric.



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12884  | https://doi.org/10.1038/s41598-020-69795-1

www.nature.com/scientificreports/

components, to explain 95% of the variance of the data. This increases the number of metric dimensions required 
to have a deep understanding of power-network topology. In the case of Facebook, the first component explains 
72% of the variance. Consequently, the main differences lie in the leaf coefficient, leaf-connection degree, and 
triangle degree.

Additionally, two more dimensionality reduction techniques have been implemented to compare the results 
of the PCA. Firstly, Independent Component Analysis (ICA), proposed by Hyvärinen et al.37, is employed to 
compare its results with those of the PCA. Unlike PCA, ICA tries to project the original data into a subspace 
where they are maximally independent. This technique is often used to uncover hidden structures in the original 
data. Secondly, a Self-Organizing Map (SOM) proposed by  Kohonen38, is fitted, and its results are compared 
to the PCA low-dimensional representation. The SOM is a competitive learning algorithm that tries to find a 
low-dimensional representation of the data in such a way that the topological ordering properties of the original 
data are preserved. These two models are analyzed in Supplementary Information Sect. 5, where both models are 
compared with the PCA study carried out in this section. The results show a similar ordination of the networks in 
both models, validating the PCA study. Clusters obtained by these new two methods match those obtained with 
the principal components, highlighting the capabilities of the proposed method to explain network topology.

Figure 3.  Range of variation of each metric dimension, ρi , (green area) and median value of each ρi for the 
seven set of networks analyzed: autonomous systems, enzymes, Facebook, power networks, retweet, roads and 
webs. Networks with different structures exhibit a distinct distribution of the ρi values, as highlighted by these 
charts.
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Results show the strengths of the proposed method to compare networks of different nature and to find the 
topological differences among same-nature networks.

conclusions
The analysis of network graphlets, a local-topological statistic, gives rise to a new description of the global topol-
ogy of complex networks. This paper introduces an innovative method that analyzes the interaction among 
graphlets to explain and characterize network topology. This method is based on 2- and 3-node graphlets (three 
graphlets and four orbits) that are easily derived from the adjacency matrix. Therefore, it overcomes the limita-
tion of counting high degree graphlets that might be cost-intensive for large networks.

The application of the novel framework to five real networks shows that the proposed method is consistent 
with the global statistics traditionally used to characterize network structure. Furthermore, it overcomes two 
of their main drawbacks: the use of metrics based on average values and the application of metrics that do not 
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Figure 4.  Contributions of each dimension of the GHuST framework to the first principal component obtained 
for each set of networks analyzed. Larger loadings are associated with a high variance in the original dataset, 
providing information about the topological differences between networks of the same set.
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scale linearly with network size. Accordingly, the comparison among networks of different sizes does not require 
any analysis of metric scalability.

The proposed method has been also validated with a large sample study of networks that arise in different 
fields. Results prove that the information provided by this novel metric can be used to identify the underlying 
topological features of the networks and even to provide us with a visual tool to distinguish networks with dif-
ferent properties.

Consequently, this method might explain the evolution in both local and global properties of networks in 
which growth affects the whole structure. It can also be used to compare networks where network growth does 
not necessarily imply a change in local properties. This is common in infrastructure networks.

Finally, this work sets up a systematic analysis consisting of a 12-dimensional metric, to explain the properties 
of the network structure. Moreover, the proposed method allows for the translation of topological properties 
into other scientific dimensional languages. This is possible because global properties are explained from local 
structures that are easily interpretable.

Received: 23 October 2019; Accepted: 15 July 2020
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Figure 5.  Variance explained and cumulative variance explained by each of the principal components of the 
resulting PCA applied independently to each type of network analyzed. As can be seen, in all cases using the first 
3 principal components account for more than 90% of the variance of the original dataset.
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