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Abstract— Accurate data metering is needed for enabling 
demand side flexibility and the related services. Sufficient 
resolution in time of the data gathered is essential to obtain 
detailed information on how consumers and prosumers use 
electricity. This paper addresses two specific points concerning 
the effects of the time resolution on (i) the estimation of the 
network losses, and (ii) the assessment of the average power 
peak magnitude and duration. Specific indicators are 
introduced to estimate the losses and assess the peak power 
based on the load pattern shape. These effects are analysed 
based on examples taken from real measurements. The results 
clearly show that the time resolutions used today (from 15 min 
to 1 hour) are insufficient to perform effective assessments 
oriented to enhance demand side flexibility. Interval metering 
with better resolutions (1 min or less) or innovative 
technologies such as event-driven energy metering should be 
used to provide significantly better solutions. 

Keywords—Data management, losses, demand side flexibility, 
smart metering, interval metering, event-driven energy metering. 

NOMENCLATURE 
𝒅𝑬  Euclidean distance 
m, M Index and number of elementary time intervals 
ref, r (subscripts) Reference and reconstructed patterns 
t Time 
z Metering mode 
E Equivalent voltage 
P Load active power  
R, Rmax Equivalent resistance and its maximum value 
V  RMS voltage at the load terminals 
𝜟𝑷  Active power losses  
𝜟𝑾 Energy losses  
𝝌  Sums of P2 ratio 
d1, d2 Thresholds for event-driven energy metering 
t Elementary time interval 
𝝍  Network energy losses ratio 
𝝇  Peak average power ratio 

I. INTRODUCTION  
A. Motivation and Background  

With the diffusion of a new generation of smart meters, 
huge amounts of data are potentially available on the load 
and generation power curves of producers, consumers and 
prosumers connected to the electrical networks. This 
availability poses key questions on which time resolution for 
data gathering is meaningful to obtain significant results.  

The typical time steps used for interval metering (at 
regular rates of data acquisition) in various jurisdictions 
include 15 min, 30 min and 1 hour. These time steps have 
been used to perform clustering-based load profiling, aimed 
at forming distinct consumption classes [1-4]. Residential 
users are more challenging than other types of users [5], 
because their power patterns are rapidly changing and are 
highly dependent on consumers’ lifestyle. 

The European Union has recommended establishing a 
smart meter roadmap [6] to satisfy the requirements of the 
future markets. Among these requirements, the use of high-
resolution time intervals and the definition of advanced 
architectures for the metering infrastructures, with high 
modularity and flexibility, are indicated.  
B. Relevant Literature and Regulatory Documents 

The choice of the resolution in time, which determines 
the averaging time step, has a remarkable effect on the data 
that become available to study the operation of the grid. 
Solutions with interval metering at high resolution in time 
(10 min [7,8] or less, up to a few seconds for applications 
such as non-intrusive load monitoring [9,10]) have been 
used for local demand side applications, but are not 
available at the network level, mainly because of the large 
amount of data to be gathered, transmitted and elaborated. 

In addition, schemes for data gathering different from 
interval metering, such as event-driven energy metering 
(EDM) [11,12], have been proposed as a viable and efficient 
way to characterise the power curves through 
measurements. EDM enhances the possibility to reconstruct 
the demand patterns, and in particular their peaks, with 
higher precision than in the traditional interval metering. 

The establishment of the most convenient solutions for 
data gathering is one of the current challenges. The aspects 
to consider are many, ranging from technical aspects (linked 
to hardware requirements and to the burden on the 
communications channels) to economic aspects (linked to 
the costs of the equipment and of its deployment and 
management), as well as a number of further impacts on the 
quality of the services that can be provided by using these 
solutions. Many services are conceptualised under the 
notion of demand side flexibility (DSF) [13]. 

Several definitions of flexibility have been provided in 
the literature for generation and demand, also taking into 
account the presence of transmission and distribution 
networks [14]. A review of these definitions is outside the 
scope of this paper. Only one technical definition of 
flexibility is recalled here, taken from the Conclusion paper 
of the Council of European Energy Regulators [15]: 
“Flexibility is the capacity of the electricity system to 
respond to changes that may affect the balance of supply 
and demand at all times”. From the demand side, an 
essential prerequisite for opening the possible deployment 
of DSF options is the availability of smart meters with 
suitable characteristics. However, the current generation of 
smart meters seems not to be sufficiently ready to support 
DSF in an effective way. The main reason is that the 
granularity in time could be too limited to reproduce the 
details of the load patterns needed to study DSF 
appropriately [13]. 
C. Contributions and Organization  



 

 

This paper addresses in a novel and systematic way two 
particular aspects of the effects of the resolution in time: 
1) The estimation of the network losses, depending in a 

non-linear way on the actual power flows, based on the 
load patterns measured at the supply points.  

2) The identification of the timing and amplitude of the 
consumption peaks, which remarkably contributes to the 
DSF assessment.  

Both aspects depend on the accuracy in the definition of 
the (net) load patterns [16]. In particular, if the load patterns 
are not determined in an appropriate way, the network losses 
could be incorrectly assessed. When dealing with network 
losses, the model of the distribution network is needed, with 
the corresponding parameters. However, in general the 
distribution network data are not available to the users. As 
such, a precise quantification of the possible impact on the 
network losses of using different time steps for interval 
metering cannot be carried out. For this purpose, Section II 
presents a new and simplified way to characterise this 
impact, by calculating the sums of P2 ratio. Section III 
addresses how the identification of the demand peaks 
becomes more accurate for better resolution in time, at the 
expenses of the growth in the number of data to be 
managed. The analysis carried out in Section II and Section 
III is supported by examples taken from real measurements. 
The examples chosen are intentionally very simple, referring 
to single loads, to make it possible to focus on specific 
details and to highlight some basic concepts with a tutorial 
focus. However, the approach used is valid also for load 
patterns at higher level of aggregation, without loss of 
generality. Section IV contains the Conclusions. 

II. PRELIMINARY ANALYSIS FOR DIFFERENT TIME STEPS 
WITH EUCLIDEAN DISTANCES AND SUMS OF P2 RATIOS 

A. Load pattern timings and reconstruction 
Let us consider the data gathered for a single load, in a 

given period of observation. Let us denote as elementary 
time interval t the shortest time step at which the data are 
available. All the other time steps are assumed to be 
multiple integers of the elementary time interval. The 
elementary time interval is chosen for load pattern analysis, 
and has no connection with the data sampling that occurs 
inside the meter to determine the active and reactive power. 
The average power pattern from interval metering with data 
gathered at t = 1 s is considered as the reference average 
power pattern, and is taken here as the “true” power pattern 
for load analysis purposes. In practical applications to 
electrical networks, the interval metering time step for load 
pattern analysis is longer than 1 s.  

In addition to interval metering, the EDM [11,12] 
alternative is considered. In EDM, the data gathering does 
no longer happen at regular time steps, but is based on a 
mechanism for the generation of events that depends on two 
user-defined thresholds: 
a) The	 threshold d1, which depends on the change of 

average power from one elementary time interval to the 
next one. The event is generated if this change exceeds 
the threshold. 

b)	 The threshold d2, set up on the accumulated energy 
variations. The average power variations at successive 
elementary time intervals are accumulated in time. The 

event is generated when the sum of these variations 
exceeds the threshold. 

The thresholds can be adapted to represent the load 
pattern with different details. 

For the sake of comparison among the load patterns, all 
the data are reported to the elementary time interval by 
considering constant values of the average power during the 
corresponding time step. In this way, it is possible to use a 
metric based on the Euclidean distance to compare the 
“true” load pattern with another load pattern reconstructed 
based on the one originated from another metering mode 
(e.g., interval metering with a given time step, or EDM with 
a given (d1,d2) pair) [17]. Let us consider a sequence of 
elementary time intervals m = 1,…, M inside the observation 
period. Let us further denote with 𝑃([𝑡" − 𝜏, 𝑡"])  the 
average power of the “true” load pattern at elementary time 
interval m and with 𝑃#

(%)([𝑡" − 𝜏, 𝑡"]) the average power at 
the same elementary time interval of the load pattern 
reconstructed from the initial data measured in the metering 
mode z. In all cases, the average power is determined after 
the elementary time interval has elapsed. The Euclidean 
distance is then formulated as: 

𝑑'1𝑃, 𝑃#
(%)2 =

4(
)
∑ 6𝑃([𝑡" − 𝜏, 𝑡"]) − 𝑃#

(%)([𝑡" − 𝜏, 𝑡"])7
*

)
"+(   (1) 

 B. Sums of P2 ratio 
Another way to assess the effectiveness of the load 

pattern representation is to construct a loss-oriented simple 
indicator. Let us consider the average active power data 
gathered in a given metering mode, and the corresponding 
load pattern reconstructed at time steps equal to the 
elementary time interval, as seen above. Let us assume that 
the load is supplied by a system represented with its 
Thevenin equivalent. For the sake of simplicity, let us 
assume a residential load supplied at low-voltage with given 
active power P. The supply cable has small cross-section, so 
that a pure resistance R can be assumed to approximate the 
Thevenin impedance. Moreover, the reactive power of the 
load is null. In these conditions, taking the RMS voltage V 
at the load terminals, the losses in the supply system are 
expressed in per units as Δ𝑃(%) = 𝑅	𝑃*/𝑉*. With a further 
approximation (that will be removed later) let us assume 
that the voltage is constant for any value of P (practically 
neglecting the voltage drop in the Thevenin equivalent 
resistance). In this case, it is possible to formulate a very 
simple indicator as the ratio of the energy losses referring to 
a load pattern gathered in metering mode z with the 
corresponding energy losses determined from the “true” 
load pattern. Let us call this new indicator “Sums of P2 

Ratio”, denoted with the symbol 𝜒(%) , with the following 
definition: 

𝜒(%) =
∑ -.!

(#)([0%12,0%])5
&

'
%()

∑ 6.([0%12,0%])7
&'

%()
	 (2) 

The rationale for the definition of this indicator is to find 
a simple way to understand the basic effects on the losses of 
using different time steps, using only the load patterns 
without depending on the characteristics of the supply 
system. Under the hypothesis of constant RMS voltage at 



 

 

the load terminals, the (constant) resistance R does not 
appear in the 𝜒(%) ratio. 

Values of 𝜒(%)close to unity indicate that the losses can 
be assessed in a way similar to what can be done from the 
“true” load pattern. However, values of 𝜒(%)  lower than 
unity point out the presence of discrepancies in the 
assessment of the losses, in particular corresponding to an 
underestimation of the actual losses. This issue is very 
relevant, because the underestimation of the actual losses 
could cause an overestimation of the non-technical losses 
and an overdue alert on the need to search for the reasons of 
the occurrence of these non-technical losses. 

C. Accounting for network losses 
In order to assess whether the indicator 𝜒(%) may give a 

useful approximation of what happens in a supply line, the 
analysis has been extended to consider the Thevenin circuit 
that supplies the load pattern. Considering a single-phase 
low-voltage load, for the sake of simplicity the Thevenin 
equivalent impedance is taken as purely resistive. The 
Thevenin voltage E is assumed to be the rated voltage (230 
V). The resistance depends on the length of the supply line. 
For this purpose, the maximum resistance Rmax is calculated 
as the one that causes a voltage drop of 10% at the load 
supply point when the load takes the rated power (3 kW). 
Then, a dedicated analysis has been set up, by changing the 
resistance from 0 to Rmax in a regular way. For each 
elementary time interval, and for a given resistance R, the 
voltage V at the load terminals is found by solving the 
equation 𝑉* − 𝐸	𝑉 + 𝑅	𝑃 = 0 for the reference load pattern, 
and the energy losses are calculated from the equation 
Δ𝑊#89

(:) = 𝜏	𝑅	(𝑃/𝑉)*. For each reconstructed load pattern in 
the measuring mode z, the voltage V at the load terminals is 
calculated with the equation 𝑉* − 𝐸	𝑉 + 𝑅	𝑃#

(%) = 0 , then 
the energy losses are calculated as Δ𝑊#

(:,%) = 𝜏	𝑅1𝑃#
(%)/𝑉2

*
. 

The network energy losses ratio 𝜓(:,%) is then calculated, for 
a given measuring mode z and resistance R, as follows: 

𝜓(:,%) =
∑ -;<!

(*,#)([0%12,0%])5'
%()

∑ -;<!,-
(*)([0%12,0%])5'

%()
	 (3) 

The comparison among the indicators 𝜓(:,%) and 𝜒(%) is 
useful to understand to what extent the results obtained with 
the sums of P2 ratio, without knowing any data of the 
network, can represent situations in which the network 
energy losses are calculated using the network parameters.  

D. Tutorial example 
D.1. Metering modes 

Let us consider the load pattern of a residential user [17]. 
The “true” load pattern is taken at the elementary time 
interval 𝜏 = 1 s, for one hour. The other metering modes are: 
§ Interval metering at different time steps. Some cases are 

shown with 1 hour, 30 min, 15 min, and 1 min time steps 
(Fig. 1). The first three values correspond to time steps 
used in the metering modes used for billing purposes, 
while the last one is shown as an example of shorter time 
step. For the calculations, a set of time steps has been 
selected in the range from one second to one hour, at 
multiples of 1 s, with the criterion that the total period of 
one hour can be exactly filled by the sequence of time 
steps. The 45 resulting time steps are reported in Table I, 

together with the number of points at which the average 
power are calculated.  

§ EDM with two different settings of the thresholds 
(d1,d2), namely, (i) d1 = 200 W and d2 = 50 Ws, resulting 
in 687 events (Fig. 2), and (ii) d1 = 200 W and d2 = 200 
Ws, resulting in 57 events (Fig. 3). 
The chosen load pattern is particularly challenging to 

represent, with the presence of both sudden peaks and fast 
variations. Some of these characteristics of the load pattern 
depend on the operation of a washing machine.  
D.2. Load pattern reconstruction and Euclidean distances 

In Fig. 1, Fig. 2 and Fig. 3, the “true” load patterns are 
superposed to the reconstructed load patterns. Actually, 
when the load pattern data are gathered in the interval 
metering or in the EDM modes, the “true” load patterns are 
not available. However, they are considered here for the 
sake of comparison. The “true” load pattern and the other 
load patterns have the same total energy in the hour of 
observation. From these figures, it appears clearly that the 
load pattern representation at relatively long time steps is 
rather ineffective. The quantification of the effectiveness in 
terms of quality of reproduction of the “true” load pattern is 
then carried out by using the Euclidean distance, while the 
new indicator 𝜒(%)  quantifies, in a simplified and load 
pattern dependent-only way, the impact of the different time 
steps used in the metering modes on the supply system 
losses. 

 

 
 a)  b) 

 
 c)  d) 
Fig. 1. Reference average power pattern from interval metering with data 
gathered at 1 s (blue line) and average power at 1 hour (a, green line), 30 
min (b, black line), 15 min (c, red line) and 1 min (d, cyan line).  
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Fig. 2. Reference average power pattern from interval metering with data 
gathered at 1 s (blue line) and average power reconstructed from EDM with 
thresholds d1 = 200 W and d2 = 50 Ws (red line).  

 
Fig. 3. Reference average power pattern from interval metering with data 
gathered at 1 s (blue line) and average power reconstructed from EDM with 
thresholds d1 = 200 W and d2 = 200 Ws (red line).  

TABLE I.  
SELECTED TIME STEPS IN ONE HOUR AND CORRESPONDING NUMBER 

OF POINTS AT WHICH THE AVERAGE POWER IS CALCULATED. 
Time 

step [s] 
Number 
of points 

Time 
step [s] 

Number 
of points 

Time 
step [s] 

Number 
of points 

1 3600 25 144 150 24 
2 1800 30 120 180 20 
3 1200 36 100 200 18 
4 900 40 90 225 16 
5 720 45 80 240 15 
6 600 48 75 300 12 
8 450 50 72 360 10 
9 400 60 60 400 9 
10 360 72 50 450 8 
12 300 75 48 600 6 
15 240 80 45 720 5 
16 225 90 40 900 4 
18 200 100 36 1200 3 
20 180 120 30 1800 2 
24 150 144 25 3600 1 
Fig. 4 shows the Euclidean distances calculated at the 

selected time steps. The trend is to obtain a higher Euclidean 
distance when the time step increases. Only the circled 
points are relevant, and the connecting lines only visualise 
the variation between points. However, this variation is non-
monotonic, as it depends on the specific shape of the load 
pattern, which can be reproduced with different quality 
depending on the time step used. Fig. 5 contains a zoom of 
Fig. 4, focusing on short time steps and showing also the 
Euclidean distances calculated for the two cases with EDM.  

In particular, it is possible to notice that the EDM cases 
are very effective in obtaining a load pattern reconstruction 
by using a number of points significantly lower than the 
interval metering cases. The case EDM(200,200) with 57 
points (events) reaches an Euclidean distance as low as the 
one obtained with interval metering for time steps of 3 s 
(with 1200 points) or 4 s (with 900 points). From another 
point of view, the Euclidean distance in the EDM(200,200) 
case is 58.18 W, while in the interval metering with a 
comparable number of points (60 points, for time step of 1 
min) the Euclidean distance is 279.77 W (the last point on 
the right side of Fig. 5). These results confirm the excellent 
behaviour of EDM, already noticed in many publications 
(e.g., [12,17]). If EDM is used with smaller threshold d2 to 
capture more events, as in the EDM(200,50) case, the 
Euclidean distance is further reduced, reaching an 

effectiveness of “true” load pattern reproduction with 687 
points better than what can be obtained with interval 
metering at time step of 2 seconds, with 1800 points.  

 
Fig. 4. Euclidean distances for the selected time steps. 

 
Fig. 5. Zoom of Fig. 4 with the two additional EDM cases.  

It is also worth noting that the considered load pattern 
has many fluctuations with noticeable magnitude, while in 
more general cases (in particular for aggregated load 
patterns) the fluctuations have a lower magnitude, and the 
number of points resulting in the EDM cases are always 
much lower than the ones needed by interval metering to 
reach a performance comparable with EDM. 

D.3. Calculation of the sums of P2 ratios 
Fig. 6 reports the sums of P2 ratio 𝜒(%) for the selected 

time steps with interval metering. The results clearly show 
that longer time steps generally cause a reduction of the 
indicator 𝜒(%). Again, the trend is not monotonic, due to the 
shape of the specific load pattern. An almost linear 
reduction of 𝜒(%) appears for relatively short time steps (Fig. 
7). The salient result of this analysis is that the time steps 
currently used to gather load pattern data (from 15 minutes 
to 1 hour) are clearly insufficient to provide a reasonable 
representation of the energy losses. Large discrepancies 
could appear (the numerical outcomes depend on the 
specific load pattern). For the example shown, with interval 
metering the indicator 𝜒(%) is 0.795 for time step of 15 min, 
0.6592 for time step of 30 min, and as low as 0.552 for time 
step of 1 hour. In the latter case, only about 55% of the 
energy losses could be estimated! Looking at Fig. 7, for the 
load pattern under analysis, with time steps not higher than 
20 s it would be possible to estimate over 98% of the energy 
losses, and with the time step of 1 min it would be possible 
to estimate about 95% of the energy losses. 

For the EDM cases, the situation becomes sensibly 
better. For z = EDM(200,200), the indicator 𝜒(%) is 0.9954 
with 57 points, while for z = EDM(200,50) the indicator 
𝜒(%) is 0.9983 with 687 points. Both values may represent a 
satisfactory estimation of the energy losses.  
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Furthermore, a high negative correlation has been found 
between the Euclidean distance and the indicator χ(=) , 
namely, with the correlation coefficient -0.953. This 
correlation provides a further confirmation of the conceptual 
soundness of using the indicator χ(=)  to mark the 
effectiveness of using shorter time steps both for better 
representing the load pattern and for how well the energy 
losses that can be found in the network may be estimated 
without knowing the network data. It has to be noticed that 
the high underestimation of the energy losses has been 
determined in a pattern with the larger variations mainly due 
to a single appliance. In a household there can be more 
appliances, and in a distribution feeder there are many 
customers. At more aggregate levels, generally the power 
patterns become smoother and the underestimation of the 
energy losses could be lower. 
D.4. Calculation of the network energy losses ratios 

Fig. 8 shows the results of calculating the indicator 
𝜓(:,%)  for different values of R ranging from 0 to the 
maximum resistance Rmax determined as indicated in Section 
II.C, and for each measuring mode z. At each elementary 
time interval, the presence of the constant power load makes 
the calculation of the voltage at the load terminals non-
linear. Furthermore, the energy losses change in a non-linear 
way with the voltage. The results from Fig. 8 are compared 
with the sums of P2 ratios (black line), which conceptually 
corresponds to the case with R = 0. It can be seen that the 
network energy losses ratio is reduced when R increases.  

 
Fig. 6. Sums of P2 ratios for the selected time steps. 

 
Fig. 7. Zoom of Fig. 6 with additional values from the two EDM cases. 

 
Fig. 8. Network energy losses ratio for different Thevenin equivalent 
resistances and load pattern averaging time steps for interval metering. 
Black line: sums of P2 ratio; red lines: cases with different line resistances. 

Hence, the sums of P2 ratios can be considered a viable 
indicator of the network energy losses ratio, especially for 
relatively short lines that cause limited voltage drops. The 
representativeness of the energy losses becomes even more 
limited when the length of the line that supplies the same 
load increases. With hourly data, in the case analysed with 
resistance Rmax, the indicator 𝜓(:./0,(	?@A#) falls below 0.5, 
thus representing very poor performance and possible 
misleading results provided to the operators.  

III. FLEXIBILITY AND DEMAND PEAKS 
One of the significant points to analyse the demand 

flexibility is the capability to assess and represent the peaks 
that occur in the load patterns. For this purpose, the time 
step used for data gathering plays a fundamental role. In this 
section it is shown that the time steps currently used for 
billing purposes (e.g., 15 min, 30 min or 1 hour) can be 
totally ineffective to represent the demand peaks. The 
example considered is based on the same load pattern 
analysed in the previous section. For the purpose of 
identifying the actual peaks, the indicator used is the peak 
average power ratio 𝜍(%), defined by using the peak average 
power 𝑃E found for the “true” load pattern as the reference 
value, the peak average power 𝑃E#

(%)  of the load pattern 
reconstructed from the data gathered in metering mode z, 
and calculating the indicator as follows: 

𝜍(%) = .B

.B!
(#)	 (4) 

As it can be seen in Fig. 1, the reference average power 
pattern has a single peak occurring for a limited time. Fig. 9 
shows the peak average power ratio for the interval metering 
with the selected time steps reported in Table I. As shown in 
the previous section for the related indicators, with the data 
considered no monotonic trend appears. The hourly time 
step is only able to represent the average power during one 
hour, and in this case the outcome is only about one third of 
the actual peak of the “true” load pattern. Also the use of 30 
min time step reveals a peak lower than one half of the 
actual peak, and for 15 min time step only about 70% of the 
actual peak is reached. All these values are clearly 
unsatisfactory to be considered as a basis for any flexibility 
reasoning. Therefore, shorter time steps should be adopted. 
Fig. 10 shows a zoom of Fig. 9 limited to 1 min time step. It 
appears that even 1 min time step is not satisfactory, as only 
about 80% of the actual peak is represented. In the specific 
case, the time step with interval metering should be as low 
as 3 s to get the representation of over 90% of the actual 
peak. From interval metering, to reach the actual peak, only 
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time steps of 1 s or 2 s are appropriate. Of course, the results 
are data-driven and cannot be generalised. However, they 
are indicative of the peak power issue.  

From Fig. 10, it is also evident that the use of the EDM 
alternatives becomes fully successful, as both cases 
reported, namely, EDM(200,200) and EDM(200,50), reach 
100% of the actual peak. 

The possibility of accurately identifying the actual peak 
is only one of the aspects that may be useful to assess the 
demand flexibility. More generally, a relevant point is the 
construction of the duration curves of the load patterns, 
which allow the data analyst extending the assessment of the 
overall shape of the load pattern [18].  

 
Fig. 9. Peak average power ratio for the selected time steps. 

 
Fig. 10. Zoom of Fig. 9 with additional values from the two EDM cases. 

 
Fig. 11. Duration curves of the load patterns for different metering modes. 

Fig. 11 shows the duration curves of the reconstructed 
load patterns. The most appropriate duration curves are 
close to the duration curve drawn with 1 s time step. Fig. 11 
highlights the advantage of using EDM with respect to 
interval metering, also using EDM(200,200), which is less 
efficient than EDM(200,50) as shown above. With interval 
metering, even the case with 1 min time step would not be 
particularly effective with the data used in this example. 

IV. CONCLUSIONS 
This paper has defined specific indicators to estimate the 

losses and assess the peak power based on load pattern data 
gathered with different metering modes. The residential load 

chosen for the examples of application is a challenging case 
with relevant pattern variations.  

The results described in this paper clearly show that the 
estimation of the energy losses of the network, carried out 
by using data gathered at the time steps currently used (from 
15 minutes to 1 hour) can be largely misleading. In fact, the 
actual losses can be highly underestimated (even to only 
50%-70% of the losses calculated with the time step of 1 
second). The underestimation could be lower in case of 
smoother power patterns, e.g., at higher levels of user 
aggregation. The sums of P2 ratios, newly introduced in this 
paper, satisfactory estimates the network energy losses ratio, 
and can be used also when the characteristics of the 
distribution system that supplies the load are not known. 

Likewise, the use of the data gathered at time steps from 
15 minutes to 1 hour can be even worse to represent the 
demand peaks and the duration curves built from the load 
patterns. Therefore, for effective DSF assessment it is 
essential to reduce the time step of interval metering to 
values not yet adopted in the electrical networks. To avoid 
increasing the number of data managed, a successful 
alternative is the adoption of EDM with appropriate settings 
of the two related thresholds. Adaptive thresholds, variable 
in time, may also be used. The thresholds settings can be 
identified through an experimental campaign with 
measurements gathered at different load aggregation levels.  
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