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A Time-Varying SIRD Model for the COVID-19 Contagion in Italy

Giuseppe C. Calafiorea,⇤, Carlo Novaraa, Corrado Possierib

aDipartimento di Elettronica e Telecomunicazioni,
Politecnico di Torino, 10129 Torino, Italy

bIstituto di Analisi dei Sistemi ed Informatica “A. Ruberti”,
Consiglio Nazionale delle Ricerche (IASI-CNR), 00185 Roma, Italy

Abstract

The purpose of this work is to give a contribution to the understanding of the COVID-19 contagion
in Italy. To this end, we developed a modified Susceptible-Infected-Recovered-Deceased (SIRD)
model for the contagion, and we used o�cial data of the pandemic for identifying the parameters
of this model. Our approach features two main non-standard aspects. The first one is that model
parameters can be time-varying, allowing us to capture possible changes of the epidemic behavior,
due for example to containment measures enforced by authorities or modifications of the epidemic
characteristics and to the e↵ect of advanced antiviral treatments. The time-varying parameters
are written as linear combinations of basis functions and are then inferred from data using sparse
identification techniques. The second non-standard aspect resides in the fact that we consider as
model parameters also the initial number of susceptible individuals, as well as the proportionality
factor relating the detected number of positives with the actual (and unknown) number of infected
individuals. Identifying the model parameters amounts to a non-convex identification problem that
we solve by means of a nested approach, consisting in a one-dimensional grid search in the outer
loop, with a Lasso optimization problem in the inner step.

Keywords: Covid-19, SIR models, Lasso, contagion modeling

1. Introduction

Mathematical models o↵er a precious tool to public health authorities for the control of epidemics,
potentially contributing to significant reductions in the number of infected people and deaths. Indeed,
mathematical models can be used for obtaining short and long-term predictions, which in turn may
enable decision makers optimize possible control strategies, such as containment measures, lockdowns
and vaccination campaigns. Models can also be crucial in a number of other tasks, such as estimation
of transmission parameters, understanding of contagion mechanisms, simulation of di↵erent epidemic
scenarios, and test of hypotheses.
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Several kinds of models have been proposed for describing the time evolution of epidemics, among
which we distinguish two main groups: collective models and networked models. Collective models
are characterized by a relatively small number of parameters and describe the epidemic spread in a
population using a limited number of collective variables. They include generalized growth models
[6], logistic models [17], Richards models [25], Generalized Richards models [6], sub-epidemics wave
models [7], Susceptible-Infected-Recovered (SIR) models [17, 2, 13, 10, 12], Susceptible-Infected-
Recovered-Deceased (SIRD) models [11, 4], Susceptible-Exposed-Infectious-Removed (SEIR) models
[6, 5], and the Susceptible-Infected-Diagnosed-Ailing-Recognized-Threatened-Healed-Extinct
(SIDARTHE) model [15]. SIR, SIRD, SEIR, SIDARTHE and other similar models belong to the
class of the so-called compartmental models [3, 6]. Networked models typically treat a population
as a network of interacting individuals and the contagion process is described at the level of each
individual, see, e.g., [16, 20, 21, 22, 23, 24, 26, 8, 27, 8, 9]. These models clearly provide a more
detailed description of the epidemic spread than collective models, but their identification is also
significantly harder. A first reason is that they are typically characterized by a high number of
parameters and variables, while data is usually noisy and limited in quantity, a situation that makes
these models prone to overfitting. A second reason, perhaps more relevant, is that the network
topology is unknown in most real situations and its identification is an extremely hard task. In this
paper, we focus on a collective approach which, thanks to its relative simplicity, can be more suitable
for non-expert operators and public health authorities, and it can provide simple but reliable models,
even under scarcity of data.

Collective models are typically written in the form of di↵erential equations or discrete-time di↵er-
ence equations describing the evolution in time of average quantities, and are characterized by a set
of parameters that are not known a-priori and have to be identified from data. The identification of
such parameters raises several issues, as discussed next. A first problem is that standard models like
SIR, SIRD and SEIR are typically characterized by constant parameters. However, in a real epidemic
scenario, parameter changes may occur, for example due to control measures applied by authorities,
population behavioral changes and/or modifications of the epidemic characteristics. Time-invariant
parametric models may not be able to capture the e↵ects of such changes, thus providing poor pre-
diction performance. Another problem is that an important variable in many epidemic models is the
number of individuals that are infected at a given time. However, in a real epidemic scenario, only
the number of infected individuals that have been detected as “positive” (e.g., after a swab test)
is available, while the actual number of infected people remains unknown. A common assumption
made in the literature is that the observed cases are the actual ones. Clearly, this assumption is un-
realistic and may lead to wrong epidemiological interpretations and conclusions. Other issues stem
from the fact that identification of epidemic models requires in many cases to deal with non-convex
optimization problems. Indeed, a key feature of an epidemic model is to provide reliable results in
long-term predictions, in order to allow analysis and comparison of di↵erent scenarios and design of
suitable control strategies. Hence, identification has to be performed with the objective of minimiz-
ing the model multi-step prediction error. This typically requires solving a non-convex optimization
problem, even when the model is linear in the parameters, with the ensuing relevant risk of being
trapped in poorly-performing local solutions. Furthermore, the initial values of some model variables
have often to be identified, in addition to the model parameters, and this also requires solution of a
non-convex optimization problem.

In this paper, we propose a parameter-varying modification of the SIRD model, developed in
order to capture possible structural changes of the epidemic characteristics. The second contribution
consists in a model identification and prediction framework that allowed us to overcome the mentioned
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problems in the modeling of the infection evolution of the present COVID-19 pandemics. The model
identification approach is based on a simple yet practically e↵ective scheme: a model structure is
assumed, characterized by a set of parameters to be identified. The time-varying parameters are
written as linear combinations of basis functions. A grid is defined for the single parameter on which
the model has a nonlinear dependence. For each point of this grid, the other parameters are identified
by solving a convex Lasso-type optimization problem. This produces an overall e�cient methodology
that is able to reach the global optimal solution of the identification problem.

In general, this approach is expected to provide reliable parameter estimates. However, the
resulting model may be not extremely precise in long-term predictions, since the optimization is
focused on the minimization of the one-step prediction error, but not on the minimization of multi-
step prediction errors (this latter problem would be highly non-linear and non-convex in the unknown
parameters). To partly overcome this issue, we propose here to compute forward predictions based
on a weighted average of the multi-step predictions performed by starting the simulation at all the
available initial conditions. The weighted average indeed seems to provide a reduction of noise and
error e↵ects, possibly yielding significant improvements in the long-term prediction accuracy, as it
can be noticed from the numerical analysis of the current COVID-19 epidemic in Italy presented in
Section 5. This paper has been first submitted on July 1, 2020. The epidemiological data considered
in this work cover the time span from Feb. 23, 2020 to June 22, 2020.

2. A continuous-time SIRD model

In the following discussion by “infection” we shall mean the COVID-19 infection. We consider
a geographical region, assumed as isolated from other regions, and within such region we define the
following quantities:

• S(t): the number of individuals susceptible of contracting the infection at time t;

• I(t): the number of individuals that are alive and infected at time t;

• R(t): the cumulative number of individuals that recovered from the disease up to time t;

• D(t): the cumulative number of individuals that deceased due to the disease, up to time t.

The dynamics of the infection can be described approximately by a variation of the Kermack-
McKendrick equations, as given in [2]. Clearly, since the nature of the epidemic phenomenon changes
with time, especially due to containment measures taken by governments, we shall not expect a
constant-parameters model to be a good fit for all phases of the pandemics. For this reason, we first
introduce a constant parameters model, and then discuss a more general parameter-varying version
of this model in Section 4. The model we consider is described by the following equations

Ṡ(t) = �� S(t)I(t)

S(t) + I(t)
(1)

İ(t) = �
S(t)I(t)

S(t) + I(t)
� �I(t)� ⌫I(t) (2)

Ṙ(t) = �I(t) (3)

Ḋ(t) = ⌫I(t), (4)
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where � is the transmission rate of the disease, � is the recovery rate, and ⌫ is the death rate.
Underlying hypotheses in this model are that the recovered subjects are no longer susceptible of
infection, and that the number of deaths due to other reasons (di↵erent from the disease under
consideration) are neglected. Further, the region under consideration is assumed to be isolated from
other regions, and this is a reasonable assumption when containment measures such as travel bans
are enforced.

The model is initialized at some conventional t = 0 with values S(0) > 0, I(0) = I0 > 0, and
R(0) = R0 � 0, D(0) = D0 � 0. We let C(t)

.
= R(t) + D(t) denote the removed individuals (i.e.,

those individuals that are removed from the susceptible pool due to death or immunization), then
the model is rewritten in the standard form

Ṡ(t) = �� S(t)I(t)

S(t) + I(t)
(5)

İ(t) = �
S(t)I(t)

S(t) + I(t)
� ⌘I(t) (6)

Ċ(t) = ⌘I(t), (7)

where ⌘
.
= � + ⌫. Notice that it holds that

Ṡ(t) + İ(t) + Ċ(t) = 0, 8t,

whence S(t) + I(t) + C(t) = N , 8t, where N = S(0) + I(0) + C(0) represents the fraction of the
total population which is a↵ected by the contagion. It is important to observe that N is typically
unknown, since it is unknown, for instance, the initial number S(0) of susceptible individuals. For
these reasons, we shall consider N as one of the model parameters that need be identified from data.
More precisely, we let N be proportional to the actual population Pop of the region of interest, and
denoting by ! 2 [0, 1] the (unknown) fraction, we have that

S(t) + I(t) + C(t) = !Pop, 8t � 0

whence
S(t) = !Pop� I(t)� C(t) = !Pop� I(t)� (R(t) +D(t)). (8)

2.1. Closed-form solution

The system of ordinary di↵erential equations (5)–(7) has a closed form solution for t � 0, see [18]:

S(t) = S0(1 + )%(1 +  exp((� � ⌘)t))�%

I(t) = I0(1 + )%(1 +  exp((� � ⌘)t))�% exp((� � ⌘)t)

C(t) = N � S0(S0 + I0)
%(S0 + I0 exp((� � ⌘)t))�%,

where 
.
= I0/S0 and %

.
= �/(� � ⌘).

2.2. Steady state

The steady-state values reached by (1) depend on the initial conditions and on the sign and value
of %. Indeed, letting S̄, Ī, and C̄ be the steady-state values of S, I, and R, respectively, we have
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Ṡ = İ = Ċ = 0 for S̄Ī = 0, Ī = 0. Due to conservation S(t) + I(t) + C(t) = S0 + I0 + C0 = N , 8t,
we have that

S̄ + C̄ = N,

where C̄ = C0 + ⌘
R1
0 I(t). The stationary values of S and C depend on the sign of % as follows:

% > 0 ) S̄ = 0, C̄ = N

% < 0 ) S̄ = S0(1 + )%, C̄ = N � S0(1 + )%.

Since D̄ = D0 + ⌫
R1
0 I(t), we have that D̄ = D0 +

⌫
�+⌫ (C̄ � C0), whence we obtain the asymptotic

number of deaths

D̄ =

⇢
D0 +

⌫
�+⌫ (S0 + I0) if % > 0

D0 +
⌫

�+⌫ (S0 + I0 � S0(1 + )%) if % < 0.

Note that %�1 = 1 � ⌘/�, hence % > 0 $ ⌘/� < 1. In this situation, the infection rate � is larger
than the rate of removal ⌘

.
= � + ⌫, and the infection extinguishes due to complete depletion of the

susceptible individuals.
It will be shown in Section 5.1.1 that the early-stage, pre-lockdown, model indeed provides pa-

rameter estimates such that � > ⌘, while the post-lockdown model yields � < ⌘, thus showing that
containment measures avoided the potential situation in which all susceptible individuals become
infected. Also, the full model we develop in Section 4, with time-varying parameters, shows a similar
behavior, with �(t) > ⌘(t) in the early part of the time evolution of the contagion, and �(t) < ⌘(t)
in the later stages.

2.3. Detected vs actual infections

In eqs. (5)–(7) the number I(t) of infected individuals is intended to be the actual (real) one.
However, the contagion tests (e.g., swabs) are performed only on a subset of the population, see,
e.g., [19], hence at any given time it is only possible to detect a number Ĩ(t) of infected individuals
which is smaller than the actual one. We here assume that Ĩ(t) is a fixed (but unknown) fraction of
the actual number I(t), that is,

I(t) = ↵Ĩ(t), for some ↵ � 1.

If we make the reasonable simplifying assumption that the rate of recovery (as well as the rate of
death) remains the same among detected and undetected infected individuals, then it follows that
the number of recovered individuals is also related to the detected recovered as R(t) = ↵R̃(t) and,
similarly, that the deaths of detected patients are a fraction of the actual deaths caused by the
infection, that is D(t) = ↵D̃(t). We further define S(t)

.
= ↵S̃(t). Plugging these into (5)–(7), we

obtain that the following di↵erential equations hold

˙̃S = �� S̃(t)Ĩ(t)

S̃(t) + Ĩ(t)

˙̃I = �
S̃(t)Ĩ(t)

S̃(t) + Ĩ(t)
� ⌘Ĩ(t)

˙̃C = ⌘Ĩ(t),
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where the initial conditions are Ĩ(0) and

S̃(0) = qPop� Ĩ(0)� R̃(0)� D̃(0), q
.
=

!

↵
. (9)

In terms of R̃(t) and D̃(t), we have the equations

˙̃S = �� S̃(t)Ĩ(t)

S̃(t) + Ĩ(t)
(10)

˙̃I = �
S̃(t)Ĩ(t)

S̃(t) + Ĩ(t)
� �Ĩ(t)� ⌫Ĩ(t) (11)

˙̃R = �Ĩ(t) (12)
˙̃D = ⌫Ĩ(t). (13)

We notice that the model (10)–(13) in the observed (measured) quantities is identical to the model
in the actual quantities (1)–(4), with the only di↵erence given by the scaled initial conditions in
(9), where q 2 [0, 1] is an unknown parameter that shall be identified from data. This model, in its
discretized form, is the basis for identification of the unknown parameters, which are �, �, ⌫, q.

3. Model identification

3.1. Discrete-time model in regression form

In the rest of this paper, we shall work with a discrete-time version of model (10)–(13). Taking a
discretization period of duration one day, and letting t = 0, 1, . . . denote the discrete time instants, we
substitute derivatives with the incremental di↵erence and obtain the following discrete-time version
of the model:

S̃(t+ 1) = S̃(t)� �
S̃(t) Ĩ(t)

S̃(t) + Ĩ(t)
, (14)

Ĩ(t+ 1) = Ĩ(t) + �
S̃(t) Ĩ(t)

S̃(t) + Ĩ(t)
� � Ĩ(t)� ⌫ Ĩ(t), (15)

R̃(t+ 1) = R̃(t) + � Ĩ(t), (16)

D̃(t+ 1) = D̃(t) + ⌫ Ĩ(t). (17)

A mean-field interpretation for these equations can be given as follows: under a flat prior, the
probability that one random person from the population is susceptible is

Psusceptible(t) =
S(t)

S(t) + I(t) +R(t)
 S(t)

S(t) + I(t)
.

Let E{c} denote the average number of contacts that one person may have with other persons during
a day, and let ◆ denote the probability of contagion. Then, each infected individual, in one day,
infects on average at most ◆E{c} S(t)

S(t)+I(t) individuals. The number of newly infected individuals in

one day is therefore upper bounded, on average, by � I(t)S(t)
S(t)+I(t) , where �

.
= ◆E{c} is transmission rate
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of the contagion. The last two equations in the model express the fact that, during each period and
on average, a fraction � of the infected recovers, while a fraction ⌫ of them dies.

Next, note that the dynamics (14)–(17) can be rewritten as

2

664

S̃(t+ 1)� S̃(t)
Ĩ(t+ 1)� Ĩ(t)
R̃(t+ 1)� R̃(t)
D̃(t+ 1)� D̃(t)

3

775 =

2

66664

� S̃(t)Ĩ(t)

S̃(t)+Ĩ(t)
0 0

S̃(t)Ĩ(t)

S̃(t)+Ĩ(t)
�Ĩ(t) �Ĩ(t)

0 Ĩ(t) 0
0 0 Ĩ(t)

3

77775

2

4
�
�
⌫

3

5 .

Hence, defining the di↵erence vector

�(t)
.
=

2

664

S̃(t+ 1)� S̃(t)
Ĩ(t+ 1)� Ĩ(t)
R̃(t+ 1)� R̃(t)
D̃(t+ 1)� D̃(t)

3

775

we may express the model equations in regression form as

�(t) =

2

66664

� S̃(t)Ĩ(t)

S̃(t)+Ĩ(t)
0 0

S̃(t)Ĩ(t)

S̃(t)+Ĩ(t)
�Ĩ(t) �Ĩ(t)

0 Ĩ(t) 0
0 0 Ĩ(t)

3

77775

2

4
�
�
⌫

3

5

= �(t; q)✓, (18)

where ✓
.
= (�, �, ⌫). Our objective is to identify the model on the basis of observed data. For a given

time horizon T > 0, the observed data at t = 0, 1, . . . , T , are Ĩ(t), R̃(t), D̃(t). From these data, we
construct S̃(t) as

S̃(t) = qPop� Ĩ(t)� R̃(t)� D̃(t), t = 0, 1, . . . , T.

The parameters to be estimated are q 2 [0, 1], and the positive rates �, �, ⌫. Notice that the
transition matrix �(t; q) depends on q nonlinearly, through the dependence of S̃(t) on q.

We define a quadratic cost with forgetting factor w 2 (0, 1]

f(q; ✓)
.
=

1

T

T�1X

t=0

wT�tk�(t)� �(t; q)✓k22.

The estimation problem amounts to solving minq;✓ f(q; ✓) under constraints that ✓ � 0, q 2 [0, 1],
and that S̃(t) � 0 for all t = 0, 1, . . . , T . This constraint is guaranteed to hold if

q � qmin
.
= max

t=0,...,T

Ĩ(t) + R̃(t) + D̃(t)

Pop
.

We observe that, for fixed q, the minimization of f with respect to ✓ = (�, �, ⌫) can be done
e�ciently by solving a linearly constrained least-squares problem. We call this the inner step of the
identification algorithm. The dependency of f on q is instead non-convex, hence we approach this
issue via an outer gridding, as detailed in the following algorithm.
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1. Grid n values qi of q in [qmin, 1]. For each of these qi:
2. Solve the constrained least-squares problem f⇤

i = min✓�0 f(qi; ✓) and let ✓⇤i be an optimal
solution.

3. At the end of the loop, retain the qi value that yielded the minimal value of f⇤
i , and return

this qi along with the corresponding ✓⇤i .

4. SIRD model with time-varying parameters

In this section we discuss how to modify our regression model so to include estimation of time-
varying parameters while retaining the e�cient structure of the identification algorithm. To this end,
we consider the following parameterized families of time functions for the parameters:

q(t) = ⇡0(t) + q⇡(t) (19)

�(t) =
n1X

i=1

�ibi(t) (20)

�(t) =
n2X

i=1

�igi(t) (21)

⌫(t) =
n3X

i=1

⌫imi(t), (22)

where b1(t), . . . , bn1(t), g1(t), . . . , gn2(t), m1(t), . . . ,mn3(t), with n1, n2, and n3 being the numbers
of basis functions employed to represent �, �, and ⌫, respectively, are given time profiles, q 2 [0, 1]
is a scalar parameter, and �

.
= (�1, . . . ,�n1), �

.
= (�1, . . . , �n2) and ⌫

.
= (⌫1, . . . , ⌫n3) are parameter

vectors. To give an example, one may assume that �(t) follows a logistic profile:

�(t) = �1b1(t) + �2b2(t)

= �1
exp(�(t� t`)/⌧�)

1 + exp(�(t� t`)/⌧�)
+ �2

1

1 + exp(�(t� t`)/⌧�)
, (23)

where �1 has the practical meaning of infection rate in early stages on the infection (i.e., for t⌧ t`),
�2 has the meaning of asymptotic infection rate, t` is the time at which lockdown measures become
e↵ective, and ⌧� tunes the rapidity of transition from the pre-lockdown rate to the post-lockdown
rate. Similarly, the coe�cient q(t) can be assumed to be of the form q(t) = ⇡0(t) + q⇡(t), with

⇡0(t) =
1

1 + exp(�(t� tp)/⌧p)
, ⇡(t) =

exp(�(t� tp)/⌧p)

1 + exp(�(t� tp)/⌧p)

where tp is the time at which contagion tests over the population start increasing, and ⌧p is their
rate of increase.

When some of the parameters, such as, e.g., ⌧� in (23), cannot be guessed using prior knowledge,

we may include several possible values, say ⌧ (1)� , . . . , ⌧ (r)� in an extended basis of the form

�(t) =
rX

i=1

 
�(i)
1

exp(�(t� t`)/⌧
(i)
� )

1 + exp(�(t� t`)/⌧
(i)
� )

+ �(i)
2

1

1 + exp(�(t� t`)/⌧
(i)
� )

!
,

and let a sparse identification method select the useful components of the basis, as discussed in
Section 4.1.1.
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4.1. Regression model with time-varying parameters

Let us define

F̃ (t)
.
=

S̃(t)Ĩ(t)

S̃(t) + Ĩ(t)
,

B(t)
.
= [ b1(t) · · · bn1(t) ],

G(t)
.
= [ g1(t) · · · gn2(t) ],

M(t)
.
= [ m1(t) · · · mn3(t) ],

We rewrite the regression model (18) as

�(t) =

2

664

�F̃ (t)�(t) 0 0
F̃ (t)�(t) �Ĩ(t)�(t) �Ĩ(t)⌫(t)

0 Ĩ(t)�(t) 0
0 0 Ĩ(t)⌫(t)

3

775

=

2

664

�F̃ (t)B(t) 0 0
F̃ (t)B(t) �Ĩ(t)G(t) �Ĩ(t)M(t)

0 Ĩ(t)G(t) 0
0 0 Ĩ(t)M(t)

3

775

2

4
�
�
⌫

3

5

= �(t; q)✓,

where ✓ = (�,�,⌫) is the augmented vector of model parameters. It is immediate to verify that the
algorithm described in the previous section still works in the present context, that is, we solve the
identification problem by an outer gridding on the scalar parameter q, and an inner loop in which
we solve a constrained least-squares problem on the parameter vectors.

4.1.1. Over-parameterization and sparse model identification

The described approach lends itself to the following sparse identification approach: if we are
uncertain about the values of some parameters of the time functions (such as, e.g., the time constants
⌧� and ⌧p in the previous example), we can consider an expansion of the form (19)–(22) with many

basis functions bi(t), gi(t),mi(t), e.g., one for each of the many assumed values of the time constants,
and, correspondingly, a large number of coe�cients �i, �i and ⌫i to be estimated. The idea is then
to let the identification algorithm single out which of the many basis functions is useful for the
identification purposes, by seeking a solution with a sparse coe�cient vector. A similar approach
has been employed for instance in [14] in the context of posynomial identification problems. The
described goal can be achieved by considering a modified cost function of the Lasso type:

f1(q; ✓)
.
=

1

T

T�1X

t=0

wT�tk�(t)� �(t; q)✓k22 + �k✓k1,

where � � 0 is a tradeo↵ parameter that weights the accuracy of the solution and its sparsity level.
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4.1.2. Guessing the shape of the basis functions

In order to help guessing the shape of the basis functions B(t), G(t), and M(t) that may be
used to define the time profile of the model parameters in (20)–(22), it is possible to use a simple
inversion of the nonlinear model. Namely, let us consider equation (18) and assume that the (scalar)
parameters �, �, ⌫ may vary with time. For a given value of q, at each t we may invert eq. (18) and
obtain 2

4
�̂(t)
�̂(t)
⌫̂(t)

3

5 = �†(t; q)�(t) (24)

for t = 0, 1, . . . , T , where �†(t; q) is the Moore-Penrose pseudoinverse of �(t; q). The values �̂(t),
�̂(t), and ⌫̂(t), t = 0, . . . , T , constitute a time-varying proxy for the parameters �, �, and ⌫ of the
model. Plotting �̂(t), �̂(t) versus t can provide the user with an idea of the basis functions to be used
in B(t), G(t), and M(t). In case no useful information can be obtained from these plots, a standard
generic basis (for instance, polynomial) may be chosen for the parameters.

4.2. Constructing predictions

We propose a multi-simulation method for constructing forward predictions, once the model
has been identified from data. Consider model (14)–(17) and assume that its parameters in (20)–
(22) have been identified using data over the horizon 1, . . . , T , where 1 denotes the first day of
the estimation period and T the last one. Let x(t, t0) denote the value at t � t0 of the system’s
state (S̃(t), Ĩ(t), R̃(t), D̃(t)) when the model starts at given initial conditions at t0. Observe that for
t0 = 0, 1, . . . , T the value of the initial condition x(t0) = (S̃(t0), Ĩ(t0), R̃(t0), D̃(t0)) is known from
observed data and from the estimated value of q. Then, at any t > T we compute the state prediction
x̂(t) according to the exponentially-weighted average

x̂(t)
.
=

1

2T
x(t, t0) +

TX

⌧=1

1

2T+1�⌧
x(t, t0 + ⌧), t0 = 0, t > T. (25)

It can be observed that the formula given in (25) is the result of application of the following itera-
tions:

1: initialize x̂(t) as x(t, t0), with t0 = 0
2: for ⌧ = 1 to T do

3: update x̂(t) as x̂(t) 1
2 x̂(t) +

1
2x(t, t0 + ⌧)

4: end for

Therefore, eq. (25) is the result of a sequence of steps, each of which iteratively averages the current
prediction x̂(t) with a new one built on the basis of new initial conditions. This averaged approach
to prediction is intended to alleviate the e↵ect of noise on the observed initial conditions.

5. The COVID-19 contagion in Italy

In this section we apply the described identification and prediction techniques to the modeling
of various stages of the COVID-19 contagion in Italy. Our analysis considers both aggregated data
over all Italy and region-specific data from the four most a↵ected regions in Italy, that is Lombardia,
Piemonte, Emilia-Romagna, and Veneto. We use the o�cial data from Italian Protezione Civile,
available at https://github.com/pcm-dpc/COVID-19.
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5.1. Analysis of aggregated data for Italy

In order to better understand the evolution of the COVID-19 contagion in Italy, we need to take
into account the following key events and dates:

• February 23, 2020: can be considered as the formal start date of the COVID-19 contagion in
Italy, with the institution of a localised lockdown for certain municipalities in the Lombardia
and Veneto regions.

• March 8-9, 2020: first Decree of the Prime Minister (dpcm), extending the first localised
measures to all national territory, with ban of people gathering and stop to sport events.

• March 11, 2020: total lockdown on all national territory. The Prime Minister orders the
shutdown of all commercial activities, with the exception of basic goods and necessities.

• March 20, 2020: access is banned to parks and public gardens; open-air recreational activity is
banned.

• March 22, 2020: all non-essential or non-strategic industrial production activities are closed,
till the end of the month.

• April 1: lockdown is extended to April 13th.

• April 10: lockdown is extended to May 3rd.

• April 26: Decree of the Prime Minister ordering the initial release of some restriction measures,
starting from May 3rd.

• May 3, 2020: beginning of phase 2.

• May 16, 2020: Decree of the Prime Minister phase 2, in e↵ect from May 18th.

• June 11, 2020: Decree of the Prime Minister authorising general opening, in e↵ect from June
15th. Social distancing and other measures (e.g., wearing masks in closed places) remain in
place. This is referred to as phase 3.

Figure 1 shows a plot of the daily deaths (national data for Italy) with black dashed line, and the
scaled number of active infected individuals with solid red line. The scaling is performed in order to
show the approximate proportionality between the daily deaths and the number of active infected,
in the early stage of the contagion. This figure also highlight the key dates at which containment
measures have been enforced or released.

5.1.1. Constant parameter models

In this section, we use the technique illustrated in Section 3.1 for identifying models for the
COVID-19 contagion in Italy, assuming constant parameters in the model. Two di↵erent models are
determined, by fitting the parameters using data from two di↵erent time intervals.

Early stage model: Data from February 24th to March 27th of the COVID-19 spread in Italy
have been used to fit a model of its early stage using the procedure detailed in Section 3.1. The date
of March 27th corresponds to 15 days after the full national lockdown; it is the date at which the
containment measures begin to become visible in the data.

11
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Figure 2: Objective cost as a function of q in the early stage model.

Figure 2 depicts the value attained by the objective function min✓�0 f(q, ✓) for di↵erent values
of the parameter q in the range [qmin, 1].

The optimal parameter values obtained using the procedure given in Section 3.1 with qmin =
0.0014 and forgetting factor w = 0.9 are

q = 0.011, � = 0.123, � = 0.018, ⌫ = 0.014.

Figure 3 depicts the multi-simulation prediction — carried out as detailed in Section 4.2 —
obtained by using the identified early stage model with the parameters given above. Model identifi-
cation was carried out using the data corresponding to the time interval from “Start day” to “End
day”.

As shown by Figure 3, the early stage model overestimates in the prediction the number of
infected, recovered, and deceased individuals. This is essentially due to the fact that such a model
does not account for the control measures that have been taken to reduce the spread of COVID-19,
such as lockdown, social distancing, etc., since it has been trained only using the early-stage data.
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Figure 3: Multi-simulation prediction with the early stage model (constant parameters).

Late stage model: The data from March 27th to May 18th of the COVID-19 spread in Italy
have been used to fit a model of its late stage, including the lockdown period, using the procedure
detailed in Section 3.1. The optimal parameter values obtained by using the procedure given in
Section 3.1 with qmin = 0.0037 and forgetting factor w = 0.7 are

q = 0.014, � = 0.012, � = 0.038, ⌫ = 0.002.

Figure 4 depicts the multi-simulation prediction — carried out as detailed in Section 4.2 —
obtained yb using the identified late stage model with the parameters given above.
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Figure 4: Multi-simulation prediction with the late stage model (constant parameters).

As shown by Figure 4, the late stage model is capable of predicting the evolution of the post
lockdown spread of COVID-19 for a prediction period of 36 days forward with remarkable accuracy.

On the other hand, using a single model with constant parameters for the whole period from
February 24th to May 18th presents degraded prediction performance. In fact, the procedure detailed
in Section 3.1 has been used to fit a model on these data. The optimal parameter values obtained
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using the procedure given in Section 3.1 with forgetting factor w = 0.9 are

q = 0.0137, � = 0.0142, � = 0.0302, ⌫ = 0.0025.

Figure 5 depicts the multi-simulation prediction — carried out as detailed in Section 4.2 — obtained
using the identified model.
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Figure 5: Multi-simulation prediction with the full data model (constant parameters).

As shown by Figure 5, the model with constant parameters, fitted over the whole period, shows
somewhat degraded prediction performance in the number of infected individuals.

5.1.2. Time-varying parameters models

Motivated by the prediction performance of the model with constant parameters over the whole
period from February 24th to May 18th, the main goal of this section is to show that, rather than
using two models with constant parameters, it is possible to design a single model with time-varying
parameters that is capable of representing the overall evolution of the contagion. A possible design
approach is to use the logistic basis functions described at the beginning of Section 4, which essen-
tially lead to piece-wise constant values of the model parameters with smooth transitions. However,
the fitting performance with such shape functions resulted to be poorer than the one obtained by
using alternative exponential and polynomial basis functions described below. Therefore, the func-
tional form of the basis functions B(t), G(t), and M(t) has been selected as a mixture of negative
exponentials and polynomial functions, namely

B(t) =
⇥
1 exp(� t

10 ) exp(� t
11.0526 ) exp(� t

12.1053 ) · · · exp(� t
30 )

⇤
,

G(t) =
⇥
1 t t2

⇤
,

M(t) =
⇥
1 exp(� t

10 ) exp(� t
11.0526 ) exp(� t

12.1053 ) · · · exp(� t
30 )

⇤
.

Then, the procedure outlined in Section 4.1.1 has been used to determine the 45 entries of the vector
✓ and the parameter q so to fit the model to data. The tradeo↵ parameter � in the Lasso has been
fixed to � = 10, leading to k✓k0 = 26, and the parameter shapes in Figure 6 have been obtained.
Inspecting the values attained by the parameter %(t) = �(t)/(�(t) � �(t) � ⌫(t)), we obtained that
%(t) > 0 for t  58 and %(t) < 0 for t � 59, with t = 59 corresponding to April 22nd. The model
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then captures the transition from the expansive phase to the controlled phase on the contagion, and
predicts a nonzero steady-state value for S̃.
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Figure 6: Identified shape of the parameters for national data. Time is expressed in days since Feb. 24, 2020.

Further, observe that the time behavior of the fitted parameters shown in Figure 6 is consistent
with their expected dynamics. In fact, the infection rate � is expected to decrease thanks to the
employment of personal protection equipment, social distancing, improved personal hygiene, and to
the detection and isolation of positive individuals. On the other hand, the recovery rate � and the
death rate ⌫ are expected to increase and decrease, respectively, thanks to the use of more e↵ective
treatments for the disease.

Figure 7 depicts the multi-simulation prediction — carried out as detailed in Section 4.2 —
obtained by using the identified time-varying model with the parameters given above.

As shown by Figure 7, a single time-varying model su�ces to fit the COVID-19 contagion data
in Italy both in its early stage and in its late stage. Furthermore, the time-varying model is capable
of predicting the evolution of the post lockdown spread of COVID-19 for a prediction period of 41
days forward with remarkable accuracy.

5.2. Analysis of regional data

In this section, the analysis carried out in the previous section considering Italy as a single region is
replicated with a focus on each of the four most a↵ected regions in Italy, that is Lombardia, Piemonte,
Emilia-Romagna, and Veneto. The same basis functions considered in the previous section have been
used to fit a model for each region, using the regional data of COVID-19 spread from February 24th
to May 13th.

Figure 8 depicts the parameter shapes identified using regional data and Figure 9 shows the multi-

15



14
-M

ar

3-
Apr

23
-A

pr

13
-M

ay

2-
Ju

n

22
-J

un

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

14
-M

ar

3-
Apr

23
-A

pr

13
-M

ay

2-
Ju

n

22
-J

un

0

50000

100000

150000

200000

250000

300000

14
-M

ar

3-
Apr

23
-A

pr

13
-M

ay

2-
Ju

n

22
-J

un

0

10000

20000

30000

40000

50000

60000

Figure 7: Multi-simulation prediction with the time-varying model (national data).

simulation prediction — carried out as detailed in Section 4.2 — obtained by using the identified
time-varying models.

As shown by Figure 8, the time behavior of the parameters for the regional models is qualitatively
similar to the ones obtained from the national model. The only main di↵erence between these
behaviors is the non-monotone evolution of the recovery rate �(t) in the Veneto region, which presents
a minimum at March 21st. This might be linked with the stress over intensive care units at the end
of March. However, such interpretations shall be taken with care, since specific behaviors might as
well be just artifacts of the numerical identification procedure. By observing the time behaviors of
the parameters, we can also identify the instants at which the contagion passes from the expansive
phase (%(t) > 0) to the controlled phase (%(t) < 0), which resulted to be May 1st in Lombardia,
April 27th in Piemonte, April 16th in Emilia-Romagna, and April 16th in Veneto.

Figure 9 finally shows that the proposed time-varying model has quite good prediction capabilities
in all regions.
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Figure 8: Identified shape of the parameters for regional data. Time is expressed in days since Feb. 24, 2020.
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Figure 9: Multi-simulation prediction with the time-varying model for regional data.
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6. Discussion

In this paper, a parameter-varying modification of the SIRD model has been proposed for de-
scribing and predicting the behavior of the COVID-19 contagion in Italy. Identifying the parameters
of this model is a non-trivial non-convex problem, for the solution of which we proposed an approach
based on two nested steps: a grid search in the outer loop, and a Lasso optimization problem in
the inner step. This approach has been applied to modeling of the COVID-19 contagion in Italy,
considering both aggregated national data and regional data from the most a↵ected regions in Italy.
In all the considered cases (national and regional), the identified parameter-varying models resulted
e↵ective in fitting the COVID-19 contagion data, both in the early and late stages, and in providing
accurate predictions of the evolution of the post lockdown epidemic behavior over a forward period
of 41 days. Besides these results, the proposed identification approach allows us to have a more de-
tailed understanding of the contagion mechanism with respect to standard time-invariant methods.
Indeed, a first important conclusion that can be drawn from Figures 6 and 8, is that the control
measures imposed by the authorities seem to have been e↵ective in reducing the key transmission
rate parameter �. Another interesting observation is that the decrease of this parameter mainly
occurs in the first 40 days of the epidemics, and the corresponding trend-inversion of the contagion is
observed in the data with a delay of about 15 days, see Figures 7 and 9. Furthermore, a comparison
of the di↵erent situations in the four considered regions can be made by looking at Figures 8 and 9.
It can be seen that the epidemics decrease is at a more advanced stage in Veneto, Emilia Romagna
and Piemonte, whereas Lombardia is still characterized by a relatively high number of infected.

Figures 6 and 8 show also that the recovery rate tends to increase with time, and the death rate
to decrease: this phenomenon, which seems not directly related to the lockdown, can be attributed
to di↵erent causes, among which a better understanding of the disease and consequent improvement
in the e↵ectiveness of the response from the national health system, and possibly a change in the
nature, virulence and lethality of the virus. This phenomenon can also be observed directly from the
raw data, considering the ratio between the number of individuals that needed Intensive Care in a
given day, and the total number of active infected individuals in the same day, see Figure 10. This
ratio decreased from an initial figure of above 10% in the early stages of the infection to a figure
below 1% in the later stages of the infection, showing that the clinical e↵ects of the contagion have
reduced greatly with time.

In conclusion, the proposed COVID-19 modeling approach can be helpful for obtaining epidemic
models that are able to describe di↵erent phases of the contagion. These models can give reliable short
and long term predictions, and also provide useful insight about the contagion mechanisms. Given
their time-varying structure, these models could also be e↵ective for simulating di↵erent epidemic
scenarios, testing various hypotheses, and also for designing suitable control measures by considering
the time-varying parameters in the role of control inputs.
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