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ELIMINATION OF INTERMEDIATE SPECIES IN MULTISCALE
STOCHASTIC REACTION NETWORKS1

BY DANIELE CAPPELLETTI AND CARSTEN WIUF

University of Copenhagen

We study networks of biochemical reactions modelled by continuous-
time Markov processes. Such networks typically contain many molecular
species and reactions and are hard to study analytically as well as by sim-
ulation. Particularly, we are interested in reaction networks with intermedi-
ate species such as the substrate-enzyme complex in the Michaelis–Menten
mechanism. Such species are virtually in all real-world networks, they are
typically short-lived, degraded at a fast rate and hard to observe experimen-
tally.

We provide conditions under which the Markov process of a multiscale
reaction network with intermediate species is approximated by the Markov
process of a simpler reduced reaction network without intermediate species.
We do so by embedding the Markov processes into a one-parameter family of
processes, where reaction rates and species abundances are scaled in the pa-
rameter. Further, we show that there are close links between these stochastic
models and deterministic ODE models of the same networks.

1. Introduction. Reliable mathematical models of biochemical reaction net-
works are of great interest for the analysis of experimental data and theoretical
biochemistry. Such models can provide qualitative information on biochemical
systems as well as provide means to simulate networks and to estimate unknown
parameters. The classical stochastic model of a reaction network is a continuous-
time Markov process, where the states are configurations of species numbers and
the transitions are changes caused by reactions. We refer to this Markov process as
a stochastic reaction network (SRN). Unfortunately, the set of reactions and chem-
ical species is often very large, and the related Markov process is too complicated
to be studied analytically or by modern computers. Thus, the necessity of simpli-
fying the full model arises. Perhaps the first result in this direction is due to Kurtz
(1972), where a deterministic weak limit for stochastic reaction networks is ob-
tained [see also Kurtz (1977/1978)]. More recently, in Ball et al. (2006), Kang and
Kurtz (2013), Pfaffelhuber and Popovic (2013), similar asymptotic results have
been obtained under more general scaling conditions than those applied in Kurtz
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(1972, 1977/1978). Here, the limit might have stochastic as well as deterministic
components, and the limit network might consist of simplified reactions with fewer
species. In this context, the concept of model reduction arises naturally.

A famous and well-studied example of a biochemical system is the Michaelis–
Menten mechanism for enzyme kinetics [Cornish-Bowden (2004), Härdin et al.
(2009), Kang and Kurtz (2013), Rao and Arkin (2003), Thomas, Straube and
Grima (2012)]. It is described by the reactions

E + R H E + P

where E denotes an enzyme, R a reacting substrate and P a product. H is an
intermediate, or transient, species formed by E and R, and it is usually unsta-
ble. Whenever a reaction occurs, say E + R → H , then the number of molecules
changes accordingly, that is, the numbers of E and R molecules are each reduced
by one, while the number of H molecules is increased by one.

If we assume that at least one of the reactions H → E+R and H → E+P is so
fast that a produced molecule of H is quickly degraded before any other reaction
takes place (i.e., at any time at most one molecule of H is present), then it seems
reasonable that the Markov process could be approximated by a simpler Markov
process, corresponding to the reduced reaction network

E + R E + P

where the reaction rate is determined from the original reaction rates. Intuitively,
the rate is the rate of E + R → H multiplied by the probability that the reaction
H → E + P occurs instead of H → E + R. Under this reduction, the number of
enzyme molecules E becomes constant. In essence, we are here dealing with time-
scale separation, in addition to species elimination and dimensionality reduction
(both in terms of the number of reactions as well as the number of species).

Another, perhaps more interesting example, is the following reaction network:

E + R

H1

H2

H3

E + P1

E + P2

(1.1)

It describes the catalytic transformation of a species R into the species P1 or P2,
through a chain of intermediate steps, denoted by the species H1, H2 and H3.
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Whenever the reaction E + R → H1 occurs, a sequence of reactions between in-
termediate species will take place (e.g., H1 → H3 → H1) before a final complex
is produced, such as E + P1. If the time spent in intermediate states is small, we
might approximate the reaction paths proceeding through the formation and quick
degradation of intermediate species by direct reactions. In other words, it is reason-
able to contract reaction paths passing through any intermediate species to obtain

E + R

E + P1

E + P2

(1.2)

for a suitable choice of reaction rates. Note that there is an infinite number of such
reaction paths. We will provide conditions that guarantee that the original SRN can
be well approximated, in a certain sense, by the reduced SRN, or more accurately,
that the Markov process describing the original system is well approximated by
the Markov process of the reduced system.

For this aim, we introduce a family of kinetics (reaction rates) indexed by a pa-
rameter N and study the relationship between the original and the reduced SRNs
as N → ∞. The analysis builds on the previous work Feliu and Wiuf (2013a)
[see also Feliu and Wiuf (2012, 2013b)], as well as on Ball et al. (2006), Kang and
Kurtz (2013), Pfaffelhuber and Popovic (2013). In Feliu and Wiuf (2013a), a math-
ematical framework is developed for the elimination of intermediate species in de-
terministically modelled reaction networks, using ODEs. Properties of the steady
states in the original ODE system are related to similar properties of the steady
states in the reduced ODE system by means of a formal relationship between the
original and the reduced network. Here, we are not concerned about the steady
states nor about the equilibrium distributions of SRNs, but about the trajectories
of SRNs up to a finite fixed time T > 0. Our aim is to approximate the dynamics
of the original system with intermediate species by means of the dynamics of a
simplified model, where intermediate species are eliminated. Though we arrive at
our reduced model through a different route than Feliu and Wiuf (2013a), we will
show that there are close links to ODE models and that our reduced network in
fact is that of Feliu and Wiuf (2013a).

We will study different types of convergence of stochastic processes associated
with SRNs as N → ∞. The limit is taken assuming that the consumption rates (at
least some of them) of the intermediate species approach infinity according to N .
Also the molecular abundances might be scaled in powers of N in the spirit of
the multiscale analysis performed in Ball et al. (2006), Kang and Kurtz (2013),
Pfaffelhuber and Popovic (2013). These papers deal with various forms of model
reduction. However, the elimination of intermediate species we aim to achieve is
not possible in these settings. On the other hand, our approximating model might
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in some cases be further reduced by techniques developed in these papers, hence
our approach might be considered complementary to theirs.

2. Preliminaries and definitions. The space of real (natural) vectors with en-
tries indexed by a finite set A is denoted by R

A (NA), and for any vector v ∈ R
A

(NA), we denote the entry corresponding to a ∈ A by v(a). Moreover, for any two
vectors v,w ∈ R

A (NA) we write v > w if the inequality holds component-wise.
Furthermore, |v| denotes the usual Euclidean norm of v. Finally, if A is a finite
set, we let #A denote the cardinality of A. Given two real numbers x, y, we will
often use the notation x ∨ y or x ∧ y to denote the maximum and the minimum of
x and y, respectively.

A reaction network consists of a set of species X , a set of complexes C,
and a set of reactions R. Formally, X is a finite nonempty set {S1, S2, . . . , Sn},
C = {y1, y2, . . . , ym} is a nonempty set of nonnegative linear combinations of el-
ements of X and R is a finite nonempty subset of C × C, such that (yi, yi) /∈ R
for all i. We identify X and C with finite subsets of NX . If (yi, yj ) ∈ R we write
yi → yj and we say that yi is the reactant and yj is the product. Throughout the
paper, we will denote an object O associated with a reaction r:yi → yj by Or

or Oij indifferently. Furthermore, for each reaction r:yi → yj ∈ R, we define the
reaction vector

ξr = yj − yi.

For further background on reaction networks, see Anderson and Kurtz (2011), Érdi
and Tóth (1989).

A complex y ∈ C is given as y = (y(S1), . . . , y(Sn)) and y(S) is called the
stoichiometric coefficient of the species S in y. Furthermore, we define the support
of y as the set of species S such that y(S) > 0, in which case we write S ∈ y.
Moreover, define CS as the complexes whose support contains S and RS as the
reactions in R that change the counts of S:

CS = {y ∈ C:S ∈ y},(2.1)

RS = {r ∈ R: ξr(S) �= 0
}
.(2.2)

Finally, we define a kinetics K as a set of functions indexed by R of the form

λr :NX≥0 → R≥0,

x 	→ λr(x).

Intuitively, λr is the rate by which reaction r occurs and it will be referred to as
the reaction rate. We allow reaction rates to be constantly 0, in which case the
corresponding reaction could be removed from the network.

A reaction network equipped with a kinetics can be modelled as a continuous-
time Markov process X· on N

X , where Xt(S) is the number of molecules of the
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species S at time t . Taken together with K and X·, a reaction network is called a
stochastic reaction network (SRN). The state of X· changes whenever a reaction
takes place, for example, if the reaction r occurs at time t∗ the new state is

Xt∗ = Xt∗− + ξr .

The kinetics K represents the transition rates for the process X·, such that

Xt = X0 +∑
r∈R

ξrYr

(∫ t

0
λr(Xs) ds

)
,(2.3)

with Yr(·) independent and identically distributed unit-rate Poisson processes
[Kurtz (1977/1978)]. The random variable Yr(

∫ t
0 λr(Xs) ds) counts how many

times the reaction r has occurred up to time t . This stochastic model is typically
chosen if the number of reactant molecules is low, so that the behaviour of the sys-
tem is similar to the evolution of a jump process. Changes occur only in a discrete
set of time points and it is uncertain which reaction will take place next.

A typical choice of kinetics is mass-action kinetics, where the reaction rate of
r:yi → yj is given by

λr(x) = kr

∏
S∈yi

x(S)!
(x(S) − yi(S))!1{x(S)≥yi(S)},

and kr are nonnegative real numbers, called rate constants. We usually express

this as yi
kr−→ yj . Note that the reaction rates are proportional to the number of

ordered subsets of molecules that can give rise to an occurrence of the reaction.
This choice of kinetics is natural if we assume the system is well stirred.

To define a reduced reaction network, we introduce the concept of an interme-
diate species [Feliu and Wiuf (2013a)].

DEFINITION 2.1. Let (X ,C,R) be a reaction network and V ⊂ X . We say
that the species in V are intermediate species (or simply intermediates) if the fol-
lowing conditions hold:

• for each H ∈ V and y ∈ C, if H is in the support of y, then y = H . This implies
that V ⊂ C,

• for each H ∈ V , there is a directed path of complexes such that

yi → H�1 → ·· · → H → ·· · → H�k
→ yj

for some complexes yi, yj ∈ C \ V and H�i
∈ V for all 1 ≤ i ≤ k. The path

H�1 → ·· · → H → ·· · → H�k

is called a chain of intermediates.
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According to the definition, intermediate species always appear alone and with
stoichiometric coefficient one. For example, the species H in the Michaelis–
Menten mechanism and the species H1, H2 and H3 in (1.1) meet Definition 2.1.
We denote by U , W the subsets of C such that:

• for all y ∈ U , there exists H ∈ V , such that y → H ∈ R,
• for all y ∈ W , there exists H ∈ V , such that H → y ∈ R.

We refer to U and to W , respectively, as the initial reactants and the final products.
In general, the two sets can have nonempty intersection (as in Example 3.1). For
any initial reactant yi we introduce the set Vi of intermediate species H such that
yi → H ∈ R. We index the set V using the ordering of the set C, such that H� = y�

for any intermediate H� ∈ V . Further, we introduce the index sets U , V , Vi and W

of U , V , Vi and W , respectively, such that

U = {yi}i∈U, V = {H�}�∈V , Vi = {H�}�∈Vi
, W = {yj }j∈W .

3. The reduced stochastic reaction network. Let (X ,C,R) be a reaction
network equipped with a kinetics K and let V ⊂X be a set of intermediate species.

The reduced reaction network obtained from (X ,C,R) is the triple(
X \ V,C \ V,R∗),(3.1)

where R∗ consists of the reactions in R not involving intermediates and the re-
actions yi → yj , where yj is obtainable from yi through a chain of intermediate
species of (X ,C,R), as in Definition 2.1. Thus, the intermediate species have been
eliminated from the original network by contraction of reaction paths.

If (X ,C,R) is equipped with a kinetics K, then (X \ V,C \ V,R∗) inherits a
kinetics K∗ from (X ,C,R) if certain additional conditions are fulfilled. To define
K∗ we first make the following assumption:

ASSUMPTION 1 (Rate functions and intermediates). The consumption of the
intermediate species is governed by mass-action kinetics, that is for any �, �′ ∈ V

and j ∈ W ,

λ�j (x) = k�jx(H�) and λ��′(x) = k��′x(H�),

for some nonnegative constants k�j , k��′ . This condition implies that any molecule
of an intermediate species will be consumed at a constant rate. Further, we assume
that all other reaction rates do not depend on H�.

Let X· be the process associated with (X ,C,R). We enlarge the filtration of
X· by the σ -algebras σt , such that σt contains the information on the evolution
up to time t of every occurrence of a molecule of an intermediate species in the
experiment. In particular, we introduce a Markov process, that describes the dy-
namics, or fate, of a molecule of an intermediate species. Consider the nth reaction
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occurring in X· that turns a nonintermediate complex into an intermediate species.
Let this reaction be yi → H� and assume it takes place at time tn. The intermedi-
ate molecule H� will eventually be transformed into a final product yj . The chain
of transformations leading to yj can be described by a continuous-time Markov
chain Cn(·), starting at time tn, with state space V ∪W and Cn(tn) ∈ V . The final
products are treated as absorbing states for the Markov process. The transition rate
matrix, which is independent on n, has the following block structure:

Q =
[

QV,V QV,W

0 0

]
,(3.2)

where

q��′ = k��′ for all �, �′ ∈ V with � �= �′,
q�j = k�j for all � ∈ V and j ∈ W,

q�� = −∑
�′∈V

k��′ − ∑
j∈W

k�j for all � ∈ V.

We define by τn the time until the production of the final product, that is,

τn = inf
{
t ≥ tn:Cn(t) ∈ W

}− tn,

and for all � ∈ Vi , we define by π�j the probability that the final product produced
is yj , given that the intermediate chain started in H�. Namely,

π�j = P
(
Cn(tn + τn) = yj |Cn(tn) = H�

)
,(3.3)

with π�j = 0 if j /∈ W . Since Cn(·) is a finite state Markov process with absorbing
states, τn is almost surely finite. Moreover, note that π�j does not depend on n,
since Q does not depend on n. In this context, we have

σt = σ
(
Xs,Cn(s): s ∈ [0, t], n ∈ N

)
.(3.4)

Let K be a kinetics fulfilling Assumption 1. If we let λi� = 0 whenever yi →
H� /∈ R, then the kinetics K∗ of the reduced reaction network is defined by

λ∗
ij (x) = λij (x) + ∑

�∈Vi

π�jλi�(x),(3.5)

for any yi → yj ∈ R∗. Thus, the rate of a reaction originating from a chain of
intermediates is the sum of the rates λi�(·) by which the first intermediate is pro-
duced from yi multiplied by the probability π�j that the chain ends in yj . To this,
we add λij (·) if the reaction yi → yj is already in R.

Our main goal is to prove that the behaviour of X·, under certain conditions, is
captured by the behaviour of the process associated with the reduced SRN. In the
broader setting of multiscale models [Ball et al. (2006), Kang and Kurtz (2013),
Pfaffelhuber and Popovic (2013)], we prove that a suitable rescaled version of X·
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can be approximated by a similarly rescaled version of the process of the reduced
SRN. We will show this by constructing a particular process Z· on the same prob-
ability space as X·, which is distributed as the process associated with the reduced
SRN, and by further proving convergence in probability of the difference between
the rescaled versions of X· and Z· in various senses. Specifically, we are able to
prove uniform convergence in probability to zero at fixed time points as well as
convergence in occupation measure (cf. Theorems 4.3 and 4.7). Under additional
assumptions, we prove convergence in probability to zero of the difference of the
rescaled processes in the Skorohod topology (cf. Theorems 4.5 and 4.7).

The reduced reaction network defined here is the same as the reduced reaction
network introduced in Feliu and Wiuf (2013a). Moreover, the procedure to obtain
the kinetics of the reduced model coincides with that in Feliu and Wiuf (2013a).
We prove this in Theorem 3.1. It is worth noting, however, that the aims of Feliu
and Wiuf (2013a) and this paper are very different. Indeed, we study various con-
vergences of the stochastic processes associated with (X ,C,R), while in Feliu
and Wiuf (2013a) the reaction networks are deterministically modelled through a
system of ODEs, and a relation between the steady states of the original and the
reduced models is investigated.

In Feliu and Wiuf (2013a), the kinetics of the reduced reaction network is given
by

λ̃ij (x) = λij (x) + ∑
�∈Vi

k�jμi�(x).(3.6)

For defining μi�, we have to recall some notions from graph theory: let G be a
labelled directed graph. A labelled spanning tree of G rooted at some node g is a
labelled directed graph ζ satisfying the following conditions:

(i) the set of nodes of ζ coincides with the set of nodes of G;
(ii) any directed edge of ζ is a directed edge of G, and the labels are conserved;

(iii) ζ contains no cycle;
(iv) for any node g′ �= g, in ζ there exists a directed path from g′ to g.

The function μi� is defined as follows: consider the labelled directed graph Gx
i

with node set V ∪ {	} and labelled edge set given by

• H�

k��′−→ H�′ if k��′ �= 0 and � �= �′,

• H�

∑
j∈W k�j−→ 	 if

∑
j∈W

k�j �= 0,(3.7)

• 	
λi�(x)−→ H� if λi�(x) �= 0.

Let 
x
i (·) be the set of labelled spanning trees of Gx

i rooted at the argument, and
let w(·) be the product of the edge labels of the tree in the argument. Then μi�(x)
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is defined as

μi�(x) =
∑

ζ∈
x
i (H�)

w(ζ )∑
ζ∈
x

i (	) w(ζ )
.(3.8)

There might be no spanning tree rooted at a given intermediate species for some
x ∈ N

X . In that case, μi�(x) is 0. The denominator is always strictly positive as
any intermediate is eventually turned into a nonintermediate (Definition 2.1). The
proof of the following result is given in Section 6.

THEOREM 3.1. For all x ∈ N
X , i ∈ U , j ∈ W , we have λ∗

ij (x) = λ̃ij (x), hence
(3.5) and (3.6) coincide.

Below we give an example of a reduced SRN.

EXAMPLE 3.1. Consider the reaction network with intermediate species H1,
H2, taken with mass-action kinetics

E + R

H1

H2

E + P1

E + P2

k1

k2

k3

k4

k5

k6

k7

k8

In this case, there is only one initial reactant, namely E + R, while the final prod-
ucts are E + R, E + P1 and E + P2. Therefore, the set of initial reactants and
the set of final products have nonempty intersection. If we let E + P1 = y3 and
E + P2 = y4, then, by summing the probabilities of all possible paths from H1 to
E + P1, we find that

π13 = k4

k3 + k4 + k5

∑
n∈N

(
k5

k3 + k4 + k5
· k7

k6 + k7

)n

= k4(k6 + k7)

(k3 + k4)(k6 + k7) + k5k6
.

Similarly, we calculate π14, π23 and π24 and obtain

π14 = k5k6

(k3 + k4)(k6 + k7) + k5k6
,

π23 = k4k7

(k3 + k4)(k6 + k7) + k5k6
,

π24 = (k3 + k4 + k5)k6

(k3 + k4)(k6 + k7) + k5k6
.
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The reduced reaction network with mass-action kinetics is therefore

E + R

E + P1

E + P2

k1π13 + k2π23

k1π14 + k2π24

k3

(3.9)

4. Results. Before formalising the setting and the assumptions, we provide
some examples to motivate it. Recall Example 3.1. Intuitively, the reduced SRN
behaves similar to the original SRN if the time spent in intermediate states (states
with at least one intermediate molecule being present) is insignificant compared to
the time spent in other states. Thus, it is natural to consider situations for which
the reaction rates out of intermediate states are all high, though this is not what is
required for our results to hold (Example 4.6).

Consider a reaction network (X ,C,R) and a sequence of kinetics KN indexed
by N ∈ N. Let XN· be the process (2.3) associated with the kinetics KN . Gener-
ally, we will have in mind that the consumption rates of the intermediates species
increase in N . We will consider a multiscale setting, where the species abundances
also are scaled according to N . Hence, we consider the asymptotic behaviour of
the process XN· as N → ∞, when both species abundances and rate constants de-
pend on N , similar to what is done in Ball et al. (2006), Kang and Kurtz (2013),
Pfaffelhuber and Popovic (2013).

To increase readability, in the examples the reaction rates depending on N are
simple powers of N with no prefactors (e.g., N2 rather than kN2). In the results
these restrictions are not assumed and more general forms of reaction rates are
allowed.

EXAMPLE 4.1. Consider the SRN from Example 3.1 with rate constants

E + R

H1

H2

E + P1

E + P2

k1

k2

N

N3

N3

N2

N2

k3

(4.1)
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The reduced SRN has reaction rates given by (3.9) with

πN
13 = 2N3

3N3 + 2N
, πN

14 = N3

3N3 + 2N
,

πN
23 = N3

3N3 + 2N
, πN

24 = 2N3 + N

3N3 + 2N
.

We assume that the molecular abundances of R,P1,P2 are of order O(N), while
XN

t (E) = O(1). We further assume that at time 0 there are no intermediates
present, that is, X0(H1) = X0(H2) = 0. The expression O(N) will be made pre-
cise later, but it indicates that at a typical time t > 0, the molecular abundances
of R,P1,P2 are of the same order of magnitude as N . With the assumption
on the abundances, the rates of the reactions E + R → H1, E + R → H2 and
E +P2 → E +R are of order O(N), while the intermediate species are consumed
considerably faster. Therefore, it seems reasonable that the intermediates might be
eliminated from the description of the system and the dynamics described by the
simpler reduced SRN in (3.9). We will show that the dynamics of the reduced SRN
approximates the dynamics of (4.1) for N large. Specifically, we will show that the
difference between the two stochastic processes associated with the two networks
converges to 0 in the sense of Theorems 4.3 and 4.7 for N → ∞.

EXAMPLE 4.2 (Trapped in the intermediate chain). Consider the same reac-
tion network as in Example 4.1, but with slightly changed reaction rates. The re-
action H2 → E + P2 is slowed down and has rate N (before N2). The reaction
H1 → H2 is accelerated and has rate N4 (before N3). All other rates are left un-
changed. We assume as before that the molecular abundances of R,P1,P2 are
of order O(N), while XN

t (E) = O(1). Although the intermediate species are con-
sumed faster than the other species [the life time of a molecule of H1 and of H2 are
of order O(1/N4) and O(1/N2), resp.], it is not possible to approximate the above
SRN with one of the form (3.9), for any choice of kinetics. Indeed, it is more likely
that an intermediate molecule is transformed into another intermediate molecule
than into one of the two final products, E+P1 and E+P2. On average, an interme-
diate molecule will undergo the cycle of transformations H1 → H2 → H1 N times
before producing a nonintermediate complex. Since the life time of a molecule of
H2 is of order O(1/N2), the expected time until consumption of such a cycle of
intermediates is of the order O(1/N), while the rate of production of intermediate
molecules is of order O(N) when molecules of E are present, according to the
hypothesis XN

t (R) = O(N). This will result in a positive number of intermediate
species being present at any fixed time t . Therefore, in this case, the intermediate
species cannot be eliminated in the sense of this paper.

EXAMPLE 4.3 (Rescaling of time). Consider the following SRN, which is a
modified version of (4.1). The enzyme E is removed from the product complexes
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E + P1 and E + P2, and the reaction E + P2 → E + R is deleted:

E + R

H1

H2

P1

P2

k1

k2

N

N3

N3

N2

N2

Assume that the molecular abundance of R is of order O(N) and that the molecular
abundance of E is of order O(1). The small amount of enzyme molecules will be
consumed fast and none will be produced. Therefore, after a while, there will be
no enzyme molecules present. Each intermediate molecule will fast produce P1 or
P2 and, after that, no other reaction can possibly take place. That is, after a time of
order O(1/N), no reaction will take place. Thus, in order to observe the dynamics
of the system, time should be rescaled by a factor N . That is, the time t̃ = t/N

should be considered. This is the same as studying the SRN with all reaction rates
rescaled by a factor of 1/N .

Despite some reaction rates tend to zero with N , our results can be applied to
approximate the dynamics of the SRN. In particular, the reduced SRN is given by

E + R

P1

P2

(2k1+k2)N

3N2+2

N2k1+(2N2+1)k2
3N3+2N

where the magnitudes of the molecular abundances of E, R, P1, P2 are the same
as in the full reaction network.

4.1. Assumptions. Let (X ,C,R) be a SRN with a set of intermediate species
V ⊂ X , let KN be a sequence of kinetics indexed by N ∈ N, and let XN· be the
corresponding stochastic process (2.3). Define

R0 = {yi → yj ∈ R:yi /∈ V},(4.2)

R1 = {yi → yj ∈ R:yi, yj /∈ V} ⊂ R0.(4.3)

Specifically, R0 is the set of reactions whose reactant is not an intermediate, while
R1 is the set of reactions not involving intermediates at all.

Fix a nonnegative vector of scaling coefficients, α = (α(S))S∈X\V ∈ R
X\V
≥0 , and

define the rescaled process,

X̂N
t = N−αp

(
XN

t

)
,(4.4)
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where p:RX → R
X\V is the projection onto the nonintermediate species space

and the multiplication N−αp(XN
t ) is intended component-wise. The process X̂N·

is the rescaled process in the sense of Ball et al. (2006), Kang and Kurtz (2013),
Pfaffelhuber and Popovic (2013) for the nonintermediate species. Since α(S)

might differ from species to species, X̂N· is a multiscale process.

ASSUMPTION 2. Let α be given as in (4.4).

(i) (Rate functions and intermediates.) We assume that (X ,C,R) equipped
with KN satisfies Assumption 1 for all N ∈ N.

(ii) (Rescaling of abundances.) We assume that for any nonintermediate
species S ∈X \ V ,

X̂N
t (S) = O(1),(4.5)

that is, the scaled abundances do not blow up before time t . To make (4.5) precise,
we require that there exists T > 0 such that for any S ∈X \ V ,⎧⎪⎪⎨⎪⎪⎩

∀ν > 0 ∃ϒν : lim sup
N→∞

P
(

sup
[0,T ]

X̂N
t (S) > ϒν

)
< ν,(4.6a)

L
{
t ∈ [0, T ]: lim

N→∞P
(
X̂N

t (S) < ε
)= 1 for any ε > 0

}
= 0,(4.6b)

where L denotes the usual Lebesgue measure on R.
(iii) (Convergence of rate functions.) We assume that there exist a set of locally

Lipschitz functions {λr(·)}r∈R0 defined on R
X\V
≥0 , fulfilling

x ∈ R
X\V
>0 ⇒ λr(x) > 0,

and a set of nonnegative real numbers {βr}r∈R0 such that, for all r ∈R0,

N−βr λN
r

(
Nαx
)−−−→

N→∞
λr(x)(4.7)

uniformly on compact sets, where the rate functions λN
r are extended to the real

vectors by considering the floor function of the argument.
(iv) (Degradation of intermediates.) Let CN

n , τN
n , tNn and πN

�j be as defined after
Assumption 1. Let

β∗
� = max

i∈U
βi�, α∗

j = min
S∈yj

α(S),

where βi� is as in (iii) for r = yi → H�. Moreover, for any j ∈ W define

pε
�j (N) = P

(
τN

1 >
N

α∗
j ε

Nβ∗
� πN

�j

∣∣∣∣CN
1
(
tN1
)= H�,C

N
1
(
tN1 + τN

1
)= yj

)
.(4.8)
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By definition of the continuous-time Markov chains CN
n (·), for any n

P

(
τN
n >

N
α∗

j ε

Nβ∗
� πN

�j

∣∣∣∣CN
n

(
tNn
)= H�,C

N
n

(
tNn + τN

n

)= yj

)
= pε

�j (N).

We assume that the size of τN
n is controlled, that is, for all ε > 0, � ∈⋃i∈U Vi and

j ∈ W , we have

πN
�j N

β∗
� −α∗

j pε
�j (N)−−−→

N→∞
0.(4.9)

Note that for (4.9) to hold, it is not necessary that pε
�j (N) goes to zero, and in-

termediate species might be in high abundance in a multiscale setting. Sufficient
conditions for (4.9) are given in Propositions 4.1 and 4.2.

(v) (Single scale system.) Let S ∈ X \ V be any nonintermediate species. Let

R1
S =RS ∩R1 and RS = {r ∈ R∗ \R1: ξr(S) �= 0

}
.

Moreover, for all � ∈ Vi and j in the set of complexes indices, let πN
�j be as in (3.3).

We assume that ⎧⎪⎨⎪⎩
∃γ�j = lim

N→∞ logN πN
�j , ∈ [−∞,0],

∃ lim
N→∞πN

�j N−γ�j , if γ�j > −∞(4.10)

and

max
({βr}r∈R1

S
∪ {βi� + γ�j }�∈Vi,yi→yj∈RS

)≤ α(S),(4.11)

where βr with r ∈ R0 is as in (iii), and max∅ = −∞.

REMARK 4.1. “Single scale system” in Assumption 2(v) refers to the time
scale of the reduced SRN, as defined in Pfaffelhuber and Popovic (2013).

REMARK 4.2. Time rescaling in the sense of Example 4.3 might be consid-
ered. It is equivalent to a rescaling of all the rate functions by a common factor and,
therefore, equivalent to adding a common term to all the β’s. Thus, time rescaling
is implicitly considered in our framework of model reduction. We will ignore it in
the development of the theory.

REMARK 4.3. Assume mass-action kinetics and assume that for any reaction
r:yi → yj ∈ R0, the constant kN

r is of the form Nηr kr with kr > 0 and ηr ∈ R.
Thus,

λN
r

(
Nαx
)= Nηr kr

∏
S∈yi

(Nα(S)x(S))!
(Nα(S)x(S) − yi(S))!1{Nα(S)x(S)≥yi(S)}.
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This means that the right scaling for the rate function λN
r is

βr = ηr + ∑
S∈yi

α(S) · yi(S).

Indeed,

N−βr λN
r

(
Nαx
)−−−→

N→∞
λr(x)

uniformly on compact sets, where

λr(x) = kr

∏
S∈yi

α(S)=0

x(S)!
(x(S) − yi(S))!1{x(S)≥yi(S)}

∏
S∈yi

α(S)>0

x(S)yi(S)1{x(S)>0}.

REMARK 4.4. Theorems 4.3 and 4.5 below hold even if (4.10) and (4.11) in
Assumption 2(v) are replaced by the weaker conditions

∃c�j > 0 s.t. lim sup
N→∞

πN
�j N

β∗
� −α∗

j ≤ c�j ,(4.12)

max
(
{βr}r∈R1

S
∪
{
lim sup
N→∞

(
βi� + logN πN

�j

)}
�∈Vi,yi→yj∈RS

)
≤ α(S).(4.13)

We will use these in the proof of Theorems 4.3 and 4.5.

Under the assumption that X̂N
0 is bounded uniformly on N , condition (4.6a)

is fulfilled for a special class of reaction networks called conservative reaction
networks (cf. Remark 4.6). In order to state sufficient conditions for (4.9) to hold,
for any � ∈ Vi we define

a� = min
yj∈W�

α∗
j ,

where W� ⊆ W denotes the set of final products which are obtainable from H�

through a path of intermediates. In other words, W� is the set of final products yj

such that there exists a path of the form

H� → H�1 → ·· · → H�k
→ yj .

The following holds.

PROPOSITION 4.1. Equation (4.9) holds if for all � ∈⋃i∈U Vi and ε > 0, we
have

Nβ∗
� −a�P

(
τN

1 > Na�−β∗
� ε|CN

1
(
tN1
)= H�

)−−−→
N→∞

0.(4.14)

Moreover, (4.9) holds if for all � ∈⋃i∈U Vi and ε > 0, we have (4.12) and

Nβ∗
� −a�E

[
τN

1 |CN
1
(
tN1
)= H�

]−−−→
N→∞

0.(4.15)
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PROOF. The first part of the proposition is proven by∑
j∈W

πN
�j N

β∗
� −α∗

j pε
�j (N)

≤ Nβ∗
� −a�

∑
j∈W

πN
�j P
(
τN

1 > Na�−β∗
� ε|CN

1
(
tN1
)= H�,C

N
1
(
tN1 + τN

1
)= yj

)
= Nβ∗

� −a�P
(
τN

1 > Na�−β∗
� ε|CN

1
(
tN1
)= H�

)
.

The second part of the proposition follows from∑
j∈W

πN
�j N

β∗
� −α∗

j E
[
τN

1 |CN
1
(
tN1
)= H�,C

N
1
(
tN1 + τN

1
)= yj

]
≤ Nβ∗

� −a�
∑
j∈W

πN
�j E
[
τN

1 |CN
1
(
tN1
)= H�,C

N
1
(
tN1 + τN

1
)= yj

]
= Nβ∗

� −a�E
[
τN

1 |CN
1
(
tN1
)= H�

]
.

Therefore, (4.15) implies that for any j ∈ W

πN
�j N

β∗
� −α∗

j E
[
τN

1 |CN
1
(
tN1
)= H�,C

N
1
(
tN1 + τN

1
)= yj

]−−−→
N→∞

0.

By the Markov inequality, this implies that pε
�j (N) tends to zero as N goes to

infinity. By (4.12), the latter leads to (4.9), and the proof is complete. �

Since τN
n is a phase-type distributed random variable, we can express (4.14) in

terms of the exponential of the transition rate matrix (3.2). Specifically, (4.14) is
equivalent to

Nβ∗
� −a�(e�)

� exp
(
Na�−β∗

� εQN
V,V

)
e−−−→

N→∞
0 ∀� ∈ ⋃

i∈U

Vi,

where (e�)
� denotes the transpose of the canonical base vector with a one in the

�th entry and e is the vector with all entries equal to one. A sufficient condition for
(4.15) to hold is given in the proposition below.

PROPOSITION 4.2. Assume Assumptions 2(i), (iii) are fulfilled for some α ∈
R
X\V . For all i ∈ U and � ∈ V , let μN

i�(x) be as in (3.8) and define

α∗ = min
j∈W

α∗
j .

We have that, if

N−α∗
μN

i�

(
Nαx
)−−−→

N→∞
0(4.16)

for all x ∈ R
X\V
≥0 and for all i ∈ U , � ∈ V , then (4.15) in Assumption 2(iv) holds.

Moreover, if α∗
j = α∗

j ′ for all j, j ′ ∈ W , then (4.16) is also a necessary condition
for (4.15) to hold.
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We prove Proposition 4.2 in Section 6. The condition (4.15) is sufficient for
(4.9) to hold, but it is not necessary, as shown in Example 4.6. Before moving on,
we make a number of remarks.

4.2. The process ZN· . In order to show that the reduced SRN provides a good
approximation, under the given assumptions, of different features of the original
SRN, we define a sequence of processes ZN· ad hoc. We choose them such that for
any fixed t the (rescaled) difference |XN

t − ZN
t | tends to zero in probability, and

such that the process ZN· is distributed as the process associated with the reduced
SRN. We will prove other convergence statements in Theorems 4.3, 4.5 and 4.7.

Recall that p:RX → R
X\V is the projection onto the nonintermediate species

space. By Assumption 2(i), the reaction rates λN
r (·) with r ∈ R0 do not depend on

the counts of intermediates. That is, for any x ∈ N
X ,

λN
r (x) = λ̄N

r

(
p(x)

)
,

for some function λ̄N
r :NX\V → R≥0. For the sake of convenience, we will abuse

notation and let λ̄N
r (x) = λN

r (x) for all x ∈ R
X\V .

Given the nth chain of intermediates CN
n (·) appearing in relation to the pro-

cess XN· , we denote by {CN
n (·) ∈ Ci�j } the event that CN

n (·) originates from the
reaction yi → H� and eventually produces the final complex yj . Such an event is
measurable with respect to the σ -algebra σN∞ as introduced in (3.4). Furthermore,
let MN

i�j (t) denote the number of the chains originated before time t and such that

{CN
n (·) ∈ Ci�j }:

MN
i�j (t) = #

{
n:CN

n (·) ∈ Ci�j , t
N
n ≤ t

}= Yi�(
∫ t

0 λN
i�(X

N
s ) ds)∑

n=1

1{CN
n (·)∈Ci�j }.

The processes MN
i�j (·) are therefore arrival processes, and we might represent them

in terms of independent and identically distributed unit-rate Poisson processes
Yi�j (·) such that

MN
i�j (t) = Yi�j

(∫ t

0
πN

�j λN
i�

(
XN

s

)
ds

)
.(4.17)

In this context, Yi�(t) =∑j∈W Yi�j (t). Moreover, let tNi�j,n be the time of the nth

jump of the process MN
i�j (·), and let τN

i�j,n be a collection of independent random

variables distributed as τN
1 given (CN

1 ∈ Ci�j ). We now consider the process count-
ing the number of chains of intermediates CN

n (·) consumed before time t and such
that {CN

n (·) ∈ Ci�j }. Such a process is distributed as

M
N

i�j (t) =
MN

i�j (t)∑
n=1

1{tNi�j,n+τN
i�j,n≤t}.
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For any time t , we have MN
i�j (t) ≥ M

N

i�j (t). The process X̂N· can be equivalently
expressed as

X̂N
t = X̂N

0 + N−α

[ ∑
r∈R1

ξrYr

(∫ t

0
λN

r

(
XN

s

)
ds

)
(4.18)

+∑
i∈U

∑
j∈W

(
yj

∑
�∈Vi

M
N

i�j (t) − yi

∑
�∈Vi

MN
i�j (t)

)]
,

where the Poisson processes Yr(·) are the same as those appearing in (2.3). We
will use this representation in the remaining part of the paper.

We define the process ẐN· on N−α
N
X\V as

ẐN
t = ẐN

0 + N−α

[ ∑
r∈R1

ξrYr

(∫ t

0
λN

r

(
ZN

s

)
ds

)
(4.19)

+∑
i∈U

∑
j∈W

(yj − yi)
∑
�∈Vi

Yi�j

(∫ t

0
πN

�j λN
i�

(
ZN

s

)
ds

)]
.

For any fixed t ≥ 0, the random variables X̂N
t and ẐN

t are measurable with respect
to

σ
(
Yr(s), Yi�j (s), τ

N
i�j,n: r ∈ R1, i ∈ U,� ∈ Vi, j ∈ W,n,N ∈ N and 0 ≤ s < ∞).

The above σ -algebra contains information about the Poisson processes Yr(·) for re-
actions not involving intermediates, about the Poisson processes Yi�j (·) that drive
MN

i�j (·) and about the delays τN
i�j,n of the reactions proceeding through intermedi-

ates species. It does not contain full information on the intermediate chains CN
n (·),

but that is not required in the description of the processes X̂N· and ẐN· . The random
variables we are interested in will all be measurable with respect to the above σ -
algebra and, therefore, are defined on the same probability space. Since ẐN

t is, up
to rescaling, expressed in the form (2.3), it is distributed as the rescaled stochastic
process associated with (3.1).

There is a precise intuition behind the choice of ẐN
t as approximating process

for the original system. Consider (4.18): if (4.9) holds, then we expect the lifetime
of the intermediate species to decrease with N . Thus, we could imagine that, for

any fixed time t , MN
i�j (t) = M

N

i�j (t) with high probability, and thus, that X̂N
t is

approximated by

ŴN
t = X̂N

0 + N−α

[ ∑
r∈R1

ξrYr

(∫ t

0
λN

r

(
XN

s

)
ds

)
(4.20)

+∑
i∈U

∑
j∈W

(yj − yi)
∑
�∈Vi

MN
i�j (t)

]
.
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The process ẐN· in (4.19) is defined analogously to (4.20).
Unfortunately, we cannot hope for X̂N· to converge weakly to ẐN· in the Sko-

rohod topology in general (cf. Example 5.3). However, we will show a uniform
convergence in probability at fixed time points as well as convergence in occu-
pation measure for the difference of the stopped processes X̂N·∧T and ẐN·∧T , for
any fixed T > 0. Furthermore, we will give additional hypothesis under which the
convergence in probability in the Skorohod space holds.

4.3. Bounded reaction rates. Recall that R0 in (4.2) is the set of reactions
whose reactant is not an intermediate. Here, we are concerned with the case when
all reaction rates of reactions in R0 are bounded by a power of N , specifically for
any r ∈ R0,

N−βr λN
r (x) ≤ Br ∀N ∈ N,∀x ∈ R

X\V
≥0 ,(4.21)

where βr is as in Assumption 2(iii) and Br is a positive constant (later the constant
will also be referred to as Bi� if in relation to the reaction yi → H�). It is worth
mentioning that in this case, (4.6a) in Assumption 2(ii) is always fulfilled if X̂N

0
is stochastically bounded (cf. Remark 4.5). This is desirable because it suffices
to control stochastic boundeness of a real random variable rather than of an en-
tire stochastic process. Moreover, (4.21) can be assumed to hold if the network is
conservative and X̂N

0 is bounded independently of N (cf. Remark 4.6).
The proofs of Theorems 4.3 and 4.5 can be found in Section 7, using the re-

laxed version of Assumption 2(v) as given in Remark 4.4. The weaker condition is
sufficient to prove Corollary 4.4 as well.

THEOREM 4.3. Assume Assumption 2 is fulfilled for some α ∈R
X\V . Further,

assume that

E
[∣∣X̂N

0 − ẐN
0

∣∣]−−−→
N→∞

0,

and that the initial amounts of the intermediate species are 0. Finally, assume
that for any r ∈ R0, (4.21) holds and λr is Lipschitz. Then, if T is as in Assump-
tion 2(ii), we have that

sup
t∈[0,T ]

E
[∣∣X̂N

t − ẐN
t

∣∣]−−−→
N→∞

0.(4.22)

In particular, (4.22) implies that for all ε > 0,

sup
t∈[0,T ]

P
(∣∣X̂N

t − ẐN
t

∣∣> ε
)−−−→

N→∞
0.(4.23)

Finally, for any continuous function f :RX\V →R we have

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
ẐN

s

))
ds

∣∣∣∣> ε

)
−−−→
N→∞

0.(4.24)
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REMARK 4.5. Assume that (4.21), (4.12) and (4.13) hold. Assume further
that X̂N

0 is stochastically bounded, meaning that for every ν > 0 there exists ϒν

such that for every S ∈ X \ V
lim sup
N→∞

P
(
X̂N

0 (S) > ϒν

)
< ν.

Our aim is to prove (4.6a). By (4.18),

sup
t∈[0,T ]

X̂N
t (S) ≤ XN

0 (S) + N−α(S)
∑

r∈R1
S

∣∣ξr(S)
∣∣Yr

(
Nβr BrT

)
+ N−α(S)

∑
i∈U

∑
j∈W

2
(
yj (S) + yi(S)

) ∑
�∈Vi

Yi�j

(
πN

�j Nβi�Bi�T
)
,

where R1
S is defined according to (2.2). Using assumptions (4.12), (4.13) and the

law of large numbers for Poisson processes to control the above expression for
α(S) > 0, we obtain that, for any ν > 0, there exists ϒ ′

ν > 0, such that

lim sup
N→∞

P
(

sup
t∈[0,T ]

X̂N
t (S) > ϒ ′

ν

)
< ν.

REMARK 4.6. Conservative reaction networks are a special class of reaction
networks [Horn and Jackson (1972)]. In a conservative reaction network, a positive
linear combination of the species abundances is preserved throughout time, and
hence, the total abundances are bounded from above given any initial condition. In
such class of reaction networks, if X̂N

0 is bounded uniformly on N then condition
(4.21) is fulfilled. Indeed, if the original reaction network is conservative, then the
reduced reaction network is conservative as well [Feliu and Wiuf (2013a)]. Let S1

and S2 denote the spaces spanned by the reaction vectors of the original and of
the reduced network, respectively. Moreover, let S = p(S1) ∪ S2 ⊂ R

X\V . It can
be shown that S2 ⊆ p(S1), but this lies outside our concerns. The initial condition
X̂N

0 varies in a compact set K0. Therefore, for any r ∈ R0, we might consider a
modified version of the rate functions λN

r , such that

N−βr λN
r

(
Nαx
)= 1 ∀x /∈ (S + K1) ∩R

X\V
≥0 ,

and K1 ⊃ K0 is a compact set. Thus, the limit functions λr in Assumption 2(iii) are
1 outside a compact set and, therefore, bounded. Due to (4.7), condition (4.21) is
met. In particular, it follows from Remark 4.5 that in this case (4.6a) always holds.

COROLLARY 4.4. Assume that the assumptions of Theorem 4.3 hold. Then the
difference between the processes X̂N·∧T and ẐN·∧T converges in finite dimensional
distribution to 0.
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PROOF. From Theorem 4.3, we have that (4.23) holds for any ε > 0. Thus, for
any finite set of time points {tm}pm=0 ⊆ [0, T ] we have that

P
(

max
0≤m≤p

∣∣X̂N
tm

− ẐN
tm

∣∣> ε
)

= P

( p⋃
m=0

{∣∣X̂N
tm

− ẐN
tm

∣∣> ε
})

≤
p∑

m=0

P
(∣∣X̂N

tm
− ẐN

tm

∣∣> ε
)−−−→

N→∞
0,

hence the corollary holds. �

We discuss here some applications of Theorem 4.3 and Corollary 4.4.

EXAMPLE 4.4. Consider the reaction network in Example 4.1. Assump-
tion 2(i) holds. Further, if we let α(E) = 0 and 0 < α(R) = α(P1) = α(P2) < 2,
then Assumption 2(ii)–(v) are satisfied if we choose the initial value XN

0 propor-
tional to the scaling Nα and βr according to Remark 4.3. Note that the reaction
network is conservative in the sense of Remark 4.6. Thus, (4.21) holds and by The-
orem 4.3 and Corollary 4.4, the probability distribution of the process associated
with the reduced SRN approximates, in the sense of Theorem 4.3 and Corollary
4.4, the probability distribution of the process (4.1).

EXAMPLE 4.5. Consider the Michaelis–Menten mechanism taken with mass-
action kinetics:

E + R H E + P

k0

k1N
η1

k2N
η2

Assumption 2(i) is satisfied, as well as (4.21) since the network is conservative.
The probability that a molecule of H is transformed into the complex E + R is
k1N

η1/(k1N
η1 + k2N

η2), while the probability that it is transformed into the com-
plex E + P is k2N

η2/(k1N
η1 + k2N

η2). The reduced SRN is given by

E + R E + P

k0k2N
η2

k1N
η1+k2N

η2

If we let that α(E) = 0, α(R) < η1 ∨η2 and α(P ) = α(R)∧(α(R)+η2 −η1), then
Assumption 2(ii)–(v) are satisfied if we choose the initial value XN

0 proportional
to the scaling Nα and βr according to Remark 4.3. In this case, Theorem 4.3 and
Corollary 4.4 state in which sense the original process is approximated by the one
associated with the reduced SRN. The magnitudes of the molecular abundances
are the same as in the original system.
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In the reduced SRN, the amount of enzyme E is conserved. Hence, the model
can further be reduced to

R P

E0k0k2N
η2

k1N
η1+k2N

η2

where the amount of E molecules constantly equals E0.
Let δ = α(R) + min{0, η2 − η1}. If δ < 0, we wait a time of order O(N−δ) for

the first reaction to occur in the reduced SRN. Thus, we might rescale time in the
original SRN by t̃ = Nδt . As shown in Example 4.3, this is equivalent to rescale
the rate functions. After rescaling, reduction can be performed again to obtain an
approximation of the system’s dynamics.

The following example concerns a network where not all the rates out of inter-
mediate states are high. Moreover, it shows that condition (4.15) is sufficient for
(4.9) in Assumption 2(iv) to hold, but it is not necessary.

EXAMPLE 4.6. Consider the SRN taken with mass-action kinetics,

A H1

H2

B
λ(x) N2

NN−2

with α(A) = α(B) = 0. Assumption 2 is fulfilled if we choose the initial value XN
0

proportional to the scaling Nα and βr according to Remark 4.3. This is true even
though the consumption rate of H2 tends to zero. Moreover, the reaction network
is conservative, thus by Theorem 4.3, the reduced SRN

A B
λ(x)

provides a good approximation of the dynamics of the original SRN, for N large.
Further, (4.14) holds since for any fixed ε > 0, the probability that a chain of in-

termediates survives for a time bigger than ε goes to zero with N → ∞. Hence, by
Proposition 4.1, (4.9) holds as well. However, in this case (4.15) does not hold. If
we denote A = y3 and B = y4, this can be shown by making use of Proposition 4.2
and

μN
32(x) = Nkλ(x)

N2 · N−2 = Nkλ(x)−−−→
N→∞

∞ for any x ∈ R
X\V
≥0 .
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For the particular case α > 0, a stronger convergence result than those stated
in Theorem 4.3 holds. The result does not hold generally for all α, as shown in
Example 5.3.

THEOREM 4.5. Assume the assumptions of Theorem 4.3 are fulfilled and that
α > 0. Then, for any ε > 0,

P
(

sup
t∈[0,T ]

∣∣X̂N
t − ẐN

t

∣∣> ε
)
−−−→
N→∞

0.(4.25)

In particular, this implies that the difference between the processes X̂N·∧T and ẐN·∧T

converges weakly to 0 in the Skorohod topology.

4.4. Unbounded reaction rates. In this section, we will relax the hypothesis
of boundedness in Theorem 4.3. To begin with, we introduce some new notation.
Assume Assumption 2 is fulfilled and let R∗ be defined as in (3.1). Define

β∗
ij = max

�∈Vi

{βij , βi� + γ�j },
where βij , βi� is as in Assumption 2(iii). We have that for any reaction r ∈ R∗,

N−β∗
r λN,∗

r

(
ZN

t

)−−−→
N→∞

λ∗
r (Ẑt ),(4.26)

where λN,∗
r (·) is defined in (3.5) and {λ∗

r }r∈R∗(·) is a set of locally Lipschitz func-
tions such that

v ∈R
X
>0 ⇒ λ∗

r (v) > 0

[Assumption 2(iii)]. As in Pfaffelhuber and Popovic (2013), we distinguish be-
tween fast and slow reactions. Let

Rf = ⋃
S:α(S)>0

{
yi → yj ∈ R∗

S :α(S) = β∗
ij

}
,

Rs = ⋃
S:α(S)=0

{
yi → yj ∈ R∗

S :α(S) = β∗
ij

}
.

Moreover, let the vector ξ∗
r ∈R

X be defined by its entries

ξ∗
r (S) = lim

N→∞Nβ∗
r −α(S)ξr (S).

Specifically, ξ∗
r (S) = ξr(S), if α(S) = β∗

r , and ξ∗
r (S) = 0, otherwise.

LEMMA 4.6. Assume Assumption 2 is fulfilled for some α ∈ R
X\V and let

T be as in Assumption 2(i). Assume that up to time T , there exists a unique and
almost surely well-defined solution to the equation

Z∗
t = Z∗

0 + ∑
r∈Rs

ξ∗
r Yr

(∫ t

0
λ∗

r

(
Z∗

s

)
ds

)
+ ∑

r∈Rf

ξ∗
r

∫ t

0
λ∗

r

(
Z∗

s

)
ds,(4.27)
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where the functions λ∗
r are the limit functions (4.26). Then, if ẐN

0 converges in
probability to Z∗

0 , the process ẐN·∧T converges in probability to Z∗·∧T with respect
to the Skorohod distance.

PROOF. Just note that, in our setting, ZN· is the process associated to a single-
scale system satisfying the condition of Lemma 2.8 in Pfaffelhuber and Popovic
(2013), and the result follows. �

EXAMPLE 4.7. Consider again Example 4.1. In Example 4.4, we saw that
the reduced SRN approximate the behaviour of (4.1) for N large, in the sense of
Theorem 4.3 and Corollary 4.4. Here, we present a weak limit for the process of
the reduced reaction network, given by Lemma 4.6. It is easy to check that the
probabilities πN

13, πN
14, πN

23 and πN
24 tend to 2/3, 1/3, 1/3 and 2/3, respectively, for

N → ∞. The weak limit is given by the deterministic system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xt (E) = x0(E),

xt (R) = x0(R) + x0(E)

∫ t

0

(
k3xs(P2) − (k1 + k2)xs(R)

)
ds,

xt (P1) = x0(P1) + x0(E)

∫ t

0

2k1 + k2

3
xs(R)ds,

xt (P2) = x0(P2) + x0(E)

∫ t

0

(
k1 + 2k2

3
xs(R) − k3xs(P2)

)
ds,

where, according to the choice of α, the counts of the species E and the (scaled)
concentrations of the species R,P1,P2 are considered.

THEOREM 4.7. Assume that the hypotheses of Lemma 4.6 are satisfied. More-
over, assume that both X̂N

0 and ẐN
0 converge in probability to Z∗

0 . Then, for any
ε > 0,

sup
t∈[0,T ]

P
(∣∣X̂N

t − Z∗
t

∣∣> ε
)−−−→

N→∞
0.(4.28)

Moreover, for any continuous function f :RX\V →R we have

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
Z∗

s

))
ds

∣∣∣∣> ε

)
−−−→
N→∞

0.(4.29)

Finally, if α > 0 then

P
(

sup
t∈[0,T ]

∣∣X̂N
t − Z∗

t

∣∣> ε
)
−−−→
N→∞

0.(4.30)

The latter gives weak convergence of X̂N·∧T to Z∗·∧T in the Skorohod topology.
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PROOF. Since Z∗ is almost surely unique and well defined, we have that for
any ν > 0, there exists a constant �ν > 0 such that

P
(

sup
t∈[0,T ]

∣∣Z∗
t

∣∣> �ν

)
< ν.

Since the number of species is finite, due to (4.6a) there exists some constant ϒ∗
ν >

0 such that for N large enough

P
(

sup
t∈[0,T ]

∣∣X̂N
t

∣∣> ϒ∗
ν

)
< ν.

Let

�∗
ν = max

{
�ν,ϒ

∗
ν

}
.

Moreover, let D(h) denote the disc of radius h in R
X\V
≥0 centred in the origin, with

respect to the Euclidean norm. For any r ∈ R0, we define λN
b,r (·) such that

λN
b,r (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λN
r (x), if x ∈ D

(
�∗

ν

)
,(

1 − |x| − �∗
ν

)
λN

r

(
�∗

ν

|x| x
)

+ (|x| − �∗
ν

)
Nβr ,

if x ∈ D
(
�∗

ν + 1
) \ D

(
�∗

ν

)
,

Nβr , otherwise.

These functions are Lipschitz and define a new kinetics KN
b . Let XN

b,·, ZN
b,· and

Z∗
b,· be the corresponding processes, with

XN
b,0 = XN

0 1D(�∗
ν )

(
X̂N

0
)
, ZN

b,0 = ZN
0 1D(�∗

ν )

(
ẐN

0
)

and

Z∗
b,0 = Z∗

01D(�∗
ν )

(
Z∗

0
)
.

With this choice, we have

P
(
XN

b,0 = XN
0
)≥ 1 − ν, P

(
ZN

b,0 = ZN
0
)≥ 1 − ν and

P
(
Z∗

b,0 = Z∗
0
)≥ 1 − ν,

at least for N large enough (by hypothesis ẐN
0 converges in probability to Z∗

0 ).
Therefore,

P
(

sup
t∈[0,T ]

∣∣Z∗
b,t

∣∣> �∗
ν

)
≤ P
(

sup
t∈[0,T ]

∣∣Z∗
t

∣∣> �∗
ν

)
+ ν < 2ν,

P
(

sup
t∈[0,T ]

∣∣ẐN
t

∣∣> �∗
ν

)
≤ P
(

sup
t∈[0,T ]

∣∣ẐN
b,t

∣∣> �∗
ν

)
+ ν.

The rates λN
b,r (·) satisfy the condition in Theorem 4.3 and

E
[∣∣X̂N

b,0 − ẐN
b,0

∣∣]−−−→
N→∞

0.
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From Theorem 4.3, we have

sup
t∈[0,T ]

P
(∣∣X̂N

b,t − ẐN
b,t

∣∣> ε
)−−−→

N→∞
0,

and by Lemma 4.6,

P
(

sup
t∈[0,T ]

∣∣ẐN
t

∣∣> �∗
ν

)
≤ P
(

sup
t∈[0,T ]

∣∣ẐN
b,t

∣∣> �∗
ν

)
+ ν −−−→

N→∞
P
(

sup
t∈[0,T ]

∣∣Z∗
b,t

∣∣> �∗
ν

)
+ ν < 3ν.

Putting it all together, we have

lim sup
N→∞

sup
t∈[0,T ]

P
(∣∣X̂N

t − ẐN
t

∣∣> ε
)

≤ lim sup
N→∞

sup
t∈[0,T ]

P
(∣∣X̂N

t − ẐN
t

∣∣> ε, sup
t∈[0,T ]

(∣∣X̂N
t

∣∣∨ ∣∣ẐN
t

∣∣)> �∗
ν

)
+ lim sup

N→∞
sup

t∈[0,T ]
P
(∣∣X̂N

t − ẐN
t

∣∣> ε, sup
t∈[0,T ]

(∣∣X̂N
t

∣∣∨ ∣∣ẐN
t

∣∣)≤ �∗
ν

)
≤ lim sup

N→∞
P
(

sup
t∈[0,T ]

(∣∣X̂N
t

∣∣∨ ∣∣ẐN
t

∣∣)> �∗
ν

)
+ lim sup

N→∞
sup

t∈[0,T ]
P
(∣∣X̂N

b,t − ẐN
b,t

∣∣> ε
)
< 4ν.

Since ν > 0 is arbitrary, we have (4.23). Similarly,

lim sup
N→∞

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
ẐN

s

))
ds

∣∣∣∣> ε

)

≤ lim sup
N→∞

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
ẐN

s

))
ds

∣∣∣∣> ε, sup
t∈[0,T ]

(∣∣X̂N
t

∣∣∨ ∣∣ẐN
t

∣∣)>�∗
ν

)

+ lim sup
N→∞

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
ẐN

s

))
ds

∣∣∣∣> ε, sup
t∈[0,T ]

(∣∣X̂N
t

∣∣∨ ∣∣ẐN
t

∣∣)≤ �∗
ν

)
≤ lim sup

N→∞
P
(

sup
t∈[0,T ]

(∣∣X̂N
t

∣∣∨ ∣∣ẐN
t

∣∣)> �∗
ν

)
+ lim sup

N→∞
P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

b,s

)− f
(
ẐN

b,s

))
ds

∣∣∣∣> ε

)
< 4ν,

which implies that (4.24) holds. Since ẐN· converges in probability to Z∗· in the
Skorohod space, by a version of the continuous mapping theorem [Hoffmann-



ELIMINATION OF INTERMEDIATES IN SRNS 2941

Jørgensen (1994), Section 5.4] it follows that

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
ẐN

s

)− f
(
Z∗

s

))
ds

∣∣∣∣> ε

)
−−−→
N→∞

0,

where we used that the Skorohod distance for continuous functions is equivalent
to the uniform distance. Hence, (4.29) is a consequence of triangular inequality.
By similar arguments and by Theorem 4.5, if α > 0 we have

P
(

sup
t∈[0,T ]

∣∣X̂N
t − ẐN

t

∣∣> ε
)

≤ 4ν + P
(

sup
t∈[0,T ]

∣∣X̂N
b,t − ẐN

b,t

∣∣> ε
)
−−−→
N→∞

4ν.

If α > 0 then Z∗· is continuous, therefore by Lemma 4.6 we have

P
(

sup
t∈[0,T ]

∣∣ẐN
t − Z∗

t

∣∣> ε
)
−−−→
N→∞

0.

The proof is then concluded by the arbitrariness of ν, and the triangular inequality.
�

REMARK 4.7. Convergence of the processes X̂N·∧T to the process Z∗·∧T in oc-
cupation measure is implied by (4.29) [Kallenberg (1974), Theorem 4.5].

COROLLARY 4.8. Assume that the hypotheses of Lemma 4.6 are satisfied.
Then the difference between the processes X̂N·∧T and Z∗·∧T converges in finite di-
mensional distribution to 0.

PROOF. The proof is identical to the proof of Corollary 4.4. Indeed, from The-
orem 4.7, we have that (4.28) holds for any ε > 0. Thus, for any finite set of time
points {tm}pm=0 ⊆ [0, T ], we have that

P
(

max
0≤m≤p

∣∣X̂N
tm

− Z∗
tm

∣∣> ε
)

= P

( p⋃
m=0

{∣∣X̂N
tm

− Z∗
tm

∣∣> ε
})

≤
p∑

m=0

P
(∣∣X̂N

tm
− Z∗

tm

∣∣> ε
)−−−→

N→∞
0,

and the result follows. �

5. Discussion. We close by presenting a collection of examples and remarks.
A particular strength of our approach is that the reduced reaction network is easily
found from the original reaction network and that the reaction rates of the reduced
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SRN can be found through a simple algebraic procedure. If the definition of in-
termediate species is relaxed, it might still be possible to find an approximating
reduced SRN in concrete cases. However, a general technique does not seem to
present itself easily.

We assume mass-action kinetics unless otherwise specified. If the stoichiomet-
ric coefficient of the intermediates were allowed to be different from one, or if
different intermediate species were allowed to interact, our results would not be
true in general:

EXAMPLE 5.1 (Relaxing the definition of intermediates, I). Consider the SRN

A

3H B

2H C

k1

N

k2

N

with α = 0. A single molecule of H could be trapped as the two reactions 3H → B

and 2H → A compete against each other. Thus, there does not exist an approxi-
mation without intermediates as in Theorem 4.3 or Theorem 4.7. An approxima-
tion with no fast species, however, still exists. Since the dynamics of the system
changes depending on whether a molecule of H is present or not, we might intro-
duce two dummy variables D1 and D2 with D1 + D2 = 1, and D1 = 1 if and only
if no molecules of H are present. Let p̂ denote the projection onto the space of
nondummy variables. The finite dimensional distributions of p(XN· ) are approxi-
mated by the finite dimensional distributions of p̂(ZN· ), where ZN· is the process
associated with

A + D1

B + D1

C + D1

C + D2

A + D2

B + D2

2C + D1

for a suitable choice of kinetics and with initial conditions X0(D1) = 1 and
X0(D2) = 0. A general reduction technique that can deal with examples of this
kind is subject of further investigation. Similar arguments can be made if interme-
diate species are interacting, for example, if 3H and 2H are replaced by H1 + H2

and H1, respectively.



ELIMINATION OF INTERMEDIATES IN SRNS 2943

EXAMPLE 5.2 (Relaxing the definition of intermediates, II). Consider the
SRN below with α(C) = α(F ) = 1 and α(A) = α(B) = α(D) = α(E) = 0:

A H1 + H2

B H1

H2C

D

E

F

k1 N7

k2 N

k3 N2

Here, a reaction of type C → H2 can occur before a present molecule of H1 is
consumed, leading to the production of D from H1 + H2 → D. It can be shown
that the right limit is given by the rescaled process associated with

A

B

C

D

E

F

k1

k3

where

λN
B→E(x) = k2x(B)

N

N + k3x(C)
, λN

B→D(x) = k2x(B)
k3x(C)

N + k3x(C)
.

If we change the rate constant of H1 → E to N2 and let α(B) = α(E) = 1, a
different reduced SRN is obtained in which a new complex appears:

A B + C B CD E F
k1 k2 k3

k2k3
N2

It would be desirable to state Theorem 4.7 in terms of the stronger notion of
convergence in probability in the Skorohod space, or at least in terms of the weak
convergence in the Skorohod topology. This is done for α > 0 (cf. Theorems 4.3
and 4.7); however, it cannot be done in general as shown in the next example.

EXAMPLE 5.3 (Weak convergence). Consider

A H B
k N

with α(A) = α(B) = 0, and the limit process ẐN· associated with the SRN

A B
k

Since the reduced SRN does not depend on N , we omit N in the notation. The
possible states of Ẑ· satisfy the conservation law Ẑt (A) + Ẑt (B) = M for some
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fixed M . In contrast, whenever the reaction A → H occurs in XN· , for a short
amount of time at least, X̂N

t (A) + X̂N
t (B) ≤ M − 1. The latter situation happens

with positive probability, such that

E
[

inf[0,T ]
(
X̂N

t (A) + X̂N
t (B)

)]− E
[

inf[0,T ]
(
Ẑt (A) + Ẑt (B)

)]−−−→
N→∞

c �= 0.

Hence, Ẑ·∧T does not provide a weak limit in the Skorohod topology for X̂N·∧T .
In fact, in this particular case the sequence of processes X̂N·∧T cannot have a weak
limit in the Skorohod topology, since the sequence of the corresponding distribu-
tions P N is not tight.

A natural question arising from the results of this paper is whether the reduced
reaction network could be used to approximate the limit behaviour of the full
model as t → ∞. Specifically, we want to investigate whether for all Borel sets
A ⊂ R

X\V , it holds that

lim
t→∞P

(
X̂N

t ∈ A
)− lim

t→∞P
(
ẐN

t ∈ A
)−−−→

N→∞
0,(5.1)

under the hypothesis that the limits exist. The answer is negative, as it is shown
with the next example.

EXAMPLE 5.4 (Limit behaviour in the stochastic setting). Consider the fol-
lowing SRN:

A

H

B 0

k1 N

k2

λ(x)

Let α(A) = α(B) = 0, assume that XN
0 (A) + XN

0 (B) = M and XN
0 (H) = 0, and

let

λ(x) = (M − x(A) − x(B)
)
1(0,∞)

(
x(B)

)
.

The first occurrence of the reaction B → 0 can only take place when H is present.
Though it is unlikely for big N , there is still a positive probability that this happens,
that is, that B → 0 occurs before the reaction H → B takes place. With probability
one, all molecules of B will eventually be consumed, and the limit distribution of
the above SRN is therefore concentrated on the state 0.

The SRN satisfies the assumptions of Theorem 4.3 and those of Theorem 4.7.
The reduced reaction network is given by

A B 0

k1

k2

λ(x)
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where the initial conditions are the same as in the bigger model. Since in the re-
duced SRN λ(ZN

t ) = 0 whenever ZN
t (A)+ZN

t (B) = M , then the reaction B → 0
never occurs. This implies that the reduced SRN is equivalent to

A B

k1

k2

The limit distribution of the above SRN is concentrated on the set {x:x(A) +
x(B) = M}. Therefore, it is clear that (5.1) does not hold in this case. However, the
limit distribution of the latter SRN approximates the quasi-stationary distribution
of the original SRN when N tends to infinity, if we condition on the event that
the reaction B → 0 has not taken place; see, for example, Anderson, Craciun and
Kurtz (2010), Anderson, Enciso and Johnston (2014) for a discussion on stationary
and quasi-stationary distributions in reaction network theory.

6. Proof of Theorem 3.1 and Proposition 4.2. This section is devoted to
prove Theorem 3.1 and Proposition 4.2. First, recall the transition rate matrix (3.2).
Consider the continuous time Markov chain Cx with state space U � V �W (dis-
joint union) and transition rate matrix given by

Q(x) =

⎡⎢⎢⎣
Qx

U,U Qx
U,V 0

0 QV,V QV,W

0 0 0

⎤⎥⎥⎦ ,

where Qx
U,V is defined by

qx
i� = λi�(x)

for i ∈ U , � ∈ V , and

Qx
U,U = diag

(−Qx
U,V e

)
,

where e denotes a vector of suitable length with all entries 1. Given a matrix M ,
we denote by Mi its ith row. Note that the matrix

Lx
i =
[ −QV,V −QV,We

−(Qx
U,V )i (Qx

U,V )ie

]

is the transposed Laplacian matrix of the graph Gx
i defined in (3.7) (row sums are

zero). Let Dx(·) denote the discrete time Markov chain embedded in Cx(·) and let
P(x) be the corresponding transition probability matrix of Dx . For any i ∈ U , let

P x
i (·) = P

(·|Dx(0) = yi

)
and Ex

i [·] = E
[·|Dx(0) = yi

]
.
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Moreover, let

dx
i = ∑

�∈Vi

λi�(x) = (Qx
U,V

)
ie,

d� = ∑
�′∈V

k��′ + ∑
j∈W

k�j = [QV,V |QV,W ]�e.

We have the following result.

LEMMA 6.1. For all � ∈ V , i ∈ U and x ∈ R
X\V
≥0 ,

μi�(x) = dx
i

d�

∑
n≥1

(
P(x)n

)
i� < ∞.(6.1)

In particular, we have

μi�(x) = dx
i

d�

Ex
i

[
# visits of Dx(·) to H�

]
.

PROOF. We have

Ex
i

[
# visits of Dx(·) to H�

]= Ex
i

[∑
n≥1

1{H�}Dx(n)

]
=∑

n≥1

P x
i

(
Dx(n) = H�

)
=∑

n≥1

(
P(x)n

)
i�.

Therefore, since every intermediate species is a transient state in Dx ,∑
n≥1

(
P(x)n

)
i� = Ex

i

[
# visits of Dx(·) to H�

]
< ∞.

Thus, we only need to prove (6.1). The matrix P(x) has the following block struc-
ture:

P(x) =

⎡⎢⎢⎣
0 P

x
U,V 0

0 PV,V PV,U

0 0 I

⎤⎥⎥⎦ .

Thus, we have

P(x)n =

⎡⎢⎢⎣
0 P

x
U,VP

n−1
V,V ∗

0 P
n
V,V ∗

0 0 ∗

⎤⎥⎥⎦ .

Since for any �, �′ ∈ V ,(∑
n≥0

P
n
V,V

)
��′

= E
[
# visits of Dx(·) to H�′ |Dx(1) = H�

]
< ∞,
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we have that
∑

n≥0 P
n
V,V is well defined and∑

n≥0

P
n
V,V = (I − PV,V )−1.

Therefore, ∑
n≥1

(
P(x)n

)
i� =∑

n≥0

(
P

x
U,VP

n
V,V

)
i� = (Px

U,V (I − PV,V )−1)
i�.(6.2)

Assume dx
i �= 0. Consider the graph G̃x

i with the same nodes and edges as Gx
i and

normalized labels

H�

k
��′
d�−→ H�′ , H�

∑
j∈W k�j

d�−→ 	 , 	

λi�(x)

dx
i−→ H�.

The transpose of the Laplacian matrix of the graph G̃x
i is given by

L̃x
i =
[

I − PV,V −PV,We

−(Px
U,V )i 1

]
.

Given a matrix M , denote by M(i,j) the matrix obtained by M eliminating the ith
row and the j th column. We have that(
P

x
U,V (I − PV,V )−1)

i� = ∑
�′∈V

(
P

x
U,V

)
i�′(I − PV,V )−1

�′�

= ∑
�′∈V

(
P

x
U,V

)
i�′

(−1)�+�′
det(I − PV,V )(�,�′)

det(I − PV,V )

= (−1)�+#V+1 det(L̃x
i )(�,#V+1)

det(L̃x
i )(#V+1,#V+1)

= det(L̃x
i )(�,�)

det(L̃x
i )(#V+1,#V+1)

= d�

dx
i

det(Lx
i )(�,�)

det(Lx
i )(#V+1,#V+1)

= d�

dx
i

∑
ζ∈
i,x(H�)

w(ζ )∑
ζ∈
i,x(	) w(ζ )

= d�

dx
i

μi�(x),

where the second equality follows from the co-factor expansion of the determinant,
the third from the Laplace expansion and the fourth equality follows from the fact
that the last column of the Laplacian matrix is equal to minus the sum of the other
columns. The second-last equality follows from the Matrix-Tree theorem [Tutte
(1948)]. Thus, from (6.2) it follows that (6.1) holds. If dx

i = 0, then μi� = 0 for all
� ∈ V . Thus, (6.1) still holds and the proof is complete. �

The proof of Theorem 3.1 follows from Lemma 6.1.
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PROOF OF THEOREM 3.1. We have to prove that for any fixed x ∈ R
X\V
≥0 ,∑

�∈V

π�jλi�(x) =∑
�∈V

k�jμi�(x).(6.3)

Note that∑
�∈V

π�jλi�(x) = dx
i

∑
�∈V

P x
i

(
lim

n→∞Dx(n) = yj |Dx(1) = H�

)
P x

i

(
Dx(1) = H�

)
= dx

i P x
i

(
lim

n→∞Dx(n) = yj

)
= dx

i

∑
n≥1

∑
�∈V

P x
i

(
Dx(n) = H�,D

x(n + 1) = yj

)
= dx

i

∑
�∈V

k�j

d�

∑
n≥1

(
P(x)n

)
i�.

Therefore, (6.3) follows from Lemma 6.1. �

To prove Proposition 4.2, we make the dependence on N explicit.

PROOF OF PROPOSITION 4.2. From Lemma 6.1, we have that

μN
i�(x) = d

N,x
i

dN
�

E
N,x
i

[
# visits of DN,x(·) to H�

]
for x ∈ R

X\V
≥0 . Denote by T N

� the random variable distributed as the time until
consumption of a molecule of H�. Its distribution is exponential with parameter
dN
� . Note that the Markov chain DN,x(·) is distributed as the discrete time Markov

chain embedded in CN
1 (·), and DN,x(0) denotes the initial reactant setting off the

chain CN
1 (·). For any j ∈ W , we have

d
N,Nαx
i E

[
τN

1 |DN,Nαx(0) = yi

]
= d

N,Nαx
i

∑
�∈V

E
N,Nαx
i

[
# visits of DN,Nαx(·) to H�

]
E
[
T N

�

]
=∑

�∈V

μN
i�

(
Nαx
)
.

Furthermore,

d
N,Nαx
i E

[
τN

1 |DN,Nαx(0) = yi

]
=∑

�∈V

E
[
τN

1 |DN,Nαx(1) = H�

]
× P
(
DN,Nαx(1) = H�|DN,Nαx(0) = yi

)
d

N,Nαx
i
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=∑
�∈V

E
[
τN

1 |DN,Nαx(1) = H�

]
λN

i�

(
Nαx
)

=∑
�∈V

E
[
Nβi�τN

1 |DN,Nαx(1) = H�

]
N−βi�λN

i�

(
Nαx
)
.

In particular,∑
�∈V

N−α∗
μN

i�

(
Nαx
)

(6.4)
=∑

�∈V

Nβi�−α∗
E
[
τN

1 |DN,Nαx(1) = H�

]
N−βi�λN

i�

(
Nαx
)
.

Therefore, (4.16) holds if and only if the right-hand side of (6.4) tends to zero as
N → ∞. By Assumption 2(iii) we have

N−βi�λN
i�

(
Nαx
)−−−→

N→∞
λi�(x),

where λi� is a nonnull function. It follows that the right-hand side of (6.4) tends to
zero as N → ∞ if and only if, for any i ∈ U,� ∈ V , such that yi → H� ∈ R, and
for any j ∈ W

Nβi�−α∗
E
[
τN

1 |DN,Nαx(1) = H�

]−−−→
N→∞

0.

The latter is equivalent to

Nβi�−α∗
E
[
τN

1 |CN
1
(
tN1
)= H�

]−−−→
N→∞

0.(6.5)

By the definition of β∗
� and a�, the latter implies

Nβ∗
� −a�E

[
τN

1 |CN
1
(
tN1
)= H�

]−−−→
N→∞

0

for any � ∈⋃i∈U Vi , which is what we wanted to prove. If α∗
j = α∗

j ′ for any j, j ′ ∈
W , then a� = α∗ for any � ∈ V . Therefore, (6.5) for any j ∈ W is equivalent to
(4.15). The proof is thus complete. �

7. Proof of Theorems 4.3 and 4.5. In this section, Theorems 4.3 and 4.5 are
proven. To this aim, instead of assuming (4.10) and (4.11) in Assumption 2(v),
we make use of the weaker conditions (4.12) and (4.13). Throughout this section,
whenever t is written it is implicitly assume that t ∈ [0, T ]. We also use the nota-
tion

‖x‖∞ = max
S∈X
∣∣x(S)

∣∣ for x ∈R
X .

By the equivalence of norms in R
X , we have that there exists θ > 0, such that

|x| ≤ θ‖x‖∞ ∀x ∈R
X .
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Let D∞(h) be the disc of radius h in R
X\V
≥0 centred in the origin, with respect to

the measure ‖ · ‖∞, and let DC∞(r) be its complementary.
We start by stating a lemma.

LEMMA 7.1. Assume the assumptions of Theorem 4.3 hold. Then

sup
t∈[0,T ]

N
−α∗

j E
[
MN

i�j (t) − M
N

i�j (t)
]−−−→

N→∞
0.

PROOF. Remember that tNi�j,n is the time of the nth jump of MN
i�j (t), and τN

i�j,n
the life time of the corresponding chain of intermediates. Note that by (4.12) we
have

0 ≤ sup
t∈[0,T ]

N
−α∗

j E
[
MN

i�j (t) − M
N

i�j (t)
]≤ sup

t∈[0,T ]
N

−α∗
j E
[
MN

i�j (t)
]

≤ πN
�j N

β∗
� −α∗

j Bi�t ≤ c�jBi�t.

This implies that the sequence supt∈[0,T ] N
−α∗

j E[MN
i�j (t) − M

N

i�j (t)] is contained
in a compact set, and it follows that to prove the lemma it is sufficient to show that
all the accumulation points of the sequence are 0. To this aim, fix an accumulation
point l and consider a subsequence Nh such that

sup
t∈[0,T ]

N
−α∗

j

h E
[
M

Nh

i�j (t) − M
Nh

i�j (t)
]−−−→

h→∞
l.

First, assume that

lim inf
h→∞ π

Nh

�j N
β∗

� −α∗
j

h = 0,

and let Nhm a subsequence such that

lim
m→∞π

Nhm

�j N
β∗

� −α∗
j

hm
= 0.

In this case,

0 ≤ l = lim
m→∞ sup

t∈[0,T ]
N

−α∗
j

hm
E
[
M

Nhm

i�j (t) − M
Nhm

i�j (t)
]

≤ lim
m→∞π

Nhm

�j N
β∗

� −α∗
j

hm
Bi�t = 0,

which proves l = 0. Now, assume that

lim inf
h→∞ π

Nh

�j N
β∗

� −α∗
j

h = δ > 0,

and fix 0 < ε < δt . For convenience, denote

σεh
j� = εN

α∗
j −β∗

�

h

π
Nh

�j

.
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We have

E
[
M

Nh

i�j (t) − M
Nh

i�j (t)
]

= E

[M
Nh
i�j (t)∑
n=1

1[t−t
Nh
i�j,n,∞)

(
τ

Nh

i�j,n

)]

≤ E

[M
Nh
i�j (t−σεh

j� )∑
n=1

1[σεh
j� ,∞)

(
τ

Nh

i�j,n

)]+ E

[ M
Nh
i�j (t)∑

n=M
Nh
i�j (t−σεh

j� )+1

1

]

≤ E

[M
Nh
i�j (t)∑
n=1

1[σεh
j� ,∞)

(
τ

Nh

i�j,n

)]+ E
[
M

Nh

i�j (t) − M
Nh

i�j

(
t − σεh

j�

)]
.

Thus, using (4.17) and (4.21) we obtain

E
[
M

Nh

i�j (t) − M
Nh

i�j (t)
]

≤ E

[Yi�j (tBi�π
Nh
�j N

βi�
h )∑

n=1

1[σεh
j� ,∞)

(
τN
i�j,n

)]+ εN
α∗

j −β∗
� Nβ∗

� Bi�

≤ tpε
�j (Nh)N

β∗
�

h Bi�π
Nh

�j + εN
α∗

j

h Bi�

≤ Bi�N
α∗

j

h

(
tπ

Nh

�j N
β∗

� −α∗
j

h pε
�j (Nh) + ε

)
,

where pε
�j (N) is as defined in (4.8). By (4.9) and the arbitrariness of ε > 0, the

latter implies that

sup
t∈[0,T ]

N
−α∗

j

h E
[
M

Nh

i�j (t) − M
Nh

i�j (t)
]−−−→

h→∞
0,

which implies that l = 0 and completes the proof. �

PROOF OF THEOREM 4.3. Let the process ŴN· be defined as in (4.20) and,
for any fixed t , let �N

t = ‖X̂N
t − ŴN

t ‖∞. Then we have

E
[∣∣X̂N

t − ẐN
t

∣∣]
≤ E
[∣∣ŴN

t − ẐN
t

∣∣+ ∣∣X̂N
t − ŴN

t

∣∣]
≤ ∑

r∈R1

∣∣N−αξr

∣∣E[∣∣∣∣Yr

(∫ t

0
λN

r

(
XN

s

)
ds

)
− Yr

(∫ t

0
λN

r

(
ZN

s

)
ds

)∣∣∣∣]

+∑
i∈U

∑
j∈W

∣∣N−α(yj − yi)
∣∣ ∑
�∈Vi

E

[∣∣∣∣Yi�j

(∫ t

0
πN

�j λN
i�

(
XN

s

)
ds

)
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− Yi�j

(∫ t

0
πN

�j λN
i�

(
ZN

s

)
ds

)∣∣∣∣]+ E
[∣∣X̂N

0 − ẐN
0

∣∣]+ θE
[
�N

t

]
= ∑

r∈R1

∣∣N−α+βr ξr

∣∣E[N−βr

∣∣∣∣Yr

(∫ t

0
λN

r

(
XN

s

)
ds

)
− Yr

(∫ t

0
λN

r

(
ZN

s

)
ds

)∣∣∣∣]

+∑
i,j,�

∣∣N−α+βi�(yj − yi)
∣∣E[N−βi�

∣∣∣∣Yi�j

(∫ t

0
πN

�j λN
i�

(
XN

s

)
ds

)

− Yi�j

(∫ t

0
πN

�j λN
i�

(
ZN

s

)
ds

)∣∣∣∣]+ E
[∣∣X̂N

0 − ẐN
0

∣∣]+ θE
[
�N

t

]
.

For any reaction r:yi → yj ∈R∗, let

α∗
ij = α∗

r = min
S:ξr (S) �=0

α(S).

Then

E
[∣∣X̂N

t − ẐN
t

∣∣]
≤ ∑

r∈R1

N−α∗
r +βr |ξr |E

[∫ t

0
N−βr

∣∣λN
r

(
NαX̂N

s

)− λN
r

(
NαẐN

s

)∣∣ds

]

+∑
i,j,�

πN
�j N

−α∗
ij+βi� |yj − yi |E

[∫ t

0
N−βi�

∣∣λN
i�

(
NαX̂N

s

)− λN
i�

(
NαẐN

s

)∣∣ds

]

+ E
[∣∣X̂N

0 − ẐN
0

∣∣]+ θE
[
�N

t

]
.

To control the left-hand side, we aim to substitute the functions λN
r (·) with their

limits λr(·) [Assumption 2(iii)]. To meet our goal, we first argue that the processes
X̂N· and ẐN· are bounded with high probability.

Let S ∈ X \V . By substituting the rate functions λN
r (·) with their upper bounds

Nβr Br in (4.19), and using t < T , we obtain that ẐN
t (S) is bounded from above

by

ẐN
0 (S) + ∑

r∈R1
S

∣∣ξr(S)
∣∣N−α(S)Yr

(
Nβr BrT

)
+∑

i∈U

∑
j∈W

∣∣yj (S) − yi(S)
∣∣ ∑
�∈Vi

N−α(S)Yi�j

(
πN

�j Nβi�Bi�T
)
,

where R1
S is defined according to (2.2). Using the assumptions (4.12), (4.13) and

the law of large numbers for Poisson processes to control the above expression for
α(S) > 0, we obtain that, for any ν > 0, there exists ϒ ′

ν > 0, such that

lim sup
N→∞

P
(

sup
t∈[0,T ]

∥∥ẐN
t

∥∥∞ > ϒ ′
ν

)
< ν.
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Let ϒν be as in (4.6a) and let ϒ ′′
ν = ϒν ∨ ϒ ′

ν . Then, if N is large enough,

P
(

sup
t∈[0,T ]

(∥∥X̂N
t

∥∥∞ ∨ ∥∥ẐN
t

∥∥∞)> ϒ ′′
ν

)
< 3ν.(7.1)

By Assumption 2(iii), we have that

N−βr λN
r

(
Nαx
)−−−→

N→∞
λr(x) ∀r ∈ R0

uniformly on compact sets. In particular, for any ν > 0,

oν(N) = sup
x∈D∞(ϒ ′′

ν )

∣∣N−βr λN
r

(
Nαx
)− λr(x)

∣∣−−−→
N→∞

0.

Note that for any ν > 0 and x ∈ R
X\V
≥0 ,∣∣N−βr λN

r

(
Nαx
)− λr(x)

∣∣≤ oν(N)1D∞(ϒ ′′
ν )(x) + 2Br1DC∞(ϒ ′′

ν )(x).(7.2)

Using (7.1) and (7.2), we have

E
[∣∣X̂N

t − ẐN
t

∣∣]
≤ ∑

r∈R1

N−α∗
r +βr |ξr |

(
E

[∫ t

0

∣∣λr

(
X̂N

s

)− λr

(
ẐN

s

)∣∣ds

]
+ 2oν(N)t + 12Brνt

)

+∑
i,j,�

πN
�j N

−α∗
ij+βi� |yj − yi |

(
E

[∫ t

0

∣∣λi�

(
X̂N

s

)− λi�

(
ẐN

s

)∣∣ds

]

+ 2oν(N)t + 12Bi�νt

)
+ E
[∣∣X̂N

0 − ẐN
0

∣∣]+ θE
[
�N

t

]
≤ �1

∫ t

0
E
[∣∣X̂N

s − ẐN
s

∣∣]ds + �2oν(N)t + �3νt

+ E
[∣∣X̂N

0 − ẐN
0

∣∣]+ θE
[
�N

t

]
for some positive constants �1, �2, �3 > 0, independent of ν. In the last inequal-
ity, we made use of (4.12) and (4.13), as well as the hypothesis that λr is Lipschitz
for any r ∈ R0.

To prove (4.22), we only need to show that supt∈[0,T ] E[�N
t ] → 0 for N →

∞. Indeed if this holds, then by the Gronwall inequality applied to the function
supt∈[0,T ] E[|X̂N

t − ẐN
t |] we have

sup
t∈[0,T ]

E
[∣∣X̂N

t − ẐN
t

∣∣]
≤
(
�2oν(N)T + �3νT + E

[∣∣X̂N
0 − ẐN

0

∣∣]+ θ sup
t∈[0,T ]

E
[
�N

t

])
e�1T ,

which for N → ∞ tends to �3νT e�1T . By the arbitrariness of ν, this leads to

sup
t∈[0,T ]

E
[∣∣X̂N

t − ẐN
t

∣∣]−−−→
N→∞

0,
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and we are done. To prove that supt∈[0,T ] E[�N
t ] → 0 for N → ∞, it first follows

from (4.18) and (4.20) that

�N
t =
∥∥∥∥N−α

∑
j∈W

yj

∑
i∈U

∑
�∈Vi

(
MN

i�j (t) − M
N

i�j (t)
)∥∥∥∥∞

(7.3)
≤ ∑

i,�,j

‖yj‖∞N
−α∗

j
(
MN

i�j (t) − M
N

i�j (t)
)
.

Therefore, by Lemma 7.1 and (7.3), we have that supt∈[0,T ] E[�N
t ] → 0 for N →

∞, which concludes the proof of the first part of the statement. Equation (4.23) is
implied by (4.22) and the Markov inequality.

Finally, to prove (4.24), first consider a continuously differentiable function
g:RX\V → R with compact domain, and let cg be the maximum of the absolute
value of its derivative. We have

sup
t∈[0,T ]

E

[∫ t

0

∣∣g(X̂N
s

)− g
(
ẐN

s

)∣∣ds

]
=
∫ T

0
E
[∣∣g(X̂N

s

)− g
(
ẐN

s

)∣∣]ds

≤
∫ T

0
cgE
[∣∣X̂N

s − ẐN
s

∣∣]ds

≤ T cg sup
t∈[0,T ]

E
[∣∣X̂N

t − ẐN
t

∣∣]ds −−−→
N→∞

0.

Let f :RX\V → R be a continuous function with compact domain. By uniformly
approximating f by continuously differentiable functions with compact domain,
we have

sup
t∈[0,T ]

E

[∫ t

0

∣∣f (X̂N
s

)− f
(
ẐN

s

)∣∣ds

]
−−−→
N→∞

0.

By the Markov inequality, it follows that for any ε > 0

sup
t∈[0,T ]

P

(∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
ẐN

s

))
ds

∣∣∣∣> ε

)
−−−→
N→∞

0.(7.4)

Consider the occupation measures on [0, T ] ×R
X\V given by

�N
1
([t1, t2] × A

)= ∫ t2

t1

1A

(
X̂N

s

)
ds

and

�N
2
([t1, t2] × A

)= ∫ t2

t1

1A

(
ẐN

s

)
ds

for any 0 ≤ t1 < t2 ≤ T and any Borel set A of RX\V . By (7.1) and Kurtz (1992),
Lemma 1.3, we have that the sequences of random measures (�N

1 ) and (�N
2 ) are

relatively compact with respect to the Prohorov metric. By the continuous mapping
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theorem [Hoffmann-Jørgensen (1994), Section 5.4], this in turn implies that the
sequence of continuous processes(∫ ·

0
f
(
X̂N

s

)
ds,

∫ ·
0

f
(
ẐN

s

)
ds

)
=
(∫ ·

0

∫
RX \V

f (x) d�N
1 (s, x),

∫ ·
0

∫
RX \V

f (x) d�N
2 (s, x)

)
is relatively compact with respect to the weak convergence in the product space
D[0, T ] × D[0, T ], where D[0, T ] denotes the usual Skorohod space. In this case
it coincides with weak convergence in the uniform topology since the processes
are continuous. The following is inspired by a proof of Donnelly and Kurtz (1996),
Lemma A2.1. Consider a weak limit (X̂·, Ẑ·), which will be a continuous process.
By (7.4), we have X̂t = Ẑt for any t , therefore, dSk(X̂·, Ẑ·) = 0, where dSk denotes
the Skorohod distance. By the continuous mapping theorem, we have that for any
subsequence converging to (X̂·, Ẑ·),

dSk

(∫ ·
0

f
(
X̂Nm

s

)
ds,

∫ ·
0

f
(
ẐNm

s

)
ds

)
converges weakly to zero. In particular, this implies that for every ε > 0

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂Nm

s

)− f
(
ẐNm

s

))
ds

∣∣∣∣> ε

)
−−−→
m→∞ 0.

Since the same holds for any convergent subsequence and by relative compactness,
(4.24) follows for any continuous f with compact support. Indeed, if it were not
the case we would have a subsequence such that for some constant c > 0

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂Nm

s

)− f
(
ẐNm

s

))
ds

∣∣∣∣> ε

)
> c.

However, the subsequence would not contain any convergent subsequence.
Now, let the support of f be not compact, and consider ν > 0. There exists a

continuous function fν with compact support such that fν(x) = f (x) if ‖x‖∞ ≤
ϒ ′′

ν , where ϒ ′′
ν is as in (7.1). Therefore, if N is large enough

P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
f
(
X̂N

s

)− f
(
ẐN

s

))
ds

∣∣∣∣> ε

)

≤ P

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0

(
fν

(
X̂N

s

)− fν

(
ẐN

s

))
ds

∣∣∣∣> ε

)
+ 3ν −−−→

N→∞
3ν.

The proof is concluded by the arbitrariness of ν. �

PROOF OF THEOREM 4.5. Fix ε > 0. Let δ > 0 be such( ∑
r∈R1

S

‖ξr‖∞Br +∑
i∈U

∑
j∈W

‖yj + yi‖∞
∑
�∈Vi

c�jBi�

)
δ <

ε

3θ
,(7.5)
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where c�j is as in (4.12). Now consider a sequence of real numbers t0 < t1 < t2 <

· · · < tq such that tm+1 − tm < δ for any 0 ≤ m < q , t0 = 0 and tq = T . For any
0 ≤ m < q and any species S ∈ X \ V , we have

sup
t∈[tm,tm+1]

∣∣ẐN
t (S) − ẐN

tm
(S)
∣∣

≤ N−α(S)
∑

r∈R1
S

∣∣ξr(S)
∣∣∣∣Yr

(
Nβr Br tm+1

)− Yr

(
Nβr Br tm

)∣∣
+ N−α(S)

∑
i∈U

∑
j∈W

∣∣yj (S) − yi(S)
∣∣ ∑
�∈Vi

∣∣Yi�j

(
πN

�j Nβi�Bi�tm+1
)

− Yi�j

(
πN

�j Nβi�Bi�tm
)∣∣.

The latter is distributed as

N−α(S)
∑

r∈R1
S

∣∣ξr(S)
∣∣Yr

(
Nβr Br(tm+1 − tm)

)
+ N−α(S)

∑
i∈U

∑
j∈W

∣∣yj (S) − yi(S)
∣∣ ∑
�∈Vi

Yi�j

(
πN

�j Nβi�Bi�(tm+1 − tm)
)
,

which, due to α(S) > 0, (4.12), (4.13), the law of large numbers for Poisson pro-
cesses and (7.5), is asymptotically bounded in probability by a constant strictly
smaller than ε/(3θ). In particular,

P

(
sup

t∈[tm,tm+1]
∣∣ẐN

t − ẐN
tm

∣∣> ε

3

)
−−−→
N→∞

0.

Similarly, by (4.18)

sup
t∈[tm,tm+1]

∣∣X̂N
t (S) − X̂N

tm
(S)
∣∣

≤ N−α(S)
∑

r∈R1
S

∣∣ξr(S)
∣∣∣∣Yr

(
Nβr Br tm+1

)− Yr

(
Nβr Br tm

)∣∣
+ N−α(S)

∑
i∈U

∑
j∈W

(
yj (S)

∑
�∈Vi

∣∣MN

i�j (tm+1) − M
N

i�j (tm)
∣∣

+ yi

∑
�∈Vi

∣∣MN
i�j (tm+1) − MN

i�j (tm)
∣∣)

≤ N−α(S)
∑

r∈R1
S

∣∣ξr(S)
∣∣∣∣Yr

(
Nβr Br tm+1

)− Yr

(
Nβr Br tm

)∣∣
+ N−α(S)

∑
i∈U

∑
j∈W

(
yj (S) + yi(S)

) ∑
�∈Vi

∣∣Yi�j

(
πN

�j Nβi�Bi�tm+1
)



ELIMINATION OF INTERMEDIATES IN SRNS 2957

− Yi�j

(
πN

�j Nβi�Bi�tm
)∣∣

+ yj (S)
∑
�∈Vi

(∣∣MN

i�j (tm+1) − MN
i�j (tm+1)

∣∣+ ∣∣MN

i�j (tm) − MN
i�j (tm)

∣∣).
Again, due to α(S) > 0, (4.12), (4.13), the law of large numbers for Poisson pro-
cesses, (7.5) and Lemma 7.1, the latter is asymptotically bounded in probability by
a constant strictly smaller than ε/(3θ). Specifically,

P

(
sup

t∈[tm,tm+1]
∣∣X̂N

t − X̂N
tm

∣∣> ε

3

)
−−−→
N→∞

0.

We have

P
(

sup
t∈[0,T ]

∣∣X̂N
t − ẐN

t

∣∣> ε
)

(7.6)

≤ P

(
max

0≤m<q

(
X̂N

tm
− ẐN

tm
, sup
t∈[tm,tm+1]

∣∣ẐN
t − ẐN

tm

∣∣, sup
t∈[tm,tm+1]

∣∣X̂N
t − X̂N

tm

∣∣)>
ε

3

)
.

Hence, the proof is concluded by Corollary 4.4, which is direct consequence of
Theorem 4.3. �
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