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Precise computation of the Quality of Transmission (QoT) of Lightpaths (LPs) in transparent optical net-
works has techno-economic importance for any network operator. The QoT metric of LPs is defined by
the Generalized Signal-to-Noise Ratio (GSNR), which includes the effect of both Amplified Spontaneous
Emission (ASE) noise and Nonlinear Interference (NLI) accumulation. Generally, the physical layer of a
network is characterized by nominal values provided by vendors for the operational parameters of each
Network Element (NE). Typically, NEs suffer a variation on the working point that implies an uncertainty
from the nominal value, which creates uncertainty in GSNR computation and requires the deployment of
a system margin. We propose the use of a Machine Learning (ML) agent trained on a dataset from an in-
service network to reduce the uncertainty on the GSNR computation on an un-used sister network, based
on the same optical transport equipment, so following the transfer learning paradigm. We synthetically
generate datasets for both networks using the open-source library GNPy and show how the proposed
Deep Neural Network (DNN) based on TensorFlow© may substantially reduce the GSNR uncertainty
and consequently, the needed margin. We also present a statistical analysis of the observed GSNR fluc-
tuations, showing that the per-wavelength GSNR distribution is always well-approximated as Gaussian,
enabling a statistical closed-form approach to the margin setting.
© 2021 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Recently, the remarkable increase in the global IP traffic, com-
pelled by the introduction of 5G technology, the internet of
things, and cloud services, has marked-up high demands and
new requirements for the capacity enhancement and reliability
of optical networks [1]. To serve the rapidly increasing number
of internet service users, the technologies of optical networks
are continuously evolving. To cater to this dramatic upsurging
number of internet service users, the key operator demands the
full utilization of network resources of existing infrastructure to
maximize returns on CAPEX investments. To achieve this, the
data transport layer needs to be driven to reach the maximum
available capacity. The center key factor for optimal exploitation
of data transport is maximizing the capacity of Wavelength Di-
vision Multiplexed (WDM) transmission technique along with
network disaggregation. These attributes evolved to technolo-
gies: Elastic Optical Networks (EONs) and Software-Defined

Networking (SDN) paradigm in an optical network. The EONs
provide flexibility to the network controller to scale up or down
resources according to the traffic requests in order to efficiently
utilize the available spectrum [2, 3]. In addition to this, the SDN
implementation enables the management of each NE within
a virtualized environment, so permitting a disaggregated ap-
proach to the network exploitation, enabling openness and vir-
tual network slicing. These features pave a roadway for a partly
or fully disaggregation of optical networks: a disaggregated
network includes subsystems that are controlled independently
by relying on common data structures and Application Program
Interface (API).

The foundation step towards flexible and disaggregated net-
works is to abstract the WDM optical transport as a topol-
ogy graph weighted by the Generalized Signal-to-Noise Ra-
tio (GSNR) degradation on transparent Lightpaths (LPs) intro-
duced by each crossed NE and subsystem, mainly by Optical
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Line Systems (OLSs) including fibers and amplifiers [4, 5]. Each
OLS is controlled by the OLS controller running in the control
plane [6] that sets the amplifier working point and consequently
determines the GSNR degradation. The more accurate the nomi-
nal working point, the better the capability to rely on the overall
LP GSNR. So, a lower system margin is requested in LP de-
ployment and, consequently, a larger traffic can be deployed,
enabling a better exploitation of the installed equipment. In ad-
dition to this, a reliable softwarization of optical transport also
helps in the automatic recovery of network failures by reducing
downtime.

The state-of-the-art for optical data transport relies on WDM
spectral use and dual-polarization coherent optical technolo-
gies for which a transparent LP can be well approximated as an
Additive White Gaussian Noise (AWGN) channel affected by
the Amplified Spontaneous Emission (ASE) noise introduced
by the amplifiers and the Nonlinear Interference (NLI) distur-
bance due to self- and cross-channel nonlinear crosstalk. So, the
QoT is well assessed by the GSNR, which includes the effect of
ASE noise and NLI accumulation [7]. Given the flex-transceiver
characteristics as threshold signal-to-noise ratio per modulation
format, the available GSNR on a given LP compared to such a
threshold defines the path feasibility and the deployable rate [5].
So, the key element in the SDN application down to the WDM
optical transport is a QoT Estimator (QoT-E) that, given the net-
work status, computes the GSNR over a specified transparent LP.
Within the consortium Telecom Infra project [7, 8], it has been
extensively demonstrated that in case of accurate knowledge of
the physical layer, a QoT-E can give extremely accurate GSNR
computation. Installed equipment is affected by a variation on
the operational point with respect to the nominal one due to
hardware aging, change in OLS spectral load and side-effects
of in-field operations. The variations induce changes on the
actual GSNR with respect to the nominal value computed by
the QoT-E [9, 10]. The main causes of GSNR uncertainties are
ripples on amplifiers’ gain and noise figure (NF) and connector
losses. In particular, among connector losses the ones at the fiber
input are the most significant as they set the actual power levels
triggering most of the nonlinear effects in first kilometers of fiber
spans. So, on top of the computed nominal available GSNR on a
given LP, a system margin must be conservatively deployed to
avoid Out-of-Service (OOS) [11].

The ML paradigm has already been expertly applied to op-
tical networking: consider [12–15] for performance monitoring
applications. A comprehensive survey of ML applied in optical
networks can be found in [16]. Explicitly, coming towards a par-
ticular interest of this study, i.e., QoT-E of LP before its deploy-
ment, some useful ML methods such as cognitive Case-Based
Reasoning (CBR) technique are proposed [17]. Experimental
results corresponding to [17] achieved with real field data are
discussed in [18]. In [10], the authors proposed an ML approach
to estimate the Optical Signal-to-Noise ratio (OSNR) response
over distinct spectral load configurations. The dataset used
in [10] has been obtained experimentally from an OLS contain-
ing a cascade of 11 pairs of EDFAs and, in place of fibers, variable
optical attenuators in order to avoid any NLI generation and to
focus the investigation only on the OSNR prediction. A learning
process based on a gradient descent algorithm is proposed to
exploit the stored database in [19] to reduce uncertainties on net-
work parameters and design margins. In the context of multicast
transmission in an optical network, a neural network is trained
to predict the Q-factor in [20–22]. Several ML techniques for
QoT-E of LP before its deployment are also presented in [23, 24].

In [25], the authors proposed and exploited the ability of several
ML models such as wide DNN, multi-layer perceptron, boasted
tree, decision tree and random forest regressors for QoT-E. The
developed model is trained and tested on the synthetic data gen-
erated by the open-source GNPy library. A random forest based
binary classifier is presented in [26] to predict the bit-error-rate
of un-deployed LPs. In [27], a random forest classifier is pro-
posed, along with the potentiality of two other techniques, i.e.,
k-nearest neighbor and support vector machine. The authors
made a detailed comparison of the proposed ML techniques.
This analysis, showed that the support vector machine is more
refined in performance but worst in computational time. In [28],
the authors used a neural network for the characterization of
integrated circuits consequently used for their full and accurate
softwarization. In [29], the authors evaluated the performance
of two Domain Adaptation (DA) approaches for ML assisted
QoT-E of an optical LP, for a fixed/variable number of available
training samples from the source/target domain. The authors
considered two networks characterized by different topologies,
but adopting the same fiber type and transmission equipment
and assessed the performance of two DA techniques depending
on the number of available training instances from the target
domain. The results in [29] reported that DA based approach
performed better as compared to standard ML techniques. The
authors in [30] presented the use of ML for QoT estimation
in case of span length uncertainty. This work described sev-
eral methods along with comparison for QoT estimation such
as Gaussian Noise (GN)-model based approach, ML-based ap-
proach or the hybrid (ML+GN) approach. Finally, in [31], the
authors compared the QoT-E accuracy achieved by a few Ac-
tive Learning (AL) and DA methods on two different network
topologies. The results presented in this work reported signifi-
cant improvements using an AL approach with some additional
samples acquired from the target domain.

The primary motivation of this study is to decrease the uncer-
tainty in the GSNR computation of an LP and, consequently, to
enable reliable path computation to deploy the candidate LP at
the minimum margin. We suppose a disaggregated network sce-
nario, in which the network controller may rely on a QoT-E API.
The QoT-E accurately evaluates the fiber span losses together
with the amount of introduced NLI and computes the gain and
ASE noise from amplifiers. Filtering penalties and crosstalk
introduced by Reconfigurable Optical Add-Drop Multiplexers
(ROADMs) can be considered as well, but are out of the scope
of this work. If the controller can get a reliable network status,
i.e., an exact snap-shot of operational parameters for each NE, the
QoT-E can estimate the GSNR with excellent accuracy, as shown,
for instance, in [7, 8]. In the absence of an exact description of
system parameters, a network operator relies on the nominal
description of system parameters. Typically, nominal values are
the average parameters provided by the vendors. The estimator
engine utilizes these values and calculates a nominal GSNR with
some degree of uncertainty. In the present study, we suppose
to rely on a dataset coming from an in-service network; after a
statistical analysis on GSNR data, according to the transfer learn-
ing paradigm, we use it to train an ML agent to assist the QoT-E
in managing an un-used sister network. As a sister network,
we suppose a different topology based on the same hardware:
specifically, fiber type and Erbium-doped fiber amplifiers (ED-
FAs). Along with this, we focused on random and spectrally
flat connector losses and performed a Monte-Carlo analysis of
EDFA gain and ripple. GSNR data are then first analyzed to
search for a common statistical characterization. We show how
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Fig. 1. Schematic description of an optical network as a topol-
ogy of ROADM nodes connected by OLSs. The inset shows a
general setup for an OLS that, in this case, is supposed to be
open.

the per-wavelength GSNR distribution can always be well ap-
proximated as Gaussian-distributed. This observation leads to
propose a method to set the needed margin on a network, given
the standard-deviation of GSNR, with a fixed maximum tolera-
ble OOS percentage. Then, we propose to use the dataset from
the in-service network to train an ML agent running in the con-
troller on the sister network. The ML agent’s scope is to correct
the GSNR computation for LP QoT on an un-used sister network
whose nominal NE parameters have been perturbed to include a
realistic degree of uncertainty to be reduced by an ML. We tested
the method on several paths on the un-used network. We show
that using the trained ML agent may substantially reduce the
uncertainty in path GSNR computation, consequently reducing
the needed margin.

The originality of this work is in proposing the use of a trans-
fer learning method to effectively train an ML agent operating to-
gether with a reliable QoT-E in the network controller to correct
the GSNR uncertainties due to EDFA ripples and spectral load
dependence, also including uncertainties in connector losses.
By the statistical characterization of GSNR distribution that is
always well approximated as Gaussian, we also propose an orig-
inal method to set the margin by a maximum tolerable OOS
percentage, given the GSNR standard deviation.

The remainder of the paper is organized as follows. In Sec. 2,
we briefly describe the physical layer’s abstraction to effectively
perform a multi-layer optimization, along with the argument
that an accurate QoT-E has a key role in minimizing the system
margin. In Sec. 3, we describe the analysis to obtain a synthetic
dataset, supposing to be able to read from the network status,
for each deployed LP the received power and LP OSNR and
GSNR, so the accumulated ASE noise and NLI disturbance. The
synthetic datasets are generated for both networks: the in-service
network dataset for ML training, whereas, the un-used network
dataset for statistical characterizations and testing. The synthetic
datasets have been generated using the GNPy opensource soft-
ware by the Telecom Infra Project [32]. Nominal NE elements
parameters are statistically perturbated: we specifically target
EDFA NF, ripple gain and insertion losses. In Sec. 4, first, we
perform the statistical analysis of GSNR measurements within
a dataset, to comment on margin to be considered with respect
to the QoT-E. Along with this, we also list different possible
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Fig. 2. Abstraction of Optical Network

approaches to define the margin, with each allowing a distinct
reduction in the GSNR uncertainty. Then we also observe that
GSNR measurements distribution within a dataset is always
well approximated by a Gaussian and the margin can be set
according to a maximum tolerable percentage of OOS. Then,
in Sec. 5, we describe the basic schematic of the proposed ML
agent trained on the dataset of the already in-services network
and implemented within the QoT-E of the un-used network to
correctly estimate the GSNR of a specific LP before its actual
deployment. We also describe the orchestration of trained ML
module specifying features, labels and the ML algorithm’s addi-
tional configuration parameters. In this work, we do not aim to
develop a specific ML model from scratch and focus on showing
the effectiveness of ML in this scenario. So, we exploit an exten-
sively tested opensource project: The TensorFlow© library [33].
In Sec. 6, we describe the results in detail. We show for some
paths on the un-used network that the synergistic use of the
trained ML agent with the QoT-E enables a substantial increase
in the GSNR prediction, so effectively reducing the needed mar-
gin. Finally, the conclusion and future research direction are
drawn in Sec. 7.

2. PHYSICAL LAYER ABSTRACTION OF TRANSPAR-
ENT OPTICAL NETWORK

A transparent optical transport network is a structure of con-
nected ROADM nodes, where traffic request is added/dropped
or routed, as shown in Fig. 1. Topology links are bidirec-
tional OLSs made of fiber pairs and In-Line Amplifiers (ILAs) –
EDFA [34]. As links are virtually symmetrical, in this analysis
we consider unidirectional links. Following the disaggregated
approach, each OLS is independently and autonomously con-
trolled by an OLS controller that sets the operational point of
ILAs to minimize QoT degradation. [6, 35]. The OLS controller’s
settings are based on the available parameters describing the
physical layer, among which the most delicate are the fiber con-
nector losses and the ripples of ILAs’ gains and NFs. In particu-
lar, these ripples vary with the spectral load. So, OLS controllers
may guarantee to operate at the nominal working point with a
certain degree of uncertainty on the actual GSNR degradation.

On the optical infrastructure, LPs are deployed as transpar-
ent optical circuits on the WDM flexible grid [36] connecting
transceivers, hence, they support dual-polarization multiple
level modulation formats. In this framework, a higher opera-
tive GSNR enables an higher deployable modulation cardinality,
which provides a larger deployable rate. Thus, the key operation
in LP deployment is to selecting the feasible modulation format,
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Fig. 3. EU network topology

so maximizing the rate according to the available LP QoT. Such
an operation performed by the network controller requires an
accurate QoT-E, as uncertainties on the actual LP QoT require
system margins and a consequent reduction in the deployed traf-
fic. LPs suffer from several propagation impairments: ASE noise
from ILAs, linear and nonlinear fiber propagation effects and
ROADM filtering effects. Thanks to DSP techniques in coherent
transceivers, fiber propagation linear effects can be managed
as well as some amount of the additive Gaussian disturbance
(NLI) and phase noise, both nonlinear and generated by self- and
cross-channel nonlinear crosstalk. In general, the DSP module
at the receiver effectively compensates for the phase noise using
the carrier phase estimator algorithm and must be considered
in QoT-E only for transceivers operated by modulation formats
with large-constellation cardinality designed for short-reach [37].
Finally, the ROADMs filtering effects and crosstalk also apply
some level of degradation to QoT, generally considered as an
extra loss and additional Gaussian noise source. ROADM im-
pairments are out of the scope of this work.

So, within core networks operated by transceivers using
QPSK, 8-QAM and 16-QAM constellations, or hybrid for-
mats [38], a transparent LP can be effectively modeled as an
AWGN channel, affected by ASE noise and NLI Gaussian dis-
turbances. QoT over an AWGN channel is summarized by the
Signal-to-Noise ratio (SNR), that for LPs is typically identified
as GSNR:

GSNR =
PRx

PASE + PNLI
=
(

OSNR−1 + SNR−1
NL

)−1
, (1)

where OSNR= PRx/PASE is the optical signal to noise ratio
detectable by optical channel monitors, SNRNL = PRx/PNLI is
the nonlinear SNR due to NLI only and so observable only on
the DSP recovered constellation. PRx is the power of the channel
at the receiver, PASE is the power of the accumulated ASE noise
and PNLI is the power of the accumulated NLI.

Following a disaggregated approach, the NLI introduced
by each fiber span can be separated into two main contribu-
tions: the Self-channel NLI (SC-NLI) and the Cross-channel NLI
(XC-NLI) depending on the input spectrum [39]. Several math-
ematical models have been proposed for the NLI evaluation
with a disaggregated approach, with different accuracy levels,
e.g., [40, 41]. For an accurate spectrally-resolved evaluation, NLI
calculation must consider the simultaneous effect of Stimulated
Raman Scattering (SRS) [42]. So, the NLI per span can be evalu-
ated by a proper algorithm following a spectral disaggregated
approach superimposing the effects of each channel. This is
the approach we exploit by using the GNPy library. For the

Fig. 4. USA network topology

Table 1
Simulation Parameters

Launch Power/ Channel 0 dBm

Dispersion (D) 16.0 ps/nm/km

Attenuation coefficient (α) 0.3 dB/km

Channel Spacing 50 GHz

Span Length 80 km

WDM Comb (C-Band) 76

Baud Rate 32 Gbaud

Amplifier Noise Figure [6 - 11] dB [8]

Nominal Amplifier Noise Figure 8.75 dB

Amplifier Gain Ripple Variation of 1 dB

Nominal Amplifier Gain Ripple Flat

Fiber Type Standard SMF

Insertion losses Exponential Distribution (λ = 4)[43]

Nominal Insertion losses 0.3 dB [44]

ASE noise accumulation, we consider the gain and NF for a
typical amplifier set. So, a data structure effectively abstract
WDM optical transport network as a topology weighted graph
G(V,E), where graph-vertices (V) are switches and ROADMs,
while graph-edges (E) are OLSs. Weights on edges are the GSNR
characterizing each OLS as exposed by the OLS controller. Fig. 2
shows an example, where Inverse-SNR (ISNR)=1/GSNR. Over
such a data structure, LP GSNR can be evaluated by navigating
the route by accumulating metrics for the wavelength under
test:

GSNR =
1

∑OLS
i

1
GSNRi

. (2)

The accuracy in GSNR computation depends on the mathemat-
ical models for fiber propagation and amplifiers and on the
accuracy in the knowledge of physical layer parameters. The
perturbation from nominal values used for OLS controlling and
for QoT-E yields an uncertainty on the LP GSNR, which requires
system margins and reduces the deployable traffic, with respect
to the nominal amount. The main uncertainties are the fiber con-
nector losses defining the fiber input power and consequently
the NLI and the ILAs’ gain and NF determining the ASE noise,
this depending on the spectral load.

3. SYNTHETIC DATASET GENERATION

In this section, we describe the simulation performed to model
a particular network and its transmission components. Along
with this modeling, we also report the mimicked datasets, which
are generated synthetically for two different networks; in-service
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and un-used network by using the GNPy library. red In partic-
ular, a dataset is generated for the in-service network for ML
training, whereas, the un-used network dataset is used for sta-
tistical characterization of GSNR and to test the effectiveness of
the ML agent.

Table 2
EU: Training

Source Destination Spans Source Destination Spans
Vienna Warsaw 7 Brussels Bucharest 30
Amsterdam Berlin 8 Frankfurt Istanbul 34

Table 3
USA : Testing

Source Destination Spans Source Destination Spans
Louisville Memphis 7 Charleston Charlotte 8
Memphis Miami 24 Los Angeles Louisville 46
Little Rock Long Island 25 Kansas City Las-Vegas 30

We suppose each OLS is controlled targeting the maxi-
mum GSNR [45] according to the Local-Optimization Global-
Optimization (LOGO) strategy [6]. We assume that both the OLS
controllers and QoT-E might rely on the nominal values for NE
parameters. red Although both datasets are synthetically gener-
ated, we consider the in-service network dataset as obtained by
reading data from transceivers and monitors for each deployed
LP, specifically the channel power and OSNR from monitors,
GSNR from transceivers and the number of crossed spans from
the controller. Therefore, in this investigated hypothetical sce-
nario, the in-service network dataset contains the exact channel
powers, OSNRs and GSNRs values, without any uncertainty. On
the other hand, the un-used network dataset includes inaccura-
cies due to network parameter uncertainties. To mimic reality,
a synthetic dataset is generated considering random connector
losses and ILAs’ NF and gain ripples. In particular, we first ran-
domly set connector losses, we performed a Monte-Carlo analy-
sis on different OLS spectral load and consequent ripples [46],
and collect the dataset. Insertion losses are determined by an ex-
ponential distribution with λ = 4 as described in the study [43].
To generate synthetic data, we used the GNPy library [8, 32].
The GSNR computation of the GNPy library is spectrally re-
solved and is based on the Generalized Gaussian Noise (GGN)
model for NLI. The GGN model always considers worst ef-
fect for the NLI by supposing Gaussian-modulated interfering
channels [8, 42]. Because of the computational effort needed to
generate a proper dataset, the considered OLSs carry only 76
channels over the standard 50 GHz grid on the C-band, having
total bandwidth close to 4 THz. We do not expect a substan-
tial difference in results when considering standard 96 channels
on the entire C-band. We supposed to rely on transceivers at
32 GBaud, shaped with a root-raised-cosine filter. OLS launch
power is defined by the booster at the ROADM output set to de-
fine as 0 dBm per channel, while ILAs are set at transparency, i.e.,
at the nominal gain completely recovering fiber losses. All OLSs
are supposed to operate on ITU-T G.652 Standard Single-Mode
Fiber (SSMF) with a span length of 80 km. These hypotheses
are used for both the in-service and un-used network, as we sup-
pose the sister network exploiting the same optical transport
technologies. Network parameters are summarized in Tab. 1.

The generated dataset is obtained by perturbating the above
frame of reference by varying the parameters of EDFA: NFs,
amplifier gain ripples and fiber connector losses. The selection
of NF is made by a uniform distribution varying between 6 dB
to 11 dB , while the amplifier gain ripples are varied uniformly
within a 1 dB interval. (Note that such a wide range of NF is
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Fig. 5. Overall GSNR Distribution for single path Louisville-
Memphis of Acquired dataset

typical in commercial devices at spectral loading far from full
load.)

The considered spectral loads in dataset generation is a sub-
set of the entire 276 possible loads, where 76 is the total number
of WDM channels. In the considered subset of spectral loads,
each source-to-destination, (s –> d), pair has 1024 realizations
of random load ranging from 34% to 100% of total bandwidth
utilization. Given the (s –> d), the add/drop variation of the
spectral load has been reproduced by randomly selecting am-
plifier ripples. Nevertheless, we always assume a full spectral
load when the NLI impairment is calculated, as it represents the
worst-case scenario. The first dataset is generated for the EU
network topology which consists of 4096 data realizations for
four (s –> d) pairs (1024 combinations for each (s –> d) pair)
and is used as an in-service network as shown in Tab. 2, while for
the un-used network, the dataset is generated for the USA net-
work topology that includes six (s –> d) pairs having 6144 data
realizations as shown in Tab. 3. The considered networks are
characterized by distinct topologies shown in Fig. 3 and Fig. 4,
adopting the same fiber type and transmission equipment. Still,
they are different in terms of random amplifiers’ parameters,
i.e., ripples on NF and gain and fiber insertion losses. The basic
parameters for both network topologies are shown in Tab. 4.

The distribution of GSNR for a single particular path
Louisville- Memphis for all the considered realizations of vary-
ing spectral load of WDM channels is depicted in Fig. 5, which
includes the resulting GSNR values obtained varying spectral
loads, WDM channels, gain ripples, NFs and insertion losses.
We analyze only one path as we did not observe a substantial dif-
ference in the statistical characteristics of GSNR for other paths.

4. GSNR MARGIN & ANALYSIS OF GSNR DATASET

In this section, we analyze the GSNR dataset of an un-used net-
work and its statistics to comment on the margin to be con-
sidered with respect to the QoT-E. Along with this, we also
comment on different possible approaches to define the mar-
gin: considering only variation ranges or relying on a statistical
characterization of GSNR.
In a scenario of un-used network, to estimate the GSNR, the
network controller can rely only on the nominal description of
system parameters reported in Tab. 1. Using only this nominal
description of system parameters, the network controller esti-
mates a nominal GSNR value. This estimated nominal GSNR has
some degree of uncertainty due to the variation in NEs’ working
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Fig. 6. Overall, GSNR measurements for a single path
Louisville- Memphis of an un-used network in the frequency
domain. The green dots are the mean values over the entire
sample for each channel; the error bars are equal to the stan-
dard deviations. The purple line shows the nominal values
for this path in the frequency domain. In blue and orange, the
maximum and the minimum for each channel are outlined,
respectively. The dashed red line indicates the overall GSNR
minimum of 10.81 dB.

Table 4
Topology Details

Parameters EU: Training [19] USA : Testing[47]
Number of Nodes 28 100
Number of Links 41 171
Average path distance (km) 2014.06 2541.75
Maximum path distance (km) 3051.10 5481.07
Minimum path distance (km) 669.30 568.33
Average number of spans per Link 19.75 27.49

point. Fig. 5 shows the GSNR distribution for all WDM chan-
nels and all realizations for the path Lousiville-Menphis: it can
be observed that it is distributed around the average nominal
value according to a probability density function that is well
approximated as Gaussian. Fig. 6 shows the same results for all
wavelengths on the same path. In this figure, the exact variation
ranges are shown. In general, it can be observed that the system
uncertainties induce a variation of the actual GSNR (GSNRactual)
with respect to the nominal value (GSNRnominal) that we sup-
pose is used for OLS control and computed by the QoT-E for LP
deployment. So, in general, we get an uncertainty

∆GSNR = GSNRnominal −GSNRactual (3)

in the GSNR computation that must be taken into account. In
particular, all cases when ∆GSNR > 0 are critical because the
actual GSNR is smaller than the estimated one and so relying
on the QoT-E computation in these cases leads to unwanted
out-of-services. To overcome such an issue, the operative GSNR
(GSNRoperative) to be used for a reliable LP deployment is ob-
tained by reducing the nominal one of a given GSNR margin δ:
GSNRoperative = GSNRnominal − δ. Note that in this work we
focus on the margin needed by ripples in gain NF and variations
in connector losses. Other uncertainties and hardware aging
may require to further enlarge the deployed GSNR margin. In
the following, we’ll discuss how to set the margin, first consid-
ering only the worst cases, then statistically approaching the
problem. According to our analyses, we focus our comments on
a specific path, but results can be generalized.

Analyzing results displayed in Fig. 6, it can be observed that
the actual GSNR varies around the nominal values with different
worst-case GSNR per wavelength and if we set GSNRoperative
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Fig. 7. Normal Q-Q plot of overall GSNR measurements for
the path Louisville-Memphis
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Channel 4     =  11.992  = 0.269
Channel 21   =  11.82    = 0.257
Channel 42   =  11.721  = 0.264
Channel 63    =  11.806 = 0.271

Fig. 8. GSNR measurements of randomly selected channels for
path Louisville-Memphis

equal to the worst-case GSNR, the margin is given by δ =
GSNRnominal − GSNRoperative. According to our dataset anal-
ysis, on the path under test, we observe a variation of re-
quired δ ranging from 0.8 dB up to 1.8 dB. Considering to set a
unique value for the margin over the entire exploited band, it
means a request for 1.8 dB of margin, that will correspond to a
large waste in potential capacity, mostly in the case of flexible
transceivers [38]. Deploying a per-wavelength margin partially
reduces the issues, but keeps an open problem. Being the GSNR
fluctuation a random process around the nominal value, it is
convenient to approach the problem statistically. If we suppose
to know – analytically or numerically – the Probability density
function (PDF) fGSNR,λ(x) for the GSNR fluctuations for every
wavelength λ on a given path, the per-wavelength margin δλ

can be set by a maximum tolerable percentage of OOS cases poos,
according to the following expression:

∫ GSNRnominal−δλ

−∞
fGSNR,λ(x) dx ≤ poos/100 . (4)

This approach can be further strengthened if we are able to
find an effective analytical approximation for the GSNR PDF. In
the following, we show how the per-wavelength GSNR PDF is
always well approximated by a Gaussian distribution, so Eq. 4
becomes closed form just depending on the per-wavelength
mean and variance of GSNR distributions.

By observing the GSNR statistics, the aggregated statistics
of the overall GSNR is Gaussian. Even more, also the per-
wavelength statistics suggest that the GSNR varies according to
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a distribution well approximated as Gaussian. This Gaussian-
ity of aggregated statistics of overall GSNR is verified in Fig. 7
by Normal Q–Q (quantile-quantile) plot, which is one of the
methods frequently used for the dataset Gaussian-ity test [48]
because of its graphical representation. In parallel to this, the
per-wavelength GSNR statistics are shown in Fig. 8, where the
relative GSNR distribution for several randomly selected chan-
nels (4, 21, 42, 63) are plotted along with their mean (µ) and
standard deviation (σ) values. Also in this case Q-Q analyses
lead to good results, confirming that that for practical purposes
the GSNR statistics can be assumed as Gaussian. In general,
the mean GSNR is not exactly equal to the nominal GSNR, but
practically we can consider such an equivalence. It further sim-
plifies the approach by just requiring per-wavelength standard
deviation for a full characterization and the margin setting Eq. 4
assumes the following expression:

1
2

erfc
(

δ

σGSNR

)
≤ poos/100 , (5)

that yields to a closed-form expression for margin setting:

δ ≥ σGSNR inverfc (2 poos/100) [dB], (6)

where inverfc is the inverse of the complementary error function
erfc. A practical engineering rule could be setting δ = 3 σGSNR
that corresponds to poos = 0.13%. This results opens-up future
investigation on statistical regression on GSNR variations given
by different line uncertainties, as the margin setting just needs
the GSNR standard deviation.

As an application example, we consider the usual path under
test and apply the statistical margin setting by considering a
maximum tolerable percentage of OOS of poos = 1%. Results
are margin requests ranging from 0.3 to 1.1 dB, depending on
the channel. Margin setting is pictorially described in Fig. 9 for
channel-58 of the Louisville-Memphis path. The blue shaded part
shows the maximum allowable oos while the red line represents
the nominal GSNR value for the considered channel. The black
line represents the minimum value of GSNR. The GSNR margin
is defined by the difference between the nominal GSNR (red
line) and the operative GSNR (blue line).

The out-of-services penalty in the statistical approach of mar-
gin setting creates a road path for proposing a more flexible
architecture. As we have the dataset of the already in-service
network, we can exploit this data to assist an un-used network
controller in the estimation of GSNR. A data-driven technique
such an ML architecture can be ideal in this kind of scenario
where the operator has a dataset of an already in-service network.
In this work, we propose a trained ML module running over the
controller of an un-used network. The proposed ML module is
trained on the data provided by the already in-service network
and specifically used to assist the core QoT-E engine of un-used
network, to provide a correcting mechanism for the estimation
of the QoT shown in Fig. 10.

In Fig. 10, the controller of an un-used network (USA network)
fed its core QoT-E engine (GNPy) with nominal values of system
parameters, which estimates nominal GSNR with some degree
of uncertainty due to variation in the working point of NE. This
error (uncertainty) in the estimation of GSNR is corrected by us-
ing trained ML module, which is trained on the stored telemetry
data of already in-service (EU network).
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Fig. 9. Analytical GSNR margin estimation for channel-58
path Louisville-Memphis: green, red, blue and black vertical
lines represent the values of the distribution mean and the
nominal, operative and worst-case GSNR, respectively. The
dashed line sketches a Gaussian shape with the same mean
and standard deviation of the considered distribution.
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Fig. 10. Model Schematic: The Machine Learning module
assists the QoT engine (GNPy)

5. TRANSFER LEARNING AGENT FOR QOT-E CORREC-
TION

This section describes the ML module, which is trained on the
dataset of the already in-services network. Besides, we also de-
scribe the orchestration of trained ML module specifying fea-
tures, labels and the additional configuration parameters of the
ML algorithm.

The proposed work presents a trained ML module to assist
the core QoT-E engine in order to correct the QoT-E estimated
GSNR of a specific LP before its actual deployment in an un-used
network. As ML algorithm we select a DNN [49], which is a
powerful tool that has shown significant results in numerous
frameworks as the one under investigation. Like all other su-
pervised ML-based learning methods, in order to perform the
training and prediction processes, the proposed model requires
the definition of the features and labels, which represent the sys-
tem inputs and outputs, respectively. The manipulated features
include the received signal powers, NLIs, ASEs, channel frequen-
cies and the number of spans between source to the destination
node. Values that we suppose to retrieve on the in-service net-
work from transceivers, optical channel monitors and controller.
We fixed as labels the ∆GSNR, the difference between the nom-
inal and the actual GSNR values expressed in Eq. 3, obtained
for each channel: Fig. 11 shows the final ML module structure.
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The total number of input features consists of 305 entries, the
number of LP spans plus the received signal power, the NLI, the
ASE and frequency for each channel (1 + 4× 76 = 305).

In order to enhance the performance of the DNN algorithm,
we trained it on a normalized dataset [50]. In general, each
feature and label in a normalized dataset has a distribution
with zero mean and unit variance. In the present work, the
normalization of the dataset is done using z-score normalization,
expressed in Eq. 7, where µ and σ are, respectively, the mean
and standard deviation of each particular feature or label.

Z =
X− µ

σ
(7)

The proposed DNN is developed by using higher-level APIs
of the TensorFlow© platform [51], which provides a variety of
learning algorithms as well as appropriate functions to refine the
dataset before using it as ML model input. The considered DNN
is configured by several parametric values that have been opti-
mized, such as training steps = 1000, loaded with default Adaptive
Gradient Algorithm (ADAGRAD) keras optimizer with default
learning rate = 0.01 and default L1 regularization = 0.001 [52].
Moreover, during the model building, several non-linear acti-
vation functions such as Relu, tanh, sigmoid have been tested.
After testing, Relu as been selected to empowered DNN as it
outperforms the others in terms of prediction and computa-
tional load [53]. Finally, another important DNN configuration
is the number of hidden-layers, the model has been tuned on
several numbers of hidden-layers and neurons to achieve the best
trade-off between precision and computational time. These two
parameters are linked to the complexity of the DNN, which is
tied to the complexity of the problem. Although an increase in
the number of layers and neurons improves the accuracy of the
DNN up to a certain extent, a further increase in these values
has an adverse effect that causes over-fitting and increases in the
computational time. After this trade-off analysis, we decided
upon a DNN with 3 hidden-layers containing 20 neurons each.
This choice results in approximately 6 minutes training time
using a workstation having specifications, 32 GB of 2133 MHz
RAM and an Intel® Core™ i7 6700 3.4 GHz CPU. Given these
configurations, first we performed the training, validation and
testing on three separate subset of the in-service EU network
dataset; we choose the conventional rule of 70%,15% and 15%,
respectively, as subset proportions. The train set in this sce-
nario consists of data realizations for four (s –> d) pairs of the
in-service EU network already described in Sec. 3. We set the
training steps as the stopping factor in-order to avoid over fitting
of the model and Mean square error (MSE) as loss function given
by:

MSE =

n
∑

i=0

(
∆GSNRp

i − ∆GSNRi

)2

n
, (8)

where n is the number of tested realizations and, for each tested
case i, ∆GSNRp

i and ∆GSNRi are, respectively, the predicted and
calculated errors given by the nominal QoT estimation. Once
the accuracy level of the model predictions has been reached, the
trained ML module can be used together with the core QoT-E
engine GNPy to enhance the GSNR estimation of the LP before
its actual deployment in an un-used USA network.

6. RESULTS AND DISCUSSION

In this Section, we compare the GSNR predictions and the con-
sequent required margins in both the QoT estimation with and
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FEATURES

LABEL

Machine Learning

Estimated ΔGSNR

Fig. 11. Description of the Machine Learning Module.

without the ML model support.
In both these scenarios, we assume that the Gaussian statisti-

cal characterization of the GSNR distribution holds and that the
required margin evaluation can be performed imposing a fixed
percentage of OOS as described in Sec. 4. Summarizing, due to
the degree of uncertainty of any GSNR prediction, system mar-
gins are required in order to avoid unwanted OOS events. These
margins lead to a resizing of the actual LP capacity. To have a
uniform comparison metric that quantifies the performance of
different GSNR evaluation methods, we choose the following
expression:

∆ =
n

∑
i

∣∣∣∣∣GSNRoperative
i −GSNRactual

i
n

∣∣∣∣∣ (9)

where n is the sample dimension and the operative
GSNRoperative take into account both the GSNR predicted by the
specific method used for the GSNR estimation and the GSNR
margin obtained by means of Eq. 6. In this investigation, the
test set includes six (s –> d) pairs of the un-used USA network
already described in Sec. 3. Moreover, we further reduce our
analysis to those realizations that have a lower actual GSNR
with respect to the nominal one, as these cases are more critical,
since they result in an OOS event, if no margin deployment is
considered.

In order to provide a clear description of the obtained re-
sults, we first focus the results presentation to a single path,
i.e. Louisville- Memphis of the un-used USA network. Given the
actual GSNR synthetic dataset, we set as ground reference the ∆
evaluation obtained by considering the minimum GSNR value.
This solution represents a rough approach and it is presented to
provide a reference scale. This method produce an average mar-
gin of ∆ = 0.98 dB on the worst-case scenario channel. In this
analysis, we focus on the worst-case scenario channel as it sets
the required margin to guarantee all channels to be in-service.
The QoT-E engine significantly refine the previous approach,
providing a nominal GSNR value. In this case, without the ML
support, the average margin is ∆ = 0.69 dB on the single path
Louisville- Memphis for the worst-case scenario channel requiring
a poos = 1%.

Finally, when the QoT-E engine is supported by the ML
trained module, the proposed implementation provides a final
QoT-E that enables to reach an average margin of ∆ = 0.27 dB
on the same worst-case scenario channel requiring a poos = 1%.

The reliability of the joint estimation of the QoT-E engine
with the trained ML module has been further verified on five
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Fig. 12. ∆GSNR distributions obtained with and without ML module for all the investigated path of the un-used USA network

more paths of un-used USA network shown in Tab. 3. For all
the considered paths, in Fig. 12 we report the distribution of the
prediction error in both with and without ML support scenarios.
In the figure, it can be observed that the ML agent significantly
enhances the QoT-E; in all the cases, both the error mean, µ, and
standard deviation, σ, values decrease considerably. Therefore,
the required margin calculated with Eq. 6 can be reduced main-
taining the same poos. For example, on the Louisville- Memphis
path, the ML module application reduces the margin required
to reach poos from 0.76 dB to 0.58 dB. This leads, in conclusion,
to a smaller average margin and, therefore, to a more extensive
exploitation of the LP capacity.

7. CONCLUSION

In this work, we proposed the use of a ML agent trained by a
dataset of in-service network to correct the GSNR computation by
the QoT-E in a sister un-used network from uncertainties caused
by variations in the operational point of NEs. We analyzed a EU
and a USA topology as in-service and un-used network, respec-
tively. We synthetically generated dataset for both networks,
for training and testing purposes, using the opensource GNPy
library, specifically addressing the GSNR uncertainties due to
connector losses and to ripples of the gains and NFs depending
on the spectral load. We first analyzed the GSNR statistics in
datasets showing that the GSNR statistics is always well approx-
imated as Gaussian, so enabling a statistical approach to margin
setting based on the maximum tolerable percentage of OOS.

Then, the main cognitive unit of a transfer learning agent is
developed by using higher-level APIs of the TensorFlow© library.
We show that the synergistic use of a transfer learning unit with
the QoT-E may substantially reduce the inaccuracy in QoT-E, so
enabling a reduction in the needed margin.

Finally, further studies can be performed enlarging the num-

ber of LPs under investigation. Moreover, in future analyses the
considered set of configurations can be further enriched by in-
cluding different fiber types and lengths and, even more, adding
Raman amplification alongside EDFAs.
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