POLITECNICO DI TORINO Repository ISTITUZIONALE

Technologies for Cancer Research

Original

Technologies for Cancer Research / Limongi, Tania. - In: BIOMEDICAL JOURNAL OF SCIENTIFIC & TECHNICAL RESEARCH. - ISSN 2574-1241. - STAMPA. - 25:1(2020), pp. 18787-18789.

Availability: This version is available at: 11583/2851445 since: 2020-11-07T02:11:31Z

Publisher: Biomedical

Published DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

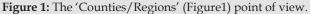
Publisher copyright

(Article begins on next page)

Technologies for Cancer Research

Tania Limongi*

DISAT - Department of Applied Science and Technology, Politecnico di Torino, Italy


*Corresponding author: Tania Limongi, DISAT - Department of Applied Science and Technology, Politecnico di Torino, Italy

ARTICLE INFO	ABSTRACT
Received: 🕮 January 22, 2020 Published: 🕮 January 29, 2020	Citation: Tania Limongi. Technologies for Cancer Research. Biomed J Sci & Tech Res 25(1)-2020. BJSTR. MS.ID.004141.

Opinion

From an ever wider collection of scientific publications and from the continuous updates provided by the mass media, it is clear how the interconnection between technology and oncology is now close and profitable. By now, the fight against this scourge that strikes with almost no discrimination of age, sex or social position, is conducted with huge expenditure of economic resources and personnel by doctors, engineers, chemists, computer scientists and statisticians. Progresses in many different technological contests are bit by bit contributing to make cancer a handier disease by adding new alternative materials and methods able to efficient treatment to be included in the arsenal available to oncologists. In an increasingly personalized medicine scenario, the use of new smart materials and technologies opens up new possibilities for the application of micro/nanoparticles [1,2], lab on chips [3] and a whole series of more or less engineered biological components for drug delivery, diagnosis or treatment in cancer management [4-6]. In order to assess data about the topic 'cancer technology', in the January of 2020, I conducted a literature search, using the Thomson Reuters Web of Science research portal. Results showed 44,585 records that were analysed and summarized sorting data by read count and setting the minimum record count to 100, considering both the 'Web of Science Categories' (Table 1) and the 'Counties/ Regions' (Figure 1) point of view.

The results highlighted how much technology, in terms of radiology, nanotechnology, design of new surgery equipment's or human tissue substitute, contributes to assisting other subjects such as biochemistry, cellular and molecular biology, pharmacology and pathology in the fight against cancer (Table 1). wild and transversal is the literature that can relate to this type of research and it clearly shows how the scientific production is centered on nanotechological, pharmacological and chemical aspects. In my opinion it is very interesting and encouraging to note that the contribution in terms of number of scientific publications for the period under consideration is very high even in the case of small geographical realities or in the case of regions that do not yet have a large number of funds. This fact must give us hope because, in any case, it indicates that we are going in the right direction, with a strong sharing of intent. Many new technologies still have to attest their value and safety in oncological clinical trials, however, a future where cancer handling is successfully personalized it is more and more likely.

Table 1: Results showed 44,585 records that were analysed and summarized sorting data by read count and setting the minimum record count to 100, considering both the 'Web of Science Categories'.

Web of Science Categories	Records	% of 44585	
ONCOLOGY	9765	21.902	
BIOCHEMISTRY MOLECULAR BIOLOGY	3317	7.440	
RADIOLOGY NUCLEAR MEDICINE MEDICAL IMAGING	3130	7.020	
PHARMACOLOGY PHARMACY	2922	6.554	
BIOCHEMICAL RESEARCH METHODS	2735	6.134	
BIOTECHNOLOGY APPLIED MICROBIOLOGY	2589	5.807	
MEDICINE RESEARCH EXPERIMENTAL	2470	5.540	
CELL BIOLOGY	1872	4.199	
GENETICS HEREDITY	1859	4.170	
SURGERY	1682	3.773	
MULTIDISCIPLINARY SCIENCES	1674	3.755	
CHEMISTRY MULTIDISCIPLINARY	1556	3.490	
NANOSCIENCE NANOTECHNOLOGY	1474	3.306	
ENGINEERING BIOMEDICAL	1424	3.194	
PATHOLOGY	1421	3.187	
CHEMISTRY ANALYTICAL	1417	3.178	
HEALTH CARE SCIENCES SERVICES	1403	3.147	
GASTROENTEROLOGY HEPATOLOGY	1343	3.012	
MEDICINE GENERAL INTERNAL	1183	2.653	
UROLOGY NEPHROLOGY	1119	2.510	
PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH	1094	2.454	
ENGINEERING ELECTRICAL ELECTRONIC	1036	2.324	
OPTICS	999	2.241	
OBSTETRICS GYNECOLOGY	975	2.187	
MATHEMATICAL COMPUTATIONAL BIOLOGY	874	1.960	
(204 Web of Science Categories value(s) outside display options.)			
(22 records (0.049%) do not o	contain data in the field being analysed	l.)	

References

- 1. Dumontel B, Francesca Susa, Tania Limongi, Marta Canta, Luisa Racca, et al. (2019) ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine (Lond) 14(21): 2815-2833.
- 2. Limongi T, Susa F, Cauda V (2019) Nanoparticles for hematologic diseases detection and treatment.
- Malara N, Coluccio ML, Limongi T, Asande M, Trunzo V, et al. (2014) Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells. Small 10(21): 4324-4331.
- 4. Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov 18(3): 175-196.
- Marino A, Alice Camponovo, Andrea Degl'Innocenti, Martina Bartolucci, Christos Tapeinos, et al. (2019) Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale 11(44): 21227-21248.
- 6. Stevic I, Buescher G, Ricklefs FL (2020) Monitoring Therapy Efficiency in Cancer through Extracellular Vesicles. Cells 9(1): 130.

ISSN: 2574-1241

DOI: 10.26717/BJSTR.2020.25.004141

Tania Limongi. Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License

Submission Link: https://biomedres.us/submit-manuscript.php

ISSN: 2574-12

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

https://biomedres.us/