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Summary

The growing threat of advanced cyber-attacks is a major cause of concerns for
Information-Technology (IT) systems. Cybersecurity implies guaranteeing the secu-
rity of the cyberspace from threats, which might present in different forms. Among
the different classes of system that employ IT systems, there are the Critical Infras-
tructures. Critical infrastructures describe all physical and cyber systems, assets
and other elements on which the society of a nation relies upon to maintain na-
tional security, economic vitality, and public health and safety. Examples of critical
infrastructures for a nation can be power plants and energy supply networks, water
supply systems, healthcare and hospital structures, transportation infrastructures,
etc.

Originally Critical Infrastructures were designed as isolated systems not con-
nected to the internet. They were based on old legacy systems, lacking the security
protocols that are now built in. In recent years there has been a proliferation of new
digital technologies that are designed to provides beneficial features to the systems
where they are embedded. However, also the integration of such technologies makes
the systems more vulnerable from a cybersecurity point of view by expanding the
attack surface. The lack or inadequacy of appropriate security mechanisms leads
to malicious attacks. If successful, attacks to these classes of systems, may lead
to physical disruption or business operations and intellectual property theft. This
may result in extensive economic losses and expose health or social well-being of
people to safety and security risks.

This thesis focuses on the study of protection mechanisms for Critical Infras-
tructures from new cyberattacks. Different classes of attacks are considered.

Microarchitectural side-channel attacks exploit the microarchitecture of a mi-
croprocessor for unintended leakage of sensitive information. Targeting the compu-
tational cores, which are at the base of the majority of cyber assets, makes Critical
Infrastructures and industrial control systems potentially vulnerable. Particular
attention must be paid to the implementation of countermeasures against this type
of attacks, because they might interfere with other crucial aspects of the system,
such as safety.
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Critical Infrastructures employ new technologies, such as reconfigurable plat-
forms to exploit additional flexibility and acceleration capabilities. Also FPGA-
based systems are vulnerable to attacks targeting the design to be deployed in-the-
field. These attacks might target the confidentiality of the design or the injection
of unintended features allowing the system to be controlled by malicious attackers
or discover and exfiltrate sensitive information, such as intellectual property data.
Although existing security measures already mitigate the attacks, they do not deal
with a complex scenario where multiple different designers are involved.

Finally, a broader protection mechanism is provided through a hardware security
module featuring secure key management and cryptographic functionalities. The
robustness of the device is assessed through a physical and non-invasive side-channel
attack aiming at the recovery of the stored encryption keys.
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Chapter 1

Introduction

This chapter contains the description of the context of the research in the field
of the security for Critical Infrastructures.

1.1 Critical Infrastructures
Critical infrastructures describe all physical and cyber systems that are cru-

cial to a nation, i.e., their malfunction, incapacity or destruction would have an
important debilitating impact on the physical or economic security, public health
or safety of citizens of the nation involved. Critical infrastructures include also
the assets, the systems, the facilities, the networks, and other elements on which
the society relies upon to maintain national security, economic vitality, and public
health and safety. Informally, critical infrastructures can be seen as the power used
in homes, the water supply systems, the transportation service that connect cities,
the various communication systems people rely on to maintain contact with others.
Depending on each country, the Critical Infrastructures or part of them might be
owned by the private sector or by the State itself. In the U.S.A., the elements of
an infrastructure, either physical or cyber, are typically owned and operated by the
private sector, though some belongs to federal, state, or local governments. Not
every infrastructure can be considered critical to a nation or region. Thus, to for-
malize the definition, it is necessary to identify which infrastructure is both critical
to maintain continued services or functions and vulnerable to some type of threat
or hazard.

Although it is easy to perceive the sense and the importance of a Critical Infras-
tructure, there is no worldwide definition globally valid. Instead, several definitions
do exist.

In the U.S.A., Critical Infrastructures are defined as "systems and assets, whether
physical or virtual, so vital to the United States that the incapacity or destruction
of such systems and assets would have a debilitating impact on security, national
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Introduction

economic security, national public health or safety, or any combination of those
matters" [110].

In Europe, instead, there are two definitions:

1. Critical Infrastructures are defined as "assets, systems or parts thereof located
in Member States, which are essential for the maintenance of vital societal
functions, health, safety, security, economic or social well-being of people, and
the disruption or destruction of which would have a significant impact in a
Member State as a result of the failure to maintain those functions",

2. European critical infrastructures (ECI) are defined as "critical infrastructures
located in Member States the disruption or destruction of which would have
a significant impact on at least two Member States. The significance of the
impactshall be assessed in terms of cross-cutting criteria. This includes effects
resulting from cross-sector dependencies on other types of infrastructures".

The first definition refers to a Critical infrastructure within a Member State while
the second definition refers to a Critical infrastructure considering the European
Union as a whole. The above definitions are extracted from [70].

It is possible to see that the actual definition of Critical Infrastructure depends
at least on the Region where it resides. Apart from U.S.A. and Europe, each sub-
State or region might consider a different definition (e.g., each Member State within
European Union has its own definition - which resemble the one of U.S.A.).

There are, however, generic definitions provided by international entities, such
as:

1. ITU-T: "The key systems, services and functions whose disruption or destruc-
tion would have a debilitating impact on public health and safety, commerce,
and national security, or any combination of these" [212];

2. NATO: "Physical or virtual systems and assets under the jurisdiction of a
State that are so vital that their incapacitation or destruction may debilitate
a State’s security, economy, public health or safety, or the environment" [209];

3. IETF: "Those systems that are so vital to a nation that their incapacity or
destruction would have a debilitating effect on national security, the economy,
or public health and safety" [213].

Another discriminating characteristic is the operational field of the Critical In-
trastructures. A sector can be categorized depending on the ownership:

• public ownership (also called State ownership or government ownership): the
majority of the companies, the assets and the networks of a Critical Infras-
tructure is owned by the State;

2



1.1 – Critical Infrastructures

• private ownership: the majority of the companies, the assets and the networks
of a Critical Infrastructure is owned by a private group of individuals.

Not every sector is equally critical for the citizens. The Department of Homeland
Security (DHS) of the United States of America considers 16 critical infrastruc-
ture sectors whose assets, systems, and networks, whether physical or virtual, are
considered so vital to the United States that their incapacitation or destruction
would have a debilitating effect on security, national economic security, national
public health or safety, or any combination thereof. The sectors in which critical
infrastructures are employed, reported for U.S.A. in Homeland Security Presidential
Directive 7 [107], superseded by Presidential Policy Directive 21 (PPD-21) [111],
can be summarized as follows.

Chemical Sector: The Chemical Sector encomprises several chemical facilities in
a global supply chain and is able to convert various raw materials into sev-
eral diverse products that are essential to modern life and to other supply
chains. This sector can be in turn subdivided into five main segments: Ba-
sic chemicals, Specialty chemicals, Agricultural chemicals, Pharmaceuticals
and Consumer products. Securing the treated chemicals against growing and
evolving threats requires vigilance from both the public and private sector,
given that the majority of Chemical Sector facilities are privately owned.

Commercial Facilities Sector: The Commercial Facilities Sector includes a di-
verse range of sites visited by several people or crowds for shopping, business,
entertainment. In general the public can move freely within the site area.
The majority of these facilities are privately owned and operated with mini-
mal interaction required by the government.

Communications Sector: The Communications Sector underlies the operations
of all businesses, organizations, and government. It is critical because it pro-
vides an "enabling function" across all critical infrastructure sectors. It pro-
vides communication services, which have evolved from voice services into an
interconnected industry using terrestrial, satellite, and wireless transmission
systems. The private sector, as owners and operators of the majority of com-
munications infrastructure, is the primary entity responsible for protecting
sector infrastructure and assets.

Critical Manufacturing Sector: The Critical Manufacturing Sector identifies
several industries such as Metals Manufacturing, Machinery Manufacturing,
Electrical Equipment, Appliance, and Component Manufacturing and Trans-
portation Equipment Manufacturing. It is classified as critical because the
products made by these manufacturing industries are essential to many other
critical infrastructure sectors.

3
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Dams Sector: The Dams Sector offers critical water retention and control services
as well as hydroelectric power generation, water supply systems, agricultural
irrigation, flood control, river navigation and industrial waste management.
Also in this case, the services support multiple critical infrastructure sectors
and industries. In the United States, the majority of the facilities (about
80%) are regulated by state dams safety offices.

Defense Industrial Base Sector: The Defense Industrial Base Sector is the in-
dustrial complex that enables research and development of the military sys-
tems, during the phases of design, production, delivery, and maintenance of
military weapons systems, subsystems and components required by the mil-
itary. The sector provides also products and services that are essential to
mobilize, deploy, and sustain military operations.

Emergency Services Sector: The Emergency Services Sector (ESS) incorpo-
rates physical and cyber resources together with trained and skilled work
force and is able to provide a wide range of prevention, preparedness, re-
sponse, and recovery services during both day-to-day operations and incident
response. The facilities are geographically distributed across the territory, at
varios levels of government (e.g., federal, state, local, etc.). The ESS also
includes private sector resources, such as industrial fire departments, private
security organizations, and private emergency medical services providers. The
organizations can be composed also by volunteers. Five distinct disciplines
compose the ESS: Law Enforcement, Fire and Rescue Services, Emergency
Medical Services, Emergency Management, Public Works. Finally, the ESS
also provides specialized emergency services through individual personnel and
teams (e.g., tactical teams, Search and Rescue Teams, National Guard Civil
Support, etc.).

Energy Sector: The Energy Sector is considered as uniquely critical because it
provides an "enabling function" across all critical infrastructure sectors. The
energy infrastructure is divided into three interrelated segments: electricity,
oil, and natural gas. In the U.S.A., the electricity segment contains more
than 6,413 power plants. The reliance of virtually all industries on electric
power and fuels means that all sectors have some dependence on the Energy
Sector.

Financial Services Sector: The Financial Services Sector includes thousands of
bank institutions, providers of investment products, insurance companies,
other credit and financing organizations. Financial institutions vary widely
in size and presence, ranging from some of the world’s largest global compa-
nies with thousands of employees and many billions of dollars in assets, to

4



1.1 – Critical Infrastructures

community banks and credit unions with a small number of employees serv-
ing individual communities. Thi sector represents a vital component of the
nation’s critical infrastructures.

Food and Agriculture Sector: The Food and Agriculture Sector is composed
of farms, restaurants and other facilities that store, manufacture and process
food. It has several critical dependencies in other sectors, but particularly
with the Water and Wastewater Systems for clean irrigation and processed
water, Transportation Systems for movement of products and livestock, the
Energy Sector to power the equipment needed for agriculture production and
food processing and the Chemical Sector for fertilizers and pesticides used in
the production of crops. This sector is almost entirely under private owner-
ship.

Government Facilities Sector: The Government Facilities Sector includes a wide
variety of buildings, physically located on the territory of a nation and over-
seas. The buildings and the infrastructures are owned by the different levels
of government (e.g., federal, state, local, etc.). Some of the facilities might
be open to public (such as public offices), while others contain highly sensi-
tive information, materials, processes or equipment (e.g., special-use military
installations, embassies, courthouses, etc.). Apart from the physical infras-
tructures, the sector includes all the cyber elements that contribute to the
protection of the sector assets.

Healthcare and Public Health Sector: The Healthcare and Public Health Sec-
tor protects all sectors of the economy from hazards such as terrorism, infec-
tious disease outbreaks, and natural disasters. The sector plays a significant
role in response and recovery across all other sectors in the event of a natural
or manmade disaster. The assets of this sector are both private and public
owned depending on the country. In both cases, the sector is managed across
all levels of government.

Information Technology Sector: The Information Technology Sector is central
to a country security, economy and safety, which are increansigly dependent
on this sector’s functions. These virtual and distributed functions produce
and provide hardware, software, and information technology systems and ser-
vices. Since the Internet represents the backbone of these infrastructures,
this sector is tightly related with the Communication Sector. This sector
is complex and dynamic, which makes the identification of threats and the
assessment of vulnerabilities difficult tasks to achieve.

Nuclear Reactors, Materials, and Waste Sector: The Nuclear Reactors, Ma-
terials, and Waste Sector allows power reactors to provide electricity to the
inhabitants of a country. The nuclear energy sector is, among the others,
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one of the most safety-critical domains and well regulated to avoid harmful
consequences to the users and the environment.

Transportation Systems Sector: The Transportation Systems wraps all the struc-
tures, both physical or virtual, people and means used to to move quickly,
safely, and securely people and goods through places. In the U.S.A., seven
subsectors belong to this field: Aviation, Highway and Motor Carrier, Mar-
itime Transportation System, Mass Transit and Passenger Rail, Pipeline Sys-
tems, Freight Rail and Postal and Shipping.

Water and Wastewater Systems Sector: The Water and Wastewater Systems
Sector is central to a nation public health sector, because safe drinking water
is a prerequisite for protecting public health and all human activities. The
Sector provides for public health and environmental protection. It is consid-
ered critical because a drinking water contamination accident or the denial
of drinking water services would have a catastrophic impact across a Nation
resulting in a large numbers of illnesses or casualties. Indeed, it is vulnerable
to a variety of attacks, including contamination with deadly agents, physical
attacks, such as the release of toxic chemicals and cyberattacks.

Each of these sectors has unique characteristics and operational modes. Thus,
different risk profiles to characterize and mitigate. In the U.S.A., the Sector Specific
Agencies (SSAs) were created to leverage expertise and institutional knowledge to
enhance the protection and resilience of the national critical infrastructure. Each
sector has a designated SSA, which employs its particular expertise to coordinate
and collaborate with DHS and other relevant Federal departments and agencies for
the protection of the infrastructure.

While the definitions may vary slightly depending the entities involved, Crit-
ical Infrastructures are generally considered as the key systems for the society.
In all cases, they are composed of both physical (e.g., buildings, facilities, etc.)
and virtual elements (e.g., data, networks, etc.). What constitutes the "critical"
portion may vary as well. Other countries define different sectors from those re-
ported above according to the available governement organizations. In any case,
the low-level structures (e.g., hospital, waterduct, etc.) to protect remain the same.
Typically, these might include elements of information and communications tech-
nologies (ICT), energy, public health, transportation and all the other sectors that
a country determines too important in the sense they provide security to the nation
inhabitants and support economic stability.

1.2 Critical Infrastructures Technologies
According to the Section 1.1, there are several terms and technologies associated

to the concept of Critical Infrastructure.
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In particular, this thesis focuses on the protection of Critical Information Infras-
tructures (CII). Independently on the sector, each Critical Infrastructure is com-
posed of physical and virtual parts. Within the virtual parts, there are ICT systems
that control, process, transmit or store information in any form, such as data, voice,
etc. All this information can be considered vital to the functioning of the critical
infrastructure. Also for CIIs, there are several possible definitions. In [70], CII is
defined as any "ICT systems that are Critical Infrastructures for themselves or that
are essential for the operation of Critical Infrastructures (telecommunications, com-
puters/software, Internet, satellites, etc.)". The CIIs include all the systems and
the services of a CI. The CIIs include also the communication (e.g., the telephone
network, the Internet, the cabled and wireless networks and terrestrial and satellite
communication networks). Moreover, CIIs might contain other infrastructures as
well. The CIIs constitute the underlying support platform for all Critical Infras-
tructures. Also CIIs are at risk of attacks, disaster and, for their nature, technical
failures. The high dependence of Critical Infrastructures on CIIs makes the last of
vital importance.

Several types of systems, such as embedded, mobile, Cyber-Physical Systems
(CPSs) and industrial control systems (ICSs) are used in critical infrastructures.
One of the main components in a CII is an ICS, which includes one or more types
of control systems that monitor processes and control flows of information. Op-
erators must continuously monitor and control many different sections a Critical
Infrastructure to ensure its correct operation. During the last decades this remote
command and control has been made feasible due to the development of network-
ing technologies together with ICS. ICSs are command and control networks and
systems designed to support industrial processes [116].

A large and estabilished subcategory of ICSs are Supervisory Control and Data
Acquisition (SCADA) systems. This technology allows for real-time data collection
by means of sensors. Data are then transferred to a control and monitoring part of
the system, across local communication links or through the Internet. The control
and monitoring system is generally physically distant from the sensors.

Another technology parallel to SCADA, in past few years, are the so called
Programmable Logic Controllers (PLCs). Also PLCs are important components
belonging to the ICSs category. PLCs support manufacturing automation (e.g.,
production lines machinery) usually within the industrial field. PLCs are remote
or distributed devices automating specific operations. The commands to operate
are issued by qualified personnel or can be pre-programmed as set of actions.

Nowadays, both PLC and SCADA are types of technology that can be consid-
ered slightly outdated when compared with the Internet-of-Things (IoT) and the
so-called Industry 4.0. The IoT is an important concept including a wide range
of networked devices and sensors used to create a new set of applications. The
IoT is deeply changing several fields by enabling the diffusion of home-automation
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concepts, such as smart energy management and "smart-homes", or new medical de-
vices revolutionizing health care sectors [214]. In the context of Critical Infrastruc-
tures, the integration of Industrial Internet-of-Things (IIoT) into the technologies
employed is aiming to improve efficiency in many crucial areas [155].

The increasing flexibility of these technologies introduce several advantages, but
also disadvantages. This exposes the Critical Infrastructures to cyber-risks and to
faults, as will be discussed in Sect. 1.4 and in Sect. 1.3. The criticality of the
infrastructure results in a demand for building such systems to be resilient and
with protection against cyber-threats in mind, even more than conventional ICT
systems, considering that a failing Critical Infrastructure could result in a cascading
failure of systems, provoking also fatal effects [182].

1.3 Security considerations
Security is among the most important aspects of a Critical Infrastructure. In-

sufficient security measures or even absence of appropriate security mechanisms,
may lead to the distruption of a Critical Infrastructure, turning into catastrophic
consequences to physical or economic security, public health or safety of citizens of
a nation.

The new technological advancements that are integrated into Critical Infras-
tructures lead to new cyber-security threats. The deriving risks are required to be
taken into account beforehand and to be managed with specific security solutions.
There are constant growing concerns about how to effectively protect Critical Infras-
tructures, given their crucial importance for the society and the environment they
are embbedded in. Massive technological advances in this field for performance,
efficiency and productivity increase the possible risks. Moreover, nowadays, these
systems work no longer in isolation. Instead, they are becoming integrated into
other systems shaping inter-dependence with other infrastructures [11, 14]. This
requires that Critical Infrastructures must be kept secure from any possible source
of danger, to avoid the negative consequences. Thus, it is important to address
effectively potential security threats to successfully protect these systems [16]. Pos-
itive gains from new technologies, such as IIoT, are counterbalanced from improper
security design foundations of new devices increasingly integrated in such systems.
Many of these IoT devices address security as a remedy. Different vendors of the
same device can follow different security recomendation, caused by the lack of an
accepted security standards. A single device can represents a security weak point
that an attacker can exploit to compromise a larger network. Thus, the lack of se-
curity standards among IoT devices is a major concern [155] because of the impact
of a possible corruption on a Critical Infrastructure.

The ICSs employed in a Critical Infrastructure have some resemblance to com-
mon information systems. However, in the past, ICSs were traditionally isolated
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ad-hoc systems with proprietary devices, software and control protocols [201]. This
represents one of the major weaknesses in ICSs: communication protocols and their
implementations can be one of the main sources of vulnerabilities, according to [38].

PLCs can be considered almost as any common desktop PCs, so they are vul-
nerable to the same types of attacks as traditional ICT systems [206, 156, 44].
However, in some cases, the security of SCADA systems can be more challenging
than the traditional ICT systems. Indeed, early SCADA designs do not provide
industrial systems with the protection against cyber attacks, because the majority
of Critical Infrastructures were completely isolated. Old facilities employing these
kinds of control systems are still in use as of today. However, they can be partially
interconnected to other networks flowing to the Internet. This public surface is the
source of attack for malicious and remote attackers, i.e., cyber terrorists. Although
there exists protection countermeasures, such as firewalls, these might fail and in
some cases they might not be even used because they were absent in the design
of old control systems [39]. Moreover, common communication protocols are not
suitable for all possibile control systems. Indeed, SCADA and other industrial pro-
tocols (e.g., Modbus/TCP and DNP3) are critical remote communications of data
and control of the devices. However, these protocols were not designed considering
the security aspect and, in some cases, they lack basic security primitives, such as
authentication to execute commands [39].

Considering the technological advancements and the spreading of new techonlog-
ical devices in CPSs, the number of cyber-attacks directed towards power stations,
gas, and nuclear control systems is ever increasing [16]. In the past, the attacks
performed were limited to Denial of Service (DoS) or Man-in-the-Middle (MITM)
[167]. Instead, recent attacks are increasingly complex. The damage is aggravated
in the case the attack targets a CI, given the repercussion to the community served
by the system.

On December 23, 2015 a regional electricity distribution company in Ukraine re-
ported service outages to customers. Approximately 225,000 users lost power across
various areas. Shortly after the attack, Ukrainian government officially claimed that
the outages were caused by a cyber attack. The attackers employed a variety of
capabilities, including spear phishing emails and modification of documents by em-
bedding malwares. The attackers were able to harvest credentials and sensitive
information to gain access to the ICS network [52].

Another example of dangerous security attacks targeting the Critical Infrastruc-
tures is Stuxnet [140]. Stuxnet was reported in Natanz, Iran in June 2010. This
complex attack has apparently infected over 60,000 computers, more than half of
them in Iran. However, other countries affected included India, Indonesia, China,
Azerbaijan, South Korea, Malaysia, the United States, the United Kingdom, Aus-
tralia, Finland and Germany. Stuxnet is a sophisticated cyber attack designed to
penetrate and establish control over remote systems almost autonomously [82]. The
attack targeted only ICS controllers from one specific manufacturer (Siemens).
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1.4 Safety domain
Besides security, also the safety aspects is important in the context of Critical

Infrastructures. A safety problem in a subsytem of a Critical infrastructure may
result in dangerous issues for a Nation. The CPSs and their components employed
in the field of Critical Infrastructures differ from the traditional components for
the operational system requirements. Indeed, during the design and the lifecycle
of CPS, several aspects need to be considered, such as: components temperature
range of operation, power supply, redundancy and fault tolerance properties, testing
policies, etc. [238]. Human errors like misconfiguration or poor maintenance of the
CPSs also negatively contribute to the system safety.

Safety aspects are tighly related to security. In both domains, adverse events
might result in system corruption, which brings negative consequences. This is
especially important for a subtype of systems, i.e., safety-critical systems. In these
systems a failure could result in loss of lifes, significant property damage, or damage
to the environment. There are several well-known examples of such systems, such
as medical devices, flight control, nuclear power plants, etc. New technologies are
often embedded in control systems, originating new failure modes to be taken into
account during the design phase of a system in order to guarantee adequate safety
mechanisms able to avoid, manage or mitigate the faults [134]. In this sense, safety
and security are therefore two critical aspects for a CPS employed in a Critical
Infrastructure, both sharing the same objective: protecting the CPS from risks due
to accidental failures (safety) or due to intentional attacks (security).

1.5 Goal of the Thesis
The most ambitious objective of this thesis is to try to guarantee an improved

security and resilience for the Critical Infrastructures.
To achieve this goal, I focused on the most important requirements that a Crit-

ical Infrastructure must possess, i.e., safety and security. In this context, a Critical
Infrastructure is considered as a safety-critical system (whose failure could result
in loss of human lifes or serious injuries, significant property damage or damage to
the environment) and as a security-critical system (in which sensitive data must be
protected against external malicious attackers or accidental disclosure).

Due to recent technological advancements, these systems largely exploit hetero-
geneous technologies. The heterogeneous components are used as computational
devices to improve the performance or to provide greater flexibility of the whole
system. In this work, heterogeneous system employed in critical infrastructures are
analyzed under both safety and security domains.

More in details, the contributions of this thesis are as follows.
Chapter 2 presents an overview of the heterogeneous technologies employed in
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CIs and in CPSs. The focus will be on the components largely used as accelerators
or integrated to provide additional functionalities. In particular, are presented
technologies exploiting reconfigurability, parallel computation and security-oriented
features.

Chapter 3 offers an updated review of the State-of-the-Art, considering several
works carried out in the domain of security. It explores the related works on the
security of the microarchitecture of processors, which gained interest during recent
years due to the new generation of side-channel attacks. In addition, an overview
of security issues related to possible attacks on reconfigurable platforms is also
provided.

Chapter 4 focuses on the security at the microarchitectural level. This chap-
ter provides an analysis of a vulnerability exploiting a side-channel attack on a
consumer microprocessor. It analyzes the interplay between two relevant design as-
pects of a critical system, i.e., safety and security. Moreover, this chapter presents
the work published in: [46, 45].

In Chapter 5 the focus shifts on the protection of the communications against
security attacks. In particular, the systems considered are mobile heterogeneous
platforms, i.e., portable systems equipped with reconfigurable logic. Moreover, this
chapter presents the work published in [47, 48].

Chapter 6 details the development of the open-source library for an heteroge-
neous device exposing functions typical of hardware security modules. It analyzes
the security-oriented features of the firmware of the hardware device and the li-
braries of the host. An attack is performed against the platform to assess its
robustness from the security point of view.

Finally Chapter 7 concludes the dissertation, summarizing the key aspects re-
lated for the protection of Critical Infrastructures.
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Chapter 2

Heterogeneous Computing
Architectures

The computing platform employed in Critical Infrastructures and corresponding
Cyber-Physical Systems are based on several types of heterogeneous components. In
addition to microprocessors, each platform can contain many types of components,
such as sensors, peripherals, memories, accelerators, etc. This chapter presents an
overview of the computing technologies employed in this kind of systems.

2.1 Heterogeneity in CPS
Critical Infrastructures are composed by various types of systems, such as

Cyber-Physical Systems. CPSs are made up of physical parts, virtual parts and
cyber-physical parts. The cyber components are employed to monitor and control
processes in the real world, and receive data sensed from the external environment.
This provides a feedback loop to help dynamically adjust the behavior where phys-
ical and cyber overlap.

As stated in [151], CPSs can be considered as the product resulting from the
integration of heterogeneous systems. They are composed of heterogeneous parts
and distributed systems that integrate and interact with other information systems
and physical systems. For example, CPSs employed in existing manufacturing
practices are blended into the production, logistics and services [144].

Recent technological advancements have led to greater sensor availability and ac-
cessibility, high-throughput data processing systems and computer networks. This
forced a growing number companies and factories of the industrial environment
to shift towards the adoption of different technologies. In consideration of the
demands on the needed functionalities, the safety, the security and the cost of a
CPS, the choice of implementation involves the use of a variety of different types
of technologies in both architecture and functional domains, originating various
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solutions. In recent years, the range of available alternatives has transformed to
include different types of devices. The heterogeneity is represented in the design of
the various features and in its implementation, which includes different components
such as Digital Signal Processors (DSPs), microprocessors, memories, components
with networking capabilities, sensors, actuators, etc. All these components are of-
ten integrated into a single chip. Moreover, in these platforms one or more types
of programmable components is integrated on the same system to offer specialized
capabilities giving the possibility to handle particular tasks. As an example, a
programmable logic device can be combined with a microprocessor, resulting in an
heterogeneous system.

The following sections, illustrates the various types of components that can be
integrated among the computing components of a CPSs. This integration produces
some form of gain for the whole systems. The benefits are usually related to the
different system design dimensions, such as:

• Performances: the presence of hardware accelerators ad-hoc engineered for a
specific application increases the performances;

• Power Consumption: the employment of low-power devices for specific tasks
decreases the overall power consumption;

• Flexibility: the capability to modify or improve the system setup leads to
maximize a certain cost dimension (not necessarily fixed);

• Security: certain components can bring improvements and specific function-
alities from a security point of view.

However, these dimensions are inter-related. For example, a component that
brings a speed-up in performances might increase as well the total power consump-
tion. Thus, it is necessary to carefully design the system resorting to effective design
space exploration techniques (e.g., [202]).

2.2 CPU
Traditionally, the cyber part of CPS and the backbone of the CII rely on CPUs

as the main components to build systems and networks. CPUs are an established
technology that dates back around 1950 and they are at the base of every type
of computer. Processors are able to carry out computations and possess general-
purpose computational capabilities, i.e., they are not optimized for a specific do-
main. The trend in processor development has been toward the integration of
multiple processing units (or computational cores) in the same CPU. Currently,
desktop CPUs are equipped with 8 cores, while CPUs used in server computers
have 16 cores available. In this way, CPUs become the optimal choice for handling
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concurrent processes. Indeed the instructions to be executed can be run on sep-
arate cores of the same CPU at the same time, increasing overall computational
performance.

Although software applications support techniques such as multithreading or
other parallel computing techniques, the multi-core CPU architecture might not
be capable enough to handle large-scale parallel computations. CPUs can exploit
multithread processing to achieve faster execution. However, in case of very high
number of threads, the performance on CPU do not scale well. Indeed, the con-
text switching operation causes a not negligible overhead resulting in performance
penalties. Also the dispatcher, the scheduler and the cache operations do not scale
well when the number of threads is high.

2.3 GPU
GPU (Graphics Processing Unit) is a relatively new technology designed for par-

allelizable problems. It was initially created specifically to handle graphics-intensive
applications, however it has become more capable of general computations (i.e., so-
called General-purpose computing on Graphics Processing Units - GPGPU). A
GPU is a heterogeneous chip multi-processor.

From the architecture point of view, a GPU is composed of hundreds of pro-
cessing units. The high number of cores allows to handle thousands of threads
simultaneously. Conversely, multi-core CPUs are composed by few cores and are
able to handle quite few software threads. However, CPUs are designed to min-
imize latency resorting to cache memories. Instead, GPUs are high-latency but
high-throughput processors. This consideration allows for GPUs to have a bet-
ter transistor/area ratio to be employed for more ALUs and therefore to be able
to run many more threads of computation. A simplified comparison between the
architecure of CPU and GPU is shown in Fig. 2.1.

Running tens of thousands of computational threads, lead to synchronizations
issues. To avoid synchornization stalls and preserve the speedup, each computa-
tional thread is required to be independent from each other. GPU is indeed an
architecture in which multiple processing units process multiple data streams in
parallel, i.e., Single Instruction stream, Multiple Data stream (SIMD) architecture.
SIMD represents a category of instructions in which perform the same operation on
multiple registers simultaneously. The data parallel problems are those that benefit
the most from the SIMD architecture. Exploiting data parallelism allows to dis-
tributing the data across different processing units. All of them perform in parallel
the same operation, but on a different small piece of data. Several problems belong
to this category, such as scientific computing, physics, simulations and especially
graphics, image and video processing. CPUs also have SIMD instructions. However,
a CPU has a limited number of sequential cores, while a GPU employs thousands
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Figure 2.1: Comparison of simplified GPU and CPU architectures.

of parallel cores. A comparison of the main distiguishing features between CPUs
and GPUs is reported in Table 2.1.

Table 2.1: Comparison of the main features of GPU and CPU.

Feature GPU CPU
Parallelism Data Task

Instruction Same instruction,
different data

Different instruction,
different data

Latency High Low
Throughput Moderate High
Cache size Small Large
No. of Cores Hundreds Tens
No. of Threads Tens of thousand Thousand
Thread Management Implicit Explicit
Power Consumption High Low to High

GPUs use various optimizations to improve throughput. Usually the GPU chip
is embedded into a card, which is attached to the host platform where the CPU
resides. Data transfer between the CPU and the GPU is time-consuming. Thus,
GPUs often integrate memories, such as on-chip memory and local caches, to reduce
bandwidth to external memory. To improve the throughput, GPUs use stream pro-
cessing where the same series of operations, called kernels functions, are executed
against each element composing a set of data, that is the stream. These kernel
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functions are usually pipelined to avoid stalls and performance loss. Moreover, to
avoid performance losses deriving by thousand of thread, their management occurs
in hardware by the GPU itself.

2.4 CPU + GPU
An architecture composed by a CPU coupled with a GPU as an external com-

putational device can suffer of different factors that limit the efficacy brought by
the heterogeneity of the components.

One of these limitations derive from the communication between the CPU and
the GPU. From the architectural point of view, the data to be processed reside in
the main memory. In order to exploit the parallel computational capabilities of the
GPUs, the data have to be moved from the main memory to the GPU memory.
After the kernel functions have been executed on the GPUs, the output of the
computation has to be moved back to the main memory. This kind of data transfers
requires time, which is related to the available interconnection bandwidth. Altough
the transfers unburden the CPU from computation, they constitute a bottleneck.
Thus, this slow down partially defeats the benefits of the GPU computational
efficiency and greatly reduce the performance of the whole sytem.

Another issue related to GPUs is the power consumption. Given the high num-
ber of computational resources, a GPUs is considerably more power-hungry with
respect to a CPU.

For these reasons, technology trends show that CPUs vendors are shifting to-
wards a tighter integration of CPU and GPU on the same die. Already back in
2010, AMD released Fusion APUs, Intel released Sandy Bridge architecture and
ARM with MALI represented technological solutions that integrate general pur-
pose CPUs together with GPUs.

These heterogeneous devices merge the functionalities of both architectures, by
combining the benefits and limiting the drawbacks of the two separate components.
The integration of CPU and GPU into a single unit on the same chip provides
several advantages. The components integration allows the use of shared structures
which translates in a reduction of costs. Moreover, CPU+GPU architecture reduces
the bottleneck of communication because no explicit data transfers are required
between the CPU and GPU. Finally, integrating the GPU and CPU has a positive
impact in power consumption than having a CPU with a separate and dedicated
GPU. Altough currently these integrated devices are quite powerful, a modern
dedicated GPU almost always outweighs the CPU+GPU from the computational
point of view.
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2.5 FPGA
Field-Programmable Gate Array (FPGA) is a type of reconfigurable hardware.

It is essentially a semiconductor device as an integrated circuit (IC), but it offers
the possibility to be re-programmed, i.e., it can change the functionality of the
hardware itself. The programming can be performed once or multiple times. One
of the main advantages of FPGAs is that the circuit can be programmed in-the-field,
i.e., after the manufacturing process.

This characteristic allows the user to redesign repeatedly an hardware solution
to solve specific types of problems more efficiently and to deploy it on the same de-
vice without requiring expensive procedures. The design can also be changed after
the final product embedding an FPGAs has been shipped to customers out in the
field. This reconfigurable feature also distinguishes FPGAs from Application Spe-
cific Integrated Circuits (ASICs), which are custom IC designed for specific tasks
that cannot be modified after manufacturing. Moreover, the manufacturing time for
ASIC might require many months. In addition to their flexibility, limited product
development costs and continuously growing computing capabilities make FPGAs a
viable alternative to ASICs. Modern FPGAs offer programmable logic blocks, flex-
ible clock generation and interconnection circuitry, memory blocks and embedded
hard DSPs. Some specific device families also feature special embedded hard blocks,
such as entire microprocessors, memory controllers, RAM blocks transceiver I/O
providing high-speed, allowing additional flexibility and incresing computational
capabilities. Other families are characterized by low-power consumption. On some
types of applications FPGAs can greatly improve the performance over conven-
tional microprocessors. The reconfigurable hardware can be used to implement
application specific accelerators on demand. To improve the performances the ac-
celarators can exploits parallelism property, where multiple independent operations
are executed at the same time in parallel. This is very crucial in applications that
performs operations such as convolution, bit manipulation, multiplication, etc. In
these cases, FPGAs can execute these instructions on multiple data at once, with
low control overhead and reducing the power consumption, unlike conventional
microprocessors. For these reasons, FPGA devices can be exploited in a variety
of applications ranging from HPC (High Performance Computing) and enterprise
environments to mobile devices. FPGA can be employed in critical application
scenarios to increase system dependability and lifetime [66, 50, 64]. They can be
employed as a stand-alone platform (i.e., like a normal IC) or can be integrated in
heterogeneous computing architectures of reconfigurable systems. FPGAs can be
paired with a CPU, composing a system in which hardware acceleration and pro-
cessing units run in parallel, effectively exploiting all the components and enhancing
the throughput of the system. Among the reasons behind FPGAs popularity, there
is a simplified design flow with respect to ASIC ICs. As a consequence, there is
a reduction of design costs which translates to a shorter Time-To-Market (TTM)
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leading to revenues increase.
The architecture of an FPGA is made up of a regular structure composed of

a two-dimensional array of Configurable Logic Blocks (CLBs). The elements in a
logic block can be configured to implement a certain set of functions. Each logic
block has a fixed number of inputs and outputs. The CLB can contain Look-Up
Tables (LUTs), Flip-Flops (FFs), and multiplexers. However, FPGAs realized from
different vendors use different architectures and also different components. The
basic structure of a LUT-based logic block1, shown in Fig. 2.2, is composed of:

• LUT: logic device which gives in output a specified value as a function of its
input;

• Flip-Flop (D-FF): asynchronous set and clear flip-flop, it is used as storage
elements for sequential circuits;

• Mux: multiplexer used to bypass the D-FF in the case of pure combinatory
cells.
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Figure 2.2: LUT-based FPGA Logic Block (S is set from the configuration bit-
stream).

The array of logic blocks is entangled within an interconnection network, i.e.,
each reconfigurable block is surrounded with communication lines. Also the in-
terconnection network can be configured through Programmable Switch Matrices
(PSMs). Modern FPGA devices usually embed additional special purpose blocks,
such as I/O Blocks, RAM Blocks, Multipliers, CPUs, and dedicated DSPs. Fig-
ure 2.3 shows the high-level internal architecture of a generic FPGA.

The programmable components in an FPGA must first be configured, in order
to implement the user-defined design. To configure the FPGA one need to set the
logic blocks and program accordingly the interconnections. The bitstream describes
the developed design in terms of boolean functions and interconnections to be set

1There could be also Mux- or ALU-based logic blocks
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Figure 2.3: FPGA internal architecture.

up on the FPGA. The bitstream is the final result of the design phase and it is
generated by the tools aiding the design provided by the vendors of the FPGA. The
configuration process, described visually in Fig. 2.4 is essentially the deployment
of the design. Basically, it involves the transfer of the bitstream into the target
device.

The bitstream flows from the configuration memory to the Configuration Layer
of the FPGA. This layer determines the kind of computation that shall be per-
formed. This level changes the behavior of the above Logic Layer, which is the one
actually performing the computations.

FPGAs can be distinguished based on the technology employed in their config-
uration memory:

• PROM-based: the memory is writeable only once. It implies that the FPGA
cannot be reprogrammed, but it is One-Time-Programmable (OTP);

• (E)EPROM/Flash-based: the memory is non-volatile. However this technol-
ogy allows limited re-writeability;

• SRAM based: exploit static memory cells. It is a volatile memory, thus FPGA
requires to be reconfigure every time after the boot up.

• Hybrid: the memory is composed by EEPROM and SRAM memories. In this
case, the power consumption is generally higher and is required a larger area.

Apart from the reconfigurability feature, some families of FPGAs also provide
adaptability through a feature called Dynamic Partial Reconfiguration (DPR). DPR
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Figure 2.4: FPGA Configuration process.

provides the opportunity to alter at run-time the functionalities impemented in
selected parts of the FPGA, while the remaining portion of the system stays fully
operational, without interruptions. This feature enhances the native flexibility of
FPGAs by enabling the capabilities for time-multiplexing of hardware resources.
DPR can be exploited in many application fields where it is necessary to optimize
designs [147] and to fulfill severe area constraints [169], to create a system-on-a-chip
with a high degree of flexibility [252], to realize adaptive algorithms [177], to be
more resilient against errors [170], etc.

2.6 Hardware Security Modules
Modern general-purpose computers, such as personal computers, smartphones,

tablets, etc. usually run many applications concurrently in a shared environment.
The Operating System (OS) does not guarantee that the resources used by vari-
ous applications are entirely separated, because this would hinder usability. This
exposes sensitive data used by applications to great risk.

Altough all those applications that perform critical operations on sensitive data
might resort to some encryption mechanism to protect the information, a malicious
application might be able to gain access to the cryptographic keys stored in RAM
or in permanent storage.
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Using dedicated hardware specifically to enhance the security of a system is
often advisable, especially in contexts where security is a key aspect. In the real
world, this occurs very frequently: for example, banks offer various types of smart
cards to their clients for authorization of transactions, and also mobile network
providers have been using smart cards to authenticate their subscribers for access-
ing their services. Smart cards, however, do not cover all the potential scenario
for cryptography: very often, a more comprehensive and more flexible solution is
needed.

Hardware Security Modules (HSMs) are special-purpose computational devices,
tailored to provide a wide range of security features. HSMs can be used together
with a general-purpose computer or integrated into a larger system. Simpler hard-
ware tokens, such as smart cards and SIM cards, can be considered as a common
example of HSM employed for authentication purposes. However, HSMs are able
to perform additional tasks.

These devices can secure various sensitive data processing operations and pro-
vide robust mechanisms for authentication and encryption processes. They are
usually anti-tamper hardware devices realizing security and cryptographic func-
tions. HSMs can perform several cryptographic algorithms, without exposing the
secret keys employed. Most of them can aid the evironment where they are em-
ployed to manage multiple keys associated with respective processes. In general,
organizations make extensive use of HSMs to enforce their security policies and ef-
ficiently maintain their access controls mechanisms. Basically, security modules are
used for encryption/decryption of various cipher algorithms and key management
operations (e.g., key generation, key storing, key exchange).

Appropriate handling of cryptographic secrets for the practical use of cryptog-
raphy is crucial. A cryptographic key goes through several life stages such as key
generation, secure storage, secure key exchange and distribution, backup and fi-
nally destruction. An HSM is specifically used to protect these secret information
in every stages of their life cycle. HSMs control logical and physical security of
cryptographic keys from attackers and unauthorized activity.

HSMs can also provide improved cryptographic performance. Its integration in
a security-critical environment results in a more effective architecture. In this case,
the HSM is an advantageous component to provide security functionalities able to
reduce security risks and to achieves high performance in cryptographic operations,
by offloading expensive computations from the central unit.

The functionalities and capababilites of HSMs are ever changing and increasing.
An extended and detailed list of standardized characteristics is provided in the PCI
PTS HSM v3 [183]. Considering the importance of HSMs, it is essential that
they provide some assurance of their security. FIPS 140-2 [84] is an international
security standard used to approve cryptographic modules. In [84], four levels of
security (Level 1 to Level 4), are defined: HSMs that are compliant with FIPS
140-2 security Level 3 and above provide the highest level of security.
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Several commercial HSMs are available. Portable versions are available too.
Common and wide-spread HSMs of this kind are reported below:

• YubiKey2: it is a USB device providing secure authentication. It provides
one-time-password (OTP) and other authentication features. It is not pro-
grammable.

• USB Armory3: it is flash drive-sized computer in an USB device. It is open
hardware and software. It includes a 800MHz ARM Cortex-A8 CPU, 512MB
RAM and microSD card slot for storage. It can run some Linux distributions.
It is programmable and customizable.

• SEcube™ 4: it is an hardware chip. It is composed of a microcontroller, an
FPGA and a smart card in a single package. It is open source (further details
on this platform will be discussed in Chapter 6).

• TREZOR Bitcoin safe5: a hardware bitcoin wallet used to protect cryptocur-
rency funds. However it provides also password manager and secure authen-
tication capabilities. It is not programmable.

• NitroKey6: it is a USB device providing secure authentication and encryption
services. It is both hardware and software open-source.

Some of these devices are fully programmable, by being open-source. Those
with closed-source code can no longer be independently reviewed for security flaws.
There are devices also more similar to a normal computer, i.e., running an Oper-
ating System. Others are considered as security tokens, because they share some
similarities with handheld devices. Usually, thay are shaped in a "key" form-factor
and communicate with an host device through USB CDC device emulation. Some
devices also act as a password manager, supporting key management operations.
In general, this kind of devices can be also integrated into larger systems.

2https://www.yubico.com/
3https://inversepath.com/usbarmory.html
4https://www.secube.eu/
5https://trezor.io/
6https://www.nitrokey.com/
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Chapter 3

Security Attacks

This chapter provides an updated review of the state-of-the-art regarding related
works on security attacks with a focus on hardware-level attacks. First a global
overview of the security landscape is provided, focusing on side-channel attacks.
Then, microarchitectural security attacks are analyzed. Finally, a review on security
issues regarding reconfigurable logic is described.

3.1 Security overview
(Cyber)Security is not a clearly demarcated field of academic study that lends

itself readily to scientific investigation. Rather, it combines a multiplicity of disci-
plines, such as technical as well as, in some cases, behavioural [80].

According to NIST [132], computer security is defined as:

Computer Security Measures and controls that ensure confidentiality, integrity,
and availability of information system assets including hardware, software,
firmware, and information being processed, stored, and communicated.

Security has its roots in three pillars, i.e., confidentiality, integrity and avail-
ability, constituting the so-called CIA triad. These three properties establish the
key objectives of the computer security. The interpretations of these three aspects
vary, as do the contexts in which they arise. The interpretation of an aspect in a
given environment is dictated by the needs of the individuals, customs, and laws of
the particular organization [28].

Confidentiality is the property concerning the obfuscation of sensitive informa-
tion or resources. This term involves two other concepts: (1) Data confidentiality:
it concerns the protection of data that is private or confidential information by
making it unavailable or undisclosed to unauthorized parties. (2) Privacy: Ensures
that the information related to individuals can be controlled in terms of who can
collect them and to whom they can be disclosed to. It is focused on individuals,
such as persons, organizations or any other entity, especially on their sensitive data.
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The need to keep information confidential stems from the diffused use of com-
puters and computational devices in organizations handling classified information,
including governments and industries. As an example, let us consider institutions
such as military and civilian agencies. These institutions very often limit the ac-
cess to information to those who need that information. Confidentiality enforces
the so-called "need to know" principle which is a general principle, developed in the
context of information security and in the management of security systems, accord-
ing to which only the subjects who must perform information processing activities
are authorized to process only the data essential to the fulfilment of the task as-
signed to them and the data must not be shared, communicated or sent to third
parties who do not need it. This principle also applies to industrial companies,
which desire to maintain their design and projects confidential and secure them
from competitors that might try to steal and copy the property, allowing financial
losses to arise. Further examples are given by every type of institutions that keep
employee and personnel records secret.

Confidentiality is ensured through mechanisms of access control that regulate
data access. Access control mechanisms allow authorized parties to access the pro-
tected data and deny access to unauthorized parties, thus preventing confidentiality
breaches. One access control mechanism for preserving confidentiality is cryptogra-
phy. Simplifying, cryptography transforms human-readable data through a process
(i.e., encryption) so that the data becomes unrecognizable and incomprehensible.
Encrypted data can only be accessed by individuals who possess the key to de-
crypt the data. However, the cryptographic key itself becomes another piece of
information to be protected and to be kept secret.

Confidentiality also applies to the existence of data. The existence of data, in
some cases, reveals more information than the data itself. Access control mecha-
nisms can be used to disguises the existence of data, because the presence of data
itself might reveal information that should be protected.

A further important component of confidentiality is resources hiding. Some-
times, companies try to mask their network configuration, as well as the technolo-
gies they use. Organizations may not allow everyone to know about the particular
equipment they employ. Access control mechanisms provide these capabilities as
well.

Integrity refers to the reliability of data or resources, and it is generally meant
to prevent illegal, unwanted or unauthorized changes. This term covers two related
concepts: (1) Data integrity: Ensures that information stored or exchanged is
only changed in a defined and authorized way; (2) System integrity: Ensures that
a system performs its intended function without any impairments and without
unwanted or unauthorized modifications of the system behavior.

Integrity involves data integrity, which concerns the content of the information,
and origin integrity which is related to the source of information.
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Mechanisms to assure integrity can be divided in two classes: prevention mech-
anisms and detection mechanisms. On the one hand, prevention mechanisms aim
to protect data integrity by denying any unauthorized attempts to modify the data
or efforts to modify the data in unauthorized manner. Both attempts concern au-
thorization. In the former attempts, only authorized users are allowed to make
changes to data. The latter instead, occurs when an user properly authorized to
make specific changes, tries to alter the data in an illegal way.

On the other hand, detection mechanisms do not seek to avoid nor to prevent
violations of integrity. These mechanisms are simply used to report that the data
can no longer be trusted. Detection mechanisms can evaluate events, originating
from an user or from a system, to detect any issue concerning the integrity. They
might as well analyze the data itself to recognize unwanted changes. Integrity is
very different from confidentiality. With confidentiality, the information is either
compromised or it is not, while integrity involves both correctness and trustwor-
thiness of the data. This implies that the integrity of the data can be affected or
compromised in every step, spanning from the source to the receiver of the data.

The availability ensures that a system operates efficiently and authorized users
can take advantage of the services offered by the system.

Availability refers to the ability to use information or resources. Availability is
an important aspect of reliability as well as of system design because an unavailable
system does not offer any service and is then equivalent to having no system at all.
From the security point of view, availability becomes relevant when someone might
voluntarily tamper with the system by denying access to the services or to the data
stored in the system itself. In this case, the system is unavailable and its users
cannot be served. Usually this aspect is considered in the system design phase.
At this stage, the designers hypothesize statistical models to analyze expected us-
age patterns and then decide the proper mechanism to ensure availability of the
system and the continuity of the services. An attacker might force the system to
work outside the area of the assumption model, so that the mechanisms for keep-
ing the resources or data available are working in an environment for which they
were not designed. As a consequence, the system is in an unpredictable behavior,
which usually leads to failures. Identifying the intentional attempts to undermine
availability of a systems, which are attacks called Denial-Of-Service (DoS), is a
challenging problem. The difficulty lies in the pattern of access to the system or to
its services, i.e., it is necessary to recognize those irregular access patterns traceable
to intentional resource or environment manipulation.

The security field is huge. It is therefore important to understand where it is
necessary to act within the security field. Several possible ways to organize the
knowledge in this field have been proposed through taxonomies. A Taxonomy
is defined as "a system for naming and organizing things, especially plants and
animals, into groups that share similar qualities" [228]. However, it has to be
considered that there is never one uniquely valid taxonomy in a specific domain,
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but instead a taxonomy might be more representative and expressive than another
one in a specific context. Several general taxonomies for security do exist [133,
153].

Scientific study is further complicated by the rapidly evolving nature of threats,
the difficulty to undertake controlled experiments and the pace of technical change
and innovation. Securing critical infrastructures and cyber-physical systems re-
mains a challenging problem because the exponential growth of cyber-physical sys-
tems is accompanied with the rise of new security challenges. New vulnerabilities,
threats and attacks have been introduced with technology advancements. As an
example, the trend of using the Cloud will soon reach the Critical Infrastructures
[182]. This trend also opens security concerns because existing methodologies and
strategies for designing secure applications only tackle security issues and protec-
tion problems in either the Critical Infrastructures or the Cloud. Specific methods,
techniques, tools or guidelines may support only a limited set of common Critical
Infrastructure requirements [182]. Also SCADA systems are increasingly dependent
on the Internet as provided by the carriers [89].

A systematic model to address the security concerns in the context of CPSs is
missing [112]. This lack, is due to:

• diversity of CPSs: each CPSs is, in general, different from another. The
differences can reside in the field of application, in the system architecture,
in the interconnections, etc. Eventually, any sectors of critical infrastructures
generates different security problems, presenting different risks and threats
and thus techniques to address the security issues.

• heterogeneity of CPS components: different types of components are em-
ployed to compose a CPS or a part of it. Each one introduces security
problems that require tailored techniques for securing a specific subsystem
or component.

In particular, these reasons make difficult to study and address the security prob-
lems with just a unique generalized model. Recently, however, a general approach
to model the security of a CPS has been shown in the survey [112].

Very often each application of technology, origins its own security issues. In the
available literature, to tackle the security issues several works have been published.
Each one addresses various security attacks and security models for a specific field of
applications. In field of Telecommunication, the works [87, 215] offer an overview of
the security challenges in Wireless Sensors Networks (WSNs). Related to the world
of Automation, the survey of [68] presents an update review of attacks in Industrial
CPSs, while the publication [17] shows security problems of IoT systems, more
specifically in a Smart-home environment. In the Transportation sector, the work
of [232] addresses the security in Autonomous Vehicles. In the area of Energy and
Power systems, the authors of [225] present a solution for network security situation
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awareness based on the power monitoring system network security metadata. In the
recent work [59] in the field of Electricity Grid, the authors show a comparison of
the benefits among attack models in a CPS belonging to this field. In [184] an up-to-
date and comprehensive security analysis of Smart Grids framework is presented, as
well as attack scenarios, attack detection and attack protection methods, estimation
and control strategies from both communication and control perspectives. Finally,
in the Healthcare sector, various security attacks affecting electronic healthcare
systems are provided in [191].

A class of attacks that might lead to important security breaches are Side-
Channel Attacks (SCAs). These attacks might be performed even if normal security
and safety mechanism are correctly integrated. They might target devices, such as
embedded systems, left unattended because physically located at the end nodes of
a critical infrastructure (e.g., sensors and/or actuators, PLCs, networking devices,
etc.), so that the attacker can have physical access to these devices. To worsen the
criticality, some SCAs can take place also remotely.

3.2 Side-Channel Attacks
Ideally, the mechanisms to achieve information security are secure (or they

are typically considered secure enough) in theory. However, a specific practical
implementation of such methods might not be inherently secure. A possible im-
plementation of a process might release other information as unintended output.
Side-Channel Attacks (SCAs) are a category of security attacks exploiting specif-
ically this type of information, which is leaked from the implementation of an
algorithm rather than from the algorithm itself. This "side" information is sensed
from a channel that lies in the environment, rather than being extracted directly
from the target. In Fig. 3.1 is depicted the "side" information deriving from the
implementation a process.

As an example, one can consider a software implementation of an encryption
algorithm. The software application requires a certain time to run an encryption
on a specific amount of data, e.g., proportional to the size of the data. Supposing
to encrypt two chunks of data having different size, the difference in the execu-
tion time between the two encryptions might disclose information about the size
of the chunks of encrypted data. Although the obtained information is not critical
from the security perspective, this trivial example represents a good illustration of
side-channel information, given that the time information obtained is completely
unintended and produces, as a side effect, the information about data size. More-
over, in some cases, the information gathered might be used for other purposes.

Further examples of side-channel attacks might employ information gathered
from electromagnetic emissions, power consumption, temperature, timing, glitch
events, etc.
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Figure 3.1: Side-Channel information leaked from an implementation of a process
activity.

The early works on SCAs have been performed in 1996 by P. Kocher in [138].
This groundbreaking research work was an attack exploiting variations in an algo-
rithm’s execution time. This pioneering work, together with another [135], marked
the start of a new research field on side-channel attacks. Years later, side-channel
attacks were performed employing essentially any observable environmental change
(e.g., electromagnetic radiation, acoustic emissions, etc.) induced by different kinds
of computations. SCAs have been also performed on specific target devices, such
as smart cards [194, 154], because the hardware could leak components of its in-
ternal state including potentially sensitive information via behavioral and timing
differences.

This class of attacks is subtle to detect and might be hard to counteract, indeed
already in 1985 the U.S. Department of Defense was specifically concerned about
SCAs in its so-called Orange Book [141].

3.2.1 Side-Channel Attacks - Taxonomy
Several SCAs are possible. There exists multiple taxonomy as well [218, 29,

139]. Fig. 3.2 depicts a simplified taxonomy representing the various kinds of
Side-Channel Attacks.

SCAs can be classified according to two orthogonal dimensions, i.e., based on
the capabilities of the attacker and on the invasivity of the attack itself.

Considering the attacker, a SCA can be classified as:
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Figure 3.2: Taxonomy of Side-Channel Attacks.

• Active SCA: where an attacker purposely interferes with the devices by mod-
ifying or influencing it through a side channel, e.g., by means of an external
interface or environmental conditions. The attacker thus controls the device’s
operations in a manner that leads to unexpected behaviors, which enables for
possible attacks.

• Passive SCA: where an attacker is limited to observe the side-channel without
interacting with its target. However, the target during operation influences a
side channel potentially leaking sensitive information.

Fig. 3.3 shows a graphical representation of the difference between an active and a
passive SCA.

Figure 3.3: Representation of active vs passive SCA.

The other dimension is related to the invasivity of the attack and considers the
integrity of the attack target after the attack is performed. In this case, the SCA
is divided into:

• Invasive: performing the attack requires interactions with the target resulting
in a destructive impact.
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• Semi-Invasive: after the attack, the target presents minor impacts.

• Non-Invasive: the attack target is left untouched.

An additional characteristic of this type of attacks, is the employed channel
of information leakage. The first works on SCAs of P. Kocher exploited timing
information [138] and power consumption [135] as physical measured quantities.
Others works classified as non-invasive SCAs, employed electromagnetic analysis
[194], simple power analysis (SPA) [158], temperature information [115], glitches
forced in the clock signal [193] or glitches due to power [91]. The semi-invasive
attacks, according to [139], are performed exploiting faults attacks. The information
retrieved are interpreted resorting to faults analysis [27, 146]. In this case, the
attacker manipulates the environment in a way that influences the attack target.
The target is thus forced to work outside the defined area for which it was originally
designed in order to intentionally trigger faults, such as faulty outputs or fault
behavior. Fault injections are also used to obtain special information leakage under
the faulty environment. Among the semi-invasive attacks, according to [139], laser
fault injection [200], electromagnetic fault injection [176], and optical fault injection
[245, 216]. To be carried out, faults attacks often require a certain degree of physical
access to the attack target. Finally, invasive attacks involve physical alterations
provoking total or partial destruction of the attack target. If the target is a chip or
a device, a possible invasive SCA consists into the removal of external packaging
to get direct access to the internal components. After the removal of the enclosure,
the attacker can locate a data bus and physically analyze through probing needles
sensitive data transfers.

Although the majority of the SCAs are hardware-based, there exists also software-
based microarchitectural attacks [143]. Also this type of side channel attacks take
advantage of indirect flows of data to extract sensitive information, but the flow
resides within microprocessors. Thus, as discussed in the two surveys [218, 139],
a further classification can be according to the type of information exploited, i.e.,
either logical or physical properties. Attackers resorting to this type of SCA are
able to execute some software on the attack target in order to exploit both physi-
cal properties as well as software features (logical properties, such as the memory
footprint) [218]. Details about this class of SCAs are further elaborated in Sect.
3.3 and in Sect. 3.3.1.

3.3 Microarchitectural Side-Channel Attacks
The components employed in CPSs and in CIs operate under a security crit-

ical framework. In general, security and safety countermeasures are employed in
these systems to protect from well-know cyber attacks, such as software vulnera-
bilities, malwares, etc. However, there are important hardware vulnerabilities that
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can be exploited to perform software or hardware attacks, leading to dangerous
consequences.

Computers are increasingly handling sensitive data. The microprocessor is at
the base of every type of computing node. In CPSs, the microprocessor is located
in both the cyber elements and in cyber-physical elements. This component is
thus crucial for any kind of system where it is embedded into. For this reason,
the security concerns related to this component should be addressed carefully and
extensively.

The focus of this section is on the microarchitectural structures within the mi-
croprocessor and the respective possible attacks. Also, the authors of [88], consider
that microarchitectural channels are an important feature that requires investiga-
tion from the security point-of-view.

Nowadays, multiple processor cores are deployed in devices such as laptops and
desktop PCs, servers and cloud-based system infrastructures as well as in mobile de-
vices such as smartphones and wearables. All these devices, manipulate and store
sensitive data. Side-channel attacks gained interest because the information can
be leaked also through various hardware components of the microarchitecture. Mi-
croarchitectural side-channel attacks exploit information leakage that occurs within
the microarchitecture a CPU. Usually, the structures within a microprocessor in-
troduce important optimizations to improve the performances of the computing
system. From the security perspective, however, the units within a microprocessor
could be exploited from an attacker. The microarchitectural structures open up
security criticality that if not addressed, might lead to security breaches. Thus, the
whole microarchitecture might represents the attack surface. Evaluating side chan-
nel vulnerabilities of software running on a CPU should take the microarchitectural
features of the processor itself into account [21]. Conversely to the earliest and to
the majority of works concerning SCAs, microarchitectural side-channel attacks
are mostly exploited through software [95], indeed are also called software-based
microarchitectural side-channel attacks.

3.3.1 Attack points in Microarchitecture
According to [210], a microarchitectural SCA relies on the existence of a mi-

croarchitectural element with the following properties: (i) it is shared between
attacker and victim application, (ii) its state changes based on the processed data
and (iii) the state can be inferred from (a combination of) side channels. The first
property usually defines the scope of the attack, because the element can be shared
in many ways e.g., among some threads and some processes for L1 caches, among
multiple CPU cores for Last Level Caches (LLC), etc. The second property im-
poses a dependence between the behavior of the element and the data that it is
processing. Finally, the third property allows to "read" the internal state of the
element through a measurable (directly on indirectly) side channel information.
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The target of this section is not to exhaustively overview every possible attack
in the microarchitecture, but rather to analyze the possible attacks directions and
assess the potential risks they can present to the security domain. Several surveys
available [4, 86, 88, 224] depict the current situation of microarchitectural SCAs.
Indeed, this section provides a review of the state-of-the-art of the attacks targeting
three microarchitectural features, i.e.,: (i) CPU Cache Memories in Sect. 3.3.1, (ii)
Page-Translation in Sect. 3.3.1, and (iii) Speculative execution in Sect. 3.3.1.

CPU Cache Attacks

CPU cache is a fast and relatively small memory that buffers the data stored
in the main memory, which requires higher latency time to access. The stored
information is the one the CPU is most likely to need next. This expresses the so-
called principle of locality and considers that usually the software does not access
all its code or data uniformly. The term "locality" can refer to both time - temporal
locality and space - spatial locality. This memory allows an increase of speed in
the case the data needed is already stored in the cache (i.e., a cache-hit occurs)
involves a penalty in case the data is not in the cache and requires in turn a load
from another memory (i.e., a cache-miss occurs). Most recent CPUs include a
hierarchy of caches, organized as in Fig. 3.4. The CPU cache is usually composed
of different levels of caches of increasing size. Each cache is internally divided in
blocks of fixed size, called cache lines. Further details about CPU architectures can

Figure 3.4: Memory Hierarchy representation.

be found on [105].
Cache side-channels exploit the fact that the memory is a shared resource at

system level, i.e., it is not isolated by process, Virtual Machines (VMs), or privilege
level. Many algorithms, including cryptographic algorithms, have memory access
patterns that are dependent on the memory contents. Indeed, the ultimate targets
of CPU cache attacks are usually (but not limited to) cryptographic information,
such as cryptographic keys, that allow to violate the confidentiality of the system.
There are essentially two basic mechanisms employed by an attacker to perform a
cache side-channel attack against a victim:
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1. the attacker sets the cache into a known state; it lets the victim work; it
checks for changes from the known state.

2. the attacker establishes a timing baseline of the victim normal operation; it
arranges some changes in the cache; it re-times the victim operation again.

In both cases, the attacks leverage the intrinsic property of caches, that is an access
to data residing in the cache requires less time than the one to data not residing in
the cache: when a time difference is detected, the attacker is able to tell if something
has changed.

According to [4, 168], CPU cache attacks can be categorized in three types,
based on the knowledge the attacker is able to collect about a target/victim process:

• Time-Driven [198]: the attack tracks the cumulative number of hits and misses
in the cache, often by evaluating the overall execution time to get the aggre-
gate profile of the cache activity (e.g., the total execution time for the victim
to perform a block encryption).

• Access-Driven [168]: the attack leverages the ability to detect whether a cache
line has been evicted, i.e., the information is related to the addresses accessed
by the victim.

• Trace-Driven [5]: the attacker is able to capture the profile of the cache
activity, i.e., he or she is able to tell the outcome of each memory access
operation in terms of cache hits and misses.

In [88], general categorizations of the various attacks are presented and arranged
according to different parameters, such as the sharing level of the resource exploited
and on the level of concurrency used. Based on the employed attack techniques, the
attacks can be divided in the following types: EVICT+TIME, PRIME+PROBE
and FLUSH+RELOAD. These methods are discussed below.

EVICT+TIME
The technique evict and time considers the execution time measurement. Initially,
an attacker lets the victim process to run in order to populate the memory and
establish a baseline execution time. Then, the attacker proceeds to evict a cache
set and lets the victim run again. But in this case, the attacker also measures
the execution time of the victim process. If there is a variation between the two
measurements, the attacker can infer that the cache set evicted has been accessed
by the victim. The variation is due to a longer time required to fetch the needed
data. Such methods require that the attacker is able to precisely detect the start
and end time of a victim activity, which makes them usually not feasible when the
attacker cannot control the victim process (e.g., to trigger a computation). This
approach allows to establish which cache set is used by the victim.
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This technique has been described and generalized in [178]. Bernstein, in the
work [24], presents a variant of this technique, which still exploits the timing vari-
ability due to cache effects by relying on the existence of a statistical timing pattern
of memory accesses during computations. Also this attack targeted the recovery of
an AES encryption key. The victim is the OpenSSL AES implementation running
on a remote server equipped with a Pentium III microprocessor. The same attack
has been imporved by Bonneau et al. in [33]. The cache timing attack of Bernstein
has been demonstrated on an embedded ARM-based platform also considering a
virtualization-based system in [250]. Later, a ARM-platform has been targeted
again with Evict+Time attacks in [217, 148]. A more recent work is reported in
[122], which is performed using the Last-Level Cache (LLC). The LLC is shared be-
tween all cores and this is exploited by the authors to parallelize the attack leading
to reduction of time needed to perform the attack.

PRIME+PROBE
The prime and probe technique consists of three steps: (i) in the first step (prime
phase), the attacker fills a cache set with his own data; (ii) in the second step, the
victim process is executed; (iii) in the last step, the attacker accesses again (probe
phase) the data of the first step and measures the access time. By timing the
access to its own data, the attacker is able to detect if the victim has evicted some
portion of data. In this case, the attacker data has been replaced by the victim
and accessing this data will incur in a cache miss. A cache miss will produce higher
timing, while lower timing means that the cache set has not been replaced.

This technique, like EVICT+TIME, allows to determine which cache set is
used by the victim, but improves the accuracy given that the cache access time
is measured directly (conversely, in EVICT+TIME it is measured considering the
whole execution time). This technique, requires that the attacker and the victim
share the same cache sets.

Previous works [185, 178, 234] employ this technique by exploiting L1-Data
(L1-D) cache to recover cryptographic keys. [185] targets the RSA implementation
in OpenSSL, while [178, 234] attack the AES cipher of OpenSSL in Pentium E4
and Athlon64. The works [3, 265] exploit instead the L1-Instruction (L1-I) cache.
Implementations of ciphers with key-dependent instruction flows can be vulnerable
to the attacks exploiting the L1-I leakage. Knowing the changes of state in the
instruction cache might allow an attacker to extract the instruction flow of the
victim software. The authors of [3] are able to mount and attack OpenSSL-DSA
implementation to successfully recover DSA keys. The attack is performed in real-
world settings, i.e., without modifying the cipher process. Other studies [150, 130,
199] employ the PRIME+PROBE method on the LLC. In [150] the target is the
implementation of ElGamal in GnuPG. [199] is based on LLC, but in a virtual
machine environment. The attacker is able to obtain confidential information,
such as network traffic load estimation and keystrokes timing attack in a physical
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infrastructure shared among different users also in the case their actions are isolated
through machine virtualization.

FLUSH+RELOAD
The flush and reload technique is a variant of PRIME+PROBE. The attack consists
of three steps, where a malicious process (or spy process) monitors the memory
lines accessed by a victim process: (i) in the first step, the monitored memory line
is intentionally flushed from the cache; (ii) in the second step, the spy waits for
the victim to access the memory line; (iii) in the last step, the spy reloads the
memory line, measuring the time required to load it. A fast reload means that the
victim accessed this line (and reloaded it) during step (ii). A slow reload states the
opposite, because the line will need to be fetched from memory and the reload will
take much longer time.

The FLUSH+RELOAD technique relies on sharing pages between the spy and
the victim processes. The advantage with this technique is that the attacker can
achieve finer granularity, with respect to PRIME+PROBE and EVICT+TIME,
because it works on single cache line.

This technique was first employed in the work of Gullasch et al. [98] attacking
the AES cipher. However, the first work assigning the name FLUSH+RELOAD
was by Yarom et al. [258]. This study is directed towards the LLC and uses the
clflush instruction to evict the monitored memory locations from the cache. This
work extends the one of Gullasch et al. [98], by allowing cross-core attack (i.e.,
the spy and the victim processes are executed in parallel on different execution
cores) and virtualized environments. The attack targets the RSA implementation
of GnuPG. This technique was also employed to recover AES encryption key in [119,
120, 99, 96] on Intel x86 platform and on ARM in [148]. Apart from being employed
against cryptographic algorithms, this technique has been employed interestingly
in the detection of user actions in [148, 247]. The authors of [247] use the SCA on
graphic libraries and their attack able to detect the keystrokes and discover what
keys have been pressed, leaking sensive information (e.g., PIN or password) of an
user. The attack is carried out on a PC as well as on a mobile device.

It is worth mentioning that there exist variants to the FLUSH+RELOAD tech-
nique, i.e., EVICT+RELOAD and FLUSH+FLUSH. In EVICT+RELOAD [96] the
steps are the same of FLUSH+RELOAD technique, but it avoids the use of clflush
instruction which might not be always available. Instead, the eviction operation is
performed. However, this technique leads to lower accuracy and it requires longer
time to be completed. FLUSH+FLUSH [97] is another variant: it still exploits tim-
ing variations of the clflush instruction, but instead of measuring the time to reload
the data, it measures the time needed to flush the data. It has been employed in
[37] to recover the encryption key of OpenSSL AES implementation.
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Page-Translation Cache Attacks

The memory addresses used by a processes do not correspond directly to actual
storage locations, but are virtual addresses. Virtual addresses are mapped by the
operating system into physical addresses. Address translation is the mechanism
for mapping virtual to physical addresses. Address translation provides a primitive
security mechanism, i.e., isolation: each process has a virtualized view of memory
with limited visibility/access to the underlying memory space. The mapping be-
tween physical to virtual addresses is stored in data structures called pages. Every
memory access realized by a process is translated1, affecting negatively the per-
formances, because of the penalty introduced with two memory accesses: the first
access to obtain the physical address and a second one to get the actual data. Using
the principle of locality Exploiting the principle of locality, to store recently trans-
lated page addresses improves the performances. This special address translation
cache is referred to as a Translation-Lookaside Buffer (TLB). Before translating
a referenced address, the processor checks the TLB to identify the physical page
corresponding to the virtual page, or to detect that the needed page is not cached
[105].

Basically, the TLB is a special type of cache itself does not store data nor
instructions, but instead stores virtual addresses, physical page frame numbers and
other metadata (such as dirty bit, valid bit, etc.). Indeed, like the Instruction or
Data CPU Caches, it exhibits different timing behaviors between cached and un-
cached addresses. By measuring the time required to access an address, an attacker
is able to determine whether the respective translation is present in the TLB [210].

The authors of [94] present an attack called TLBleed2 able to leak a crypto-
graphic key of EdDSA and RSA in libgcrypt3. In this attack, both the malicious
and victim process are scheduled on the same core and share the same TLB. The
first attack exploiting TLB [113] defeated the Address Space Layout Randomiza-
tion (ASLR). The local attacker with restricted privileges exploited the memory
management system to deduce information about the privileged address space lay-
out. To prove the efficacy, the attack has been performed on both 32 and 64 bit
x86-based CPU architectures. Also the work [93] targets the ASLR, but employs
EVICT+TIME technique and enforces the attack de-randomizing virtual addresses
from the web browser process. In [208], EVICT+TIME technique is employed
against the Memory Management Unit (MMU) to reverse engineer the size and
internal architecture of page table caches on 20 different microarchitectures.

1The system needs to support virtual memory as memory management technique
2OpenBSD disabled Hyper-Threading completely, disabling this vulnerability at a large cost to

processor performance. See: https://www.mail-archive.com/source-changes@openbsd.org/
msg99141.html

3https://gnupg.org/software/libgcrypt/index.html
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Speculative Execution Attacks

Modern microprocessors employ several methods to achieve high performances.
Among them, speculative execution is one of the main techniques employed. The
underlying principle of speculative execution is that the instructions are executed
before they are required. Instead of executing the instructions in order, they are
executed as soon as the data is available. In case an operation (e.g., cache miss)
stalls the execution of an instruction (impacting on performances), to minimize the
amount of time it spends waiting for the data, the CPU can execute instructions
after the stalled one, essentially reordering the code in the program (i.e., out-of-
order execution). In this way, the performance can be increased. In absence of
speculative execution, the processor would have to wait previous instructions to be
completed before executing successive ones (i.e., in-order execution). However, in
a conditional branch the processor might not be able to tell which branch will be
taken, so it will try to predict which branch to take. The prediction outcome is
performed by the Branch Prediction Unit (BPU) considering the most likely path,
based on the previous history stored in the Branch History Buffer (BHB). When the
branch instruction is evaluated, it could be possible that the speculatively executed
instructions would not be needed and in this case their results would be discarded.

In the last few years, a new series of side-channel attacks, called Speculative
Execution Attacks or Transient-execution attacks, have been discovered that might
allow access to sensitive information. All these microarchitectural attacks exploit
speculative execution features of modern CPUs to leak information. In case the
processor is speculatively executing instructions, those to be discarded still generate
state changes in the microarchitecture.

Initially there were three variants of the issue:

1. Variant 1 - Bounds Check Bypass (CVE-2017-5753)

2. Variant 2 - Branch Target Injection (CVE-2017-5715)

3. Variant 3 - Rogue Data Cache Load (CVE-2017-5754)

These security issues are commonly known as Meltdown [149] (Variant 3) and
Spectre [137] (Variant 1 and 2). However, they do not represent single attacks,
but rather a class of attacks. Indeed, after their initial disclosure4, several variants
appeared [106, 42].

Meltdown
Meltdown was first presented in [149]. It exploits speculation caused by out-of-order

4https://googleprojectzero.blogspot.nl/2018/01/reading-privileged-memory-with-side.
html
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execution to attempt to read kernel memory from user space without misdirecting
the control flow of kernel code. In this attack, an illegal instruction accessing to
kernel memory causes a fault. If this instruction is speculatively executed, it leads
to an unauthorized access and triggers a fault. Although the violation still occurs,
that instruction returns data and following instructions might not be committed
but nevertheless might change the microarchitecural state. Finally, the attacker
can perform a side channel (e.g., FLUSH+RELOAD) to obtain the data leaked.

Differently than Spectre, Meltdown does not use branch prediction, but it relies
on out-of-order execution of the instructions successive to the instruction causing a
fault. Moreover, it exploits vulnerability specific to Intel and ARM processors that
allow to bypass memory protection during speculation [149].

Spectre
Like Meltdown, Spectre represents a class of transient-execution attacks and it is
built on similar techniques. Also Spectre involves inducing a victim to speculatively
perform operations which leak the victim information through a side channel. It
exploits branch prediction features.

The first variant of Spectre exploits conditional branches: initially an attacker
mistrains the CPU branch prediction into taking the same correct branch. After
that, it triggers a fault accessing the out-of-bound area. However, the prediction is
distorted and because of speculation the transient instruction is executed, provoking
the leak. The instruction is reverted but the leak remains.

Spectre variant 2 exploits indirect branches: The basic idea for the attack is
to target victim code that contains an indirect branch whose target address is
loaded from memory and flush the cache line containing the target address out to
main memory. This will force the CPU to reload the cache line. While reloading,
the CPU will speculatively execute instructions based on branch prediction. If the
attacker mis-trains the branch predictor with malicious destinations, the speculative
execution continues at a location chosen by the opponent. Also in this case, the
leak remains.

Both variants of Spectre were initially presented in [137]. Spectre attacks exploit
transient execution following control or data flow misprediction, while Meltdown,
exploits transient execution following a faulting instruction. With respect to Melt-
down, Spectre attacks work on a wider range of processors including most AMD
and ARM processors [137].

These attacks are critical, especially for important systems employed in critical
infrastructures, because the vulnerability is brought by the speculative execution
that is found in almost any microprocessors of Intel, AMD and ARM vendors.
This represents a serious threat to any safety and security critical systems such as
Critical Infrastructures, considering those microprocessors are used in billions of
devices. Moreover, recently, other variants have been discovered [42], which makes
difficult to apply security patches.
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In general, hardware threats are of considerable concerns because they can tar-
get many different devices and that the underlying security hardware vulnerabilities
can take several months or even years to be fixed even though a patch has been
discovered.

3.4 Attacks on FPGA
Considering the reconfigurable technologies introduced in Sect. 2.5 and the In-

formation Security properties of Sect. 3.1, this section analyzes the state-of-the-art
on security issues related to the bitstream employed to describe an IP (Intellec-
tual Property) core, which contains the configuration data employed to program
an FPGA.

The remainder of this section is an extended and revised part of the publications
[47, 48].

3.4.1 Introduction
A general overview of the feasible attacks against FPGAs, as well as a descrip-

tion of security issues and open problems regarding system security of FPGAs is
provided by Wollinger et al. in [254]. Security features, such as anti-tampering and
data protection techniques, are described in [233]. In [76], the authors define an
FPGA threat model and evaluate how the security features offered by most FPGA
vendors address the threats.

3.4.2 Bitstream Confidentiality
Guaranteeing bitstream confidentiality implies to protect from eavesdropping

performed by external sources such as attackers or competitors. In this way, the
information exchanged has to be maintained secure in the sense that it is not dis-
closed to unauthorized third parties. To maintain the confidentiality it is sufficient
to encrypt the data.

Nowadays, bitstream confidentiality can be achieved resorting to the integrated
bitstream encryption mechanisms offered by most FPGA manufacturers [12, 142,
251, 118]. [34, 145, 6, 12, 142, 256, 251, 118]. These techniques allow to assist
system designers in the protection of the secrecy of their IP cores, preventing the
product to be cloned or reverse engineered.

The bitstream encryption operation is based on symmetric cryptography, i.e.,
the key used to encrypt the information is the same used during the decryption. The
encryption key is generated by the system designer at design time and stored inside
the FPGA. The device decrypts the incoming bitstream during the configuration
phase. The FPGA stores the encryption key internally in a devoted memory, which
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could be backed-up by a battery (e.g., BBRAM - Battery backed RAM) in order
to maintain its content or a non-volatile one-time-programmable memory. The
memory storing the key is designed to prevent physical attacks. However, the
encrypted bitstream configures the entire device. To decrypt partial bitstreams,
system designers should build their own decryption engine requiring additional
logic, thus reducing the usable area. [7] presents three methods for secure partial
bitstream relocation.

Bitstream encryption is an effective solution to protect designer’s IP against
cloning or reverse engineering and IP disclosure [171]. However, in some cases
encryption may not provide sufficient security, as reported in [163, 164]. Another
approach to protect IP cores against piracy and reverse engineering can be obtained
through obfuscation. The authors of [128] leverage FPGA dark silicon to obfuscate
the functionality of the design. Other works discuss techniques to consider for
bitstream confidentiality as well as authentication[75, 230].

3.4.3 Bitstream Integrity and Authenticity
Since encryption alone does not protect the bitstream from modifications, in-

tegrity aims to ensure that the data exchanged does not undergo to modifications
carried by unauthorized third parties across the network links during the transfer.
Moreover, it provides assurance also from unintended modifications that might cor-
rupt the data due to errors, e.g., transmission errors. If the integrity is maintained,
also the system receiving the bitstream preserves its integrity.

Error control against data corruption can be accomplished with error-detection
techniques, such as checksums and Cyclic Redundancy Checks (CRC). To confirm
that the configuration data stored in an FPGA device is correct, most vendors offer
dedicated hardware for CRC features [13, 257]. However, CRCs are not suitable to
protect against intentional malicious alteration of data [219] since employ reversible
functions. Moreover, they are vulnerable to collision attacks, thus they do not
guarantee adequate security levels.

Hashing is another method commonly used to validate the integrity of infor-
mation using a one-way function, i.e., infeasible to invert. The fixed-length output
of a cryptographic hash function, called message digest or simply hash, can be
thought of as the fingerprint of the input bitstream, offering strong collision re-
sistance. Cryptographic hashing primitives have been employed in [179, 180, 75].
Message digest, however, does not authenticate the source. To verify the origin
of the bitstream, the secret key shared between the vendor and the device can be
combined together with a cryptographic hash function to generate a Hash-based
Message Authentication Code (HMAC). In [180] different authenticated encryption
schemes have been evaluated and the dual-pass Counter with CBC-MAC (CCM)
has been identified as the best option by lowest area footprint. However, Dual-
pass authenticated encryption algorithms separate authentication and encryption
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procedures and therefore require significant overhead. Usually, authentication and
confidentiality aspects are considered together, as proposed in [75, 19].

In presence of DPR, specific solutions to security problems, as well as safety [65],
have also been discussed in literature. In [34] a flexible security system based on
bitstream encryption is proposed. While using FPGAs DPR, designers can freely
choose encryption/decryption algorithms implemented as reconfigurable modules.
In [261] authors propose two schemes based on a hard-wired PowerPC processor
core and the MicroBlaze soft-core processor to perform a secure DPR. For authen-
tication and encryption phases SHA-1 and AES algorithms are used respectively,
implemented as C programs. Time comparative table shows that in both schemes,
the total processing time is not sufficient for practical partial reconfiguration. In
[109] authors developed a secure DPR system based on encryption of partial bit-
streams with AES-GCM cipher. AES-GCM is an authenticated encryption cipher
which guarantees both the confidentiality and the authenticity of a message. In
[129] is shown an improvement of the security of DPR in FPGAs re-encrypting a
remotely received bitstream with a unique random key, while providing low area
overhead and a high reconfiguration throughput.

3.4.4 IP Licensing and Activation
Providing confidentiality, integrity and authenticity of a bitstream protects the

end-user device from malicious attackers. However, the intellectual property is left
unshielded from piracy, which could damage the related business model of an ap-
plication. IP theft introduces problems with design rights associated to the soft
IP cores. Encryption and obfuscation are strong tools to ensure security, but they
cannot protect the IP in every stage of the life cycle. Several works address these
challenges [152, 123, 264, 104, 152, 123, 264]. Enforcing IP security can be achieved
resorting to solutions from a related area, i.e., trusted computing. In particular, the
Trusted Platform Module (TPM) is a microcontroller used to authenticate a target
platform, enabling several cryptographic features [236]. The TPM is embedded in
and interacts with the target platform, providing cryptographic primitives for se-
cure key generation and storage, random number generation and remote attestation.
In literature, different methods of activation and licensing for IP cores protection
have been employed: in [100] a new scheme to track and control the licensed designs
is presented, adopting public-key cryptography and symmetric encryption as well.
The authors of [262] propose an IP protection mechanism to restrict IP execution
only on specific FPGA devices, limiting unauthorized copies and integration of the
IPs. This solution, together with [123], enforces a pay-per-device licensing scheme
for system developers, instead of purchasing unlimited IP licenses. Finally, a re-
cent work [15] provides a remote licensing and activation mechanism, guaranteeing
anonymity for the end users.

43



44



Chapter 4

Performance Monitor Counter
Attacks

Microarchitectural side-channel attacks represent a dangerous threat for Cyber-
Phisical Systems. Security countermeasures need to be carefully evaluated, because
their integration might interfere with other design aspects of the system. This chap-
ter describes the implementation of a such type of attack in a safety and security
critical CPS architecture and details a mechanism to effectively neutralize the at-
tack, without affecting the safety domain. This chapter revises and extends the past
publications [45, 46].

4.1 Introduction
Cyber-Physical Systems (CPSs) are the root of a fourth industrial revolution [51].

“Cyber-physical systems are physical and engineered systems whose operations are
monitored, coordinated, controlled and integrated by a computing and communica-
tion core" [196]. A CPS integrates processing units, sensors and actuators, enabling
the interaction of the computing infrastructure with the physical world. The In-
ternet of Things (IoT) forms a foundation for this cyber-physical systems revo-
lution [51]. All devices of a CPS and different CPSs are interconnected in order
to create a network enabling billions of systems and devices to interact and share
information. Thanks to their ability of transforming traditional processes by inte-
grating technologies from various sectors, CPSs are bringing innovation to many
industries including: automotive and aerospace, chemical processes, smart energy
and water grids, healthcare, manufacturing and transportation [26, 55, 196, 248].
Several of these application domains involve the control of critical infrastructures
providing services that constitute the technological backbone of our society [69].
These infrastructures can damage themselves, people, or properties when they are
improperly used [253], and this improper use can be either the result of a failure of
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one of their components or an intentional attempt to corrupt their behavior.
Safety and security are therefore two critical properties of every CPS, both

sharing identical goals: protecting the CPS from hazards due to accidental failures
(safety) or due to intentional attacks (security)[203, 172]. In this context, there
is a recognized request to consider them under a unified view when designing and
operating complex CPSs [189, 187, 203, 253]. This is particularly important every
time a security mechanism may negatively impact the safety of the system or vice
versa [188].

This chapter analyzes in a specific scenario how the Performance Monitor Coun-
ters (PMCs) available in several commercial microprocessors may have severe im-
plications on the interplay of safety and security of a CPS.

PMCs can be used for several purposes including performance modeling and
optimization, debugging, benchmarking, and in-field monitoring (see Section 4.2).
The integration of computing and physical elements in a CPS introduces a vast
range of design and operational constraints. Among them, CPSs often require to
operate under real-time constraints [253]. PMCs are an effective instrument to
detect timing violations in multiprocessor systems. The timing of different tasks
can be profiled by recording time related PMCs (e.g., the Clock Cycle Counter -
CCC and the L1 Data Cache-Miss counter - DCM in the Intel architectures) over
several executions in order to build a model of the behavior of the system. This can
be done either by setting simple thresholds [79, 175, 159] or by exploiting machine
learning models [1]. The model can then be used at run-time to detect anomalies.

However, time related PMCs have been exploited to perform different classes of
attacks (see Section 4.2). These PMCs can be used to implement the side-channel
attack described by Bonneau and Mironov in [33], which is able to discover the
secret key of the Advanced Encryption Standard (AES) cipher.

Sect. 4.4 proposes a mitigation strategy able to increase the complexity of this
attack and discusses its interplay with the effect on a selected safety mechanism.
Among the different safety techniques against timing violations, the methodology
proposed by Esposito et al. in [79] is here considered for its semplicity. This
technique builds a simple timing model for different tasks based on two thresholds.

The proposed attack mitigation technique is based on the application of a PMC
poisoning schema. The poisoning alters the value distribution of the PMCs in such
a way to harden the work of the attacker while preserving those properties that
allow detecting timing violations in the system.

Based on the concepts presented here, different poisoning schemas can be de-
rived in order to work with different monitoring techniques. However, it is hard
to generalize the impact of the poisoning on each schema. This must be evaluated
case by case.

A set of experiments was carried out to evaluate the impact of the proposed
attack mitigation technique on the safety and security of a sample node executing
different tasks. Experiments consider both synthetic tasks hard to monitor and
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tasks taken from the MiBench benchmarks [101]. The node uses the AES cipher
(victim of the attack) to encrypt information. MiBench benchmarks were selected
since they implement a set of typical algorithms employed in several embedded
systems and have been also used in several reliability evaluation studies [242, 240,
244, 243, 54, 207, 124]. Results show the capability of the proposed technique in
increasing the complexity of the attack considering both the CCC and the DCM
counters, while introducing a low impact on the timing violation detection capa-
bility of the system. The technique proposed here outperforms results published
in [46] both in terms of better security and reduced impact on the safety of the
system.

4.2 Performance Counters
PMCs are special registers available in most microprocessor architectures. They

allow monitoring of several classes of events including branch predictions, cache
hits/misses and process timing. Monitoring of events through PMCs has a variety
of uses in application development, including performance modeling and optimiza-
tion, debugging, and benchmarking [173, 162, 73, 125]. The privileges required to
access these counters depend on both the processor architecture and the operating
system (OS). However, during application development, the designer has usually
full control on the development environment and a full access to the available PMCs
does not represent a security threat.

When moving to in-field applications, access to PMCs requires to carefully con-
sider the interplay between safety and security.

A set of applications evaluate predefined PMCs signatures in order to detect
failures or attacks. PMCs can be exploited as a valuable tool for the development of
software based self test (SBST) routines [231]. The capability of monitoring cache-
misses through PMCs (DCM counter) was used in [181] to perform SBST of cache
memories. In this type of approaches, an exact value of the counter is expected at
the end of the test routine. PMCs signatures were successfully exploited to detect
firmware modifications in a CPS controlling a power grid in [249]. For this class
of PMC uses, poisoning techniques such as the ones presented in Sect. 4.4 cannot
be applied, since they would prevent the deterministic behavior of the counters for
selected processes.

Nevertheless, there is a large class of techniques that try to build models of the
behavior of the system based on statistical off-line PMC profiling. These models
can be used in-field to detect different types of anomalies.

Xia et al. employed the PMCs to monitor the control-flow integrity of software
applications [255]. By analyzing the branch instructions behavior, they were able
to detect deviations from the correct control flow.
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Yilmaz [259] proposed a technique for faults localization in software applica-
tions. By off-line profiling the number of executed instructions considering correct
and faulty executions, they were able to build a behavioral model of the software
able to detect in-field applications differentiating from the model. A similar tech-
nique from the same authors based on the monitoring of the function execution
time was also presented in [260].

The authors of [175] used the PMCs to estimate the Worst-Case Execution Time
(WCET) for safety-critical applications.

In [159], WCET-aware Performance Monitoring Units were proposed for safety
certification in the automotive domain.

In [79] PMCs were used to detect faults causing deadline violations in multi-core
systems.

A set of 10 PMCs was analyzed in [1] to build a machine learning model based
on Supported Vector Machines (SVM) able to detect different types of anomalies.

In this category of approaches, poisoning techniques such as the one presented
in Sect. 4.4 can potentially be applied. Nevertheless, the actual impact of the
poisoning strongly depends on the target technique and it is hard to generalize.
For this reason the focus is on a selected technique presented in [79] to show the
interplay between safety and security in a specific case.

When considering the use of PMCs to perform attacks, they can be also used as a
side-channel leakage source to steal sensitive information. Most related publications
focus on the cache behavior during encryption with the AES algorithm. Bernstein
was able to remotely recover the complete AES key exploiting timing information
related to cache accesses [24]. Bounneau and Mironov performed a similar attack
with a reduced number of samples to recover the AES key when applied to Intel
architectures [33]. PMCs were employed as source of side-channel information also
to attack encryption algorithms on AMD platforms in [237]. Side-channel attacks
were possible also for asymmetric key cryptography, as reported in [25]. The attack,
carried out on Intel platforms, targeted a 1024 bit key of RSA and exploited the
monitoring of branch-miss events.

Proper defense measures can be taken if the attack is detected. The authors
of [9] proposed a generic detection mechanism, using a pre-trained classifier, able
to deal with a variety of micro architectural side-channel attacks, including also
cache-based attacks. However, rather than reacting to an attack, it is important
to work on proactive techniques able to prevent or increase the complexity of the
attack.

The works proposed in [45] and [46] that are the base for the research presented
in this chapter represented the first attempt to protect both the CCC and DCM
counters against the Bonneau and Mironov attack taking into account the impact
on the safety of the system.
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4.3 CPS Architecture
4.3.1 CPS and node architecture

Fig. 4.1 shows the general CPS architecture considered in this chapter, which is
a typical Supervisory Control and Data acquisition (SCADA) system. Computing
nodes perform local computations and are responsible for controlling a network of
sensors and actuators managing the operations of the physical infrastructure. Spe-
cial monitoring nodes coordinate the work of a set of computing nodes by constantly
exchanging data and information with them. Depending on the application, CPSs
provide a wide set of specifications against which the systems must operate. Sev-
eral manufacturing plants employ nodes based on low-end microprocessors either
running bare-metal applications or old desktop operating systems [253]. However,
the increasing complexity of the controlled infrastructures is quickly moving these
systems toward more complex microprocessor architectures [103].

Sensors and 
actuators

…

Monitoring
node

Computing 
Node

Figure 4.1: Generic architecture of the considered CPS. Figure taken from [45].
©2019 IEEE.

Fig. 4.2 shows the conceptual architecture of a generic computing node.
The node runs an operating system providing a set of services required to ac-

complish different application tasks. The number and type of tasks depends on the
available sensors/actuators and on the function the node has to implement. More-
over, tasks must be executed under given timing constraints [253]. Overall, the
goal of the executed tasks is to acquire data from sensors, elaborate raw data and
encrypt/decrypt payloads to communicate with other nodes. Data exchanged with
external nodes (e.g., monitoring nodes) are encrypted with a symmetric key by an
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Figure 4.2: Generic architecture of the considered computing node. Figure taken
from [45]. ©2019 IEEE.

appropriate service module integrated in the OS. In general, any task running at
the application level can request the OS services.

4.3.2 Safety task
As discussed in Section 4.2, different safety mechanisms to control the correct

operation of the node can be implemented as additional safety tasks at the appli-
cation level (Fig. 4.2). The safety task considered here (based on the technique
proposed in [79]) exploits PMCs profiling and on-line monitoring to detect faults
causing abnormal execution times of a task. Overall, the considered safety tech-
nique consists of two phases named: (i) off-line phase and (ii) on-line phase.

During the off-line phase, each task is profiled over several executions in order
to analyze the distribution of the values assumed by the considered PMCs. Two
PMCs strictly related to the execution time of an application are considered in
this study: the Clock Cycle Counter (CCC) and the L1 Data Cache-Miss counter
(DCM).

In principle, the value of a PMC for a given task with given inputs and exe-
cution environment, should provide deterministic and reproducible values. How-
ever, in complex multi-core systems as the ones considered here, several complex
often-unknown HW/SW interactions that are hard to predict (e.g., out-of-order
execution models in which instructions are executed in a non-deterministic order,
the memory hierarchy featuring different levels of cache memories that determine
non-deterministic data access profiles, bus arbitration and in general all controllers,
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etc.) may introduce variability in the PMC values. Different inputs across differ-
ent executions of a task are another source of variability of the observed PMCs.
Therefore, the values measured for a PMC across different executions can be con-
sidered as a random variable X, characterized by an empirical Cumulative Density
Function (CDF), FX(x) (see Fig. 4.3).
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Figure 4.3: CDF of DCM counter of the Susan-Smoothing MiBench benchmarks
[101] computed profiling 100,000 executions of the task. Figure taken from [45].
©2019 IEEE.

Based on the collected profiles, each task can be associated to three operating
areas reflecting the state of the system: safe area, critical area and warning area.
Two thresholds are defined to separate the aforementioned operating areas: WT H

and CT H (see Fig. 4.3). These thresholds are chosen by selecting the confidence
level for the warning area (CW ) and for the critical area (CC). Confidence levels
can be chosen arbitrarily during the design phase. Strict confidence levels increase
the number of false positives and the performance overhead due to a larger number
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of recovery operations. Wide levels may not detect all failures of the system. In
details, WT H and CT H can be computed by solving the following inequalities looking
at the collected profiles:

P (X > WT H) < CW ⇒ FX(WT H) > 1 − CW (4.1)

P (X > CT H) < CC ⇒ FX(WT H) > 1 − CC (4.2)

During the on-line phase, the safety task monitors the PMCs of every task in
order to determine in which area the execution can be mapped. The task state is
then classified as follows:

• safe direct: if the value of the PMC is below the warning threshold.

• critical direct: if the value of the PMCs is above the critical threshold. In
this case a recovery action must be issued;

• warning: if the value of the PMCs is between the warning and the critical
threshold. In this case, if this conditions is detected α consecutive times the
task is marked as critical warning, otherwise it is classified as safe warning.

The choice of α is related to the probability that the system is in a safe state after α
consecutive warning classifications denoted as P (FPα). P (FPα) is obtained during
the process profiling of the off-line phase. According to [79] α can be calculated as:

α = ln(1 − P (FPα))
ln(F (CT H) − F (WT H)) (4.3)

4.3.3 Attack model
Securing the CPS architecture presented in Fig. 4.1 is an important task. The

attack model considered focuses on an attacker interested in recovering the AES
encryption key of a node to carry out malicious actions. We suppose the attacker is
not interested in denial-of-service attacks, because they disrupt the offered services
and prevent the control of the CPS. A successful attack on a node may spread the
infection to every node, thus compromising the whole system. In the case all nodes
share the same secret key, the whole system would be immediately compromised
when a single node is compromised. When the secret key is different for every
node, the same malicious task could target another node and the attack could be
repeated until all nodes composing the CPS are under control of the attacker.

Looking at the architecture of the node reported in Fig. 4.2, we assume that
enough effort has been carried out to secure the hardware OS level of the node.
This includes securing the secret key and the encryption/decryption service. Never-
theless, we assume that the attacker may exploit user level vulnerabilities to inject
a malicious task (e.g., a virus or a malware) within a node. The attack could be

52



4.3 – CPS Architecture

undertaken on a specific node because the attacker could have gained physical ac-
cess to it, or because that specific node offers unique vulnerabilities. The malicious
task is a user application that can exploit the computational resources of the node
as well as the services offered by the OS of the node. Therefore, the attacker can
probe the PMCs, trigger the encryption process and send the information to a
remote entity that can process them off-line in order to perform the attack.

Despite PMCs are a force point from the safety perspective, they represent
a weak point from the security standpoint. They expose the system to timing
attacks, a category of side-channel attacks [24]. PMCs can therefore be considered
as a double edged weapon. The attack here reproduced is the side-channel attack
presented by Bonneau and Mironov in [33], which targets the AES encryption
algorithm.

The theory exploited to perform the attack is based on the concept of cache-
collisions during the final round of the AES encryption cypher.

For performance reasons, the algebraic operations of a software-implemented
AES cipher are combined in precomputed values stored in different lookup tables.
Thus, the encryption can be considered as a sequence of table lookups. As all data
of a program, these tables are loaded in the L1 data cache memory during the
encryption process. If the data is already loaded in the cache memory, a lookup
produces a cache-hit. On the other hand, when the data cannot be found in the
cache memory, the lookup generates a cache-miss, which will take on average more
time to be served since it requires to access data from a slower memory level.
Depending on the organization of the cache, each cache line may store multiple
table entries. A cache-collision occurs when a pair of different lookups targets the
same cache line and for sure does not generate a cache-miss.

Being able to detect when a collision occurs is important for the attacker, since
it gives a clue of which element of the table has been accessed.

Let us denote with i and j the index of two bytes of a generic 16 bytes ciphertext
( 0 ≤ i, j ≤ 15), with ci and cj their respective values, and let us consider the
encryption time (i.e., CCC counter) as available information. As described in [33],
the first goal of the attacker is to record in a data structure the timing data for
random ciphertexts (samples) for several pairs (ci , cj). The data structure is
organized as follows:

t[i, j, ∆] = CCCk (4.4)

where ∆ = ci ⊕ cj and CCCk is the encryption time of the kth collected sample.
If multiple data are collected for the same entry of the table, the average time
is recorded. According to [33], if a cache-collision occurs the following equality
becomes true:

ki ⊕ kj = ci ⊕ cj (4.5)
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As discussed before, when a collision occurs, the encryption time should be
significantly lower that the cases in which there is no collision. To succeed in the
attack, the attacker has to find one value ∆′

i,j for each i, j such that:

t[i, j, ∆′

i,j] < CCC (4.6)

where CCC is the average encryption time over all collected samples. We denote
this as collision condition. In this case ∆′

i,j becomes an accurate guess for the true
value ki ⊕ kj. This reduces the space of possible values of ki ⊕ kj that an attacker
has to test to recover the key. Several further optimizations are proposed by [33]
to reduce the number of samples required to perform the attack. Nevertheless, the
general concept of the attack remains the same.

When using the CCC timer, the attacker exploits the timing as an indirect
measure of the number of cache-misses. The correlation between the CCC timer
and the number of cache misses is the key factor. In the Pentium 3 processor
analyzed by [33] this correlation was very high and therefore a low number of
samples ( 216) was enough to perform the attack. With a more complex Pentium IV
Xeon processor, [33] found that, due to a lower correlation, the number of samples
required to perform the attack increased to 219. We analyzed this correlation for
the Core i7 processor considered here. Due to the complexity of this processor,
there is very low correlation between the timing and the number of cache-misses.
This means that most of the collected samples are actually not useful for the attack
and a significantly higher number of samples is required to recover the key ( 227).
Nevertheless, the attack is still possible.

Based on this consideration, if a direct measure of the number of cache-misses is
available to the attacker (through the DCM counter), a significantly lower number
of samples should be enough to recover the key as confirmed by the experimental
results provided in Section 4.5.

The possibility to access the PMCs by the malicious task, that includes timing
and cache access information, opens a path to properly implement this attack in
the node architecture presented in Fig. 4.2.

4.4 Attack mitigation
The success of the attack introduced in Section 4.3.3 depends on the PMC

samples collected by the malicious task. To achieve its goal, the attacker has to
statistically analyze the distribution of the different samples.

The main idea here proposed to counteract this attacker is to modify the PMC
service implemented at the OS level of Fig. 4.2. Each PMC reading is poisoned in
order to obfuscate the statistical properties of the PMC:

PMC ′ = cf(PMC) (4.7)
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where PMC ′ is the corrupted PMC reading, PMC is the correct PMC reading,
and cf(PMC) is the corruption function that is a function of the value of the
counter.

However, this corruption may jeopardize the capability of the safety task de-
scribed in Section 4.3.2 to detect timing violations. This may potentially create
both false negatives (i.e., undetected time violations) or false positives (i.e., safe
conditions detected as violations). Therefore the corruption level must be carefully
considered both from the security and from the safety standpoint.

It is worth recalling that, in the proposed architecture, the PMC service is
considered secure (see section 4.3.3) and represents the only user access point to
the PMCs.

There exist several possibile corruption functions. In Sect. 4.4.1 and Sect. 4.4.2
are considered two different corruption functions, deriving respectively from [46]
and [45], which exploit the rationale behind the attack proposed in Sect. 4.3.3.

4.4.1 Proportional Corruption
A simple attack mitigation mechanism alters the value of the counter by adding

a certain corruption level in order to hide the statistical properties of the PMC,
according to:

PMC ′ = cf(PMC) = PMC + cl (4.8)

where PMC ′ is the corrupted PMC reading, PMC is the correct PMC reading,
and cl is the corruption level.

The criteria we propose to select the corruption level is to relate it to the PMC
distribution of the AES encryption service and of the different tasks executed in
the system. In order to do that, we compute what we call the Task Distribution
Window (TDW) of each task defined as:

TDWtask = |µtask − WT Htask
|

2 (4.9)

where µtask is the average value of the selected PMC obtained when profiling the
task (see Section 4.3.2) and WT Htask

is the warning threshold of the task. The idea
behind the task distribution window is to define a window of values that, in the
average case, are able to poison the value of the PMC without moving a safe sample
out of the safe region.

Once the TDW of each task has been computed, it is important to analyze how
the different TDWs are distributed. As an example, Fig. 4.4 shows TDWAES (red
dashed line) and TDW of all tasks considered in our experimental setup for CCC
(see Section 4.5). If a clear gap between TDWAES and min∀task(TDWtask) exists
(as in the case of Fig. 4.4), it can be used to generate the corruption in such a way
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to significantly impact the AES timing (i.e., values higher than TDWAES) but still
safe for the other tasks (i.e., values lower than min∀task(TDWtask):

cl = U(0, s × TDWAES) (4.10)

where U denotes that cl is sampled from a uniform distribution in the defined
interval and s is a scaling factor that allows us to move the corruption level, thus
trading-off its positive effect on hardening the attack with its negative effect on the
timing violation detection.

Figure 4.4: Tasks (MiBench) profiling for CCC. Vertical lines represent the position
of TDW of the selected tasks.

As a result of this approach, every time a performance counter related to a user
process is read, the corruption level changes. This consequently randomizes the
differences between the PMC readings, which are at the base of the implementation
of the attack described in Section 4.3.3.

4.4.2 Selective Corruption
The collision condition introduced in equation (4.6) tells us that samples with

PMC values (i.e., CCC or DCM) significantly lower than the average value com-
puted over all collected samples are the ones actually important to recover the key.
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To obfuscate the properties of these samples, one option is to alter their values in
such a way to violate the collision condition, leaving the remaining values unaffected
by the poisoning.

To identify the values to alter, we exploit the CDF obtained profiling the PMCs
from the encryption service. Fig. 4.5 reports the CDF computed profiling the CCC
counter over 100,000 samples.

Figure 4.5: CDF of the CCC counter for the encryption service. Vertical lines
represent the position of the selected thresholds. CollT H is set here in order to
identify the lowest 5% samples. Figure taken from [45] ©2019 IEEE.

The proposed solution is to set a threshold (CollT H) in such a way to identify
the lowest x% samples of the CDF. Based on CollT H , it is possible to identify a
collision area delimited by the lowest collected sample (MIN) and CollT H . Every
sample falling in the collision area is moved to a random position of a different
area called poisoning area (Fig. 4.5) by defining the corruption function of eq. (4.7)
according to the following equation:
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cf(P MC) =
{︃

P MC (P MC < MIN) ∨ (P MC > CollT H)
U(µ + ε, ub) MIN ≤ P MC ≤ CollT H

(4.11)

where PMC is the value of the counter, MIN is the lowest sample collected
when profiling the encryption service and µ is the average value of the PMC over
all samples collected during the profiling of the encryption service.

The upper bound of the poisoning area (ub) must not exceed two times the value
of the minimum collected sample. This is motivated by the fact that, as described
in [33], one of the techniques exploited by the attacker to optimize the attack is to
discard samples higher than two times the minimum, considering them as outliers.

The lowest bound of the poisoning is instead defined by the ε parameter in order
to create a guard band between the average (µ) and the beginning of the poisoning
area. This is required since the effect of the corruption is to increase the average
of the collected samples. The guard band can be empirically computed and must
be large enough to guarantee that, even after the application of the poisoning, the
corrupted samples are higher than the new average.

The decision of how many samples to corrupt (i.e., the selection of CollT H) and
the size of the guard band (i.e., the selection of ε and ub) is a trade-off between
security and amount of corruption. Higher values of CollT H and ε increase the poi-
soning level and therefore the complexity of the attack (see Section 4.5). However,
increased poisoning levels may have a negative effect on those safety techniques that
rely on the PMC to detect anomalies. Therefore, the selection of these parameters
must be carefully analyzed considering the interplay between safety and security
as will be discussed in Section 4.5 where the different values of poisoning will be
selected in relation to the safety technique presented in Section 4.3.2.

4.4.3 Observations
It is important to highlight that, a single corruption level is used for all tasks

in the system in both attack mitigation techniques. This translates into a very
simple implementation at the OS level. Moreover, this simplicity opens up a path
for possible hardware implementations of both techniques that would relax some of
the limitations currently imposed in the attack model. Nevertheless, this hardware
implementation is out of the scope of this paper and will be considered in future
extension of this research project.

As discussed in Section 4.3.3, the proposed techniques do not guarantee by proof
the prevention of the considered attack. Differently, both techniques increases the
complexity of the attack that, in this case, translates in the requirement of collecting
an increased number of samples in order to discover the secret key. This is an
important result. In general a careful design of a CPS under the security domain
would supply a limited operational lifetime of the encryption key, as well as key
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replacement policies. In this paper we do not consider how the different keys are
generated or derived from previous keys, nor how they are distributed among the
nodes of the CPS. Several techniques do exist in this domain [22, 263]. Instead
we would like to discuss the impact of the proposed techniques on the lifetime of
the key. Experimental data (see Section 4.5.2) show that the proposed approaches
increase the number of samples required to perform a successful attack, especially
when employing the mitigation technique of Sect. 4.4.2. Without considering the
additional time required to analyze the samples (this can be carried out off-line with
the support of high-performace computing facilities) the time required to collect
additional samples has a positive impact on the possible lifetime of a key, thus
reducing the overhead associated to the key generation and distribution among the
nodes of the CPS.

4.5 Experimental Results
4.5.1 Experimental setup

To show the proposed approach at work, we evaluated both attack mitigation
techniques on a sample computing node.

To account for the fact that CPSs cannot constantly update their hardware
architecture, we selected for our experiments a board equipped with a powerful but
relatively old Intel Core i7-720QM CPU (released in Sept. 2009). This processor is
based on the Intel first generation Nehalem microarchitecture. It embeds 4 cores,
each equipped with a 64KB L1 cache (32 KB L1 data and 32 KB L1 instruction)
and a 256KB L2 cache. Finally, the processor implements a 6MB shared L3 cache.

To simulate the execution of different tasks we selected a set of 13 benchmarks
from the MiBench benchmark suite [101] executed on a Linux operating system
(kernel 3.11). These benchmarks represent typical algorithms implemented in sev-
eral embedded systems sectors:

• Automotive/Industrial: susan-edges (edges), susan-corners (corners), susan-
smoothing (smooth), quick sort (qsort), basic math tests (bscmath);

• Consumer : jpeg encoder (cjpeg), jpeg decoder (djpeg);

• Office: string search (strsrc);

• Network and Security: Dijkstra’s algorithm (dijkstra), Secure Hash Algorithm
(sha);

• Telecommunications: Fast Fourier Transform (fft), ADPCM encoder (rcau-
dio), ADPCM decoder (rdaudio).
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Each task was profiled as described in Section 4.3.2 by collecting the value of
the CCC and DCM counters over 100,000 executions. Input data for each task were
taken from the "small" data set provided with the MiBench suite [101]. Profiling
data has been collected separately for both techniques, on the same experimental
setup.

The collected profiles were used to compute WT H , CT H and the average PMC
value (µ) of each task for the two considered counters as reported in Table 4.1.
Another set of profiles were used to compute WT H , CT H and the TDW , which is
reported in Table 4.2. The confidence levels to compute the two thresholds were
set to CW = 4% and CC = 0.6% and according to equation (4.3) α = 3.

Table 4.1: Results of the profiling of the selected benchmarks employed in the
Selective Corruption mitigation technique. This also includes the profiling of the
encryption service (AES). Table taken from [45]. ©2019 IEEE.

CCC counter DCM counter
Benchmark WT H CT H µ WT H CT H µ
AES 3.58e2 3.96e2 5.59e2 7.37e1 7.70e1 7.90e1
bscmath 5.35e6 5.50e6 6.21e6 1.69e1 2.30e1 2.60e1
cjpeg 1.20e7 2.64e7 2.95e7 3.31e4 3.33e4 3.36e4
corners 6.84e5 1.38e6 1.39e6 9.27e2 1.04e3 1.05e3
dijkstra 1.44e7 1.46e7 1.67e7 5.45e4 5.51e4 5.59e4
djpeg 3.38e6 8.01e6 8.11e6 6.73e3 6.96e3 7.23e3
edges 1.25e6 2.36e6 2.37e6 1.37e3 1.59e3 1.61e3
fft 3.54e5 4.04e5 4.32e5 3.78e3 4.10e3 4.31e3
qsort 1.70e7 3.27e7 3.28e7 4.18e5 4.19e5 4.21e5
rcaudio 2.15e9 4.12e9 4.27e9 1.84e9 3.54e9 3.66e9
rdaudio 2.15e9 4.12e9 4.27e9 1.80e9 3.46e9 3.58e9
sha 2.94e6 5.64e6 5.64e6 2.45e2 3.19e2 3.58e2
smooth 7.38e6 1.47e7 1.47e7 2.74e2 3.56e2 3.89e2
strsrc 1.26e5 3.24e5 3.24e5 1.49e2 1.75e2 2.05e2
synth01 2.69e2 3.96e2 5.33e2 4.84e1 7.70e1 7.80e1
synth02 2.88e2 3.96e2 5.36e2 6.38e1 7.70e1 7.80e1
synth03 3.35e2 3.96e2 5.34e2 5.58e1 7.70e1 7.80e1

For the CCC counter, Table 4.2 shows a clear gap between TDWAES ≃ 1.92e1
and TDWfft = 2.53e4 (the smallest TDW of the considered tasks). According to
equation (4.10) it is therefore possible to explore a large range of scaling factors
when poisoning this counter. A completely different situation arises when consid-
ering the DCM counter. This PMC generates less TDW variations and no clear
gap is visible between TDWAES ≃ 1.64 and TDWbscmath ≃ 3.05 (the smallest TDW
of the considered tasks). This makes it difficult to find a proper scaling factor not
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Table 4.2: Results of the profiling of the selected benchmarks employed in the
Proportional Corruption mitigation technique. This also includes the profiling of
the encryption service (AES).

CCC counter DCM counter
Benchmark WT H CT H TDW WT H CT H TDW
AES 3.96e2 5.59e2 1.92e1 7.70e1 7.90e1 1.64e0
bscmath 5.50e6 6.21e6 7.31e4 2.30e1 2.60e1 3.05e0
cjpeg 2.64e7 2.95e7 7.22e6 3.33e4 3.36e4 1.30e2
corners 1.38e6 1.39e6 3.46e5 1.04e3 1.05e3 5.47e1
dijkstra 1.46e7 1.67e7 9.73e4 5.51e4 5.59e4 3.11e2
djepg 8.01e6 8.11e6 2.32e6 6.96e3 7.23e3 1.14e2
edges 2.36e6 2.37e7 5.57e5 1.59e3 1.61e3 1.06e2
fft 4.04e5 4.32e5 2.53e4 4.10e3 4.31e3 1.62e2
qsort 3.27e7 3.28e7 7.88e6 4.19e5 4.21e5 1.55e2
rcaudio 4.12e9 4.27e9 9.88e8 3.54e9 3.66e9 8.48e8
rdaudio 4.12e9 4.27e9 9.88e8 3.46e9 3.58e9 8.29e8
sha 5.64e6 5.64e6 1.35e6 3.19e2 3.58e2 3.69e1
smooth 1.47e7 1.47e7 3.67e6 3.56e2 3.89e2 4.12e1
strsrc 3.24e5 3.24e5 9.93e4 1.75e2 2.05e2 1.30e1

affecting the safety task. The only benchmarks that show a clear separation in this
case are rcaudio and rdaudio. These tasks are the most computation intensive of
the selected benchmarks. This suggests that DCM is probably better suited only
when the node runs this type of computation intensive tasks. The consequences of
this will be better discussed in the next sections.

Also the CCC counter in Table 4.1 shows a clear separation of several orders
of magnitude between WT H , CT H and µ of the encryption service (AES) and the
ones of all other benchmarks. Therefore, according to equation (4.11) and as will
be analyzed in Section 4.5.3 the poisoning technique should have minimum impact
on the monitoring capability of the safety task. Even if the gap is reduced for
some benchmarks, the same separation can be observed when considering the CCC
counter.

In order to better analyze how the safety task could be impacted by the pre-
sented poisoning technique for tasks with PMC profiles similar to the ones of the
encryption service, a set of three synthetic profiles (synth01, synth02, and synth03
in Table 4.1) was generated. These profiles contain random PMC values with a
distribution that resembles the one of the encryption service.

To perform the attack, we adapted the C code presented in [33] available on the
repository [32]. For each PMC, we collected 3 sets of samples on the node under
attack. Each set contains 230 = 1,073,741,824 samples, with the related ciphertext
of 16 byte. The samples were transferred to a remote workstation equipped with
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an Intel XEON E5-2680 2.70GHZ to be processed and attacked. For each set, the
attack consisted in corrupting the samples, according to the techniques of Sect. 4.4.1
and Sect. 4.4.2, and performing the attack. For each set we performed 3 repetitions
of corruption and attack.

The proportional corruption altered the samples with increasing scaling factors.
The selective corruption technique was evaluated considering six different values

of CollT H , each defined in order to identify the lowest x% samples

x ∈ {5%, 7.5%, 10%, 12.5%, 15%} (4.12)

obtained when profiling the encryption service (see Section 4.4). For this pur-
pose, the encryption service was profiled collecting 100,000 samples. To define
the poisoning area taking into account the considered safety technique, we selected
ε = W AES

T H −µAES (see equation(4.11) and Table 4.1). This value is by construction
large enough to guarantee a guard band as requested by our methodology. More-
over, to explore the impact of the size of the poisoning area on the effectiveness of
the proposed technique, we evaluated different values for the upper bound of this
area:

ub ∈ {2 · MIN

16 ,
2 · MIN

8 ,
2 · MIN

4 ,
2 · MIN

2 , 2 · MIN}. (4.13)

To analyze the behavior of the safety task, we profiled both the CCC and the
DCM counters over 100,000 executions of each benchmark. After the profiling was
completed we generated 1,000 traces for each benchmark (each of them composed of
100,000 samples) applying the same corruption levels used to perform the attack.
All samples of each trace were classified according to the technique discussed in
Section 4.3.2.

4.5.2 Attack mitigation results
The attack complexity can be measured for an attacker as the number of PMC

samples needed to retrieve the encryption key.
Figs 4.7 and 4.6 show the number of samples required to perform the attack

for the CCC counter respectively for the proportional and the selective corruption
techniques considered.

The number of samples required to retrieve the encryption key without any
PMC poisoning is on average ∼ 135,000,000 samples. This defines the baseline of
the attack.

Fig. 4.7 shows that even the smallest alteration (s = 1) improves this complexity,
at least doubling the required samples. Moreover, an increasing trend is maintained
for increasing scaling factors. It is important to note that for s = 3 the attack
failed 3 times out of the 9 attempts, and for s = 4 it failed 4 times. These failures
cannot be numerically reported in the graph but are an indication of the increased
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Figure 4.6: Number of samples to perform the attack for the CCC counter. Re-
sults obtained using the poisoning technique presented in Sect. 4.4.2. Gray spots
indicated the failure of the attack. Figure taken from [45]. ©2019 IEEE.

complexity of the attack. With values of s from 5 to 10 the attack systematically
failed.

Fig. 4.6 shows that, regardless of the size of the collision (x axis) and poisoning
area (y axis), the attack always fails after analyzing 230 samples when applying
the proposed attack mitigation technique. This is a significant improvement with
respect to results obtained applying the technique proposed in [46] (Fig. 4.7). In
this last case, the attacker is in general able to recover the key with less samples
while introducing a higher level of corruption of the counter.

While it is impossible to prove that for an increased number of samples the
attack would not succeed, it is important to highlight that the amount of data the
attacker has to collect passes from ∼2.5GB for the baseline up to ∼20GB when 230

samples are collected. In a real scenario these data must be collected in a stealthy
way, without draining all the resources of the system. Therefore, this could require
a significant amount of time that, coupled with the use of key replacement keys
(see Section 4.4.3), may further help counteracting the attacker.

Figs 4.9 and 4.8 report a similar analysis for the DCM counter. The attack
against the unaltered set of samples requires on average 524,288 samples to discover
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Figure 4.7: Number of samples to perform the attack for the CCC counter. Results
obtained by applying the poisoning technique presented in Sect. 4.4.1, using differ-
ent scaling factors. Blue, orange and yellow data report the average values of the
3 repetitions of the experiment for each of the 3 considered sets of samples, while
green values report the global average. Figure taken from [45]. ©2019 IEEE.

the key. This value is significantly lower than the one required to perform the attack
using the CCC counter.

When looking at samples collected for the two considered PMCs (i.e., CCC
and DCM), we noticed, as expected, that DCM samples are more stables (i.e.,
they have a lower variance). Differently, as discussed in Section 4.3.3, the CCC
counter is affected by several complex HW/SW interactions that are in general
hard to predict. These interactions introduce variations in the timing behavior
of the application across different executions, creating a higher variance in the
observed values of the CCC timer and reducing its correlation with the number of
cache misses (see Section 4.3.3). This motivates the reduced number of samples
required to perform the attack using DCM. The higher stability of this PMC makes
it difficult to protect using the technique proposed in [46]. Even with very high
scaling factors (Fig. 4.9), the poisoning technique proposed in [46] is unable to
introduce sufficient improvements from the security point of view. Moreover, this
high poisoning would introduce an unacceptable corruption from the safety point
of view. More in details, we observed that with this technique the altered samples
maintain a similar allocation with respect to the average value, i.e., the majority
of the original samples lower than the average remain lower than the average even
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after the alteration. They therefore retain the information exploited by the attacker
to recover the key.

Differently, the technique proposed in Sect. 4.4.2 (Fig. 4.8) is able to efficiently
protect also the DCM counter. As for the CCC counter, the attack always fails
with the only exception of the extreme cases in which both the collision area and
the poisoning area are strongly reduced. Nevertheless, even in this cases we observe
significant improvements in the number of samples required to perform the attack.

Figure 4.8: Number of samples to perform the attack for the DCM counter. Re-
sults obtained using the poisoning technique presented in Sect. 4.4.2. Gray spots
indicated the failure of the attack. Figure taken from [45]. ©2019 IEEE.

To summarize, employing the selective corruption as attack mitigation tech-
nique, provides optimal results from the security perspective, considering both
DCM and CCC counters.

4.5.3 Safety results
The proportional corruption technique of Sect. 4.4.1 has been employed. Fig. 4.10

shows, for each task, the number of executions that fall in the different safety states
introduced in Section 4.3.2: safe direct (Fig. 4.10a), critical direct (Fig. 4.10b), safe
warning (Fig. 4.10c), and critical warning (Fig. 4.10d). Results are provided for
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Figure 4.9: Number of samples to perform the attack for the DCM counter. Re-
sults obtained using the poisoning technique presented in Sect. 4.4.1 using different
scaling factors. Blue, orange and yellow data report the average values of the 3
repetitions of the experiment for each of the 3 considered sets of samples, while
green values reports the global average. Figure taken from [45]. ©2019 IEEE.

different corruption levels of the CCC counter, averaging the results over the 1,000
repetitions of the analysis.

The impact of the alteration of the CCC counter on the safety of the benchmarks
is negligible. This means that the number of critical executions does not grow
significantly (Fig. 4.10b and 4.10d). More specifically, the increment of the critical
direct executions is below 1.75% (Fig. 4.10b), and the same happens for the critical
warning executions (Figure 4.10d) apart from fft whose growth is lower than 40%.
The reason of the behavior of fft is that a small set of executions is very close to the
thresholds. Therefor, a minimum amount of corruption changes their state. This
is also supported by the decrement of executions classified as safe directly (Figure
4.10a) and the increment of safe warning executions (Figure 4.10c).

Fig. 4.11 reports a similar analysis considering the DCM counter. As expected,
given the TDW distribution for this counter (see Section 4.5), overall the safety
detection capability is considerably compromised.

However, observing accurately Fig. 4.11b, reporting the number of the execu-
tions classified critical direct, the analyzed benchmarks can be grouped into two
groups: one of them heavily influenced by the corruption and another which is
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Figure 4.10: Impact of the CCC corruption on the safety state classification of each
benchmark

not particularly affected. Bscmath, corners, edges, sha, smooth and stringsearch
have a growth more than 1,000% and belong to the first group while the others to
the second. As expected, this distinction is highly correlated to the TDW of the
benchmarks, the smaller is the TDW, the higher is the impact of the corruption.
A clear trend for the warning increment cannot be instead identified, as shown in
Fig. 4.11c and Fig. 4.11d.

This confirms that the DCM counter is more vulnerable to attacks and there-
fore requires special attention when used. From the security perspective it requires
significantly higher corruption levels that can be tolerated from the safety perspec-
tive only if the considered tasks have a TDW several orders of magnitude higher
than TDWAES (i.e., complex tasks). This is not the case for several benchmarks
considered in our experimental setup.

Figs. 4.12 and 4.13 show, for each task, the number of executions that fall
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Figure 4.11: Impact of the DCM corruption on the safety state classification of
each benchmark
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in the different safety states introduced in Section 4.3.2 for the CCC and DCM
counter, respectively. Subfigures are associated to the different safety states: safe
direct (Figs. 4.12a and 4.13a), critical direct (Figs. 4.12b and 4.13b), safe warning
(Figs. 4.12c and 4.13c), and critical warning (Figs. 4.12d and 4.13d). Results are
provided for different corruption levels of the CCC and DCM counters, averaging
the results over 1,000 repetitions of the analysis. The alteration has been performed
according to the selective corruptio technique of Sect. 4.4.2

Looking at the figures it is clear that the MiBench tasks are not impacted by the
alteration of both the CCC and DCM counters for all considered percentage sizes
of the collision area (x axis). For all cases we used the largest poisoning area (i.e.,
ub = 2 · MIN). This is favored by the fact that WT H and CT H of all these tasks
are significantly different when compared to the considered poisoning windows and
is a significant improvement with respect to the results presented in [46].

Some changes can be observed only when looking at the synthetic benchmarks.
Looking at the CCC counter, in the worst case (synth02) the number of safe

direct classifications drops from 96,018 to 77,035 generating 18,985 potential fault
positives. This is partially compensated by an increment of 3,884 safe warning
cases. Nevertheless, the remaining 15,101 cases out of the 100,000 total executions
represent false positives that must be handled. This impacts the performance
of the system due to an increased number of recovery actions required during in
field operations. A similar analysis can be carried out for the DCM counter. By
construction, no false negatives can be introduced by the proposed technique, since
the corruption is always introduced as an additive positive factor.

Even if this may look a negative result, it is important to recall that the profiles
of the synthetic benchmarks have been specifically generated to resemble those of
the encryption service. Therefore they represent an extreme worst case situations
difficult to encounter in real applications. These results must be only considered
as examples to better show the critical aspects that should be carefully taken into
account when designing a CPS in which both safety and security must be guaranteed
as described in Sect. 4.3.

4.6 Conclusions
This chapter studied the interplay of two challenging aspects of the design of

a CPS: safety and security. It focused on the role that the PMCs have when im-
plementing mechanisms able to enhance the safety of the system and, on the other
hand, the risks they introduce when looking at the security of the system. Starting
from the example of a PMC based safety mechanism, and from the implementation
of a security attack, here is proposed an attack mitigation strategy. Two different
PMC were analyzed and an extensive experimental campaign shows the effective-
ness of the proposed attack mitigation technique for both considered counters. This
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Figure 4.12: Impact of the CCC corruption on the safety state classification of each
benchmark. Figure taken from [45]. ©2019 IEEE.
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Figure 4.13: Impact of the DCM corruption on the safety state classification of
each benchmark. Figure taken from [45]. ©2019 IEEE.
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provides interesting suggestions on how a designer should decide which PMC can
be securely exposed to the application software.
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Chapter 5

FPGA Attacks

Reconfigurable platforms are employed in Critical Infrastructures to exploit ad-
dional flexibility and acceleration capabilities. However, FPGA-based systems are
vulnerable to attacks targeting the design to be deployed in-the-field. This chapter
describes scenarios in which mobile heterogeneous devices exploit the computational
capabilites of the reconfigurable embedded hardware. The scenarios described deals
with attacks targeting the confidentiality, integrity and availability of the bitstream
loaded onto the FPGA and deals with local and remote attackers. The remainder
of this chapter is an extended and revised version of the publications [47, 48].

5.1 Introduction
The current mobile application market is constantly changing due to the pres-

ence of new devices and platforms which emerge quite frequently [10]. The changes
affect the business environment creating a demand but also an opportunity for the
rapid introduction of new technological solutions. Players in the growing business
landscape cannot ignore this opportunity, since mobile technology will eventually
have a role in most digital products and services.

Several well-known companies participate in this scenario: the first to define
the market was Apple which launched, in 2007, the iPhone and later, in 2008, its
distribution platform App Store. Subsequently, other players and device manufac-
turers joined the mobile application market with their devices, operating systems
and software distribution platforms. Currently, the distribution of mobile applica-
tions spans over 300 application stores worldwide, including device manufacturers,
platform providers, mobile operators. Well-known examples are Google Play Store
(previously known as Android Market), Apple App Store, Windows Phone Store,
Opera Mobile Store, etc. [71]. Sales, finalized through a payment gateway, and
downloads of mobile apps are skyrocketing too. According to a recent survey by
iResearch, in 2018, global mobile app revenues amounted to over 365 billion U.S.
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dollars. In 2023, mobile apps are projected to generate more than 935 billion U.S.
dollars in revenues via paid downloads from app stores and in-app advertising [121].

Several motivations are at the base of the continuous growth of this phenomenon.
Certainly, the hardware improvement is the key factor that keeps pushing appli-
cations toward new levels of pervasiveness, which allows an ever increasing com-
putational power of mobile platforms. Second, heterogeneous computing has been
the leading technology that allowed moving towards new generations of mobile
devices. For example, combining multi-core processors with Graphics Processing
Units (GPUs) and other types of hardware accelerators is having a huge impact on
device performance. Therefore, System-on-Chip developers are increasingly look-
ing at alternative architectural solutions to increase the computational power, while
optimizing additional parameters such as power consumption.

In this landscape, reconfigurable computing is a promising solution. As shown
in [83, 223], programmable system platforms embedding Field-Programmable Gate-
Arrays (FPGAs) might be a valuable solution where frequent and remote upgrades
are necessary, thus also for embedded applications. Moreover, some FPGA-based
systems provide Dynamic Partial Re-configuration (DPR), which allows the run-
time update of selected portions of an FPGA without disrupting the rest of the
system. DPR allows the creation of new application scenarios [8, 77, 65] and it
has already been used in the mobile application market [72, 222, 186]. Hardware
vendors are responsible for manufacturing the FPGA devices and sell them to their
customers or retailers. In FPGAs it is possible to (re)configure logic resources by
controlling the interconnection among different logic gates. The hardware logic
blocks implementing specific functions compose an Intellectual Property (IP) soft
IP core. A soft IP core is an independent and reusable module that can be instan-
tiated in the reconfigurable fabric. One or more soft IP cores are described by a
bitstream file, which configures the FPGA (or just a portion, if DPR is supported).
The project of a soft IP core is defined by the system designer. The exploitation
of reconfigurable hardware enables a new mobile application scenario, where a re-
configurable device can be programmed at run-time to assist the execution of a
software application by means of application-specific computational cores. The ap-
plications can employ hardware capabilities on-demand using ad-hoc computational
resources optimized for the various system’s aspects (e.g., power consumption of
the whole system). Mobile applications like games, audio/video processing, secure
communications are good candidates to benefit from providing application-specific
hardware acceleration cores deployed together with the software application.

However, this new application paradigm opens up concerns in the security do-
main. As an example, an adversary that is able to intercept a bitstream of an
hardware Intellectual Property can try to extract sensitive information or steal the
property, thus leading to IP infringements. Also disclosure to the public domain or
unauthorized sales to earn unfair profit are possible, thus violating the confidential-
ity of the hardware block. Considering the hardware, an attacker may also produce
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intentional alterations to the hardware block by injecting malicious code that may
either corrupt the correct behavior of the software application or compromise the
whole end-users system, e.g., by introducing security flaws which could later be
exploited.

Therefore, the hardware description of soft IP cores should never be sent across
unprotected network links. FPGA manufacturers have already provided techniques,
such as bitstream encryption and authentication, which try to address these issues.
Indeed, they fit a simple scenario where the application developer and designer
is the only entity entrusted to produce reconfigurable hardware descriptions to be
delivered to a remote system. Certainly, they don’t fit the current very dynamic and
heterogeneous scenario of the mobile application market. Moreover, these methods
may require an excessive involvement and trust in the manufacturers, which usually
embed secrets in their hardware that can eventually be exploited. Even worse, it
requires to trust the whole manufacturers’ supply chain as well, which has become
an issue with the delocalization of the production.

In this work, we tackle a much more challenging and realistic situation that
involves several independent parties participating in the development and distribu-
tion of applications to be executed on heterogeneous mobile platforms embedding
an FPGA as reconfigurable hardware. These parties include: the end users, the
application stores, the software providers and the reconfigurable hardware vendors.
In this scenario, a single reconfigurable hardware resource can be shared by several
applications from different vendors with guarantees on the integrity and confiden-
tiality of the provided hardware cores.

This chapter addresses the security threats introduced by two types of adver-
saries: (i) remote adversaries acting on the communication channels between the
application providers and the devices (Man-in-the-Middle), and (ii) local adver-
saries with physical access to the system (Man-at-the-End).

We describe the security services for the envisioned infrastructure by taking
into account three aspects: (i) the hardware resources and the system architecture
to implement the required security primitives, (ii) the high-level software infras-
tructure needed to implement the required communication protocols, and (iii) the
high-level entrusting policies required among the involved entities.

Instead of resorting to ad-hoc technology to tackle the adversaries and the se-
curity issues, we exploit the idea of another mainstream initiative, i.e., the Direct
Anonymous Attestation (DAA) protocol [35]. Currently, the DAA protocol has
been standardized by the Trusted Computing Group (TCG) [235] and it is sup-
ported in ad-hoc chips like the Trusted Platform Module (TPM). Even if we do not
necessarily propose the use of TCG-specified TPM chips, we follow the progresses
in this field employing reconfigurable hardware to achieve the same features. This
also means that there will be more people researching for flaws, as the impact of
attacks becomes greater thus also the impact of publication of such attacks is more
likely to reach a higher visibility.
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5.2 Assumptions, models and requirements
This section presents our model by describing the involved actors and the se-

curity and functional requirements to be satisfied. Moreover, it characterizes the
two scenarios we assume in this thesis, which depict very common situations for
the deployment of mobile applications.

The application is the object to be securely exchanged among all involved par-
ties. As shown in Fig. 5.1, in this thesis we consider applications composed of two
portions: (i) the executable code (SW), and (ii) an FPGA Bitstream file (BS).

The application is executed on the End User Device, which embeds a gen-
eral purpose CPU executing the SW and a FPGA-based Hardware Acceleration
Platform (HAP). HAP contains the reconfigurable logic, i.e., the FPGA, and a
microcontroller used to securely load and store a bitstream.

App

SW BS

End	User	Device

HAP

uC

Host

Figure 5.1: Mobile application paradigm considered mapped onto the (simplified)
architecture of the End User Device.
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The bitstream describes one or more soft IP cores that complement the applica-
tion (e.g., required to improve its performance). These soft IP cores are dynamically
configured in the FPGA every time the application is executed.

5.2.1 Actors
We model the considered scenarios following a common scheme for application

deployment for the mobile application market. The actors and their high-level
interactions are shown in Fig. 5.2.

We consider three main types of actors: (i) the software providers, (ii) the
hardware vendors, and (iii) the end users.

Host

HAP

Payment Gateway (PG)

End User
(EU)

Application Store
(STORE)

Software Provider
(SWP)

End User Device
(EUD)

Hardware Vendor
(HWV)

Figure 5.2: Actors involved in our scenarios showing a common mobile application
deployment flow.

The Software Provider (SWP) is the entity that develops applications and sells
them through several Application Stores (STORE) to reach a high number of po-
tential customers.

The Hardware Vendor (HWV) is the entity responsible for designing and selling
the Hardware Acceleration Platform (HAP) used by the applications to load the BS
and it implements the soft IP cores developed and sold by SWPs. The Hardware
Acceleration Platforms considered in this chapter are microprocessor-based Systems
on Chips (SoCs) embedding state-of-the-art FPGAs featuring DPR and bitstream
encryption mechanisms. The HWV has full knowledge of the hardware it produces,
including secrets and security mechanisms it embeds (e.g., cryptographic keys). We
assume that each hardware vendor has a publicly accessible service (e.g., a web
server) used to offer services to the software providers and to the end users (e.g.,
prove hardware product authenticity, send firmware updates, etc.). It also provides
publicly available information (e.g., list of hardware capabilities, APIs, list of known
compromised devices).

The End User (EU) is the customer. The EU may be interested in buying
applications that have been developed by different SWPs. He/she owns an End
User Device (e.g., smartphones, tablets, PDAs, etc.) that embeds the HAP. The
End User Device and HAP are two separate execution environments, therefore,
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they are considered as two separate entities in our scenarios. However, the HAP
does not directly access the network, all communications with the external world
are mediated by the End User Device.

Together with the above three main actors, two more players are involved in
the scenario we have considered in this chapter. The STORE acts as an interface
between EUs and SWPs by collecting and making available to the EUs software
applications developed by different SWPs. Every STORE has a publicly accessible
service (e.g., a web server) and is connected to one or many payment gateways to
allow customers to buy the software they want to purchase. Each STORE knows
the identity of its users.

Finally, the Payment Gateway (PG) offers payment services for software appli-
cation purchases (e.g., using credit cards), interfacing with SWPs and with EUs.

5.2.2 Security requirements
The high-level security objective of an SWP is to preserve its intellectual prop-

erty. Moreover, an SWP aims at securing its applications, by preserving their au-
thenticity, integrity and confidentiality. The EUs require to only execute authentic
versions of the software they have bought.

We solely consider the security aspects of the hardware cores, while ensuring
authenticity and integrity of executable code is out of the scope of this thesis.
Interested readers may refer to the literature on this field for a better understanding
of available methodologies for software protection [60, 166, 81, 23].

The security requirements to be fulfilled in order to guarantee the authenticity
and the intellectual property of all hardware cores deployed are the following ones:

• Bitstream confidentiality: no other players but the SWP itself must be able
to read a bitstream in an intelligible form (e.g., if the application bitstream
files are encrypted, the bitstream should not be available in plaintext). Every
SWP does not trust neither other SWPs nor the Applications Stores used for
distributing applications. Moreover, the SWP does not trust the EUs, even
those who have legitimately bought its application.
We have considered two scenarios in this thesis. The first one (named Simple
Scenario and presented in Section 5.3.1) considers a case where a trust rela-
tionship exists between the SWP and the HWVs (i.e., HWVs might read the
bitstream in plaintext) because of legal contracts or Non Disclosure Agree-
ments (NDAs). The second scenario, which tighten the confidentiality (named
Full Scenario and presented in Section 5.3.2), relaxes this assumption, avoid-
ing every trust relationship among all the parties involved.

• Bitstream integrity and authenticity: corrupted bitstream files must not be
delivered to the EUs, or used to configure the FPGA. The types of corruption
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to avoid are both accidental (e.g., transmission errors) and deriving from
intentional malicious alterations. Moreover, the EUs must be ensured that
the bitstream files they are loading in their HAP are genuine, that is, they
have actually been developed by the SWP.

• Legitimate End User : only users who bought a legitimate copy of the soft-
ware must be able to use the related bitstream files to configure the FPGA
available in the HAP to assist the execution of the related software applica-
tion. Nevertheless, in no case end users are allowed to access the bitstream
in plaintext.

• Legitimate HAP: only owners of legitimate HAP can run applications into a
user platform and load a BS into the FPGA.

• Need-to-know restrictions: only the parties that actually need a sensitive
information must have access to it. This is of great importance especially for
information concerning the EUs (e.g., the applications that they buy). This
requirement is related to the privacy, however the need-to-know is subjective,
thus it cannot be considered a privacy statement.

If any of these requirements is not met, the security of a bitstream is undermined
and an adversary would be able to either read the bitstream and start reverse engi-
neering or compromise the bitstream authenticity and integrity to inject malicious
features, e.g., by opening security backdoors.

5.2.3 Attack model
We consider two types of attacks: IP attacks and integrity attacks.
When a IP attack is performed, an adversary tries to get access to an intel-

ligible version of a bitstream. This attacks can be performed either on the HAP
by tampering with external memory devices or over the network links the applica-
tion traverses during their deployment. This type of attack aims at violating the
confidentiality of the bitstream in order to make illegal copies of the soft IP cores.

When an integrity attack is performed, an adversary tries to compromise the
integrity of a bitstream. This type of attack has two motivations: (1) a remote
adversary may want to compromise the bitstream integrity to prevent the correct
execution of the related software application (Denial of Service), (2) a malicious
user may want to replace a bitstream file with a previous version (downgrade), for
example to avoid security updates.

In this thesis we do not consider physical attacks that aim at damaging the
HAP or make it not operable (i.e., hardware Denial Of Service attacks).
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5.2.4 Adversary model and security assumptions
The attacks just described can be carried out by a malicious attacker. We

consider two types of adversaries trying to break the requirements introduced in
Section 5.2.2; remote and local adversaries. We assume that both local and remote
adversaries are knowledgeable attackers. They have considerable knowledge of the
system and device they are attacking and they own high technical skills. Moreover,
they have access to sophisticated tools and instruments [2]. Nonetheless, they are
associated to different threat models.

A remote adversary controls every possible network link involved in the proposed
scenarios, i.e., he/she can perform Man-In-The-Middle (MITM) attacks. A Remote
adversary uses techniques to intercept and understand the content of the messages
exchanged between two arbitrary networking nodes. Once the attacker modifies
the flow of messages, he can also make changes, delete and create completely new
fake messages impersonating one of the communicating parties.

A local adversary is a malicious EU who has physical access to and full control of
a End User Device. That is, he/she can perform Man-At-The-End (MATE) attacks.
Local adversaries have no restriction on the tools and techniques to reverse-engineer
and then to tamper with the application (e.g., debuggers, emulators). Thus the ap-
plication cannot be trusted to store/embed secret data or routines. System libraries
and general purpose libraries could be controlled by local adversaries, along with
the operating system. In this case, to reach their goals attackers can use and alter
system calls, the input/output subsystem, the network stack, the memory man-
agement subsystem and possibly others techniques. Therefore, the communication
with the HAP mediated by software and drivers can be compromised by these ad-
versaries, thus the data exchanged can be altered even if they are transmitted via
secure channels that are safe against MITM attacks. The attacker also controls the
platform hardware. Every memory location can be read and written, including the
processor registers. The attacker also controls the program storage medium, as a
consequence he can read and change any of the stored bits at any time. This means
that nothing can be considered secure in the user’s environment.

The only part of the user’s platform that we will consider secure is the HAP,
the stored information and the routines executed within the HAP are considered
confidential. Indeed, we assume that, even if the HAP may be placed in an hostile
environment, the reconfigurable hardware and the security blocks surrounding it
are resistant to physical attacks (e.g., decamping the chip, side-channel attacks,
etc.).

Finally, we assume that the local adversaries have no interest in performing
Denial of Service attacks against their platforms and including HAP (e.g., by re-
peatedly sending invalid bitstreams to block its functioning).

Competing firms are potential local adversaries, since they can invest non-
negligible resources trying to compromise the security requirements.
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Moreover, we assume that attackers all work under the infeasibility hypothe-
sis. The infeasibility is associated to the derived computational cost, impossible
to sustain for an attacker, in order to decipher the secret information needed by
cryptographic algorithms or to invert digest algorithms. In practice, attackers are
unable to solve exponential problems of proper size in useful time.

Eventually, when we state that two peers communicate with a k-secure channel,
we indicate that the peers perform strong authentication and agree on a symmetric
key k that can then be used with data integrity and authentication algorithms and
symmetric encryption algorithms to secure the exchanged data.

5.3 Protocols and secure information exchange
This section introduces our solution for the secure reconfigurable computing

model presented in Section 5.2. In particular, we will introduce and analyze the
information exchange and the required protocols that will be used to identify the
required hardware structures. Two cases will be analyzed:

1. a simple scenario fulfilling a reduced set of security requirements but exploit-
ing minimum hardware facilities, and

2. a complex scenario featuring trusted computing hardware fulfilling the full
set of security requirements of Section 5.2.

In both scenarios, the target of the protocol is to define the operations to deploy
a mobile application, composed of the software and its hardware counterpart, on
the End User Device. However, the transfer among the involved parties has to be
secured with respect to the considerations introduced in Section 5.2 and overcoming
the limitations discussed in Sect. 5.1.

5.3.1 Case 1: Simple Scenario
In this scenario, a simplified version of the protocol is presented. This protocol

satisfies a reduced set of security requirements, but benefits from simplicity and
reduced hardware requirements.

Fig. 5.3 shows a possible workflow for the deployment and execution of an
application onto a device embedding reconfigurable computing resources.

In this simple scenario, we assume that there is a trust relationship between
the SWP and the HWV. Moreover, together with the security requirements and
assumptions presented in Section 5.2, the following realistic functional assumptions
are considered:

• The EU is able to access the store (i.e., he has an account on the STORE);
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• The EU has a credit card or any another equivalent payment system compat-
ible with the store;

• The STORE has existing agreements with one or more payment systems;

• The HAP is identified by a unique code (e.g., serial number), defined here as
idHAP and stores a secret cryptographic key (KHAP), both known by the HWV.
The key is not accessible from the outside of the HAP;

• all involved entities are able to create secure channels (e.g., through SSL/TLS
protocols) satisfying confidentiality, data integrity and authentication, and
peer authentication using an agreed symmetric key;

• the SWP knows the HAP manufacturers (i.e., HWVs) and can access to their
services.

The following protocol presents the steps to be performed in order to buy an
application and securely obtain the associated bitstream (see Fig. 5.3).

1. (The EU buys the application) The EU browses the STORE and decides to
buy a mobile application, one that is composed by SW and BS, developed by
a SWP. As usual in the web market era, the STORE redirects the user on
the PG to complete the purchase. The PG notifies the STORE if the pay-
ment transaction terminates successfully. The STORE starts the procedure
to obtain the requested BS to send to the client. The actual steps performed
may change depending on the information exchanged between the STORE
and the PG, thus this is not reported in Fig. 5.3.

2. (The EU sends the STORE its data) The first interaction reported in Fig. 5.3
involves the EU and the STORE. The EU sends (from its device platform)
the information needed to identify its HAP, i.e., idHAP. Since the communi-
cation involves sensitive data, the End User Device and the STORE use a
secure channel that ensures confidentiality, data integrity and authentication
by means of an agreed symmetric key KCS

1. The freshness is guaranteed
by using a random number rC . In Fig. 5.3, the symbols r indicate random
numbers. The STORE then sends back an acknowledgement to the Client in
the secure channel2.

1To simplify the presentation, we indicate that KCS is used both for symmetric encryption
and to compute a Message Authentication Code (MAC), even if KCS is better used as a master
key to derive different keys (as actually done by TLS). Also note that an authenticated encryption
primitive could have been used instead of a MAC.

2The acknowledgments are sent to confirm the correct data receipt after all the interactions.
Nonetheless, they are not explicitly reported in the text to ease the reading.
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3. (The STORE notifies the SWP) The second interaction reports the STORE
that notifies the SWP that a new customer bought the application (thus also
its BS). The STORE forwards information about the HAP of the client who
bought the software. Again, the communication involves sensitive data (the
idHAP) thus the STORE and the SWP communicate by using a secure channel
that ensures confidentiality, data integrity and authentication by means of an
agreed symmetric key KSS.

4. (The SWP sends the BS to the HWV) The SWP sends the BS of the purchased
application and the idHAP that bought it. Also in this case, the communication
involves sensitive data (BS, idHAP) thus the SWP and the HWV communicate
by using a secure channel that ensures confidentiality, data integrity and
authentication by means of an agreed symmetric key KSH .

5. (The HWV prepares the BS for the client’s HAP) After receiving the data,
the HWV ciphers the BS with the HAP key and sends back to SWP the
ciphered bitstream {BS}KHAP . In this case, the confidentiality of the secure
channel is not needed, only the integrity and authentication. However, the
already established secure channel could be used again.

6. (The SWP forwards the encrypted BS to the STORE) the SWP sends back
to the STORE the ciphered bitstream {BS}KHAP via the available secure com-
munication channel.

7. (The BS ready to be downloaded by the EU from the STORE) Finally, the
STORE makes available to the EU, e.g., through the user account, both the
executable code SW and the ciphered bitstream {BS}KHAP .

The EU is then ready to install the application on its device. After the installa-
tion, every time the user starts the application the reconfiguration of the HAP will
be triggered. Within the HAP the BS will be decrypted, thanks to the embedded
controller that uses the HAP key KHAP, and loaded onto the reconfigurable logic.

It is worth noting that the proposed infrastructure can also be used to deliver
updates to the BS, while updates to the executable code can simply be downloaded
by the STORE through the usual methods. When the SWP updates the BS, e.g.,
because of a new version release or bug fixes, a reduced version of the previous
protocol can be used:

1. the current version of the application initiates the communication with SWP
to check for available updates.

2. If a new update is available, the client sends its idHAP to the SWP (thus
bypassing the STORE) through a secure channel that ensures confidentiality,
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data integrity and authentication by means of an agreed symmetric key KCS.
The SWP checks if the client corresponds to a valid customer3.

3. The SWP connects to the HWV via a secure channel and sends to the HWV
the BS and the idHAP, encrypted with an agreed symmetric key KSH ;

4. The HWV ciphers the BS using the HAP key KHAP, and sends back to the
SWP the ciphered bitstream {BS}KHAP . In this case, a secure channel is not
needed however, the already established can be used;

5. finally, the SWP sends back to the EU the updated application, which includes
the updated ciphered bitstream {BS}KHAP .

Note that the simple scenario describes a communication protocol for the ex-
change of the bitstream among several parties that can be easily implemented with
network nodes and a suitable End User Device.

5.3.2 Case 2: Advanced scenario
The simple scenario presented in Section 5.3.1 ensures confidentiality, data in-

tegrity and authentication among the involved parties. However, it requires a trust
relationship between the SWP and the HWV, which might already exists due to
legal contracts. Nonetheless, it may be a limitation. Moreover, this protocol does
not minimize the disseminated information. For instance, the HWV is aware of
each BS application the EU purchases.

In the simple scenario, the EU is able to obtain an application for its device,
while the SWP achieves a secure transfer of its IP. However, there is no assurance
for the SWP that its IP will not be loaded and executed in compromised hardware,
which could ease the porting of attacks. Additionally, the EU privacy could be
undermined (and the “need to know” requirement as well), since the other parties
may collect information about the software bought by the user from any developer.
Instead, in the scenario presented here, either the EU is able to preserve anonymity
and the SWP may only sell his application to users that own legitimate hardware.
On the one hand, the full scenario drops the assumption that there exists a trust
relationship between the SWP and the HWV. On the other hand, it requires that
the HAP offers more sophisticated features that are usually available at dedicated
secure hardware. Indeed, the protocol implemented in the full scenario relies on
the execution of the Direct Anonymous Attestation (DAA) protocol to guarantee
all the security requirements in Section 5.2.2.

3This check implies that the SWP has stored the list of idHAP of customers sent by the STORE.
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The DAA Protocol

The Direct Anonymous Attestation protocol has been designed to allow a verifier
to check that a signature has been originated by a legitimate platform by means
of a deterministic verification algorithm [35]. Signatures can be used to convince
a verifier about the integrity of the platform, that is, signatures allow achieving
platform attestation. Signatures made with the DAA protocol are anonymous,
that is, they do not leak any information about the signer, unless the signer wants
a subset of signatures to be linked. By using the DAA protocol it is also possible
to detect the so-called rogue platforms, so that the signatures obtained by means of
compromised keys can be revoked. The manufacturer of the secure chips providing
the DAA protocol can thus maintain a list of the compromised platforms.

The DAA protocol is independent of the public key authentication schemes,
thus, different types of keys can be embedded in the secure hardware platform.

Different versions of the DAA protocol have been presented in the last years
since the publication of the first version. Some of them were provably secure under
assumptions that do not guarantee the claimed security properties in the real world,
for some other schemes, there exist known attacks to compromise them [57, 36, 56,
58]. However, recently, two forms of DAA have been presented that have been
formally proved against threats models that are not considered weak [40, 41].

The DAA protocol has been standardized by the Trusted Computing Group
(TCG) and is available in the Trusted Platform Module (TPM) since the version
1.24. Later, in 2013, the TPM v2.0 has been developed and provided with the
most efficient of the published DAA protocol versions. The same version of the
DAA protocol has also been inserted in the Intel processors as Enhanced Privacy
ID (EPID) algorithm, which has been standardized as ISO/IEC 20008-1:20135 and
20009-1:20136.

Three roles are involved in the execution of the DAA protocol:

1. the DAA Issuer is the entity that manufactures the secure hardware platform.
The DAA Issuer knows all the secrets the secure hardware platform stores.

2. The DAA Signer is the secure hardware platform that produces the signa-
tures used for attestation purposes. The DAA Signer entity is composed of
two parts, the secure hardware platform and a Host, the set of all the soft-
ware components that interfaces with the secure hardware platform (e.g., the
computer system where the secure hardware platform is available, including
the OS and all the drivers that allow accessing the hardware). Finally,

4However, the version of the DAA protocol implemented in the TPM v1.2 is no longer consid-
ered secure.

5https://www.iso.org/standard/57018.html
6https://www.iso.org/standard/57079.html
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3. the DAA Verifier is any external party (e.g., a service provider) that is inter-
ested in verifying the integrity of the secure hardware platform.

To achieve signature anonymity, the DAA protocol introduces two more fea-
tures:

• a counter, which is a value used to generate multiple DAA keys from a single
secret, and

• the basename: an optional value used to allow verifiers to link multiple DAA
signatures signed under the same DAA key. Basenames can be considered
pseudonyms and are obtained by means of a secure function computed on the
secret of the secure hardware platform.

To abstract from the DAA protocol implementations (and their present and
future flaws) and to make our result more general, we assume in this work that the
system uses the most secure and efficient DAA protocol version, which will expose
the primitives presented below.

• The DAA Setup is the procedure that a secure hardware platform performs
to indicate its host and then to the DAA Issuer whether or not it is corrupted.

• The DAA Join is the procedure that a host performs, together with the secure
hardware platform, to obtain the DAA Credentials (which can be seen as an
anonymous public key certificate) and becomes part of the group of certified
or attested secure hardware platforms.

• The DAA Sign/DAA Verify are the two procedures that the secure hardware
platform and the host use to convince a verifier that the secure hardware
platform is certified and the host has previously joined the group. These
signatures are generated from a DAA Credential obtained after the join. This
procedure is a form of remote attestation. Nevertheless, the same primitives
could also be used to actually sign messages.

The DAA protocol ensures several security properties. They have been formally
defined in previous works [40, 41] and are reported in this thesis in an informal way:

• Completeness: signatures from a valid basename of a honest platforms are
accepted as valid by the verifiers.

• Correctness of Link: signatures created with the same basename by the same
honest platform are correctly linked.

• Unforgeability: no adversary can create a signature that is recognized by the
verifiers as a valid signature of a honest platform, regardless of the basename
he used.
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• Anonymity: signatures of the same honest platform that use different base-
names (or no basename at all) are not linked by any adversary. In other words,
the adversary cannot tell if they are applied by the same honest platforms o
by different honest platforms.

• Non-frameability: no adversary can create signatures with a given basename
that links to a signature created by an honest platform.

Functional assumptions for the advanced scenario

The following functional assumptions have been considered for the full scenario:

• The EU is able to access the store (i.e., has an account on the STORE);

• The EU has a credit card or any another equivalent payment system accepted
by the store;

• The STORE has previous agreements with one or more payment systems;

• The HAP owns valid DAA credentials and is able to run the Setup, Join, and
Sign DAA methods;

• The SWPs know the HAP manufacturers (i.e., the HWVs) and can access
their DAA Issuer services;

• (optionally) the STORE trusts the information obtained by the HWVs through
their services (e.g., the information about its compromised HAPs).

• (optionally) the involved entities are able to create secure channels (e.g.,
through SSL/TLS protocols) satisfying confidentiality, data integrity and au-
thentication, and peer authentication using an agreed symmetric key.

It is worth noting that the functional assumptions just mentioned are quite
similar to the ones presented in 5.3.1. However, in this scenario, some entities offer
special functionalities and play specific roles with respect to the context of the DAA
protocol here employed:

• The HAP plays the role of the secure hardware platform;

• The End User Device plays the role of the host where the secure hardware is
attached;

• The HWV plays the role of DAA Issuer (i.e., the TPM manufacturer), thus
it maintains the rogue oracle;

• The SWP plays the role of DAA Verifier (i.e., it wants to authenticate the
HAP)
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• optionally, also the STORE can play the role of the verifier (i.e., if it wants
to authenticate the HAPs)

Workflow

In the full scenario, before deploying an application onto a device embedding
reconfigurable computing resources, the HAP executes the DAA-Join protocol in
order to be recognized as a trustworthy device by the HWV. The target of this phase
is to prove to the DAA Issuer that the secure hardware platform is trustworthy
(setup) and to obtain valid DAA credentials (join).

Fig. 5.4 shows the workflow for the application deployment7.
The steps to buy a new application in the full scenario are the following ones

(see Fig. 5.4).

1. (The EU buys the application) the EU browses the STORE and decides to buy
an application, composed by a SW and a BS parts, developed by a SWP. The
STORE redirects the user on the PG to complete the application purchase. If
the payment transaction terminates successfully, the PG informs the STORE.
The STORE starts the procedure to send to the EU the requested BS.

2. (The STORE notifies SWP of a new customer) the STORE notifies the SWP
that a new customer intend to buy the application (thus he needs the related
BS). Since the communication does not involves sensitive data, the STORE
and the SWP may also avoid using a secure channel.

3. (The EU sends the SWP its data) During this interaction, the EU sends the
information needed to identify its HAP, i.e., the DAA Credentials issued by
the HWV (the DAA Issuer) when the DAA-Join was performed. Since the
communication includes sensitive data (such as the credit card number for
the purchase and the idHAP), the End User Device and the STORE will use a
secure channel that ensures confidentiality, data integrity and authentication.

4. (HAP authentication and optional key exchange) the SWP verifies that the
customer owns a genuine HAP by executing the DAA-Verify protocol. To
know whether the HAP is rogue, the SWP connects to the HWV services to
query the “rogue oracle”. If the verification fails, i.e., the DAA Credentials
correspond to a HAP that is not genuine or they have been marked as rogue,
the protocol is stopped by the SWP. Some management policies will establish

7Note that, to avoid making a too complex diagram, we have omitted all the authentication
and integrity checks as well as the acknowledgements since they have been already presented in
the simple scenario (and because they represent standard mutual authentication schemes that use
random numbers [157]).
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how to deal with these cases (e.g., ask installation on another platform or
simply stop the purchase). If the verification is successful then the payment
is finalized. We assume that the interactions between the HAP and the SWP
by means of the DAA protocol allow the exchange of a public key used by the
SWP to encrypt the data, which will be decrypted only inside the HAP. In
case the RSA-DAA protocol is used, based on the strong RSA assumption,
the DAA Credential already conveys a certified public key kHAP,pub. In case
other public schemes are used, like the ones based on the qSDH and the LSRW
assumptions or the ECDAA, we assume the HAP is able to generate an RSA
key pair and, via the DAA Sign, it can send the SWP the signed public key
kHAP,pub.

5. (The SWP sends the EU the encrypted bitstream) the SWP generates a new
symmetric key, the session key Ks, ciphers it using the received kHAP,pub, then
it ciphers the bitstream with KS. Finally, it sends both the {Ks}kHAP,pub and
{BS}Ks to the STORE8.

6. (The EU downloads the application from the STORE) finally, the STORE
makes available for download to EU from his account both the software SW,
and the enveloped data structure including {Ks}kHAP,pub and {BS}Ks .

The EU is then ready to install the application on its End User Device.
As for the simple scenario, the EU is then ready to install the application on its

device. Every time the End User starts the application, the HAP is reconfigured
with the soft IP core conveyed with the bitstream. Within the HAP the BS will
be decrypted thanks to the embedded controller that deciphers the session key ks

from {Ks}KHAP,pub by using the corresponding key KHAP,pri.

5.4 Hardware architecture and implementation
In this section we present our proof-of-concept for the secure bitstream transfer

protocol, detailing the proposed hardware architecture. We consider the End User
Device as a heterogeneous mobile device composed of the host platform and the
Hardware Acceleration Platform, as shown in Fig. 5.5.

5.4.1 Architecture
The host platform integrates hardware peripherals common for mobile comput-

ing devices, such as computational cores (e.g., microprocessors, GPUs, etc.), sensors

8The data sent in this interaction can also be wrapped in a single enveloped data structure,
e.g., the PKCS#7 enveloped data.

89



FPGA Attacks

(e.g., gyroscope, accelerometers, proximity sensors, light sensors, etc.), display or
screen, memory and storage (e.g., embedded memory, RAM, SD card, etc.) and
network adapters for connectivity features. The HAP is embedded into the mobile
device. Within the HAP, there is the reconfigurable resource, i.e., the FPGA. The
HAP embeds also a microcontroller offering cryptographic functionalities, such as
key generations, and to securely load the bitstreams of the applications installed
onto the FPGA.

5.4.2 Interconnections
The class of mobile devices is often characterized with components enabling

two different types of connections, i.e., wired and wireless. Network adapters and
antenna of the End User Device enable external connectivity towards an internet
connection, which is necessary for the user to browse application stores and to
download the SW and BS of the applications to be installed.

Internal connections depend on the actual hardware architecture of the End
User Device. Among the components of the EU device, the data path of the
bitstream spans from the storage medium to the FPGA within the HAP. In order
to permanently store an application, the host microcontroller is connected to the
storage medium. The hardware description of applications is loaded onto the FPGA
with a link between the host and the HAP. Eventually, when the FPGA has to be
programmed the bitstream is moved to the HAP where the controller decrypts the
hardware configuration and sends it to the FPGA.

5.4.3 Implementation details
To simulate our architecture, we separated the host from the HAP of the End

User Device. The host device is emulated with a normal laptop/desktop PC con-
nected to the internet, running the client software. The HAP is connected to the
host PC with a USB cable. For prototyping the HAP, we employed a particular
chip, i.e., SEcube™ [30]. SEcube™ is a heterogeneous system-on-chip, embedding
three components interconnected within the same package: a microcontroller, an
FPGA and a SmartCard. The microcontroller is a 32-bit low-power ARM Cortex-
M4 processor performing the necessary operations to communicate with the host,
through USB and SDIO interface. To securely program the FPGA, the microcon-
troller is connected to the FPGA through a 16-bit wide bus. The reconfigurable
hardware is a Lattice MachXO2-7000 low-power FPGA. The SmartCard is Certified
Common Criteria CC EAL5+. The host is connected to the storage medium, i.e.,
a microSD card, which is accessible also from the microcontroller of the HAP. The
storage medium is employed to store the bitstream of the applications downloaded.
Although the BS on the storage medium can be accesible from outside, it is stored
encrypted to avoid confidentiality breaches. The bitstream is decrypted only within
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the HAP, which is considered a trusted area. The other involved parties STORE,
SWP and HWV are represented with other PCs connected in a network. Each
entity executes an application to communicate with the other network nodes and
serves the respective clients according to the protocols disccussed in Section 5.3.

5.4.4 Software stack
The software executed on the bare metal of the HAP device is the open source

firmware of the SEcube™ SDK. It provides a high-security abstraction layer through
API functions, ranging from encryption and decryption utilities to cryptographic
keys management for the keys embedded in the HAP, as well as interfaces for secure
communication with the host platform. To implement the functionalities required
for the DAA protocol of Section 5.3.2, we adopted the MIRACL Crypto SDK [211].
The MIRACL SDK is a C/C++ library providing optimized implementations for
security primitives (e.g., elliptic curve cryptography - ECC), tailored for constrained
environments, such as embedded systems and mobile devices.

Among the applications running on the host side of the End User Device, the
counterpart of the APIs are used to communicate with the HAP. Also, the host
device runs the client market application, which is able to connect to the services
offered by the Software Application Stores. The server applications of the STORE,
SWP and HWV resides in the same PC, working as separate asynchronous pro-
cesses. The services of these entities have been emulated as Python3 applications.
For the client/server architecture and asynchronous communication functionalities
we employed the asyncio module. The communication among these processes, run-
ning on the same physical machine, flows through different port numbers of the
communication sockets on the same IP address. Every message sent is encrypted
and signed to guarantee integrity, confidentiality and authenticity. When reaching
the destination, the signature of the message is checked against malicious alter-
ations. When the download of the bitstream is completed, the application running
on the End User Device triggers the mechanism for loading the bitstream onto the
FPGA. The HAP firmware retrieves the encrypted data from the storage medium
and check its integrity and authenticity. Finally, the bitstream is decrypted and the
plaintext configuration is loaded onto the FPGA by the microcontroller equipped
onto the HAP.

5.5 Security analysis
From Section 5.2.3, we see two types of attackers to counteract: man-in-the-

middle (MITM) and man-at-the-end (MATE) attackers. The implicit assumption
in an MITM scenario is that both the endpoints are trusted entities. However, this
assumption is no longer valid in the case where also MATE attackers are interested
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in obtaining the bitstream. Indeed, MATE attacks are more challenging to prevent.
However, all the security relevant operations are performed in the HAP, which we
assume is a trusted device that cannot be attacked by our adversaries.

It is worth remarking that the proofs of the security of these solutions hold
under the infeasibility hypothesis. That is, we assume the use of state-of-the-art
secure cryptographic algorithms with proper key lengths. For instance, currently,
a 256-bit security is required from symmetric encryption, that is, the best attack
should be a brute force attack on a 2256 size key space, i.e., using AES256 guarantees
an appropriate level of security. Furthermore, at least 80-bit of security is required
for the digest algorithms, for instance SHA-256 is currently a valid choice.

Moreover, we recall that when two communicating peers A and B share a sym-
metric key k:

• (confidentiality) only A and B are able decrypt messages encrypted with k;

• (symmetric integrity and authentication) if A receives a message and a MAC
computed by using k, A deducts that the message and the MAC were gener-
ated by B and no one changed the original message, analogous considerations
are valid when B receives messages and MACs A.

5.5.1 Simple Scenario
MITM attacks performed by remote adversaries represent a standard security

problem in computer networks and there are provably secure solutions to protect
against these attacks: the channel protection techniques. In fact, MITM attacks
can be neutralized by using strong peer authentication mechanisms to avoid im-
personation, symmetric data integrity and authentication techniques to avoid the
message forging and alteration, and symmetric data encryption to ensure confiden-
tiality of exchanged data.

The techniques we adopted in the simple scenario protocol ensure data confi-
dentiality by using symmetric encryption algorithms (e.g., AES), and symmetric
data integrity and authentication algorithms (i.e., a keyed digest or HMAC using
a cryptographic hash function) used in the a “challenge-response (keyed) one-way
functions authentication protocol” [157]. These are well-known approaches that are
provably secure under the infeasibility assumption.

The first step of the protocol for bitstream IP protection specified in Section
5.3.1 represents a typical e-commerce scenario very widespread nowadays, where
a user is assumed to have a credit card, a TLS-enabled browser installed in his
environment, and an account on the application store of the platform. The store
relies on payment services that should adhere to the Payment Card Industry Data
Security Standard (PCI DSS) to work in the financial world [62]. Indeed, the PCI
DSS imposes high security requirements for merchants and payment servers that
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store, process or transmit payment cardholder data when implementing a robust
payment card data security process.

By analysing the protocol, we derive that the idHAP is only readable by the EU,
the STORE, the SWP, and the HWV. In fact, the HAP identifier is encrypted with
the key shared between the client browser and the STORE, then the STORE en-
crypts it with the key shared with the SWP. Finally, idHAP is again encrypted with
the key shared with HWV and it is sent to the HWV. MITM attackers cannot read
the HAP identifier if strong encryption algorithms are used. Additionally, imperson-
ation attacks are impossible as the sent messages allow symmetric authentication
of the party. Furthermore, the data authentication and integrity mechanisms used
by the presented protocol (i.e., HMAC or an authenticated encryption algorithm)
prevent that modifications to exchanged messages are not detected. Therefore, the
only remaining attacks are the DoS attacks, which we have excluded as it is not
among our goals (and not easy to prevent in all cases).

Even more important, the BS is read in clear only by the SWP and the HWV.
In fact, the bitstream is encrypted with the key shared between the SWP and the
HWV. Then, the HWV encrypts the BS by using the secret key KHAP, shared
with the HAP of the End User Device. Therefore, no one but the HAP with the
identifier exchanged during the protocol is able to load and use it. The received
bitstream is stored in an encrypted form until it is moved to the HAP decrypted
and loaded onto the FPGA, while the software application is usually downloaded
in plaintext, since other software protection techniques are displaced to protect the
intellectual property, if needed. Therefore, MITM and MATE attacks that aim at
reading the bitstream in intelligible way are avoided.

These considerations prove that only the EUs that bought the software are able
to use the corresponding BS. Moreover, even the end users are not able to read the
plaintext of the bitstream.

Note that the confidentiality of idHAP and the integrity and authentication of
all messages could be achieved if, instead of an ad-hoc protocol as in Fig. 5.3, gen-
eral purpose channel protection mechanisms are used. Even better, these channels
usually also provide protection from reply attacks and filtering, by numbering ex-
changed packets or by storing the last packets. The most widespread ones are the
TLS protocol [67], which works at the transport layer of the ISO/OSI stack, or
the IPsec protocol [131], which works at network layer, and other application layer
methods, usually message protection techniques (e.g., WS-Security). In our case
the TLS approach is the preferred one, which better integrates with a web-based
scenario that is very frequent in the e-commerce scenarios. Indeed, it does not
require additional software or any previous knowledge of the other communicating
party but limited modifications of the services or the availability of an ad hoc API.

On the other hand, there is no alternative than the explicit encryption with
KFPGA to protect the confidentiality of the bitstream.
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5.5.2 Advanced Scenario
The advanced scenario falls in the same common e-commerce use case. We

propose an alternative use of DAA protocol in a more general context than the
TCG related ones. The only difference is that the user is required to perform a
DAA_Setup to initialize the HAP and a DAA_Join before running the protocol to
generate and issue new DAA credentials of the FPGA. From the functional point of
view, DAA-related operations are only available in experimental settings and have
not yet reached a large audience, thus not to current customers. However, they
do not pose significant challenges for future EUs, also because they can be mostly
automated and their complexity can be properly hidden to end users.

Indeed, after buying the software, the client is redirected towards the SWP and
he is asked to perform a DAA_Sign to attest the integrity of its HAP. Only the
SWP knows the session key Ks, which is then ciphered with the public key received
by HAP. Therefore, Ks will only be available inside the HAP, in the trusted part of
the protocol entities. This in turn allows satisfying the “Bitstream confidentiality”,
“Bitstream integrity and authenticity” and “Legitimate End User” requirements.
To complete the integrity verification the SWP will contact the “rogue oracle”, that
is, the entity knowing the IDs of the compromised HAP. The HWV is the best
(and only, to date) candidate to maintain this list.

Note that the generation of an RSA key pair whose public component has to
be signed with the DAA Credentials and then sent Software Provider, is currently
not implemented in the TPM chips. However, it is not against the TPM and DAA
specifications, as DAA_Sign can be both used for remote attestation and data
signature purposes. Therefore, from the functional point of view, the operation we
require poses integration issues with current TPM chips but it is not a problem for
possible future versions of the TPM nor for the secure hardware (FPGA) we are
considering for this work, as they are fully reconfigurable.

Therefore, in this scenario the only entity that knows the BS is the SWP,
because the HAP can only load and use it internally. Thus, when following this
approach the “Need to know” principle of the BS is better ensured as it guarantees
that the minimum number of entities know the BS in an intelligible form. Indeed,
as the HAP of the End User is the only entity that knows the private component
of the public key sent to the SWP, only the HAP of the legitimate buyer can use
the BS, thus ensuring the “Legitimate End User”.

Additionally, by using the DAA_Sign and DAA_Verify operations and the
remote verification using the rogue oracle, the SWP is able to sell its products
to buyers whose HAP is not compromised, thus proving the “Legitimate HAP”
requirement.

Therefore, we can conclude that the security of the advanced scenario only
depends on the correctness and security of the DAA protocol. We assume that the
DAA protocol used is correct and secure. Given the level of interest in this protocol

94



5.5 – Security analysis

and the effort put by the TCG and the researchers in the field, this is currently a
reasonable assumption and it will become even more acceptable also in the near
future. Indeed, as discussed in Section 5.3.2, the recent progresses and publications
give positive hints on the fact that the DAA development is converging to a form
that is both secure and not too demanding from the computational point of view
[40, 41].

The idea of using the DAA protocol has major consequences to the impact of the
work presented here. Indeed, the use of a well-known protocol guarantees a bigger
control on the strength of the secure mechanisms. Moreover, there will be more
people researching for flaws, as the impact of attacks becomes very high thus also
the impact of publication of such attacks is more likely to reach a higher visibility.
Also reactions of the involved parties to potential flaws would have much more
support. The TCG is also increasingly working to increase anonimity and improve
users’s privacy. In our opinion this is a major trend that is worth joining.

We reach at the same time a strong protocol that guarantees a better level of
user privacy (i.e., used data and hardware identifiers) and minor exposition of the
company IP (soft IP core are only read by developers and used by secure hardware).

Therefore, even if we do not necessarily propose the use of TCG-specified TPM
chips, we follow the progresses in this field and re-implement in reconfigurable
hardware the same features.

Another good reason to join a mainstream initiative, is a greater level of con-
trol on the whole supply chain of the trusted hardware device, being they TPMs
of FPGA-based devices. Indeed, since nothing can be done if the HWV inserts
backdoors in the produced devices, we have to resort to a trusted supply chain.

Together with simple backdoors to access the content of the HAP to download
the IP cores that need to be protected, other attacks against the whole End User
Platform can be leveraged by holes in the security of the supposedly trusted device.

As a simple instance of potential attacks, instead of generating a new RSA key
pair inside the HAP, the HWV can generate and inject a certain number of RSA
key pairs to choose from (or DAA Credentials if RSA-DAA is used). Therefore, the
HWV would have access to all bitstreams encrypted with those public keys.

5.5.3 Physical Attacks
Physical attacks represent another type of possible attacks performed directly

on the End User Device. In this case, an attacker aiming at finding the symmetric
encryption key must be necessarily a MATE owning the device of interest. We
distinguish the case of non-invasive physical attacks from invasive physical attacks.

Non-invasive attacks can be partitioned in attacks where the device is purposely
stressed, i.e., active, and attacks where there is no interaction with it, i.e., passive.
In both cases, the destruction of the device is not necessary. However they gen-
erally require a longer time to be accomplished. Brute-force attacks have already
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been excluded under the infeasibility hypothesis. Side-channel attacks can still be
employed, however they are not always possible and require specialized equipment.
The SEcube™ chip adopted for the prototype is secure against the differential
power analysis attack as shown in [31]. Timing attacks can be neutralized resorting
to constant-time implementation of the bitstream decryption and other security
primitives.

Invasive physical attacks destroy the device and require sophisticated and ex-
pensive equipment, knowledgeable attackers, and possibly long time to be carried
out.

In our scenarios, a physical attack might target the Host platform, the HAP or
the storage medium. Any attack to the Host or the storage medium is neutralized
with the encryption algorithm, since these parts of the end user platform are consid-
ered not trusted. Accessing these peripheral will give to the attacker the possibility
to find the ciphertext of the bitstream. But the data must still be deciphered, by
reversing the key. The HAP is in fact the critical element, since the bitstream is
deciphered within this device through the key stored here. Local adversaries should
first bypass any external protection to reach the internal circuitry.

If we suppose that an invasive physical attack is successful, only a single device
is compromised. Every device stores a unique serial number and the cryptographic
key relative to the specific device. In this way, an attacker wanting to inject vulner-
abilities or malicious hardware must repeat the attack on other HAPs. This means
that also other devices should be compromised in the same way, leading to higher
costs to spread the attack. Also, the effort to exploit the attack is linear with the
number of device to compromise.

Nonetheless, if the attack is successful, the target IP stored onto the device is
compromised by only compromising a single device. Indeed, when the bitstream is
available to the attacker, it can be decrypted and its description might not remain
confidential, but could be disclosed to the public. Moreover, this security breach
gives the possibility to the attacker to recover also the idHAP of the compromised
device. By knowing this information, an attacker could also obtain any other
bitstream previously bought for that specific device.

Note that if a TPM chip supports the DAA protocol features, this chip is
protected by design against side-channel (timing information, power consumption,
electromagnetic leaks) and physical attacks. Additionally, as it uses cryptographic
operations it must comply the FIPS 140-2 standard.

The TPMs available on the market provide memory curtaining and protected
execution to avoid that the MATE reads the stored secrets. Therefore, the only
way to read the secrets is physically tampering with the chip. To the best of
authors’ knowledge, the only successful physical attack is the one presented at the
Black Hat conference 2010 [227]. At cost of six months and 200,000$, Tarnovsky
tampered the internal circuitry of an Infineon TPM of the SLE 66PE family of
contactless interface microcontrollers to get the secrets. The attack required to
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dissolve the outer shell with chemicals and remove the layers of mesh wiring to
access the chip’s bus to read the secrets by tapping the communications channels
using small needles. The attack was defined by the author “not easy to duplicate”
and the Trusted Computing Group that issued the TPM specifications, a bit more
optimistically, “exceedingly difficult to replicate in a real-world environment”.

Some other attacks to the TPM are known in literature that are not important
for us. The reset attack, is a method to reset the TPM without resetting the entire
system. In this way the known-good hashes can be stored in the TPM circumventing
the “extend-only” functionality that does not allow to overwrite values in the TPM
registers. This attack is mounted against TPM family 1.1 using a vulnerability of
the Low Pin Count (LPC) bus that allows to reset all the attached devices. From
the family 1.2 this attack is no longer possible.

Another reset attack is presented in [102], however the authors already con-
tributed together with manufactures with a patch to solve the vulnerabilities.

A recent side channel attack on TPM 2.0 devices is presented in [161], where
the authors are able to recover 256-bit private keys for ECDSA signatures Intel
firmware-based TPM as well as a hardware TPM. The attack exploits timing in-
formation leakage and allows key recovery in less than two minutes. Also in these
case, the vulnerabilities have been solved.

5.6 Conclusion
This work addresses the protection of soft IP cores to be deployed in the context

of mobile heterogeneous systems.
We provide an architecture for a secure transfer of a soft IP core bitstream

from a generic software developer to an end user owning a device equipped with
reconfigurable logic, considering a common real-world scenario of mobile application
market.

The provided protocol details the deployment for two scenarios, considering first
a minimum set of security requirements, then an advanced scenario fulfilling tighter
security properties.

We guarante that only legitimate users purchasing a legitimate copy of an ap-
plication are enabled to use it. During the deployment, we are able to maintain the
confidentiality of the intellectual property. Also, the integrity of the data trans-
ferred is preserved to guarantee that no alteration, whether malicious or not, has
been performed. Compliance to these requirements protects from MITM attackers.
We considered the threat of MATE attackers as well. Finally we also provided a
prototype implementation of the whole architecture, employing a system-on-chip as
heterogeneous system to work together with a host device (e.g., a PC, or a mobile
device).

97



FPGA Attacks

H
A

P
H

ost
ST

O
R

E
SW

P
H

W
V

{r
C

,id
F

P
G

A
,S

,
H

(r
C

,id
F

P
G

A
,S)}

K
C

S

r
S
,C

,H
K

C
S (r

C
,r

S
,C)

{
r

S
2 ,id

F
P

G
A

,W
,

H
(r

S
2 ,id

F
P

G
A

,W
)}

K
SS

r
W

,S
,H

K
SS (r

S
2 ,r

W
,S)

{r
W

2 ,B
S
,id

F
P

G
A

,H
,

H
(r

W
2 ,B

S
,id

F
P

G
A

,H
)}

K
SH

r
H

,{B
S}

K
F

P
G

A
,W

,
H

K
SH (r

W
2 ,r

H
,{B

S}
K

F
P

G
A

,W
)

r
W

3 ,{B
S}

K
F

P
G

A
,S

,
H

K
SS (r

W
3 ,{B

S}
K

F
P

G
A

,S)
r

S
3 ,H

K
SS (r

S
3 ,r

W
3 ,W

)
r

S
4 ,{B

S}
K

F
P

G
A

,C
,

H
K

C
S (r

S
4 ,{B

S}
K

F
P

G
A

,C)
r

C
2 ,{B

S}
K

F
P

G
A

,S
,

H
K

C
S (r

S
4 ,r

C
2 ,{B

S}
K

F
P

G
A

,S)
verifyhash

load({B
S}

K
F

P
G

A )

O
K

/K
O

Figure
5.3:

T
he

sim
ple

case
workflow

for
dow

nloading
a

new
application.

T
he

grey
area

show
s

m
essages

exchanged
locally

in
the

End
U

ser
D

evice,i.e.,between
the

host
platform

and
the

H
A

P.

98



5.6 – Conclusion

H
A

P
H

os
t

ST
O

R
E

SW
P

H
W

P
N

ofi
ty

D
A

A
C

re
de

nt
ia

l
DA

A
Si

gn

DA
AV

er
ify

→
K

H
A

P
,p

ub
ac

ce
pt

Ro
gu

eL
is

t

SW
,{

K
s}

A
IK

P
U

B
,{

B
S}

K
s

lo
ad

({
K

s
} K

H
A

P
,p

ub
,{

B
S}

K
s)

O
K

/K
O

K
H

A
P

K
H

A
P

DA
A

Se
tu

p

K
P

R
I,b

sn
,c

nt
D

A
A

C
re

de
nt

ia
l

DA
A

Jo
in

K
P

R
I,b

sn
,c

nt
D

A
A

C
re

de
nt

ia
l

DA
A

Jo
in

D
A

A
C

re
de

nt
ia

l

Fi
gu

re
5.

4:
T

he
fu

ll
sc

en
ar

io
wo

rk
flo

w
.

T
he

gr
ey

ar
ea

sh
ow

s
m

es
sa

ge
s

ex
ch

an
ge

d
lo

ca
lly

in
th

e
En

d
U

se
r

D
ev

ic
e,

i.e
.,

be
tw

ee
n

th
e

ho
st

pl
at

fo
rm

an
d

th
e

H
A

P.

99



FPGA Attacks

		FPGAController

idHAP, KHAP

Processor

Configuration

HAP

Host

BS Controls Data
I/O

Data	I/O
Storage	Medium

Trusted	Area

Untrusted	Area

End	User	Device

Sensors	and	Peripherals

Figure 5.5: The internal architecture of the End User Device.
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Chapter 6

HSM Secure Firmware
Development and Analysis

This chapter details the development of an open source firmware to create a
security platform exposing Hardware Security Modules functionalities. The resulting
platform is then analyzed under the security point of view to assess its resilience
against a physical side-channel attack.

6.1 Introduction
Devices such as HSM and TPM are of crucial importance in the protection

of systems exposed to security threats, such as CPSs and Critical Infrastructures.
These devices can secure various sensitive data processing operations and provide
robust mechanisms for authentication and cryptographic functions. Further ad-
vantages deriving from the integration of these categories of devices into existing
systems are described in detail in Sect. 2.6.

However, very often the solutions provided by security modules are proprietary,
i.e., the publisher or the vendor of the solution retains the intellectual property
rights. This implies that the software or the hardware (or both) is compliant
with the closed-source model. In this model, the details of the implementation
represent the IP itself. Only generic specifications are released to the public, while
the full details of the implementation are kept reserved by the IP owner. On the
one hand, usually, the advantages deriving from the adoption of closed solutions
have important strenghts, such as improved reliability, warranty and help service
for maintenance and repair. On the other hand, in some scenarios, these closed
solutions are not a valid option also because of the security concerns. The users,
in the closed model, have to be willing to accept the level of security that vendors
or licensers provide. In case some vulnerabilities are disclosed, the users are left
without any capacity to mitigate the threats. Indeed, they are totally dependent
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on creators for a possible upgrade. In case a vulnerability is found in proprietary
solutions, several security concerns arise: how it is addressed and how long it takes
to be corrected. Moreover, considering the producer retains the IP, it can also
decide to not fix it at all. Most importantly, is how the security vulnerabilities
are found, especially for what concerns the closed-source software. Indeed, security
audit is not always possible on proprietary solutions.

Open solutions can solve these security concerns, leaving capabilities to users to
customize and improve the product when needed. The question of security between
closed and open solutions is very controversial, because there is no guarantee that
open solutions are more secure. However, there is an advantage deriving from
openness itself.

Critical Infrastructures do not have to rely exclusively on closed HSM products
that cannot be audited and might lead to distrust the functions implemented in
some of these products. It is on this principle that an open-source and open-
hardware platform can bring additional advantages.

An example of open security device is SEcube™ 1, the hardware platform con-
sidered in this work. Its design includes three hardware components and the open
source software described in this chapter. The rest of this chapter details the soft-
ware architecture and its functionalities and provides a security analysis of the
whole platform against a side-channel attack. The development of the software
aimed at the creation of an open source firmware to be run on the device and a
corresponding library2 to be employed on the host. From the host side, the software
produced is an SDK (Software Development Kit) exposing a set of functions that
can be employed to exploit the capabilities of the secure platform. To assess the
security properties of the SEcube™ platform, a Differential Power Analysis (DPA)
attack is performed against the device. DPA is a non-invasive side-channel attack,
which considers the power consumption of a circuit. The target of the attack is
to identify the key used during the encryption of a data stream. Performing this
attack enables to measure the resilience of the device against a physical attack.

6.2 Security Features
The security features deriving from an open platform are diverse. From the

hardware side, an open-hardware HSM allows diverse manufacturing by multiple
vendors. This means the HSMs can be produced also in different countries and gov-
ernments. Moreover, for both hardware and software, the openness allows for dif-
ferent designs and development features. Open devices can be replicated anywhere,

1https://www.secube.eu
2Last updated version of the firmware can be retrieved at https://www.secube.eu/

resources/open-sources-sdk/
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leading to gain a divese users community. Thus, each subscriber can autonomously
audit the security of the device.

SEcube™ is a HSM-like device able to provide basic security features. It is
composed of heterogeneous security-oriented hardware coupled with an open-source
modular software architecture. All the functional blocks of the platform can be em-
ployed to provide additional protection to applications where data privacy and secu-
rity are critical requirements, e.g., in safety and security critical environments that
emphasize data integrity, availability and confidentiality. By being open source,
users and developers are able to build, modify, and rewrite the whole system if
wanted. Moreover, the open source approach encourages the proliferation of ex-
amples and implementations of security architectures. The device is designed and
constructed with ease of integration and service-orientation in mind.

SEcube™ is basically an heterogeneous chip that can be embedded on most
devices, such as USB token or USB Mass Storage device, or into larger systems.
In this way, it can communicate with the host where it is integrated to assist the
computations and to provide security mechanisms. The software running on the
host communicate with the firmware running on the device. The device provides
additional security services, e.g., cryptographic algorithms.

The main functionalities a SEcube™ platform provides are the following:

• Secure key storage: cryptographic keys of custom length can be stored in-
side the device. This allows for enhanced protection of cryptographic keys.
Storing the secret keys within this device prevents their accidental copy and
distribution. The key is securely stored in hardware, residing in the flash
memory of the heterogeneous chip. The keys never leave the device. Once a
key is stored, there is no way to retrieve it.

• Encryption and decryption service: data stream can be encrypted or de-
crypted employing the device using any of the stored keys. When the key is
needed to cryptographic operations, the data is sent to device. This guaran-
tees that the key needed for encryption/decryption does not leave the device.
Moreover, this mechanism enables also to unburden the host from the compu-
tations deriving from the related security operations by employing the device
as a cryptographic co-processor.

• Authentication service: data streams can be authenticated using any of the
stored keys. As with data encryption, authentication is also handled on the
device. This service employs cryptographic signatures which are depending on
a cryptographic key stored within the device. Also in this case, the operations
performed on the device lighten the workload of the host.

103



HSM Secure Firmware Development and Analysis

6.3 Hardware Platform
From the hardware point of view, the SEcube™ device is an heterogeneous

platform, providing three different technologies. It is produced by Blu5 group3 in a
very small form factor (i.e., BGA 9x9mm). In this way the chip can be embedded
in other devices, platforms and existing systems. Considering the form factor, the
integration will results in a limited area footprint.

It is an open hardware design composed of three Commercial-Off-The-Shelf
(COTS) cores. This allows the users to replicate the design without necessarily
purchasing from a specific vendor. In addition, this choice also helps reducing the
costs associated with the manufacturing of the device, both for production and
prototyping.

SEcube™ is a single System-on-Chip (SoC), composed of three main devices in
a single package: (i) a microcontroller, (ii) an FPGA and (iii) a SmartCard.

The first component is the central core of the device. It is a microcontroller
unit (MCU), i.e., an ARM Cortex-M4 processor, within a MCU of the STM32F4
family by STMicroelectronics4. In particular the MCU is an STM32F429. The
32-bit RISC core operates at a frequency of up to 180 MHz and provides 2 MB
dual-bank of Flash memory and 256 KB of SRAM. It integrates common devices,
such as multiple ADCs and DACs, and communication interfaces, such as USART,
I2C and SDIO.

The second component is a flexible and fast Field-Programmable-Gate-Array
(FPGA). The FPGA is a MachXO2-7000 by Lattice Semiconductor5. The FPGA
has 6864 LUTs and 47 I/O lines. Another important feature is that the FPGA is
an ultra-low power device, which makes it optimal for constrained environments
(e.g., heterogeneous mobile devices).

The last component is a SmartCard. The SLJ52G is produced by Infineon6.
The SmartCard is CC EAL 5+ certified, guaranteeing high security standards. It
provides 128 KByte EEPROM and offers several encryption algorithms for both
symmetric and asymmetric cryptography (i.e., DES, 3DES, AES up to 256-bit and
RSA up to 2048-bit, ECC up to 521-bit).

Fig. 6.1 shows the components and how they are connected to each other.
These components make the SEcube™ platform suitable for a wide range of

common applications (e.g., telecommunications, IoT, domotics, robotics, etc.) and
also for applications where security is a critical issue (e.g., Critical Infrastructures,
CPS, ICS, etc.). Moreover, customized security solutions involving cryptographic

3https://www.blu5group.com
4https://www.st.com
5https://www.latticesemi.com
6https://www.infineon.com
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Figure 6.1: High level hardware architecture of the components.

algorithms and additional security services can be implemented resorting to these
components.

6.4 Software Architecture
The software part of the platform is composed of two symmetrical parts, de-

pending on where physically the code runs:

• Device-side software: This code runs on the device, i.e., the chip. It includes
software drivers to interface with the underlying hardware peripherals, cryp-
tographic primitives and the device-side functions implementation.

• Host-side software: This code is a library of functions that run on the host
(e.g., a normal PC). It is logically composed of different abstraction layers,
exposing the functionalities of the device to the host.

The device code is the firmware running on the MCU of the platform. It com-
mands the various peripherals and communication interfaces. Thus, it is able to
communicate with the other devices, either internal to the chip (i.e., FPGA and
SmartCard) or external (e.g., host, microSD card).
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The firmware integrates the drivers for the peripherals. The majority of the pe-
ripheral drivers are automatically generated with the assistance of STM32CubeMX7

software. This tool allows a simple and immediate configuration of STM32 micro-
controllers. According to the configuration, it is able to generate the initialization
source code for the device. Moreover, the firmware implements the core functions
used for cryptographic operations against a data stream. The encryption keys also
reside on the device, and the core library provides the function for managing the
keys as well.

To use the functionalities of the hardware, the users (or developers) of the host
need to interface with the device. The host-side software realizes the communica-
tion. Moreover, it provides a library of functions organized in a layered architecture.
The applications that want to exploit the functionalities existing on the security
device can resort to this library.

The layered architecture of the software exposes the device-side API to the
host. The SDK provides two layers, i.e., Layer 0 (L0) and Layer 1 (L1). These two
layers provide the basic mechanisms to interface with the device. The library is
implemented by relying on levels of hierarchical abstraction. L0 provides function
primitives to the higher levels. In addition to L0 and L1, increasing levels, such
as Level (L2), employ the functions of lower levels. Fig. 6.2 reports a graphical
representation of the software architecture.

Each level targets a specific set of functionalities to be offered to the host:

• L0: provides basic functionalities to interact with the device.

• L1: provides basic security functionalities, such as encryption services.

• L2: provides services to ease the integration of the security features of the
SEcube™ hardware in the development of new applications.

the SEcube™ DevKit8 has been employed for the development of the firmware
and the host library. The development board embeds the SEcube™ chip and several
other components, such as LEDs and physical connectors. For example, it provides
USB plugs for connecting to an host peripheral. In addition, there is a microSD
card reader connected to the SDIO interface of the MCU within the SEcube™ chip.
Finally, it exposes connections for hardware debugging through JTAG interface.

.

7https://www.st.com/en/development-tools/stm32cubemx.html
8https://www.secube.eu/products/secubetm-development-kit/
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Figure 6.2: High level software architecture.

6.4.1 Firmware - Core
Low-level communication protocol

The firmware of the SEcube™ device is configured in such a way the a SEcube™
device is seen by the host as a USB CDC Mass storage device, like a normal USB
flash drive. The mass storage is represented by a microSD card inserted in the
respective reader of the development board. Thus, the host operations on the SD
are forwarded to the SDIO interface of the MCU. However, some of the block write
operations are filtered and decoded as special commands sent from the host to access
the SEcube™ cryptographic functions. Similarly, some block read operations do
not actually read data contained on the microSD, but read the response generated
by the command instead. The communications with the host are implemented
via a special file, which is read and written from both ends. The communication
between device and host is based on a request-response protocol, where the host
sends a command (request) to be executed by the device, by writing a special file.
The device interprets the command and returns its response (response) by writing
this special file. The host initiates the communication by writing the special file,
formatted in a particular way, on the SD. The host writes in this special file a
command to be executed on the device. Then, the same file is polled for the
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response, by consecutive reads, until the response is finally ready or until a timeout
event occurs. Fig. 6.3 depicts the communication.
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Figure 6.3: Basic Request-Response communication protocol.

In order to communicate with the device, the host has to find it among all those
plugged. This process takes the name of discovery. The host creates (or tries to
create) the special file on all the detected devices. During the discovery, the special
file created is populated replicating a 32-byte sequence. The total size of the file is
8 KB (8192 bytes). The file is logically divided in 16 blocks of 512 bytes each.

Only the SEcube™ devices answer to the discovery process. Upon recognizing
the repeated pattern, the device maps each block of the special file in its internal
memory. Each block is employed by the device to read and to answer the com-
mands of the host. To answer the discovery process, the device alters the last
block. The written fields are device-specific (such as the serial number, vendor
identifier, firmware version, etc.) and customizable. For the host, the 16th block
is used in read-only access for passive operations, such as the discovery process.
This operation only needs a block read. No blocks are written by the host, thus
avoiding conflict with other pending operations on the device or concurent access by
other applications. The communication mechanism is based on a request-response
protocol. The format of the data exchanged is fixed. There are different levels of
commands sent/received. Each level is encapsulated in the payload of the lower
level.
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User authentication and Accounts

In order to exploit the services of the security module, the owner must be au-
thenticated on the device. All commands sent to the device before a successful log
in are rejected and the device remains locked. The same applies in case the device
has not been initialized correctly. The firmware supports two different accounts
type, i.e., User and Administrator. These accounts corresponds to the following
access levels: (1) read access and (2) write access. Each access level limits the
operations performed on the configuration records, that are generic user settings
stored within the device memory. A successful log in enables the use of the services
provided by the device, according to the access level. Once logged a communica-
tion session respecting the privilege of the access level is established between the
SEcube™ and the host.

The log in operation employs a challenge-based scheme for authentication with
a passphrase. The passphrase for the different accounts is first set, during the
device initialization. During the authentication a session key is exchanged, thus
protecting the session confidentiality.

The data related to the communication session is stored in the memory of the
MCU. To avoid dynamic allocation, memory regions to store session data are stat-
ically allocated. In case no contiguous memory is available, but still enough free
memory is available, the session data is fragmented and the new session is accom-
modated. The session is freed when the user perform the logout operation.

Flash memory management

The information to be secretly preserved by the HSM are stored within the
MCU Flash memory of SEcube™ . The information can be written during the
factory initialization (i.e., manufacturer, device ID, passphrases, etc.) and during
the life of the device, i.e., cryptographic keys. To store the information two 128
KB sectors of flash memory are used. However, in flash memories it is not possible
to modify the value of a single bit. Instead a full sector erase is required, incurring
in a time overhead and in a reduced lifespan of the flash memory. To tackle this
problem, in the event that a piece of information is deleted the corresponding region
is invalidated. Between the two sectors, only one is the active sector being used.
The other one is used as backup to store data when erasing the active sector. This
swap occurs also in the case it is necessary to store additional data, but there is not
enough free space available due to invalid blocks. If the request can be satisfied,
a swap of the two sectors is triggered. The valid data is copied from the active
sector to the backup sector, the backup sector becomes the active one and finally
the request is accommodated.

Each 128 KiB flash sector is divided into 64-byte blocks. The sector contains also
additional metadata information. The sector is organized according to Table 6.1.
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Table 6.1: Flash sector layout

Offset [B] Size [B] Name Description
0 32 marker active/backup marker
32 2016 index index table type for data blocks

2048 129024 data effective data blocks (64 bytes each)

The marker sequence is used to discriminate the active sector from the backup
sector. The index represents each 64-byte block with a byte where the type of the
corresponding data block is stored. Custom predefined values for the type allow
to discriminate among a free block, an invalid block or a block that contains data
spanning over multiple blocks. In this last case, the data size is written in the
first 2 bytes of the data. The rest of the memory contains the actual data blocks.
The rationale behind this scheme is that if data inside a record is corrupted, next
records will be still accessible. This also holds true for any corrupted bytes in the
index.

Cryptographic Keys

Keys are basically data structures stored within the flash memory of the MCU
within SEcube™ . The fields composing the key are the following:

• id: key unique identifier;

• data: the actual key data;

• name: a string to describe the key;

• validity: deadline of the key.

This structure is stored in the flash memory as a variable size data. However,
the maximum lengths for key data and key name are 2048 bytes and 32 bytes,
respectively. A timestamp is associated to each key (i.e., validity field): after this
time has expired, the key is no longer valid and cannot be used anymore.

FPGA

The FPGA within the SEcube™ chip can be employed to host one or more IP
cores. Each core can implement a set of functions realizing enhanced versions of
algorithms to boost computational performance or provide additional functionali-
ties enabling new capabilities for the HSM. The FPGA is connected to the MCU
within the platform. Thus, each core instantiated on the FPGA should provide its
own software driver to be embedded in the firmware. The target of the driver is
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to manage the communication mechanism with its complementary part residing in
the reconfigurable fabric. Fig. 6.4 shows the bus lines interconnecting FPGA and
MCU.

䴀愀挀栀堀伀㈀ⴀ㜀　　　
⠀䘀倀䜀䄀⤀

匀吀䴀㌀㈀ⴀ䘀㐀㈀㤀
⠀䴀䌀唀⤀

䄀搀搀爀攀猀猀

䐀愀琀愀

䌀漀渀琀爀漀氀

䨀吀䄀䜀

䘀氀攀砀椀戀氀攀
䴀攀洀漀爀礀

䌀漀渀琀爀漀氀氀攀爀
⠀䘀䴀䌀⤀

㘀

㘀

㐀

㠀

Figure 6.4: Communication bus between MCU and FPGA.

The set of interconnections is used for exchanging data, control, and status
signals.

The default configuration of the MCU enables to interface with the FPGA
as an external memory device. This functionality exploits the Flexible Memory
Controller (FMC) available on the MCU. The values and the bit transitions on the
communication lines are directly managed by the FMC. Employing this feature,
simplifies the transmission of data between the MCU and the core(s) residing into
the FPGA.

The JTAG interface is employed for programming the FPGA. The vendor of
the FPGA provides the mechanism to program the reconfigurable devices using
a microcontroller in embedded systems, such as SEcube™ . The vendor provides
device independent software source files written in ANSI C language, which can
be compiled and executed with the SEcube™ firmware and the files containing the
FPGA design.

In the SEcube™ firmware, the bitstream configuration mechanism is modified
to securely load the bitstream. In this way, the final FPGA design can be encrypted
before the deployment in-the-field. The bitstream is then decrypted only within
the heterogeneous chip with a key residing in the MCU.
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6.4.2 Host library
The Host library is structured as set of API functions that enable a host device

to interface with the SEcube™ HSM. In this way, the communication and the op-
erations between the host and the SEcube™ device are simplified. These functions
are structured in levels of increasing abstraction.

Level 0 - L0

The Level 0 (L0) exposes the basic communication functions with the device.
It allows to:

• detect and interface with the SEcube™ peripherals connected,

• low-level request-response communication protocol with the device.

With these functions, a developer can open and close the communication with
the device without interfacing directly with the device and without manually craft-
ing the messages to be sent.

Moreover, this level enables functionalities for the factory initialization of a
SEcube™ device. This operation allows to set the device-specific information (e.g.,
serial number) and to set a passphrase for the users of the device, or add default
cryptographic keys. Ideally, they need to be performed only once in the life-cycle of
the device. The information of the factory initialization cannot be reversed without
resetting the internal flash memory of the MCU.

For diagnostic purposes, also the echo functionality is available at this level.
This function sends a piece of data and wait for the reply from the device. The
reply contains an exact copy of the data sent. This function does not require the
authentication of an user of the device.

Level 1 - L1

The Level 1 (L1) of the library exposes the basic security functionalities of the
device to the host. These functionalities can be employed to implement secure
applications running on the host.

The functionalities provided at this level allow:

• authentication of an user on the device,

• key management operations, and

• encryption/decryption of data streams.

All the messages exchanged are encapsulated in the L0 communication protocol.
To use any of the functions belonging to this level, the user needs to be authenti-
cated on the device. The authentication lets an user, either admin or normal user,
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log into the device. It requires a passphrase, which can also be changed resorting
to functions of this level.

Key management functions affects cryptographic keys stored in the device. The
functions are employed to add, modify or delete a key. Moreover the host can
retrieve a list of all the keys stored.

This level exposes also the primitives of the cryptographic algorithms available
on the device. The functions encrypt or decrypt the data with a key stored within
the SEcube™ device. However, the functions realizing this feature exploit the
device as a cryptographic accelerator. The data to be encrypted (or decrypted) is
sent to the device and it is retrieved decrypted (or encrypted). Moreover, the data
can also provide signature for authenticity purposes.

The supported encryption algorithm is AES-256. Table 6.2 shows the modes of
operations for this cipher supported in this firmware.

Table 6.2: List of supported mode of operation for AES

Cipher Modes of Operation
AES Electronic codebook (ECB)

Output feedback (OFB)
Cipher block chaining (CBC)
Cipher feedback (CFB)
Counter (CTR)

The digest algorithm SHA-256 is employed as message authentication code
(MAC) to provide authentication. It can be used to produce data digests or to pro-
duce a keyed signature, i.e., a Keyed-hash message authentication code (HMAC).
Moreover, authentication can be combined with encryption to produce a single pay-
load. In this case, the Encrypt-then-MAC scheme is used: the plaintext is encrypted
and the MAC is computed on the resulting ciphertext. Table 6.3 summarizes the
cryptographic primitives supported in this firmware.

Table 6.3: List of cryptographic primitives supported

Cryptographic
Primitive Type Description

AES256 Encryption (only) Encryption with AES cipher
SHA256 Digest (only) Hash digest with SHA-2
HMACSHA256 Signature (only) Keyed hash with SHA-2

AES-HMACSHA256 Encryption and
Signature

Data encryption with AES
and signature with HMACSHA256

113



HSM Secure Firmware Development and Analysis

Level 2 - L2

The Level 2 (L2) library enables services for secure storage (SEfile™) and secure
transmission of data across unprotected networks (SElink™) [246]. It combines
the functionalities provided by the layers below to realize services that can be
transparently used by other applications.

SElink™

SElink™ is a software that uses the SEcube™ platform to secure the network
traffic. This application is basically a filter that intercept and encrypt network
data streams. The connections can be created by any existing applications on top
of an OS, regardless of the application-level protocol. This service allows to add
a security layer to the network stack, without modifying the applications. It adds
the security features of the SEcube™ platform in a transparent way to the user
and to the developer of applications.

SElink™ is an application composed of two parts:
• Client: is the software installed on the host side that initiates the commu-

nication. This service intercepts the outgoing connections and redirects the
network stream to the encryption layer. Then, the encrypted network stream
is routed to the destination.

• Server: is the software installed on the host that accepts the connection. The
service is symmetrical to the client, i.e., it receives the encrypted network
stream, decrypts it and routes it to the destination service.

䤀渀琀攀爀渀攀琀

䠀漀猀琀 匀攀爀瘀攀爀

Figure 6.5: Secure encryption layer architecture.

Fig. 6.5 shows the architecture of SElink™. The functionalities provided by
SElink™ can be used also as a standalone service and are built on top of the L1
library.
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SEfile™

SEfile™ is a host-side library that employs the SEcube™ platform to secure
data. This library represents an abstraction layer for secure file manipulation.
Instead of dealing with data stream, as lower levels, this library deals directly with
files.

A developer can exploit the functions of this level to perform the basic operations
(i.e., open and close, read and write) on regular files in an encrypted manner. These
operations deal with files on a normal file system. The file is splitted in small sectors
and is encrypted or decrypted resorting to the SEcube™ platform. From the user
point of view the whole process of encryption/decryption is totally transparent and
is implemented in the functions provided.

This library relies on L1 functionalities. Thus, every cryptographic operation
required for file manipulation is entrusted to the security module.

6.5 Security Analysis
The remainder of this section is an extended and revised version of the publi-

cations [31].

6.5.1 DPA
Differential Power Analysis is a side-channel attack which, considers the power

consumption of a circuit. It is a non-invasive attack that requires physical access to
the security device. More precisely, to the device supply line. This technique can
be employed to identify the key used for the encryption in an encryption algorithm.
It can be helpful to identify just a part of the key when this technique is adopted
together with a brute-force attack. This can be simplified avoiding unnecessary
combinations already assessed with DPA leading to a faster attack.

The basic idea of the DPA is to find a correlation among different sets of data
to be processed with a cryptographic algorithm through a statistical analysis of the
power consumption values [136]. It exploits the fact that, different data lead to a
different power consumption when the operations performed are the same.

First, several sets of power consumption measurements have to be collected
avoiding as much as possible noise that will impact negatively the analysis leading
to incorrect results. Second, the DPA takes place: all collected power measurements
are partitioned in two different sets according to a selection function and with an
assumption on the value of a bit belonging to the key. The difference of the average
of power traces in each group is computed. This is repeated for every bit of the
key.

The selection function determines how to group power traces. It depends on the
power consumption model. Several models are possible, in this thesis are considered
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only the following:

• Hamming Distance - one set contains the traces that are considered to gen-
erate the transition of the bit value 0 to 1 and 1 to 0. The other set contains
the remaining traces;

• Hamming Weight - one set contains the traces that are considered to generate
the transition of the bit value 0 to 1 and 1 to 1. The other set contains the
remaining traces;

• Rising - one set contains the traces that are considered to generate the tran-
sition of the bit value 0 to 1. The other set contains the remaining traces;

By construction, one of the two sets contains a power consumption component
not present in the other set. The difference of the averages approaches zero for an
increasing number of traces when there is no correlation, while it presents a peak
in the opposite case. It has to be noted that even in presence of noise affecting the
measurements, given enough traces it can be possible to detect small correlations
[136]. The choice of the selection function will change the components of the two
sets, and as a consequence also the averages change. In general, this leads to
different results in terms of correct bits.

6.5.2 Setup
The security device we use in our experiments is the SEcube™ platform. It

is an open-source security platform which provides both hardware schematic and
software source code. Even though the SEcube™ platform is provided with its open-
source firmware and the implementation of its cryptographic algorithms is known,
in order to better analyze the strength of its security, we decided to employ a black-
box approach based on the sampling of the power consumption. Also, we want to
compare the efficacy of the DPA attack with a normal device, to verify the security
improvement brought by SEcube™ comparing it with a similar device. To make
the experiment meaningful, we picked a ST Microelectronics Nucleo board[220]
equipped with the same microprocessor[221] of SEcube™ . All these devices are
powered through the USB interface, where we act to precisely measure the power
consumption.

The commercial USB token USEcube™ does not allow direct access to the
internal circuitry. This already partially prevents the usage of probes to capture
the power supply signal, unless invasive attacks are employed. For our experiments
we adopted the Development Board version. With this device, having direct access
to the Vdd pins, we could sample the power consumption very easily and with low
noise. Nevertheless, to emulate a real attack, for both Nucleo board and SEcube™
board, we decided to use a custom connector to sample the power signal from the
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power supply line between the platform and the host PC. This special custom device
is tailored for a generic USB device, so it can be employed also for other types of
devices. To build it, we used an electronic prototyping board (i.e., a stripboard),
where an USB male socket and a USB female connector have been soldered and
linked together. The connection between the two ports is voluntarily left exposed,
allowing the probes to be attached easily without introducing distortion. Moreover,
a BNC connector is inserted in parallel between the supply line (+5V) and ground
line (GND) (see Figure 6.6). In this way, this device can be connected directly to an
oscilloscope avoiding the noise introduced by probes ohmic contacts, thus leading to
more accurate measurements of the input voltage. Also, it allows us to perform the
attack without physically modifying the security device, hence maintaining a non-
invasive approach. To perform measurements, we employed an oscilloscope. The

Figure 6.6: Custom handmade USB-USB/BNC connector. Figure taken from [31].
©2017 IEEE.

used device is a Tektronix TDS5052B [229] with 500 MHz bandwidth, 5 GS/s real-
time sample rate and 2 acquisition channels. It embeds a General Purpose Interface
Bus (GPIB) controller, which we use to manage the measurement process. In order
to collect and store the power traces in an automated way, we setup a LabView
module, which interfaces with and command the oscilloscope through the GPIB
interface. Also the data is collected through the same physical interface.

Another requirement to perform a DPA attack is to know what algorithm is
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involved. Being the SEcube™ firmware open-source we can see that the available
encryption algorithm is the AES-256 implemented using a software routine.

To verify the security solely of the hardware platform we created a custom
firmware. This firmware includes low-level drivers for the microprocessor but it
only executes the encryption algorithm instead of the whole SEcube™ open-source
firmware. By employing this new firmware, we can better isolate the encryption
process, which leads us to more accurate measurements without spurious transitions
due to other operations performed in the original firmware that are not directly
related to the encryption. The implemented AES algorithm is coded in C language,
like the rest of the firmware. The implementation uses the simplest operation mode,
i.e., Electronic Codebook (ECB). Both the used plaintext and the encryption key
have size equal to 128 bits and are hard-coded in the firmware. The encryption
process is repeated multiple times: it ciphers the plaintext with the same key, but
in every round the last byte of the plaintext is changed, in order to have data
dependence. The voltage drop at the power supply pins is measured during this
process. To simplify the data trace acquisition procedure we added a trigger signal
to highlight the beginning of the encryption process.

Finally, the acquired tracks are parsed and edited to be compliant with the
software for the DPA analysis realized by the authors of [165].

Figure 6.7 shows the whole workflow just described.

Figure 6.7: Overview of the workflow adopted.

6.5.3 Results
In order to test the security improvement introduced by SEcube™ platform, we

adopted a comparative method. We take as a reference design the Nucleo board
which embeds the same microprocessor of the SEcube™ . The AES encryption
algorithm is executed on both development boards against the same input data.
The power traces are sampled with the same experimental setup. The attacks are
performed separately and the results are compared. The difference in terms of effort
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(number of power traces required, number of guessed bits, ...) gives a quantitative
estimation of the security enhancement of the SEcube™ platform with respect to
the Nucleo board.

The test-bench algorithm is a software implementation of the AES algorithm.
We adopt the same key and the same plaintext (both of 128 bits) proposed in the
NIST standard specifications presented in FIPS PUB 197 [85]. However in our
experiments, we limit the attack to the last byte of the key. The key and the
plaintext used are reported respectively in Table 6.4 and Table 6.5.

Table 6.4: Cipher Key of 128 bit from [85] - Case A. Table taken from [31]. ©2017
IEEE.

0x2b 0x7e 0x15 0x16 0x28 0xae 0xd2 0xa6
0xab 0xf7 0x15 0x88 0x09 0xcf 0x4f 0x3c

Table 6.5: Plaintext of 128 bit from [85] - Case A. Table taken from [31]. ©2017
IEEE.

0x32 0x43 0xf6 0xa8 0x88 0x5a 0x30 0x8d
0x31 0x31 0x98 0xa2 0xe0 0x37 0x07 0x00 .. 0xFF

The encryption process consists into cypher the block of data with the specified
key. This is repeated 256 times and in every cycle we vary the plaintext altering
the last byte for every possible configuration, from 0x00 to 0xFF. We control and
force the changes into the plaintext in order to generate on purpose data-correlation
among the sets of measurements. The encryption process is then repeated a modest
number of times, in order to have statistical relevance.

The measurements acquired with the oscilloscope amount to 2.713 traces for
Nucleo Board and to 15.872 for SEcube™ . The traces are collected during the
encryption routine. We decided to acquire more measurements on the SEcube™
platform since it should be more secure. In total, the encryption sessions are 16
for the Nucleo board, against 62 for SEcube™ . Every power consumption trace
contains 10.000 samples.

The robustness of the SEcube™ platform against side-channel analysis has been
verified through a real DPA attack experience. Both configurations, Nucleo and
SEcube™ Development Board, while encrypting test data are analyzed in order to
collect the power consumption traces. To relax the time required for running the
data acquisition, the attack was limited to a specific byte, thus only 256 traces in
every encryption session.

After the acquisition phase, the traces are preprocessed, parsed and fed to the
DPA tool. The analysis has been carried out considering variations on the following
parameters:
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• Number of samples of each trace: we considered 25%, 30%, 50% and 100%
with respect to the full number of samples.

• Type of the Algorithm: we considered the whole AES encryption algorithm
and the single S-Box (SboxAES).

• Selection Function: Hamming weight (hweight), Hamming distance (hdis-
tance), Rising

Table 6.6 and Table 6.7 present the results from the analysis. Each columns
represent the number of samples in every trace. On the rows there are the selection
functions considered. Moreover, the results are divided considering whole AES
encryption and the single S-Box. The results presented in the various configurations
of the parameters state the number of incorrect bits in the last byte of the encryption
key. The average of incorrect bits is rounded up and is computed considering the
previous configurations. An higher number of bits indicates an unsuccessful attack,
which can be interpreted as an enhancement in security.

The reference configuration was attacked first. The results are reported in Table
6.6. It can be noticed that attacking only the Sbox of the AES the results are

Table 6.6: Nucleo results - wrong bits in the key. Table taken from [31]. ©2017
IEEE.

Nucleo
No. of Samples 2500 3333 5000 10000

SboxAES

Hamming Distance 4 2 2 3
Hamming Weight 5 3 5 6

Rising 3 4 4 3
Average 4 3 4 4

AES

Hamming Distance 4 2 5 3
Hamming Weight 5 3 5 6

Rising 6 4 6 5
Average 5 3 5 5

slightly better. However, in most cases, just half of last byte of the key is correct.
Considering the whole AES, the number of wrong bits increases.

The same attack is performed on the SEcube™ configuration. The results of
the analysis are shown in Table 6.7. Also considering the SEcube™ platform the
results are similar. The same considerations applies also.

6.5.4 Discussion
From the results of our analysis it can be seen that on average both platforms

provide the same level of security. We can state that after analysing several power
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6.5 – Security Analysis

Table 6.7: SEcube™ results - wrong bits in the key. Table taken from [31]. ©2017
IEEE.

SEcube
No. of Samples 2500 3333 5000 10000

SboxAES

Hamming Distance 4 3 4 4
Hamming Weight 6 4 3 4

Rising 1 2 1 5
Average 4 3 3 4

AES

Hamming Distance 5 5 5 5
Hamming Weight 6 4 3 4

Rising 5 4 3 2
Average 5 4 4 4

consumption traces we were able to discover roughly only half byte of the whole
key. This result might lead to improvements when DPA is combined with a brute-
force attack. Although the results are similar, in this work several simplifications
are considered. It must be pointed out that the number of traces acquired for the
SEcube™ platform is much higher than the one acquired for the Nucleo board.
Further investigation is required to achieve more significant results.
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Chapter 7

Conclusions

This thesis has presented the main activity realized during my Ph.D. studies.
The work of research carried out during the three years Ph.D. program aimed at
the development and the assessment of new methodologies to increase the cyber
security of Critical Infrastructures.

New trends and new technologies have revolutionized the previous generations
of architectures, computing systems and networks commonly employed in Critical
Infrastructures. Several technologies, such as those specified in Chapter 2, are
integrated in these infrastructures making them heterogeneous at different levels.

However, the security domain remains of crucial importance for Critical Infras-
tructures. As discussed in Chapter 3, new technological trends have generated
cyberattacks to become increasingly more complex and more dangerous. Attacks
targeting Critical Infrastructures can be considered as acts of cyberterrorism. In
these cases, the impairment or the breakdown of a Critical Infrastructure might
lead to national matters of public health safety.

Counteracting these attacks is challenging due to the complexity and hetero-
geneity of Critical Infrastructures. Nevertheless, the integration of security mech-
anisms is necessary. However, the inclusion of security measures could lead to
possible concerns in the safety of a system, which represents another important as-
pects of Critical Infrastructures. The main contribution of the research activity has
been the interplay between these two critical aspects. As discussed in Chapter 4,
the mitigation of microarchitectural side-channel attacks requires careful security
strategies to avoid additional issues on the safety domain. It derives that those
aspects must be considered together because of their mutual interactions.

The usage of heterogeneous technologies in Critical Infrastructures provides
additional computational capabilities and enables system flexibility through recon-
figurable platforms. On the other hand, new security threats emerge from such
technological integration. In particular, the environments employing FPGA-based
systems are susceptible to security attacks concerning the bitstream. The bitstream
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can be intercepted and altered either during the deployment phase by external at-
tackers or during normal operations by internal local adversaries. These problems
were addressed, in Chapter 5, resorting to a secure transmission protocol able to
guarantee appropriate security measures for the bitstream against malicious attack-
ers. This technique employs functionalities similar to those in present in hardware
security modules and can be employed also for the deployment of reconfigurable
design in mobile heterogeneous platforms.

Eventually, the development of a security-oriented open-source firmware for a
security platform was detailed in Chapter 6. The resulting platform can be em-
ployed as an alternative hardware security module. By being open-source additional
security primitives and customized algorithms can be integrated, in contrast to the
limitation of closed source solutions. In order to assess the robustness of the security
platform, this was subjected to a physical and non-invasive side-channel attack. In
detail, the Differential Power Analysis side-channel attack was performed against
the device targeting the encryption keys stored within the hardware chip.

124



Author’s Publication List

[1] M. Bollo et al. “Side-channel analysis of SEcube(tm); platform”. In: 2017
IEEE East-West Design Test Symposium (EWDTS). Sept. 2017, pp. 1–5.
doi: 10.1109/EWDTS.2017.8110067.

[2] A. Carelli, A. Vallero, and S. Di Carlo. “Performance Monitor Counters: In-
terplay Between Safety and Security in Complex Cyber-Physical Systems”.
In: IEEE Transactions on Device and Materials Reliability 19.1 (2019),
pp. 73–83.

[3] A. Carelli, A. Vallero, and S. Di Carlo. “Shielding Performance Monitor
Counters: a double edge weapon for safety and security”. In: 24th IEEE
International Symposium on On-Line Testing and Robust System Design.
2018.

[4] A. Carelli et al. “Securing bitstream integrity, confidentiality and authentic-
ity in reconfigurable mobile heterogeneous systems”. In: 2018 IEEE Interna-
tional Conference on Automation, Quality and Testing, Robotics (AQTR).
2018, pp. 1–6.

[5] A. Carelli et al. “Securing Soft IP Cores in FPGA based Reconfigurable Mo-
bile Heterogeneous Systems”. In: arXiv preprint arXiv:1912.00696 (2019).

[6] A. Carelli et al. “Towards Model Driven Design of Crypto Primitives and
Processes”. In: Proceedings of the International Conference on Security and
Management (SAM). The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing (World-
Comp). 2016, p. 152.

[7] A. Vallero, A. Carelli, and S. Di Carlo. “Trading-off reliability and perfor-
mance in FPGA-based reconfigurable heterogeneous systems”. In: 2018 13th
International Conference on Design & Technology of Integrated Systems In
Nanoscale Era (DTIS). IEEE. 2018, pp. 1–6.

[8] A. Vallero et al. “Bayesian models for early cross-layer reliability analysis and
design space exploration”. In: 2019 IEEE 25th International Symposium on
On-Line Testing and Robust System Design (IOLTS). IEEE. 2019, pp. 143–
146.

125

https://doi.org/10.1109/EWDTS.2017.8110067


AUTHOR’S PUBLICATION LIST

[9] A. Varriale et al. “SEcube (TM): Data at rest and data in motion pro-
tection”. In: Proceedings of the International Conference on Security and
Management (SAM). The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing (World-
Comp). 2016, p. 138.

126



List of Acronyms

Acronyms / Abbreviations

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard
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BPU Branch Prediction Unit

BS Bitstream file

CC Common Criteria for Information Technology Security Evaluation

CCC Clock Cycle Counter

CDF Cumulative Distribution Function

CI Critical Infrastructure

CIA Confidentiality, Integrity and Availability

CII Critical Information Infrastructure

CLB Configurable Logic Blocks

COTS Commercial-Off-The-Shelf

CPS Cyber-Physical System

CPU Central Processing Unit

CRC Cyclic Redundancy Checks

DAA Direct Anonymous Attestation
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DoS Denial of Service
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DSA Digital Signature Algorithm
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EAL Evaluation Assurance Level

ECI European Critical Infrastructure

ESS Emergency Services Sector

EU End User

EUD End User Device

FPGA Field-Programmable Gate Array

GPGPU General-purpose computing on Graphics Processing Units

GPU Graphics Processing Unit
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HPC High Performance Computing

HSM Hardware Security Module

HWV Hardware Vendor
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ICT Information and Communications Technologies

IIoT Industrial Internet-of-Things
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SCADA Supervisory Control and Data Acquisition
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SHA Secure Hash Algorithms

SIMD Single Instruction stream, Multiple Data stream

SoC Systems on Chips

SPA Simple Power Analysis
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TCG Trusted Computing Group

TDW Task Distribution Window

TLB Translation-Lookaside Buffer

TLS Transport Layer Security

TPM Trusted Platform Module

TTM Time-To-Market

USART Universal Synchronous/Asynchronous Receiver/Transmitter

VM Virtual Machine

WSN Wireless Sensors Networks
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