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Abstract

The equivalent resistance of any series-parallel circuit can be ex-
pressed and calculated as a continued fraction obtained dividing two
determinants of a tridiagonal square matrix, called continuants. The
author illustrates that the calculation of the voltages or currents using
the divider formulas can also be developed as fractions of continuants.
Furthermore a Matlab code which calculate continuants and continued
fractions is listed.
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1 Introduction

Continued fractions have always aroused considerable interest ([1] , [2] , [3]), not
only in Mathematics sphere, but also, and above all, in its application within
other scientific disciplines. For example, in circuit theory, numerous texts or
papers report the calculation of the equivalent resistance, or more generically
impedance, of a ladder network expressing it as a continued fraction ([4],[5],
[6]). On the other hand, any rational number can be expressed as a finite
continued fraction, so it is possible to combine a set of equal resistances of
integer value R, in order to obtain an equivalent resistance which is a fraction
of R, p

q
R (p, q ∈ R) ([4], [6]).

Infinite continued fractions also find applications in electric circuits, for exam-
ple in the calculation of the equivalent resistance of a ladder network of unitary
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resistances ([4]), which yields the golden section, whereas its partial continued
fractions can be calculated as the ratio of two consecutive Fibonacci numbers
([4],[2]).

2 Preliminary Notes

As known, the overall resistance of the series of n resistors is obtained by
adding the single resistances, while that of n resistors connected in parallel is
equal to the reciprocal of the sum of the reciprocals.

Definition 2.1 A circuit with n nodes and q branches, which contains only
resistors, is defined series-parallel, if and only if, the equivalent resistance be-
tween each pair of nodes can be obtained by applying only the two rules men-
tioned above.

Let us consider the following configuration of a series-parallel circuit, called
ladder network:

R0 R2

R3R1

Rn−2 Rn

Rn−3 Rn−1

The equivalent resistance of this bipole, Req, can be expressed, and therefore
calculated, as the continued fraction:

Req = R0 +
1

1

R1

+
1

R2 +
1

1

R3

+
1

R4 + . . .

(1)

which is briefly summarized in the following notation:[
R0;

1

R1

, R2,
1

R3

, R4, . . . , 0,
1

Rn−1

, Rn

]

As a generic resistance Ri can assume any real positive or null value Ri, or
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+∞, the previous form (1) can also be used to represent k resistors in series,
letting R1 = R3 = · · · = Rn−1 =∞ (n = 2k − 2):

Req = R0 +
1

0 +
1

R2 +
1

0 +
1

R4 + . . .

= [R0; 0, R2, 0, . . . , Rn] = R0 + R2 + . . . Rn

Similarly, for the configuration of k resistors in parallel, if we let R0 = R2 =
· · · = Rn−2 = 0 (n = 2k − 1), the continued fraction becomes:

Req = 0 +
1

1

R1

+
1

0 +
1

1

R3

+
1

0 +
1

1

R5

+ . . .

=

[
0;

1

R1

, 0,
1

R3

, 0, . . . , 0,
1

Rn

]
=

1[
1

R1

; 0,
1

R3

, 0, . . . , 0,
1

Rn

] =
1

1

R1

+
1

R3

. . .
1

Rn

Definition 2.2 A ladder network is defined composed when one or more of
its resistors is still a ladder circuit

Any series-parallel circuit , according to the definition 2.1, is a composed ladder
network, so its equivalent resistance is a nesting of continued fractions. It can
be reduced to a simple ladder network whose resistors are equivalent resistances
of other ladder networks.
An example of a composed ladder network is below:
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R0 R1

R4

R5 R8

R6

R7

R2

R3

it is possible to let:

RA =

[
0;

1

R1

, 0,
1

R2

, 0,
1

R3

]
, RB = [R0; 0, RA] , RC = [R6; 0, R7]

obtaining a simple ladder network, having the following equivalent resistance:[
RB;

1

R4

, R5,
1

RC

, R8

]
=[[

R0; 0,

[
0;

1

R1

, 0,
1

R2

, 0,
1

R3

]]
;

1

R4

, R5, [0; [R6; 0, R7]] , R8

]
which can be further simplified to reduce:[[

R0;
1

R1

, 0,
1

R2

, 0,
1

R3

]
;

1

R4

, R5,
1

R8

, R6, 0, R7

]

3 The Resolution of a Series-Parallel Circuit

using the Continuants

According to the Euler rule, any finit continued fraction of order n, defined
convergent, can be written as the ratio of two polynomials:

[a0; a1, a2, . . . , an] =
pn
qn

=
P (a0, a1, a2, . . . , an)

P (a1, a2, . . . , an
(2)
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called continuants, which are the determinants of this tridiagonal square
matrix ([7],[8]):

P (a0, a1, a2, . . . , , an) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 +1 0 0 . . . 0

−1 a1 +1 0
. . .

...

0 −1 a2
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 an−1 +1
0 . . . 0 0 −1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3)

obtained by means of the following recursive formula:

P (a0, a1, a2, . . . , an) = a0 · P (a1, a2, . . . , an) + P (a2, . . . , an) (4)

Therefore it is possible to associate a tridiagonal square matrix with any series-
parallel circuit and calculate its equivalent resistance by (2).
The Matlab code(see last paragraph) yields the continued fraction and the
continuants by inputting both numerical and symbolic values on the basis of
(2) and (3).
For example, the continuants of the series of three resistors are:

p3 = P (R0, 0, R1, 0, R2) =

∣∣∣∣∣∣∣∣∣∣
R0 +1 0 0 0
−1 0 +1 0 0
0 −1 R1 +1 0
0 0 −1 0 +1
0 0 0 −1 R2

∣∣∣∣∣∣∣∣∣∣
= R0 + R1 + R2

q3 = P (0, R1, 0, R2) =

∣∣∣∣∣∣∣∣
0 +1 0 0
−1 R1 +1 0
0 −1 0 +1
0 0 −1 R2

∣∣∣∣∣∣∣∣ = 1

The equivalent resistance must therefore be: Req = R0 + R1 + R2.
Similarly, for the parallel of three resistors, we have:

p3 = P (0,
1

R0

, 0,
1

R1

, 0,
1

R2

) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0

−1
1

R0

+1 0 0 0

0 −1 0 +1 0 0

0 0 −1
1

R1

+1 0

0 0 0 −1 0 +1

0 0 0 0 −1
1

R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1
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q3 = P (
1

R0

, 0,
1

R1

, 0,
1

R2

) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

R0

+1 0 0 0

−1 0 +1 0 0

0 −1
1

R1

+1 0

0 0 −1 0 +1

0 0 0 −1
1

R2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

R0

+
1

R1

+
1

R2

Req =
1

1

R0

+
1

R1

+
1

R2

4 Voltage and Current Divider using Contin-

ued Fractions

In a series-parallel circuit containing a single voltage or current generator, the
formulas of the dividers which supply the voltage between two nodes or the
current in a branch, can be expressed as fractions of continuants.
To avoid a nesting of continuants, the circuit has to be reduced previously to
a simple ladder network where the voltage or current to be calculated refers
to the last resistor.
Consider for example the following simple ladder network:

+
−E

R1

R2

R3

+ −V3

R4

The formula which yields the voltage V3 can be written as follows:

V3 = E· [R3]

[R3; 0, R4]
·

[
0;

1

R2

, R3, 0, R4

]
[
R1;

1

R2

, R3, 0, R4

] = E· P (R3)

P (R3, 0, R4)
·
P

(
0,

1

R2

, R3, 0, R4

)
P

(
R1,

1

R2

, R3, 0, R4

)
where:

P (R3) = R3, P (R3, 0, R4) = R3 + R4
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P

(
0,

1

R2

, R3, 0, R4

)
=

∣∣∣∣∣∣∣∣∣∣∣

0 +1 0 0 0

−1
1

R2

+1 0 0

0 −1 R3 +1 0
0 0 −1 0 +1
0 0 0 −1 R4

∣∣∣∣∣∣∣∣∣∣∣
= R3 + R4

P

(
R1,

1

R2

, R3, 0, R4

)
=

∣∣∣∣∣∣∣∣∣∣∣

R1 +1 0 0 0

−1
1

R2

+1 0 0

0 −1 R3 +1 0
0 0 −1 0 +1
0 0 0 −1 R4

∣∣∣∣∣∣∣∣∣∣∣
=

R1 (R3 + R4) + R2 (R1 + R3 + R4)

R2

Similarly, the method can be applied to the current divider with appropriate
measures. Given the equivalent conductance of a ladder network:[

0,
1

G0

, G1,
1

G2

, . . . ,
1

Gn

]
we must also use the following two properties of continued fractions:

[0; a1, a2, . . . , an] =
1

[a1; a2, . . . , an]
; P (0, a1, a2 . . . , an) = P (a2 . . . , an)

5 Matlab Code

1 function Res_eq_sim1(v)

%Continuant and continued fraction of a numeric or

3 %symbolic vector

N=length(v);

5 display(’Eulero Matrix ’);

A=(diag(v))+ diag (( -1).* ones(N-1,1),-1)+ diag ((+1).* ones(N-1 ,1) ,+1)

7 [continuant_v ]=det(A)

[Num_Req ]=det(A)

9 b=v(2:N);

B=(diag(b))+ diag (( -1).* ones(N-2,1),-1)+ diag ((+1).* ones(N-2 ,1) ,+1);

11 [Den_Req ]=det(B)

[R_eq]= Num_Req/Den_Req

13 end
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