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Executive summary  

This document aims to spearhead a Europe-wide discussion on HPC system resilience and 

to help the European HPC community define best practices for resilience. We analyse a wide 

range of state-of-the-art resilience mechanisms and recommend the most effective 

approaches to employ in large-scale HPC systems. Our guidelines will be useful in the 

allocation of available resources, as well as guiding researchers and research funding towards 

the enhancement of resilience approaches with the highest priority and utility.  Although our 

work is focused on the needs of next generation HPC systems in Europe, the principles and 

evaluations are applicable globally. 

This document is the first output of the ongoing European HPC resilience initiative 

(https://www.resilientHPC.eu/) and it covers individual nodes in HPC systems, encompassing 

CPU, memory, intra-node interconnect and emerging FPGA-based hardware accelerators.  

With community support and feedback on this initial document, we will update the analysis 

and expand the scope to include other types of accelerators, as well as networks and storage. 

The need for resilience features is analysed based on three guiding principles:  

(1) The resilience features implemented in HPC systems should assure that the failure 

rate of the system is below an acceptable threshold, representative of the technology, 

system size and target application. 

(2) Given the high cost incurred by uncorrected error propagation, if hardware errors occur 

frequently they should be detected and corrected at low overhead, which is likely only 

possible in hardware. 

(3) Overheating is one of the main causes of unreliable device behaviour. Production HPC 

systems should prevent overheating while balancing power/energy and performance.  

Based on these principles, the main outcome of this document is that the following features 

should be given priority during the design, implementation and operation of any large-scale 

HPC system:  

● ECC in main memory  

● Memory demand and patrol scrub  

● Memory address parity protection  

● Error detection in CPU caches and registers  

● Error detection in the intra-node interconnect 

● Packet retry in the intra-node interconnect  

● Reporting corrected errors to the BIOS or OS (system software requirement) 

● Memory thermal throttling  

● Dynamic voltage and frequency scaling for CPUs, FPGAs and ASICs 

● Over-temperature shutdown mechanism for FPGAs 

● ECC in FPGA on-chip data memories as well as in configuration memories 

The remaining state-of-the-art resilience features surveyed in this document should only be 

developed and implemented after a more detailed and specific cost–benefit analysis.  

 

https://www.resilienthpc.eu/
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1. Introduction  

One of the greatest challenges in High-Performance Computing (HPC) is the need to build 

resilient systems. Resilience is an especially difficult challenge in HPC, in which tightly coupled 

compute jobs typically execute across a large number of nodes for several hours or even days. 

Without effective provisions for resilience, in hardware and/or software, a single failure in one 

node or server typically causes a domino effect, resulting in the termination of the whole job. 

Such job termination normally results in no useful outcome, so the node hours that have 

already been expended on the job are wasted. Recently, the most common use of 

supercomputers and HPC systems are applications that solve large-scale real-world 

simulation problems [1, 2, 3]. Such applications, implemented as workflows or multi-scale 

systems are inherently fault-tolerant and have error-containment capabilities that eliminate the 

domino effects caused by failures. However, failure in a node executing a distributed thread 

leads to contained error recovery, which translates into decreased performance and 

throughput.  

  

System reliability is also an important limiter on the ability to scale to larger systems. This is 

because increasing the number of nodes causes the overheads of error containment and error 

recovery to increase exponentially. Reliability is therefore an important requirement and 

challenge for exascale, as recognized by the HPC strategic research agendas of the European 

Technology Platform for High Performance Computing (ETP4HPC) [4, 5, 6], Eurolab4HPC [7], 

the U.S. Department of Energy [8, 9, 10, 11] and the U.S. National laboratories [12, 13]. 

 

Ensuring resilience of large-scale HPC systems is complex, and the development, analysis 

and evaluation of features to improve resilience requires investment in research and 

engineering. This document helps by analysing a wide range of state-of-the-art resilience 

mechanisms, and it selects the most effective approaches and identifies gaps in the design 

space. This prioritization is essential to properly allocate resources and to focus expertise in 

the European HPC community and beyond, in order to ensure that the most essential 

resilience features are addressed with the highest priority.  

 

The initial scope of the analysis is influenced by the needs of the EuroEXA project,1 which has 

funded the work so far. As such, in this document, we focus on resilience features of individual 

HPC nodes, covering CPU, memory, FPGAs and the intra-node (socket-to-socket) 

interconnect. As part of ongoing and future work, with community support and feedback based 

on this document, we will extend the analysis to GPUs, vector accelerators, NICs, interconnect 

networks and storage. This document is also mainly focused on the resilience features in 

hardware and low-level system software (e.g., the OS). Interaction among these features and 

resilience techniques at higher levels of the software stack is part of future work.2 

                                                
1 Co-designed Innovation and System for Resilient Exascale Computing in Europe: From Applications 

to Silicon (H2020 Grant Agreement number: 754337). https://euroexa.eu/ 
2 We do mention checkpoint/restart and algorithm based fault tolerance (ABFT). However, a thorough 
analysis of additional software and cross-layer resilience techniques (e.g., distributed hierarchical 
checkpointing, cross-layer error containment) is part of future work. 
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The following paragraphs summarise the main steps we took in this study as well as the results 

of our analysis:    

Step 1: Understanding the resilience-related characteristics of applications and 

systems in the HPC domain 

Resilience is a general term that refers to a system’s capability to recover from or prevent 

failures. System resilience is typically subdivided into three separate concepts: Reliability, 

Availability and Serviceability (RAS), which are defined in detail in Section 2.1.  

It is not straightforward to determine what types and degrees of resilience should be provided 

in a specific HPC system. These depend on the environment and user requirements. It is also 

important to understand the specific characteristics of HPC systems, especially the impact of 

different errors and failures on system performance, reliability and availability. This discussion 

is summarised in Section 3. 

Step 2: Analysing the resilience features of state-of-the-art HPC nodes  

Current HPC on-node resilience features are defined mainly by US and Asian chip 

manufacturers and HPC system integrators with decades of experience in building resilient 

systems. These features, therefore, are the gold standard by which we measure the resilience 

of any novel HPC node architecture, including the ones developed in Europe. For this reason, 

we have to understand them well. In Section 4, we itemise state-of-the-art HPC resilience 

features with an explanation for each one of them.  

Step 3: Setting a priority for the implementation for each identified resilience feature 

Any resilience feature requires a cost–benefit analysis: comparing the cost of failures, whether 

avoided or mitigated, in relation to their likelihoods, against the cost of the resilience feature 

itself.3 All these costs may be monetary costs, or they may be a loss in performance or an 

increase in power and energy. The cost of a potential failure can be estimated based on its 

likelihood and the time and expense of HPC job restart, node reboot and replacement of 

hardware components. The cost of a resilience feature is due to the additional engineering 

effort and time to develop it and the need for additional hardware to implement it, such as 

extra silicon or interconnect links. Such features also have indirect costs, such as runtime 

performance overheads as well as power and energy overheads, caused by system 

monitoring, error detection, error correction, checkpointing, etc. Cost–benefit analysis of each 

resilience feature should be used to prioritise development and implementation on production 

HPC platforms.  

 

We classify some of the listed resilience features as “MUST HAVE” in production HPC 

systems. These features are considered essential to be incorporated in a given component or 

technology in order to make that component or technology a viable building block for a reliable 

large-scale HPC system. These resilience features are classified as “MUST HAVE” in 

production systems based on three main criteria: 

                                                
3 The cost of a particular resilience feature could be also compared with other resilience mechanisms 
that would mitigate the failure impact. Re-execution of a failure-affected HPC job could also be 
considered a resilience mechanism with the corresponding cost.  
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(1) The resilience features implemented in HPC systems should assure that the failure 

rate of the system is below an acceptable threshold, representative of the technology, 

system size and target application. 

 

(2) Given the high cost of the uncorrected errors, if hardware errors occur frequently they 

should be corrected, at low cost, preferably (where possible) in hardware. 

 

(3) Overheating is one of the main causes of unreliable device behavior. Production HPC 

systems should monitor the temperature of their components and include mechanisms 

that prevent overheating while balancing power/energy and performance.  

 

Outcome:  The list of the most important HPC resilience features 

The main outcome of this document is the selection of the most important resilience features 

that should have the highest priority during the design and implementation of any EU HPC 

system. These conclusions are described in Section 5. 

  



 

Towards Resilient EU HPC Systems: A Blueprint  April 2020. 
 

 
 
 
 

  

11 
 

2. Terminology 

Terms such as error, failure, fault or system repair have a specific meaning when used in the 

context of the HPC system resilience. These terms, however, may be used differently in 

distinct studies, and in academia and industry. Therefore, to mitigate any terminology-related 

confusion or misunderstanding, we start with a brief summary of the resilience-related 

terminology that we use in this document. 

2.1. Resilience, reliability, availability, serviceability 

Resilience is a general term that refers to a system’s capability to recover from or prevent 

failures. System resilience is typically subdivided into three separate concepts: Reliability, 

Availability and Serviceability (RAS). There are many ways to define RAS; an intuitive 

definition in the context of an HPC system is as follows: 

● Reliability: How infrequently is a failure seen in a system? 

 

● Availability: How infrequently is the functionality of a system or application impacted 

by failures? 

 

● Serviceability: How well are system failures and their impact communicated to users 

and service personnel, and how efficiently and non-disruptively can the HPC system 

or its components be repaired and brought back into service?  

2.2. Errors, failures, faults, defects 

Most of the previous studies use the following definitions of computing system failures, errors, 

faults and defects [14, 15]:  

● Failure is an event that occurs when the delivered service deviates from correct 

service. For example, it is expected that a data read from memory delivers correct data 

stored on a given address; and any deviation from this service is a failure of the 

memory device or interface. This failure, however, does not have to imply disruption in 

service of the affected node. In case of a failing memory device, for example, Error 

Correcting Code (ECC) can correct the errors so the HPC node keeps delivering 

correct service with no negative impact on the behavior of the running applications.  

Failures can be detected or undetected, as detailed in Section 3.3. 

 

● Error is the deviation of the system state (seen externally) from its correct service 

state. For example, a memory device (e.g., DIMM) can deliver data to the memory 

controller that is inconsistent with the stored ECC. In this case, the memory controller 

will flag a memory error. Errors can be further divided into two groups: corrected and 

uncorrected,4 as detailed in Section 3.2. 

 

                                                
4 The errors that are not corrected can be referred to as uncorrected (Arm) or uncorrectable (Intel, HPC 

system integrators). In this document we use the term uncorrected errors.  
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● Fault is the adjudged or hypothesized root cause of an error. For example, the cause 

of a DRAM error could be a particle impact or a defect in the memory cell or circuit. 

Not all faults lead to errors — errors get manifested only if faults change the system 

state, e.g. an arithmetic operation or a data accessed.  

 

● Defects are physical sources of faults and errors.  
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3. The cost of system errors  

In order to quantify the impact of system errors, it is important to distinguish between:  

(1) Scheduled and unscheduled system outages and repairs  

(2) Corrected and uncorrected errors 

(3) Detected and undetected failures 

3.1. Scheduled vs. unscheduled system outages 

and repairs 

Scheduled system outage repairs are scheduled ahead of time based on failure prediction 

or observed reduced performance caused by corrected errors. The scheduled system repairs 

typically require replacement of a single hardware component, most frequently a CPU or a 

memory DIMM. In this scenario a working component that is predicted to fail or whose 

performance is below expectations, is replaced with a spare one. The cost of this hardware 

replacement is in the range of a few node hours of downtime. After the hardware component 

is replaced, the node is tested. Standard HPC node tests are based on running stress 

benchmarks over a time period that ranges between a few hours and a few days.  

Uncorrected hardware errors lead to unscheduled outages and system repairs. Similar to 

scheduled repairs, unscheduled system repairs usually involve the substitution of a single 

hardware component with a spare one, and testing of the affected node. The penalty of 

unscheduled outages, however, comes from unplanned HPC job termination. Since usually 

such job termination provides no useful outcome, all the node hours from the start of the job 

until the unscheduled outage is lost.5 In HPC, a single tightly-coupled job may execute for 

hours or even days on a large number of nodes, and therefore the penalty of an unscheduled 

job termination can be significant.  

3.2. Corrected and uncorrected errors 

It is important to distinguish between corrected and uncorrected system errors and their 

impact.  

Corrected errors: The nodes that are used in HPC systems incorporate advanced Error 

Correcting Codes (ECC) and protocols that can detect and correct hardware errors.  For 

example, main memory ECC is able to detect and correct multiple corrupted bits in a data 

word and even handle cases where an entire DRAM chip is corrupted. Data correction is 

performed in parallel with data reads, so corrected errors effectively have no impact on 

system performance; although energy consumption may be negatively impacted. 

 

                                                
5 Checkpoint/restart approach would reduce the cost of job termination; the penalty would cover only 

the node hours from the last saved checkpoint until the unscheduled outages.  
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Uncorrected errors: If the detected error in a component cannot be corrected with available 

error correction mechanisms, typically the HPC job has to be terminated with no useful 

outcome from the execution. The consequence of this is that the node-hours used on the job 

until error detection are lost. The penalty of such a job termination may be significant (in terms 

of lost server hours); amounting to monetary, node availability and energy costs.  

Also, when an uncorrected error is detected, the node is typically shut down and removed 

from production until the faulty part has been replaced and the node has been tested.6 In 

current systems, the total penalty of uncorrected errors, including the lost server hours, is in 

the order of tens or hundreds of node hours. 

 

Deferred Errors: A deferred error is a detected error that has not been corrected (i.e. that 

remains uncorrected), but has been allowed to propagate. However, the propagation is not 

silent, since the system knows about the error and is able to track it and its impact. Propagation 

of deferred errors is also referred to as data poisoning.  

  

Overall, uncorrected errors can have a significant negative impact on system 

performance, reliability and availability. 

3.3. Detected and undetected failures 

Failures that manifest as errors, i.e., deviation of the system state (seen externally) from its 

correct expected system state, are detected failures.  

Some of the failures may not be detected with state-of-the-art error detection mechanisms. 

The undetected failures may lead to several outcomes: 

● No impact: Undetected failures may contaminate obsolete data, i.e., data not used by 

the application after the failure’s occurrence. In this case, the undetected failures have 

no impact on application outcome or the overall service provided by the HPC system. 

 

● Incorrect system operation: Undetected failure may lead to incorrect data being 

used by the application, e.g., affecting addresses of even binary code. Use of such 

incorrect data addresses or code may lead to service interruption, e.g., because the 

application tries to access an address that is invalid in its address space. For such 

uncorrected errors, the cost caused by service interruptions, system repair and testing 

is high. 

  

● Silent Data Corruption (SDC): Undetected failures may lead to unexpected 

erroneous application outcomes — the application may execute to the end and give 

an answer that could even look plausible, but is actually wrong. This scenario may 

occur if the failure affects data that is later used by the application. Producing 

undetected incorrect scientific results is considered more damaging than a service 

interruption [16]. 

                                                
6 Advanced resilience features enable running the node in a degraded mode, e.g. with blacklist memory 

regions in which uncorrected errors were detected.    
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4. HPC resilience features 

This section summarizes the state-of-the-art of HPC resilience features. The presented 

material is based on experiences of HPC service providers and on the extensive review of 

publicly-available industrial documents from Intel [17, 18, 19, 20, 21, 22, 23], Arm [24, 25, 50, 

51], HPC system integrators [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] 

and FPGA vendors [42, 43, 44, 45, 46, 47]. 

4.1. Error detection and correction 

Error detection: In the context of the EU HPC initiative, we have to guarantee that our error 

detection coverage is similar to, or better than state-of-the-art HPC solutions. If this would not 

be the case, it would be very difficult to convince any HPC service provider that the EU HPC 

system is indeed stable and reliable.  

Error detection is important as it is a main pre-requirement of any further error analysis. If we 

want to perform any quantitative analysis of errors in a production setting, it is strongly 

preferred that error detection mechanisms have a high coverage. Collection and analysis of 

statistics related to failures is one of the milestones set by the ETP4HPC [5].7 

In addition, error detection is the main prerequisite for prediction of any future failures; e.g., 

corrected DRAM errors could be used to predict uncorrected ones. Prediction of failures and 

fault prediction algorithms are two of the milestones set by the ETP4HPC [5, 6].8,9 A recent 

survey of the existing pre-failure techniques, however, still shows significant room for 

improvement in this research area [48, 49].  

Error correction: In general, it is important to consider the return-on-investment analysis of 

any error correction mechanism. However, given the typically high cost of uncorrected errors, 

it is safe to conclude that highly-probable hardware errors should be detected and corrected 

at low overhead, preferably (if possible) in hardware. Examples of highly probable errors are 

DRAM errors that occur at the rate of hundreds of errors per year, per DIMM. For this reason, 

current HPC systems incorporate advanced hardware mechanisms that correct single-bit and 

detect multi-bit DRAM errors, so that they do not impact reliability, with only a minimal impact 

on performance, power and energy and modest cost in additional area on chip. 

It is sometimes difficult to distinguish between error detection and error correction 

mechanisms. The same RAS feature can correct some errors (e.g., single-bit DRAM errors) 

and only detect some others (e.g., multi-bit DRAM error). Whether the RAS feature performs 

error detection or error correction depends on the complexity of the error. Therefore, in Table 

1, we summarize both error detection and correction features. In addition to error detection 

and correction, it is important to report errors to the BIOS and operating system, as we 

summarize in Table 2. 

                                                
7 Milestone M-ENR-FT-5; Availability date: 2018. 
8 Milestone M-ENR-FT-6; Availability date: 2019.  
9 Milestone M-ENR-FT-6; Availability date: 2021.  
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Table 1: Summary of error detection and correction features 

Parameter Description 

ECC: Main memory 

ECC protects main (system) memory (typically in the form of 
DRAM) from transient faults that can corrupt program data. The 
increasing density of DRAM devices (and consequently main 
memory capacity) increases the likelihood of such faults. 
 
An extensive overview of advanced ECC schemes, including 
single-device data correction (SDDC or Chipkill), double-device 
data correction (DDDC) and DDDC+1, can be found at the 
following document: Memory RAS Configuration. User’s Guide. 
Super Micro Computer Inc,. 2017 [41]. 
 
Category:  
Considered “MUST HAVE” in any production HPC system. 

Memory Demand and 
Patrol Scrub 
  

Combined with detection features, like the aforementioned ECC, 
these features provide the ability to find and correct memory 
errors, either reactively (demand) or proactively (patrol) 
addressing memory problems. In all cases, whenever the system 
detects an ECC error, it will attempt to correct the data and write 
it back, if possible. When correcting the data is not possible, the 
corresponding memory is tagged as failed or poisoned. Demand 
scrubbing is the attempt to correct a corrupted read transaction. 
Patrol scrubbing involves proactively sweeping and searching 
system memory and attempting to repair any errors found. 
Scrubbing also helps prevent the accumulation of single-bit errors 
to multi-bit errors. Patrol scrubbing errors may activate the 
Machine Check Architecture Recovery (MCA recovery) 
mechanism described in Table 4.  
 
Category: 
Considered “MUST HAVE” in any production HPC system. 

Memory Address 
Parity Protection 

Enables the correction of transient errors on address lines of the 
memory channel. Traditional parity is limited to detecting and 
recovering single-bit errors. 
 
Category: 
Considered “MUST HAVE” in any production HPC system. 

Memory Lockstep 

Memory Lockstep lets two memory channels work as a single 
channel, moving a data word two channels wide and providing 
eight bits of memory correction. Memory Lockstep provides 
protection against both single-bit and multi-bit errors. 
  
Category: 
Depends on workload, requires additional cost–benefit analysis. 
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Error detection: CPU 
caches and registers 
  

Error detection in processor register processor caches. The 
increasing density, increasing cache sizes and increasing depth 
of the memory hierarchy in modern processors increases the 
likelihood of such faults. 
  
Category: 
Considered “MUST HAVE” in any production HPC system. 

ECC: On-chip 
memories of FPGAs 

Built-in or soft-core ECC is used to protect on-chip memories or 
Block RAMs (BRAMs) of FPGAs from transient faults. The 
increasing density of FPGAs increases the likelihood of such 
faults. In addition, it has been shown that BRAM ECC protects 
data against soft errors and undervolting faults, too. BRAMs of 
modern FPGAs are usually equipped with Single-Error Detection 
and Multiple-Error Correction (SECDED) type of ECC, which 
inherently fits the type of transient faults, soft errors, and 
undervolting faults. 
  
Category: 
Considered “MUST HAVE” in any production HPC systems. 

Protecting 
Configuration Memory 
of FPGAs 

In SRAM-based FPGAs (most common type), configuration 
memories are susceptible to different types of faults like Single 
Event Upset, which can lead to configuration and with that 
program changes on the FPGA. Dedicated ECC, patrol scrubbing, 
and redundancy techniques, like Triple Modular Redundancy, can 
protect configuration bits.    
 
Category: 
ECC: Considered “MUST HAVE” in any production HPC systems. 
Patrol scrubbing and redundancy techniques: Depends on 
system/workload, requires additional cost–benefit analysis. 

Intra-node 
interconnect:  
Error detection 
 
 
 
 

Intra-node interconnect refers to hardware and the associated 
protocols that connect components located on a single node, such 
as CPUs, hardware accelerators and the I/O hub.    
 
Category: 
Considered “MUST HAVE” in any production HPC system. 

Intra-node 
interconnect:  
Packet Retry 
 
 

Automatically retransmits packets containing errors. This 
supports recovery from transient errors. 
 
Category: 
Considered “MUST HAVE” in any production HPC systems. 
Depending on system/workload the packet retry can be performed 
in hardware or in software (would require additional cost–benefit 
analysis).  
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Table 2: Reporting of corrected errors 

Parameter Description 

Reporting of corrected 
hardware errors  
 

This feature reports hardware errors, which the RAS system 
successfully detected and corrected, to the OS. This reporting is 
a prerequisite for any quantitative analysis of the system 
resilience, and predictive failure analysis that would anticipate and 
avoid future uncorrected errors.  
 
Category: 
Considered “MUST HAVE” (or  at least  “HIGHLY DESIRABLE”)  
in any production HPC system.  

 

4.2. Prevention of uncorrected errors 

The objective of the prevention techniques is to avoid unscheduled outages and system 

repairs due to uncorrected errors. Typical examples are degraded operation modes that 

reduce the probability of uncorrected errors at the cost of device performance, as summarised 

in Table 3. Most of the prevention techniques manage device temperature since overheating 

is one of the main causes for unreliable device behaviour. State-of-the-art production HPC 

systems monitor component temperature and employ mechanisms to prevent overheating 

while balancing power/energy and performance. We recommend that HPC systems 

developed in Europe deploy equivalent techniques.  

 

Table 3: Uncorrected error prevention. Device degraded modes until repairs can be made. 

Parameter Description 

Memory Thermal 
Throttling 
 

The processor monitors memory temperature and can temporarily 
slow down the memory access rates to reduce temperatures, if 
needed. It can prevent DIMMs from overheating while balancing 
power and performance. 
Optionally, in conjunction with the systems management solution 
(provided by the HPC system integrator), the system may 
increase fan or pump speeds as needed to keep memory 
components operating within acceptable thermal limits. 
 
Category: 
Considered “MUST HAVE” in any production HPC system. 

Core (Socket) Disable 
for Fault Resilient Boot 

This feature disables a failing core (or socket) at boot time, 
allowing the system to power on despite the core (socket) failure. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis.  
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Dynamic voltage and 
frequency scaling  

Voltage and frequency under-scaling is an effective power 
reduction technique, applicable for CPUs, FPGAs, ASICs; 
however, it needs to be dynamically controlled to prevent the 
system reliability affects.  
 
Category: 
Considered “MUST HAVE” in any production HPC system. 

 
Over-temperature 
shutdown mechanism 
for FPGAs 
 
 

The environmental temperature might be out of control in the 
harsh environments, especially in edge devices where 
accelerators like FPGAs are commonly used. In these scenarios, 
over-temperature can potentially damage the device. 
Technologies like Xilinx Analog-to-Digital Converter in FPGAs 
provide opportunity to prevent system damage by monitoring the 
temperature and issuing a safe shutdown signal when 
temperature goes beyond the limit. 
 
Category: 
Considered “MUST HAVE” in any production HPC system.  

  

4.3. Error containment: Limiting error impact 

Even with advanced RAS features available in production systems, a failure of a single node 

(or a single application process) typically causes the termination of the whole job. Error 

containment is therefore a very important aspect of HPC system resilience and a key 

requirement for the reliable scale-out of HPC systems and applications. The state-of-the-art 

error containment features (summarized in Table 4) are, however, fairly complex and may 

introduce significant overheads. Therefore, before implementing these solutions in the EU 

HPC production system, it is important to perform a cost–benefit analysis. 

 

Table 4: Uncorrected errors containment 

Parameter Description 

Corrupt Data 
Containment Mode 

Corrupt Data Containment mode, or tracking data poisoning 
prevents corrupt data from spreading through the system. 
Tracking data poisoning, i.e., tagging data that comes from a 
corrupt memory location, limits the corrupt data to the process 
currently running, thus preventing the data from affecting the rest 
of the system. The receiver of the data can check the poison tag 
and detect whether the data is corrupted. This mechanism 
requires enhancements in hardware and software layers.   
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 
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Tracking Data 
Poisoning 

Tracking data poisoning is a method to defer a detected error, by 
associating a poison state to the data. 
In a processor, a poisoned data value may be stored into a cache 
(e.g. L2 cache).  It is considered “consumption” for a processor to 
use a poisoned data value to alter the non-speculative state. Any 
attempt to store a poisoned value into a control register or 
otherwise consume the value rather than storing it or transmitting 
it must result in an error. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

Machine Check 
Architecture recovery 
(MCA recovery) 

 
Allows higher-level software, such as the hypervisor, OS, or MCA 
recovery-aware application to recover from some data errors that 
cannot be corrected at hardware level. Memory Patrol Scrub or 
Last Level Cache Write Back detects these errors. MCA recovery 
reports the location of the error to the software stack, which then 
takes the appropriate action. For example, the OS might abort the 
task owner in response to an error, allowing the system to 
continue running. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 
 

Checkpointing/restart 

 
Restarts the whole user application from a user-assisted 
coordinated checkpoint, in most cases taken at a synchronization 
point. Checkpoint/restart is a widely studied component of global 
system resilience.  
 
Achieving it in a traditional SPMD model is integrated in many 
applications. Alternatively, external libraries, such as BLCR or 
SCR can provide the necessary services. 
 
Achieving it at the level of tasks is being investigated by task-
based programming libraries such as StarPU, OmpSs, and 
Charm++, seamlessly combining it with heterogeneous HPC 
system support. The knowledge of the task graph allows the 
runtime to automatize the selection of data to be saved and the 
restart at a given point of the graph. Careful design allows the 
system to restart only the failing nodes. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 
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Algorithm based fault 
tolerance (ABFT) 

ABFT approaches use algorithmic techniques to detect and 
correct data loss or data corruption during computation in order to 
improve the tolerance against faults in the applications 
themselves. Typical examples are iterative solvers, which can — 

under some circumstances — overcome wrong data caused by 
faults by smoothing them out across iterations. In some cases, 
this can replace or augment hardware approaches, but is typically 
restricted to specific application kernels and does not protect 
control structures. 
 
Category: 
Depends on workload, requires additional cost–benefit analysis. 

Isolation Design Flow 
for FPGAs 

The isolation design flow confirms that the individual regions of 
FPGA designs are isolated from each other in the event of failure. 
This can augment (but not fully replace) other resilience 
techniques for FPGAs and can enhance overall design reliability. 
Several techniques are embedded in this approach (confirmed for 
Xilinx) to guarantee the goal above:  

● Isolation of test logic for safe removal 

● Watchdog alarms 

● Segregation by safety level 

● Modular redundancy 

 

Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

  

4.4. Minimizing the system repair time 

The objective of these features is to reduce the time needed to repair the system, and 

therefore to improve the system serviceability. However, system repairs must have a low-to-

moderate impact on the HPC system down time (see Section 3). Hence, it is important to 

perform the cost–benefit analysis of these RAS features, see Table 5. 

Table 5: Minimizing the system repair time 

Parameter Description 

Failed DIMM 
Identification 

Identifies specific failing DIMM(s), enabling IT support to replace 
only those DIMMS. 
 
Category:  
Depends on system/workload, requires additional cost–benefit 
analysis. 
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CPU Hot Add/Swap 

Allows the addition of a physical CPU module to a running system. 
A new CPU can immediately replace a failing CPU via migration 
or be brought on-line later. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

Memory Hot 
Add/Swap 

Physical memory can be added while the system is running. 
Added memory can immediately replace failing memory via 
migration or be brought on-line later. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

PCIe Express Hot 
Plug 

Allows addition or removal of a PCIe card while the system is 
running. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

Rewriting configuration 
memory of FPGAs  

Using either an internal or external configuration controller to 
rewrite configuration memory without stopping device operation. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

Dynamic Partial 
Reconfiguration for 
FPGAs 

Dynamic Partial Reconfiguration can be used to replace part of 
the FPGA design without interrupting the functioning of other 
parts.  
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

  

4.5. System redundancy  

Systems may include spare components that can dynamically, at runtime, take over the 

operation of failing components, as shown in Table 6. System redundancy reduces the system 

repair time, assuming a low migration overhead from the failing to the spare component. Also, 

redundancy can mitigate the uncorrected error impact, e.g., if the failing and spare 

components work in mirroring mode. System redundancy, however, introduces significant 

overhead in hardware and operational costs as well as performance degradation. Therefore, 

redundancy is typically not applied on production HPC systems, at least not at the level of 

nodes.  
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Table 6: System redundancy 

Parameter Description 

Processor Sparing and 
Migration 

 
Enables the dynamic and proactive reassignment of a CPU 
workload to a spare CPU in the system in response to failing 
memory or CPU components. The migration, which requires OS 
assistance, configures the state of a spare CPU socket to match 
the processor and memory state of the failing CPU. Once the 
migration is complete, the system can force the failing CPU 
offline for replacement in the next maintenance cycle. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 
  

Fine Grained Memory 
Mirroring 

 
A method of keeping a duplicate (secondary or mirrored) copy 
of the contents of select memory that serves as a backup if the 
primary memory fails. The Intel Xeon processor E7 family 
supports more flexible memory mirroring configurations than 
previous generations allowing the mirroring of just a portion of 
memory, leaving the rest of memory un-mirrored. The benefit is 
more cost-effective mirroring for just the critical portion of 
memory versus mirroring the entire memory space. Failover to 
the mirrored memory does not require a reboot, and is 
transparent to the OS and applications. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 
 

Memory Sparing 

 
Allows a failing DIMM or rank to dynamically failover to a spare 
DIMM or rank behind the same memory controller. When the 
firmware detects that a DIMM or rank has crossed a failure 
threshold, it initiates copying the failing memory to the spare. 
There is no OS involvement in this process. If the memory is in 
lockstep, the operation occurs at the channel pair level. DIMM 
and rank sparing is not compatible with mirroring or migration. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 
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Memory Migration 
 
 

Moves the memory contents of a failing DIMM to a spare DIMM, 
and reconfigures the caches to use the updated location so that 
the system can coherently use the copied content. This is 
necessary when a memory node fails or the memory node 
ceases to be accessible. The act of migrating the memory does 
not affect the OS or the applications using the memory. 
Typically, this operation is transparent to the OS. Because in 
some cases OS assistance improves performance, OS-assisted 
memory migration is also available. 
 
Category: 
Depends on system/workload, requires additional cost–benefit 
analysis. 

  

  



 

Towards Resilient EU HPC Systems: A Blueprint  April 2020. 
 

 
 
 
 

  

25 
 

5. Conclusions and future work  

Building resilient systems is one of the greatest challenges of HPC in Europe. For this reason, 

the EU HPC community should carefully allocate the available resources and expertise to 

address the most important requirements for resilience. 

This document aims to spearhead a Europe-wide discussion on HPC system resilience and 

to help the European HPC community to define best practices. We prioritise a wide range of 

approaches for resilience based on three main principles:  

(1) The resilience features implemented in HPC systems should assure that the failure 

rate of the system is below an acceptable threshold, representative of the technology, 

system size and target application. 

(2) Given the high cost of the uncorrected errors, if hardware errors occur frequently they 

should be corrected, and corrected at low cost, preferably (if possible) in hardware.  

(3) Overheating is one of the main causes of unreliable device functioning. Production 

HPC systems should prevent overheating while balancing power/energy and 

performance. 

 

The main outcome of this document is the recommendation of the following resilience features 

as “MUST HAVE” in production HPC systems: 

● ECC in main memory  

● Memory demand and patrol scrub  

● Memory address parity protection  

● Error detection in CPU caches and registers  

● Error detection in the intra-node interconnect 

● Packet retry in the intra-node interconnect  

● Reporting corrected errors to the BIOS or OS (system software requirement) 

● Memory thermal throttling  

● Dynamic voltage and frequency scaling for CPUs, FPGAs and ASICs 

● Over-temperature shutdown mechanism for FPGAs 

● ECC in FPGA on-chip data memories as well as in configuration memories 

Development and implementation of the remaining state-of-the-art resilience features should 

only be done based on an additional cost–benefit analysis. These types of analysis depend 

on the targeted workload and require significantly more work on modelling, simulation and 

measuring resilience.  

This document is the first output of the ongoing European HPC resilience initiative. We focus 

on the resilience features of HPC nodes, covering the CPU, memory and intra-node 

interconnect, as well as emerging FPGA-based hardware accelerators. With community 

support and based on feedback, we will update the analysis and expand scope to include 

interactions among multiple levels of the software stack and to cover other types of 

accelerators, as well as networks and storage.  
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