
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards Resilient EU HPC Systems: A Blueprint / Radojkovic, Petar; Marazakis, Manolis; Carpenter, Paul; Jeyapaul,
Reiley; Gizopoulos, Dimitris; Schulz, Martin; Armejach, Adria; Ayguade, Eduard; Bodin, Francois; Canal, Ramon;
Cappello, Franck; Chaix, Fabien; de Verdiere, Guillaume Colin; Derradji, Said; Di Carlo, Stefano; Engelmann, Christian;
Laguna, Ignacio; Moreto, Miquel; Mutlu, Onur; Papadopoulos, Lazaros; Perks, Olly; Ploumidis, Manolis; Salami, Bezhad;
Sazeides, Yanos; Soudris, Dimitrios; Sourdis, Yiannis; Stenstrom, Per; Thibault, Samuel; Toms, Will; Unsal, Osman. -
ELETTRONICO. - (2020), pp. 1-29.

Original

Towards Resilient EU HPC Systems: A Blueprint

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2854792 since: 2020-12-04T13:33:11Z

Towards Resilient EU HPC

Systems: A Blueprint

April 2020.

Funded by the Horizon 2020 Framework Programme of the European Union

Towards Resilient EU HPC Systems: A Blueprint April 2020.

1

Copyright © 2020. This document is protected by copyright and other related rights and the

practice or implementation of the information contained in this document may be protected by

one or more patents or pending patent applications. No part of this document may be reproduced

in any form by any means without the express prior written permission of the authors. No

license, express or implied, by estoppel or otherwise to any intellectual property rights is granted

by this document unless specifically stated.

The United States Government retains and the publisher, by accepting the article for publication,

acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,

world-wide license to publish or reproduce the published form of this manuscript, or allow

others to do so, for United States Government purposes. The Department of Energy will provide

public access to these results of federally sponsored research in accordance with the DOE Public

Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This work has received funding from the European Union’s Horizon 2020 research and

innovation programme under the projects ECOSCALE (grant agreement No 671632), EPI

(grant agreement No 826647), EuroEXA (grant agreement No 754337), Eurolab4HPC (grant

agreement No 800962), EVOLVE (grant agreement No 825061), EXA2PRO (grant agreement

No 801015), ExaNest (grant agreement No 671553), ExaNoDe (grant agreement No 671578),

EXDCI-2 (grant agreement No 800957), LEGaTO (grant agreement No 780681), MB2020

(grant agreement No 779877), RECIPE (grant agreement No 801137) and SDK4ED (grant

agreement No 780572).

The work was also supported by the European Commission’s Seventh Framework Programme

under the projects CLERECO (grant agreement No 611404), the NCSA-Inria-ANL-BSC-JSC-

Riken-UTK Joint-Laboratory for Extreme Scale Computing – JLESC (https://jlesc.github.io/),

OMPI-X project (No ECP-2.3.1.17) and the Spanish Government through Severo Ochoa

programme (SEV-2015-0493).

This work was sponsored in part by the U.S. Department of Energy's Office of Advanced

Scientific Computing Research, program managers Robinson Pino and Lucy Nowell. This

manuscript has been authored by UT-Battelle, LLC under Contract No DE-AC05-00OR22725

with the U.S. Department of Energy.

https://jlesc.github.io/

Towards Resilient EU HPC Systems: A Blueprint April 2020.

2

Editorial team Affiliation

Petar Radojkovic Barcelona Supercomputing Center

Manolis Marazakis
Foundation for Research and Technology - Hellas
(FORTH)

Paul Carpenter Barcelona Supercomputing Center

Reiley Jeyapaul Arm

Dimitris Gizopoulos University of Athens

Martin Schulz Technical University of Munich
Leibniz Supercomputing Centre

Contributors Affiliation

Adria Armejach Barcelona Supercomputing Center

Eduard Ayguade Barcelona Supercomputing Center

François Bodin European Extreme Data & Computing Initiative (EXDCI)

Ramon Canal
Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Franck Cappello Argonne National Laboratory

Fabien Chaix
Foundation for Research and Technology - Hellas
(FORTH)

Guillaume Colin de Verdiere
Alternative Energies and Atomic Energy Commission
(CEA)

Said Derradji Bull/ATOS

Stefano Di Carlo Politecnico di Torino

Christian Engelmann Oak Ridge National Laboratory

Ignacio Laguna Lawrence Livermore National Laboratory

Miquel Moreto Barcelona Supercomputing Center

Onur Mutlu ETH Zurich

Lazaros Papadopoulos National Technical University of Athens

Olly Perks Arm

Manolis Ploumidis
Foundation for Research and Technology - Hellas
(FORTH)

Bezhad Salami Barcelona Supercomputing Center

Yanos Sazeides University of Cyprus

Dimitrios Soudris National Technical University of Athens

Yiannis Sourdis Chalmers University

Per Stenstrom Chalmers University

Samuel Thibault University of Bordeaux

Will Toms University of Manchester

Osman Unsal Barcelona Supercomputing Center

Towards Resilient EU HPC Systems: A Blueprint April 2020.

3

Involved projects

CLERECO: Cross-Layer Early Reliability Evaluation for the Computing Continuum
https://www.clereco.eu/

ECOSCALE: Energy-efficient Heterogeneous Computing at Exascale
http://www.ecoscale.eu/

EPI: European Processor Initiative

https://www.european-processor-initiative.eu/

EuroExa: Co-designed Innovation and System for Resilient Exascale Computing in Europe:
From Applications to Silicon
https://euroexa.eu/

Eurolab4HPC

https://www.eurolab4hpc.eu/

EVOLVE: Leading the Big Data Revolution

https://www.evolve-h2020.eu/

EXA2PRO: Enhancing Programmability and Boosting Perfromance Portability for Exascale

Computing Systems

https://exa2pro.eu/

ExaNest: European Exascale System Interconnect and Storage

http://exanest.eu/

ExaNoDe: European Exascale Processor & Memory Node Design

http://exanode.eu/

EXDCI: European Extreme Data & Computing Initiative

https://exdci.eu/

LEGaTO: Low Energy Toolset for Heterogeneous Computing

https://legato-project.eu/

MB2020: European Modular and Power-efficient HPC Processor

https://www.montblanc-project.eu/

RECIPE: Reliable Power and Time-constraints-aware Predictive Management of

Heterogeneous Exascale Systems

http://www.recipe-project.eu/

SDK4ED: Software Development ToolKit for Energy Optimization and Technical Debt
Elimination
https://sdk4ed.eu/

https://www.clereco.eu/
http://www.ecoscale.eu/
https://euroexa.eu/
https://www.eurolab4hpc.eu/
https://www.evolve-h2020.eu/
https://exa2pro.eu/
http://exanest.eu/
http://exanode.eu/
https://exdci.eu/
https://legato-project.eu/
https://www.montblanc-project.eu/
http://www.recipe-project.eu/
https://sdk4ed.eu/

Towards Resilient EU HPC Systems: A Blueprint April 2020.

4

Table of Contents

Executive summary 6

1. Introduction 8

2. Terminology 11

2.1. Resilience, reliability, availability, serviceability 11

2.2. Errors, failures, faults, defects 11

3. The cost of system errors 13

3.1. Scheduled vs. unscheduled system outages and repairs 13

3.2. Corrected and uncorrected errors 13

3.3. Detected and undetected failures 14

4. HPC resilience features 15

4.1. Error detection and correction 15

4.2. Prevention of uncorrected errors 18

4.3. Error containment: Limiting error impact 19

4.4. Minimizing the system repair time 21

4.5. System redundancy 22

5. Conclusions and future work 25

References 26

Towards Resilient EU HPC Systems: A Blueprint April 2020.

5

Towards Resilient EU HPC Systems: A Blueprint April 2020.

6

Executive summary

This document aims to spearhead a Europe-wide discussion on HPC system resilience and

to help the European HPC community define best practices for resilience. We analyse a wide

range of state-of-the-art resilience mechanisms and recommend the most effective

approaches to employ in large-scale HPC systems. Our guidelines will be useful in the

allocation of available resources, as well as guiding researchers and research funding towards

the enhancement of resilience approaches with the highest priority and utility. Although our

work is focused on the needs of next generation HPC systems in Europe, the principles and

evaluations are applicable globally.

This document is the first output of the ongoing European HPC resilience initiative

(https://www.resilientHPC.eu/) and it covers individual nodes in HPC systems, encompassing

CPU, memory, intra-node interconnect and emerging FPGA-based hardware accelerators.

With community support and feedback on this initial document, we will update the analysis

and expand the scope to include other types of accelerators, as well as networks and storage.

The need for resilience features is analysed based on three guiding principles:

(1) The resilience features implemented in HPC systems should assure that the failure

rate of the system is below an acceptable threshold, representative of the technology,

system size and target application.

(2) Given the high cost incurred by uncorrected error propagation, if hardware errors occur

frequently they should be detected and corrected at low overhead, which is likely only

possible in hardware.

(3) Overheating is one of the main causes of unreliable device behaviour. Production HPC

systems should prevent overheating while balancing power/energy and performance.

Based on these principles, the main outcome of this document is that the following features

should be given priority during the design, implementation and operation of any large-scale

HPC system:

● ECC in main memory

● Memory demand and patrol scrub

● Memory address parity protection

● Error detection in CPU caches and registers

● Error detection in the intra-node interconnect

● Packet retry in the intra-node interconnect

● Reporting corrected errors to the BIOS or OS (system software requirement)

● Memory thermal throttling

● Dynamic voltage and frequency scaling for CPUs, FPGAs and ASICs

● Over-temperature shutdown mechanism for FPGAs

● ECC in FPGA on-chip data memories as well as in configuration memories

The remaining state-of-the-art resilience features surveyed in this document should only be

developed and implemented after a more detailed and specific cost–benefit analysis.

https://www.resilienthpc.eu/

Towards Resilient EU HPC Systems: A Blueprint April 2020.

7

Towards Resilient EU HPC Systems: A Blueprint April 2020.

8

1. Introduction

One of the greatest challenges in High-Performance Computing (HPC) is the need to build

resilient systems. Resilience is an especially difficult challenge in HPC, in which tightly coupled

compute jobs typically execute across a large number of nodes for several hours or even days.

Without effective provisions for resilience, in hardware and/or software, a single failure in one

node or server typically causes a domino effect, resulting in the termination of the whole job.

Such job termination normally results in no useful outcome, so the node hours that have

already been expended on the job are wasted. Recently, the most common use of

supercomputers and HPC systems are applications that solve large-scale real-world

simulation problems [1, 2, 3]. Such applications, implemented as workflows or multi-scale

systems are inherently fault-tolerant and have error-containment capabilities that eliminate the

domino effects caused by failures. However, failure in a node executing a distributed thread

leads to contained error recovery, which translates into decreased performance and

throughput.

System reliability is also an important limiter on the ability to scale to larger systems. This is

because increasing the number of nodes causes the overheads of error containment and error

recovery to increase exponentially. Reliability is therefore an important requirement and

challenge for exascale, as recognized by the HPC strategic research agendas of the European

Technology Platform for High Performance Computing (ETP4HPC) [4, 5, 6], Eurolab4HPC [7],

the U.S. Department of Energy [8, 9, 10, 11] and the U.S. National laboratories [12, 13].

Ensuring resilience of large-scale HPC systems is complex, and the development, analysis

and evaluation of features to improve resilience requires investment in research and

engineering. This document helps by analysing a wide range of state-of-the-art resilience

mechanisms, and it selects the most effective approaches and identifies gaps in the design

space. This prioritization is essential to properly allocate resources and to focus expertise in

the European HPC community and beyond, in order to ensure that the most essential

resilience features are addressed with the highest priority.

The initial scope of the analysis is influenced by the needs of the EuroEXA project,1 which has

funded the work so far. As such, in this document, we focus on resilience features of individual

HPC nodes, covering CPU, memory, FPGAs and the intra-node (socket-to-socket)

interconnect. As part of ongoing and future work, with community support and feedback based

on this document, we will extend the analysis to GPUs, vector accelerators, NICs, interconnect

networks and storage. This document is also mainly focused on the resilience features in

hardware and low-level system software (e.g., the OS). Interaction among these features and

resilience techniques at higher levels of the software stack is part of future work.2

1 Co-designed Innovation and System for Resilient Exascale Computing in Europe: From Applications

to Silicon (H2020 Grant Agreement number: 754337). https://euroexa.eu/
2 We do mention checkpoint/restart and algorithm based fault tolerance (ABFT). However, a thorough
analysis of additional software and cross-layer resilience techniques (e.g., distributed hierarchical
checkpointing, cross-layer error containment) is part of future work.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

9

The following paragraphs summarise the main steps we took in this study as well as the results

of our analysis:

Step 1: Understanding the resilience-related characteristics of applications and

systems in the HPC domain

Resilience is a general term that refers to a system’s capability to recover from or prevent

failures. System resilience is typically subdivided into three separate concepts: Reliability,

Availability and Serviceability (RAS), which are defined in detail in Section 2.1.

It is not straightforward to determine what types and degrees of resilience should be provided

in a specific HPC system. These depend on the environment and user requirements. It is also

important to understand the specific characteristics of HPC systems, especially the impact of

different errors and failures on system performance, reliability and availability. This discussion

is summarised in Section 3.

Step 2: Analysing the resilience features of state-of-the-art HPC nodes

Current HPC on-node resilience features are defined mainly by US and Asian chip

manufacturers and HPC system integrators with decades of experience in building resilient

systems. These features, therefore, are the gold standard by which we measure the resilience

of any novel HPC node architecture, including the ones developed in Europe. For this reason,

we have to understand them well. In Section 4, we itemise state-of-the-art HPC resilience

features with an explanation for each one of them.

Step 3: Setting a priority for the implementation for each identified resilience feature

Any resilience feature requires a cost–benefit analysis: comparing the cost of failures, whether

avoided or mitigated, in relation to their likelihoods, against the cost of the resilience feature

itself.3 All these costs may be monetary costs, or they may be a loss in performance or an

increase in power and energy. The cost of a potential failure can be estimated based on its

likelihood and the time and expense of HPC job restart, node reboot and replacement of

hardware components. The cost of a resilience feature is due to the additional engineering

effort and time to develop it and the need for additional hardware to implement it, such as

extra silicon or interconnect links. Such features also have indirect costs, such as runtime

performance overheads as well as power and energy overheads, caused by system

monitoring, error detection, error correction, checkpointing, etc. Cost–benefit analysis of each

resilience feature should be used to prioritise development and implementation on production

HPC platforms.

We classify some of the listed resilience features as “MUST HAVE” in production HPC

systems. These features are considered essential to be incorporated in a given component or

technology in order to make that component or technology a viable building block for a reliable

large-scale HPC system. These resilience features are classified as “MUST HAVE” in

production systems based on three main criteria:

3 The cost of a particular resilience feature could be also compared with other resilience mechanisms
that would mitigate the failure impact. Re-execution of a failure-affected HPC job could also be
considered a resilience mechanism with the corresponding cost.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

10

(1) The resilience features implemented in HPC systems should assure that the failure

rate of the system is below an acceptable threshold, representative of the technology,

system size and target application.

(2) Given the high cost of the uncorrected errors, if hardware errors occur frequently they

should be corrected, at low cost, preferably (where possible) in hardware.

(3) Overheating is one of the main causes of unreliable device behavior. Production HPC

systems should monitor the temperature of their components and include mechanisms

that prevent overheating while balancing power/energy and performance.

Outcome: The list of the most important HPC resilience features

The main outcome of this document is the selection of the most important resilience features

that should have the highest priority during the design and implementation of any EU HPC

system. These conclusions are described in Section 5.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

11

2. Terminology

Terms such as error, failure, fault or system repair have a specific meaning when used in the

context of the HPC system resilience. These terms, however, may be used differently in

distinct studies, and in academia and industry. Therefore, to mitigate any terminology-related

confusion or misunderstanding, we start with a brief summary of the resilience-related

terminology that we use in this document.

2.1. Resilience, reliability, availability, serviceability

Resilience is a general term that refers to a system’s capability to recover from or prevent

failures. System resilience is typically subdivided into three separate concepts: Reliability,

Availability and Serviceability (RAS). There are many ways to define RAS; an intuitive

definition in the context of an HPC system is as follows:

● Reliability: How infrequently is a failure seen in a system?

● Availability: How infrequently is the functionality of a system or application impacted

by failures?

● Serviceability: How well are system failures and their impact communicated to users

and service personnel, and how efficiently and non-disruptively can the HPC system

or its components be repaired and brought back into service?

2.2. Errors, failures, faults, defects

Most of the previous studies use the following definitions of computing system failures, errors,

faults and defects [14, 15]:

● Failure is an event that occurs when the delivered service deviates from correct

service. For example, it is expected that a data read from memory delivers correct data

stored on a given address; and any deviation from this service is a failure of the

memory device or interface. This failure, however, does not have to imply disruption in

service of the affected node. In case of a failing memory device, for example, Error

Correcting Code (ECC) can correct the errors so the HPC node keeps delivering

correct service with no negative impact on the behavior of the running applications.

Failures can be detected or undetected, as detailed in Section 3.3.

● Error is the deviation of the system state (seen externally) from its correct service

state. For example, a memory device (e.g., DIMM) can deliver data to the memory

controller that is inconsistent with the stored ECC. In this case, the memory controller

will flag a memory error. Errors can be further divided into two groups: corrected and

uncorrected,4 as detailed in Section 3.2.

4 The errors that are not corrected can be referred to as uncorrected (Arm) or uncorrectable (Intel, HPC

system integrators). In this document we use the term uncorrected errors.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

12

● Fault is the adjudged or hypothesized root cause of an error. For example, the cause

of a DRAM error could be a particle impact or a defect in the memory cell or circuit.

Not all faults lead to errors — errors get manifested only if faults change the system

state, e.g. an arithmetic operation or a data accessed.

● Defects are physical sources of faults and errors.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

13

3. The cost of system errors

In order to quantify the impact of system errors, it is important to distinguish between:

(1) Scheduled and unscheduled system outages and repairs

(2) Corrected and uncorrected errors

(3) Detected and undetected failures

3.1. Scheduled vs. unscheduled system outages

and repairs

Scheduled system outage repairs are scheduled ahead of time based on failure prediction

or observed reduced performance caused by corrected errors. The scheduled system repairs

typically require replacement of a single hardware component, most frequently a CPU or a

memory DIMM. In this scenario a working component that is predicted to fail or whose

performance is below expectations, is replaced with a spare one. The cost of this hardware

replacement is in the range of a few node hours of downtime. After the hardware component

is replaced, the node is tested. Standard HPC node tests are based on running stress

benchmarks over a time period that ranges between a few hours and a few days.

Uncorrected hardware errors lead to unscheduled outages and system repairs. Similar to

scheduled repairs, unscheduled system repairs usually involve the substitution of a single

hardware component with a spare one, and testing of the affected node. The penalty of

unscheduled outages, however, comes from unplanned HPC job termination. Since usually

such job termination provides no useful outcome, all the node hours from the start of the job

until the unscheduled outage is lost.5 In HPC, a single tightly-coupled job may execute for

hours or even days on a large number of nodes, and therefore the penalty of an unscheduled

job termination can be significant.

3.2. Corrected and uncorrected errors

It is important to distinguish between corrected and uncorrected system errors and their

impact.

Corrected errors: The nodes that are used in HPC systems incorporate advanced Error

Correcting Codes (ECC) and protocols that can detect and correct hardware errors. For

example, main memory ECC is able to detect and correct multiple corrupted bits in a data

word and even handle cases where an entire DRAM chip is corrupted. Data correction is

performed in parallel with data reads, so corrected errors effectively have no impact on

system performance; although energy consumption may be negatively impacted.

5 Checkpoint/restart approach would reduce the cost of job termination; the penalty would cover only

the node hours from the last saved checkpoint until the unscheduled outages.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

14

Uncorrected errors: If the detected error in a component cannot be corrected with available

error correction mechanisms, typically the HPC job has to be terminated with no useful

outcome from the execution. The consequence of this is that the node-hours used on the job

until error detection are lost. The penalty of such a job termination may be significant (in terms

of lost server hours); amounting to monetary, node availability and energy costs.

Also, when an uncorrected error is detected, the node is typically shut down and removed

from production until the faulty part has been replaced and the node has been tested.6 In

current systems, the total penalty of uncorrected errors, including the lost server hours, is in

the order of tens or hundreds of node hours.

Deferred Errors: A deferred error is a detected error that has not been corrected (i.e. that

remains uncorrected), but has been allowed to propagate. However, the propagation is not

silent, since the system knows about the error and is able to track it and its impact. Propagation

of deferred errors is also referred to as data poisoning.

Overall, uncorrected errors can have a significant negative impact on system

performance, reliability and availability.

3.3. Detected and undetected failures

Failures that manifest as errors, i.e., deviation of the system state (seen externally) from its

correct expected system state, are detected failures.

Some of the failures may not be detected with state-of-the-art error detection mechanisms.

The undetected failures may lead to several outcomes:

● No impact: Undetected failures may contaminate obsolete data, i.e., data not used by

the application after the failure’s occurrence. In this case, the undetected failures have

no impact on application outcome or the overall service provided by the HPC system.

● Incorrect system operation: Undetected failure may lead to incorrect data being

used by the application, e.g., affecting addresses of even binary code. Use of such

incorrect data addresses or code may lead to service interruption, e.g., because the

application tries to access an address that is invalid in its address space. For such

uncorrected errors, the cost caused by service interruptions, system repair and testing

is high.

● Silent Data Corruption (SDC): Undetected failures may lead to unexpected

erroneous application outcomes — the application may execute to the end and give

an answer that could even look plausible, but is actually wrong. This scenario may

occur if the failure affects data that is later used by the application. Producing

undetected incorrect scientific results is considered more damaging than a service

interruption [16].

6 Advanced resilience features enable running the node in a degraded mode, e.g. with blacklist memory

regions in which uncorrected errors were detected.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

15

4. HPC resilience features

This section summarizes the state-of-the-art of HPC resilience features. The presented

material is based on experiences of HPC service providers and on the extensive review of

publicly-available industrial documents from Intel [17, 18, 19, 20, 21, 22, 23], Arm [24, 25, 50,

51], HPC system integrators [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]

and FPGA vendors [42, 43, 44, 45, 46, 47].

4.1. Error detection and correction

Error detection: In the context of the EU HPC initiative, we have to guarantee that our error

detection coverage is similar to, or better than state-of-the-art HPC solutions. If this would not

be the case, it would be very difficult to convince any HPC service provider that the EU HPC

system is indeed stable and reliable.

Error detection is important as it is a main pre-requirement of any further error analysis. If we

want to perform any quantitative analysis of errors in a production setting, it is strongly

preferred that error detection mechanisms have a high coverage. Collection and analysis of

statistics related to failures is one of the milestones set by the ETP4HPC [5].7

In addition, error detection is the main prerequisite for prediction of any future failures; e.g.,

corrected DRAM errors could be used to predict uncorrected ones. Prediction of failures and

fault prediction algorithms are two of the milestones set by the ETP4HPC [5, 6].8,9 A recent

survey of the existing pre-failure techniques, however, still shows significant room for

improvement in this research area [48, 49].

Error correction: In general, it is important to consider the return-on-investment analysis of

any error correction mechanism. However, given the typically high cost of uncorrected errors,

it is safe to conclude that highly-probable hardware errors should be detected and corrected

at low overhead, preferably (if possible) in hardware. Examples of highly probable errors are

DRAM errors that occur at the rate of hundreds of errors per year, per DIMM. For this reason,

current HPC systems incorporate advanced hardware mechanisms that correct single-bit and

detect multi-bit DRAM errors, so that they do not impact reliability, with only a minimal impact

on performance, power and energy and modest cost in additional area on chip.

It is sometimes difficult to distinguish between error detection and error correction

mechanisms. The same RAS feature can correct some errors (e.g., single-bit DRAM errors)

and only detect some others (e.g., multi-bit DRAM error). Whether the RAS feature performs

error detection or error correction depends on the complexity of the error. Therefore, in Table

1, we summarize both error detection and correction features. In addition to error detection

and correction, it is important to report errors to the BIOS and operating system, as we

summarize in Table 2.

7 Milestone M-ENR-FT-5; Availability date: 2018.
8 Milestone M-ENR-FT-6; Availability date: 2019.
9 Milestone M-ENR-FT-6; Availability date: 2021.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

16

Table 1: Summary of error detection and correction features

Parameter Description

ECC: Main memory

ECC protects main (system) memory (typically in the form of
DRAM) from transient faults that can corrupt program data. The
increasing density of DRAM devices (and consequently main
memory capacity) increases the likelihood of such faults.

An extensive overview of advanced ECC schemes, including
single-device data correction (SDDC or Chipkill), double-device
data correction (DDDC) and DDDC+1, can be found at the
following document: Memory RAS Configuration. User’s Guide.
Super Micro Computer Inc,. 2017 [41].

Category:
Considered “MUST HAVE” in any production HPC system.

Memory Demand and
Patrol Scrub

Combined with detection features, like the aforementioned ECC,
these features provide the ability to find and correct memory
errors, either reactively (demand) or proactively (patrol)
addressing memory problems. In all cases, whenever the system
detects an ECC error, it will attempt to correct the data and write
it back, if possible. When correcting the data is not possible, the
corresponding memory is tagged as failed or poisoned. Demand
scrubbing is the attempt to correct a corrupted read transaction.
Patrol scrubbing involves proactively sweeping and searching
system memory and attempting to repair any errors found.
Scrubbing also helps prevent the accumulation of single-bit errors
to multi-bit errors. Patrol scrubbing errors may activate the
Machine Check Architecture Recovery (MCA recovery)
mechanism described in Table 4.

Category:
Considered “MUST HAVE” in any production HPC system.

Memory Address
Parity Protection

Enables the correction of transient errors on address lines of the
memory channel. Traditional parity is limited to detecting and
recovering single-bit errors.

Category:
Considered “MUST HAVE” in any production HPC system.

Memory Lockstep

Memory Lockstep lets two memory channels work as a single
channel, moving a data word two channels wide and providing
eight bits of memory correction. Memory Lockstep provides
protection against both single-bit and multi-bit errors.

Category:
Depends on workload, requires additional cost–benefit analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

17

Error detection: CPU
caches and registers

Error detection in processor register processor caches. The
increasing density, increasing cache sizes and increasing depth
of the memory hierarchy in modern processors increases the
likelihood of such faults.

Category:
Considered “MUST HAVE” in any production HPC system.

ECC: On-chip
memories of FPGAs

Built-in or soft-core ECC is used to protect on-chip memories or
Block RAMs (BRAMs) of FPGAs from transient faults. The
increasing density of FPGAs increases the likelihood of such
faults. In addition, it has been shown that BRAM ECC protects
data against soft errors and undervolting faults, too. BRAMs of
modern FPGAs are usually equipped with Single-Error Detection
and Multiple-Error Correction (SECDED) type of ECC, which
inherently fits the type of transient faults, soft errors, and
undervolting faults.

Category:
Considered “MUST HAVE” in any production HPC systems.

Protecting
Configuration Memory
of FPGAs

In SRAM-based FPGAs (most common type), configuration
memories are susceptible to different types of faults like Single
Event Upset, which can lead to configuration and with that
program changes on the FPGA. Dedicated ECC, patrol scrubbing,
and redundancy techniques, like Triple Modular Redundancy, can
protect configuration bits.

Category:
ECC: Considered “MUST HAVE” in any production HPC systems.
Patrol scrubbing and redundancy techniques: Depends on
system/workload, requires additional cost–benefit analysis.

Intra-node
interconnect:
Error detection

Intra-node interconnect refers to hardware and the associated
protocols that connect components located on a single node, such
as CPUs, hardware accelerators and the I/O hub.

Category:
Considered “MUST HAVE” in any production HPC system.

Intra-node
interconnect:
Packet Retry

Automatically retransmits packets containing errors. This
supports recovery from transient errors.

Category:
Considered “MUST HAVE” in any production HPC systems.
Depending on system/workload the packet retry can be performed
in hardware or in software (would require additional cost–benefit
analysis).

Towards Resilient EU HPC Systems: A Blueprint April 2020.

18

Table 2: Reporting of corrected errors

Parameter Description

Reporting of corrected
hardware errors

This feature reports hardware errors, which the RAS system
successfully detected and corrected, to the OS. This reporting is
a prerequisite for any quantitative analysis of the system
resilience, and predictive failure analysis that would anticipate and
avoid future uncorrected errors.

Category:
Considered “MUST HAVE” (or at least “HIGHLY DESIRABLE”)
in any production HPC system.

4.2. Prevention of uncorrected errors

The objective of the prevention techniques is to avoid unscheduled outages and system

repairs due to uncorrected errors. Typical examples are degraded operation modes that

reduce the probability of uncorrected errors at the cost of device performance, as summarised

in Table 3. Most of the prevention techniques manage device temperature since overheating

is one of the main causes for unreliable device behaviour. State-of-the-art production HPC

systems monitor component temperature and employ mechanisms to prevent overheating

while balancing power/energy and performance. We recommend that HPC systems

developed in Europe deploy equivalent techniques.

Table 3: Uncorrected error prevention. Device degraded modes until repairs can be made.

Parameter Description

Memory Thermal
Throttling

The processor monitors memory temperature and can temporarily
slow down the memory access rates to reduce temperatures, if
needed. It can prevent DIMMs from overheating while balancing
power and performance.
Optionally, in conjunction with the systems management solution
(provided by the HPC system integrator), the system may
increase fan or pump speeds as needed to keep memory
components operating within acceptable thermal limits.

Category:
Considered “MUST HAVE” in any production HPC system.

Core (Socket) Disable
for Fault Resilient Boot

This feature disables a failing core (or socket) at boot time,
allowing the system to power on despite the core (socket) failure.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

19

Dynamic voltage and
frequency scaling

Voltage and frequency under-scaling is an effective power
reduction technique, applicable for CPUs, FPGAs, ASICs;
however, it needs to be dynamically controlled to prevent the
system reliability affects.

Category:
Considered “MUST HAVE” in any production HPC system.

Over-temperature
shutdown mechanism
for FPGAs

The environmental temperature might be out of control in the
harsh environments, especially in edge devices where
accelerators like FPGAs are commonly used. In these scenarios,
over-temperature can potentially damage the device.
Technologies like Xilinx Analog-to-Digital Converter in FPGAs
provide opportunity to prevent system damage by monitoring the
temperature and issuing a safe shutdown signal when
temperature goes beyond the limit.

Category:
Considered “MUST HAVE” in any production HPC system.

4.3. Error containment: Limiting error impact

Even with advanced RAS features available in production systems, a failure of a single node

(or a single application process) typically causes the termination of the whole job. Error

containment is therefore a very important aspect of HPC system resilience and a key

requirement for the reliable scale-out of HPC systems and applications. The state-of-the-art

error containment features (summarized in Table 4) are, however, fairly complex and may

introduce significant overheads. Therefore, before implementing these solutions in the EU

HPC production system, it is important to perform a cost–benefit analysis.

Table 4: Uncorrected errors containment

Parameter Description

Corrupt Data
Containment Mode

Corrupt Data Containment mode, or tracking data poisoning
prevents corrupt data from spreading through the system.
Tracking data poisoning, i.e., tagging data that comes from a
corrupt memory location, limits the corrupt data to the process
currently running, thus preventing the data from affecting the rest
of the system. The receiver of the data can check the poison tag
and detect whether the data is corrupted. This mechanism
requires enhancements in hardware and software layers.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

20

Tracking Data
Poisoning

Tracking data poisoning is a method to defer a detected error, by
associating a poison state to the data.
In a processor, a poisoned data value may be stored into a cache
(e.g. L2 cache). It is considered “consumption” for a processor to
use a poisoned data value to alter the non-speculative state. Any
attempt to store a poisoned value into a control register or
otherwise consume the value rather than storing it or transmitting
it must result in an error.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Machine Check
Architecture recovery
(MCA recovery)

Allows higher-level software, such as the hypervisor, OS, or MCA
recovery-aware application to recover from some data errors that
cannot be corrected at hardware level. Memory Patrol Scrub or
Last Level Cache Write Back detects these errors. MCA recovery
reports the location of the error to the software stack, which then
takes the appropriate action. For example, the OS might abort the
task owner in response to an error, allowing the system to
continue running.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Checkpointing/restart

Restarts the whole user application from a user-assisted
coordinated checkpoint, in most cases taken at a synchronization
point. Checkpoint/restart is a widely studied component of global
system resilience.

Achieving it in a traditional SPMD model is integrated in many
applications. Alternatively, external libraries, such as BLCR or
SCR can provide the necessary services.

Achieving it at the level of tasks is being investigated by task-
based programming libraries such as StarPU, OmpSs, and
Charm++, seamlessly combining it with heterogeneous HPC
system support. The knowledge of the task graph allows the
runtime to automatize the selection of data to be saved and the
restart at a given point of the graph. Careful design allows the
system to restart only the failing nodes.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

21

Algorithm based fault
tolerance (ABFT)

ABFT approaches use algorithmic techniques to detect and
correct data loss or data corruption during computation in order to
improve the tolerance against faults in the applications
themselves. Typical examples are iterative solvers, which can —

under some circumstances — overcome wrong data caused by
faults by smoothing them out across iterations. In some cases,
this can replace or augment hardware approaches, but is typically
restricted to specific application kernels and does not protect
control structures.

Category:
Depends on workload, requires additional cost–benefit analysis.

Isolation Design Flow
for FPGAs

The isolation design flow confirms that the individual regions of
FPGA designs are isolated from each other in the event of failure.
This can augment (but not fully replace) other resilience
techniques for FPGAs and can enhance overall design reliability.
Several techniques are embedded in this approach (confirmed for
Xilinx) to guarantee the goal above:

● Isolation of test logic for safe removal

● Watchdog alarms

● Segregation by safety level

● Modular redundancy

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

4.4. Minimizing the system repair time

The objective of these features is to reduce the time needed to repair the system, and

therefore to improve the system serviceability. However, system repairs must have a low-to-

moderate impact on the HPC system down time (see Section 3). Hence, it is important to

perform the cost–benefit analysis of these RAS features, see Table 5.

Table 5: Minimizing the system repair time

Parameter Description

Failed DIMM
Identification

Identifies specific failing DIMM(s), enabling IT support to replace
only those DIMMS.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

22

CPU Hot Add/Swap

Allows the addition of a physical CPU module to a running system.
A new CPU can immediately replace a failing CPU via migration
or be brought on-line later.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Memory Hot
Add/Swap

Physical memory can be added while the system is running.
Added memory can immediately replace failing memory via
migration or be brought on-line later.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

PCIe Express Hot
Plug

Allows addition or removal of a PCIe card while the system is
running.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Rewriting configuration
memory of FPGAs

Using either an internal or external configuration controller to
rewrite configuration memory without stopping device operation.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Dynamic Partial
Reconfiguration for
FPGAs

Dynamic Partial Reconfiguration can be used to replace part of
the FPGA design without interrupting the functioning of other
parts.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

4.5. System redundancy

Systems may include spare components that can dynamically, at runtime, take over the

operation of failing components, as shown in Table 6. System redundancy reduces the system

repair time, assuming a low migration overhead from the failing to the spare component. Also,

redundancy can mitigate the uncorrected error impact, e.g., if the failing and spare

components work in mirroring mode. System redundancy, however, introduces significant

overhead in hardware and operational costs as well as performance degradation. Therefore,

redundancy is typically not applied on production HPC systems, at least not at the level of

nodes.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

23

Table 6: System redundancy

Parameter Description

Processor Sparing and
Migration

Enables the dynamic and proactive reassignment of a CPU
workload to a spare CPU in the system in response to failing
memory or CPU components. The migration, which requires OS
assistance, configures the state of a spare CPU socket to match
the processor and memory state of the failing CPU. Once the
migration is complete, the system can force the failing CPU
offline for replacement in the next maintenance cycle.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Fine Grained Memory
Mirroring

A method of keeping a duplicate (secondary or mirrored) copy
of the contents of select memory that serves as a backup if the
primary memory fails. The Intel Xeon processor E7 family
supports more flexible memory mirroring configurations than
previous generations allowing the mirroring of just a portion of
memory, leaving the rest of memory un-mirrored. The benefit is
more cost-effective mirroring for just the critical portion of
memory versus mirroring the entire memory space. Failover to
the mirrored memory does not require a reboot, and is
transparent to the OS and applications.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Memory Sparing

Allows a failing DIMM or rank to dynamically failover to a spare
DIMM or rank behind the same memory controller. When the
firmware detects that a DIMM or rank has crossed a failure
threshold, it initiates copying the failing memory to the spare.
There is no OS involvement in this process. If the memory is in
lockstep, the operation occurs at the channel pair level. DIMM
and rank sparing is not compatible with mirroring or migration.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

24

Memory Migration

Moves the memory contents of a failing DIMM to a spare DIMM,
and reconfigures the caches to use the updated location so that
the system can coherently use the copied content. This is
necessary when a memory node fails or the memory node
ceases to be accessible. The act of migrating the memory does
not affect the OS or the applications using the memory.
Typically, this operation is transparent to the OS. Because in
some cases OS assistance improves performance, OS-assisted
memory migration is also available.

Category:
Depends on system/workload, requires additional cost–benefit
analysis.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

25

5. Conclusions and future work

Building resilient systems is one of the greatest challenges of HPC in Europe. For this reason,

the EU HPC community should carefully allocate the available resources and expertise to

address the most important requirements for resilience.

This document aims to spearhead a Europe-wide discussion on HPC system resilience and

to help the European HPC community to define best practices. We prioritise a wide range of

approaches for resilience based on three main principles:

(1) The resilience features implemented in HPC systems should assure that the failure

rate of the system is below an acceptable threshold, representative of the technology,

system size and target application.

(2) Given the high cost of the uncorrected errors, if hardware errors occur frequently they

should be corrected, and corrected at low cost, preferably (if possible) in hardware.

(3) Overheating is one of the main causes of unreliable device functioning. Production

HPC systems should prevent overheating while balancing power/energy and

performance.

The main outcome of this document is the recommendation of the following resilience features

as “MUST HAVE” in production HPC systems:

● ECC in main memory

● Memory demand and patrol scrub

● Memory address parity protection

● Error detection in CPU caches and registers

● Error detection in the intra-node interconnect

● Packet retry in the intra-node interconnect

● Reporting corrected errors to the BIOS or OS (system software requirement)

● Memory thermal throttling

● Dynamic voltage and frequency scaling for CPUs, FPGAs and ASICs

● Over-temperature shutdown mechanism for FPGAs

● ECC in FPGA on-chip data memories as well as in configuration memories

Development and implementation of the remaining state-of-the-art resilience features should

only be done based on an additional cost–benefit analysis. These types of analysis depend

on the targeted workload and require significantly more work on modelling, simulation and

measuring resilience.

This document is the first output of the ongoing European HPC resilience initiative. We focus

on the resilience features of HPC nodes, covering the CPU, memory and intra-node

interconnect, as well as emerging FPGA-based hardware accelerators. With community

support and based on feedback, we will update the analysis and expand scope to include

interactions among multiple levels of the software stack and to cover other types of

accelerators, as well as networks and storage.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

26

References

[1] S. Alowayyed, D. Groen, P. V. Coveney and A. G. Hoekstra. “Multiscale computing in the

exascale era”. Journal of Computational Science, pp. 15-25, September 2017.

[2] F. Chen, W. Ge, L. Guo, X. He, B. Li, J. Li, X. Li, X. Wang and X. Yuan. “Multi-scale HPC

system for multi-scale discrete simulation—Development and application of a

supercomputer with 1 Petaflops peak performance in single precision”. Particuology, pp.

332-335, 2009.

[3] J. Luttgau, S. Snyder, P. Carns, J. M. Wozniak, J. Kunkel and T. Ludwig. “Toward

Understanding I/O Behavior in HPC Workflows”. In 2018 IEEE/ACM 3rd International

Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems

(PDSW-DISCS), 2018.

[4] European Technology Platform for High Performance Computing. “ETP4HPC Strategic

Research Agenda: Achieving HPC Leadership in Europe”. 2013.

[5] European Technology Platform for High Performance Computing. “Strategic Research

Agenda: 2015 Update”. 2015.

[6] European Technology Platform for High Performance Computing. “Strategic Research

Agenda 2017: European Multi-annual HPC Technology Roadmap”. 2017.

[7] Eurolab-4-HPC. “Eurolab-4-HPC Long-Term Vision on High-Performance Computing”.

2017.

[8] U.S. Department of Energy. “The Opportunities and Challenges of Exascale Computing:

Summary Report of the Advanced Scientific Computing Advisory Committee (ASCAC)

Subcommittee”. 2010.

[9] U.S. Department of Energy. “Exascale Programming Challenges: Report of the 2011

Workshop on Exascale Programming Challenges”. 2011.

[10] U.S. Department of Energy. “Preliminary Conceptual Design for an Exascale Computing

Initiative”. 2014.

[11] U.S. Department of Energy. “Top Ten Exascale Research Challenges: DOE ASCAC

Subcommittee Report”. 2014.

[12] F. Cappello, A. Geist, W. Gropp, L. Kale, B. Kramer and M. Snir. “Toward Exascale

Resilience”. 2009.

[13] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer and M. Snir. “Toward Exascale

Resilience: 2014 Update”. 2014.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

27

[14] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr. “Basic concepts and taxonomy of

dependable and secure computing”. IEEE Transactions on Dependable and Secure

Computing, pp. 11-33. 2004.

[15] S. Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann, 2008.

[16] A. Geist. “How To Kill A Supercomputer: Dirty Power, Cosmic Rays, and Bad Solder”.

IEEE Spectrum, 2013.

[17] Intel Corporation. “Intel Xeon Processor E7 Family: Reliability, Availability, and

Serviceability Advanced data integrity and resiliency support for mission-critical

deployments”. 2011.

[18] Intel Corporation. “Intel Xeon Processor E7-8800/4800/2800 v2 Product Family Based

Platform Reliability, Availability and Serviceability (RAS) Integration and Validation

Guide”. 2014.

[19] Intel Corporation, “New Reliability, Availability, and Serviceability (RAS) Features in the

Intel Xeon Processor Family,” 2017.

[20] Intel Corporation. “Reliability, Availability, & Serviceability (RAS) of Intel Infrastructure

Management. Technologies Feature Support. Feature Brief”. 2017.

[21] Intel Corporation. “Intel Xeon Scalable Platform. Product Brief”. 2017.

[22] Intel Corporation. “Intel Product Quick Reference Matrix – Servers”. 2018.

[23] Intel Corporation. “Intel Xeon Processor Scalable Family. Datasheet, Volume One:

Electrical”. 2018.

[24] Arm Limited. “ARM Reliability, Availability, and Serviceability (RAS) Specification ARMv8,

for the ARMv8-A architecture profile”. 2017.

[25] Ampere Computing. “Ampere 64-bit Arm Processor. Product brief”. 2018.

[26] Bull/Atos Technologies. “Bullion S4 the most advanced workspace for fast data. Fact

sheet”. 2015.

[27] Atos. “Bull Sequana S series. Technical specification”. 2017.

[28] Dell Inc., “Advanced Reliability for Intel Xeon Processors on Dell PowerEdge Servers,

Technical White Paper”. 2010.

[29] Dell Inc., “PowerEdge R930”. 2016.

[30] Dell Inc., “Five Ways to Ensure Reliability, Availability, and Serviceability in Your

Enterprise Environment”. 2016.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

28

[31] Hewlett-Packard Development Company. “Avoiding server downtime from hardware

errors in system memory with HP Memory Quarantine. Technology brief”. 2012.

[32] IBM Corp., “Reliability, Availability, and Serviceability. Features of the IBM eX5 Portfolio.

Red Paper”. 2012.

[33] Lenovo Press. “Lenovo X6 Server RAS Features”. 2018.

[34] Lenovo Press. “RAS Features of the Lenovo ThinkSystem SR950 and SR850”. 2018.

[35] Lenovo. “ThinkSystem SR950. “Always-on” reliability on x86”. 2018.

[36] Oracle. “Oracle Server X5-4 System Architecture. White paper”. 2016.

[37] Lenovo Press. “Five Highlights of the ThinkSystem SR950”. 2018.

[38] Oracle “Oracle Server X7-2 and Oracle Server X7-2L System Architecture. White paper”.

2017.

[39] Oracle. “Oracle Server X7-2. Data sheet”. 2017.

[40] Oracle. “Oracle Server X7-8 Eight-Socket Configuration. Data sheet”. 2017.

[41] Super Micro Computer, Inc., “Memory RAS Configuration. User’s guide”. 2017.

[42] Xilinx. “Device Reliability Report. UG116 (v10.9)”. 2018.

[43] Xilinx. “7 Series FPGAs Memory Resources. UG473 (v1.12)”. 2016.

[44] Intel/Altera. “Intel Stratix 10 Embedded Memory User Guide, v18.1”. 2018.

[45] Intel/Altera. “AN 737: SEU Detection and Recovery in Intel Arria 10 Devices”. 2018.

[46] Intel/Altera. “AN 711: Power Reduction Features in Intel Arria 10 Devices”. 2018.

[47] Intel/Altera. “Reliability Report (MNL-1085)”. 2017.

[48] D. Jauk, D. Yang and M. Schulz. “Predicting Faults in High Performance Computing

Systems: An In-Depth Survey of the State-of-the-Practice”. In The International

Conference for High Performance Computing, Networking, Storage, and Analysis (SC),

2019.

[49] A. Frank, D. Yang, A. Brinkmann, M. Schulz and T. Süss. “Reducing False Node Failure

Predictions in HPC”. In The 26th IEEE International Conference on High Performance

Computing, Data, and Analytics, 2019.

Towards Resilient EU HPC Systems: A Blueprint April 2020.

29

[50] A. Rico, J. A. Joao, C. Adeniyi-Jones, and E. Van Hensbergen. “ARM HPC Ecosystem

and the Reemergence of Vectors”. In Proceedings of the Computing Frontiers

Conference (Invited Paper), 2017.

[51] J. Wanza Weloli, S. Bilavarn, M. De Vries, S. Derradji, and C. Belleudy. “Efficiency

modeling and exploration of 64-bit ARM compute nodes for exascale”. Microprocess.

Microsyst. 53. August 2017.

