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Abstract

Nowadays, networks are evolving rapidly, and the need for more dynamic and
automated network management is taking a significant role in defining the direction
of this evolution. The new paradigms that are drastically changing the rules of the
game are Software Defined Networking (SDN) and Network Function Virtualization
(NFV). Despite the undeniable great benefits like scalability and flexibility they bring,
these technologies also pose new issues regarding misconfigurations and security
flaws since they rely upon external input to compose service graphs, to configure the
virtual network functions (VNFs) and in order to enforce policies.

In this regard, traditional formal techniques have been proven to be a reliable
means for verification, i.e. to discover such issues. However, the use of these
techniques requires familiarity with mathematical foundations, where extensive
training and expertise are required from network engineers to apply such methods.
Other issues that have to be considered in virtualized networks are the need to
use resources efficiently and the need to have automated procedures that let the
administrators keep the pace with such rapidly evolving systems. The problem
of efficiently placing the network functions across data centers can be solved by
means of combinatorial approaches, but such approaches lack the formal verification
part. In fact, in the literature, these two classes of problems have traditionally been
addressed separately. A thorough search of the relevant literature yielded that reliable
delivery of network services with a formal assurance about the network safety and
security properties, providing at the same time efficient allocation of the resources
and good automation, remains an open problem of greatest importance to be tackled
in future research.

In this dissertation, we present our contributions to this field of research, which
includes our proposed modeling framework and optimized verification and refine-
ment technique. In particular, the modeling framework allows users to automatically
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extract formal specifications from the source of network function applications, which
is then converted into the compatible input format of different formal network anal-
ysis tools. In this way, we contribute to overcome the lack of familiarity with the
formal notations. We utilize these formal models to formulate the joint virtual net-
work placement and formal verification problem as a maximum satisfiability modulo
theory problem (MaxSMT). Using this formulation, we target various instances
of the problem in the cloud, 5G RAN, and industrial networks. In addition to the
objectives discussed by the existing approaches, our model is able to encode more
expressive constraints including the modeling of the forwarding behavior of the
network functions, configuration parameters, and security policies. This approach,
being formal, provides high confidence that the intended network security policies
are correctly enforced.
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Chapter 1

Introduction

The design and implementation of software-centered, high-performance, and au-
tomation networks, as well as services and processes, enabled by a technological
breakthrough, have become crucial to the future development of telecom operators
around the world. The innovative trends of Network Function Virtualization (NFV)
[2] and Software Defined Networking (SDN) [3] have opened up new business
models, that allow telecom providers to lease or share their physical resources, and
improve the flexibility and controllability of the network infrastructure. SDN divides
the network control and data planes to provide (logically centralized) control plane
programmability for novel networking virtualization (abstraction), simplified net-
work (re)configuration, and policy enforcement. The NFV paradigm introduces a
radical change in how the network architectures are being designed, splitting the
bond between hardware and software, allowing for the development of network ser-
vices as a software application. It has progressively gained attention in the industry
in such a way that it is largely affecting how networks will be built in the future
years.

In this context, the ETSI (European Telecommunications Standards Institute)
Industry Specification Group (ISG) [4] is one of the main actors in defining a high-
level functional architecture specification for NFV. With the close alignment of
NFV and SDN as advanced technology areas, various other key groups such as 5G
PPP[5], NGMN P1 WS1 5G security group[6], are concerned with standards and
best practice for SDN, NFV, or often both. For instance, proposed specifications of
the 5G PPP European research programme[5], state that SDN and NFV can coexist
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separately, however, used jointly may introduce various advantages. This is why, 5G
can greatly benefit from combined use of these technologies in delivering a rich set
of services. NGMN P1 WS1 5G security group[6] focuses on the recent research in
these technologies and discusses potential security challenges that must be addressed
in order to ensure security of new 5G services. Design principles highlight various
security requirements and recommendations, however they restrict the study of the
assurance of security and service related aspects to inter-tenant/slice isolation. Other
functional recommendations include requirements to be specified to prevent attacks
by means of the forwarding plane[7] in case of reconnaissance attacks, DoS and
resource exhaustion attacks.

However, architectural guidelines and standard mechanisms to develop virtual
network functions (VNFs) are still missing in the research community. Therefore,
service providers are bringing their own version of the VNFs to integrate into their
own infrastructures. We emphasize that a generic model of the VNF founded on
Topology and Orchestration Specification for Cloud Applications (TOSCA) has been
introduced, which is in YAML Ain’t Markup Language (YAML)[8]. However, it is
meant only to define services of Cloud Applications, topology, and orchestration
tasks. The concern is that the lack of these guidelines also to instantiate, configure,
and operationalize the VNFs from various developers have a greater risk of causing
potential network configuration errors. It, in effect, involves a tremendous amount of
effort to provide the reliability, correctness, and security of the networks. For instance,
VNF deployment experiences varius issues in reliability/availability management
because of the software failures due to the security attacks. Any failure of VNFs in
a particular service function chain (SFC) may lead to the suspension of the whole
service. This is strongly related to the correctness of the behavior of the VNF defined
in the source code. Checking the VNF software for bugs, verify its functionality, and
refine the configurations if needed is one of the solutions that can be adopted in order
to prevent those risks and errors. In this regard, there has been research progress
recently in analyzing network correctness both in the data plane and control plane,
with the help of formal methods[9–17].

Formal techniques accept as an input an abstract representation of the system
in a tool-specific modeling language, targeted at a specific type of problem, and
assign it formal semantics. It is commonly known that formal methods don’t prevent
errors or eliminate bugs that go below the formal model of the system. It means that
incomplete or incorrect coverage analysis of the functionality results in not checking
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all characteristics of the system required by the specifications. However, it is beyond
the scope of this dissertation to investigate these well-known considerations. On the
contrary, we first tackle the main limitations of the network function modeling to
allow providers of NFV software to take advantage of formal analyses in virtualized
networks. One of those limitations is the significant difference between the models
written by network engineers and those allowed by current formal methods. For
instance, existing tools such as SymNet [18], Alloy [19], VeriGraph [10], and NOD
[13] have advanced in the last decade focusing on data-plane verification, but this
difference in VNF definition might be a major barrier for their wide acceptance
in real production environments. In principle, these formal engines are primarily
designed using complex modeling procedures, require network functionality to be
precisely modeled, mandates the user to utilize a certain kind of verification method,
that requires specific technical skills, or oftentimes instructs developers to study a
completely new language (e.g., Alloy in [19]).

We acknowledge this issue and aim to solve it with the help of well-known
programming languages that are familiar to all programmers. After having introduced
the necessary background in Chapter 2 and related work in Chapter 3, in Chapter
4 first we present a framework for a user-friendly network function modeling that
network engineers can use to provide a formal model of their network functions to
be used with formal methods for network verification. Moreover, by means of the
generated models, we are able to formulate our next goal of joint verification and
optimization.

As previously noted, NFV and SDN permit network operators to better utilize
the network by mapping virtual components in optimized manner and delivering
various network services at a reduced cost. This process is handled by the NFV
orchestrator (NFVO) component. It is also in charge of coordination, instantiation,
and configuration of VNFs. The complexity associated with the dynamic nature of
the NFVO component may face several challenges on the path towards the goal of
agile and dynamic service delivery. These challenges may include inconsistency,
misconfiguration, absence of crash-freedom, bounded-execution[20], broken security
tunnels, broken isolation or unreachability, which are, in many cases, tested with
a simple ICMP Ping utility. The main purpose of our second goal is to present a
methodology for optimal placement and formal verification of services to provide
assurance that network-wide connectivity properties are always satisfied and that
optimal allocation of resources is ensured before the delivery of the service. We
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Fig. 1.1 Classification of the existing research activities.

believe that the delivery of reliable network services with an end-to-end service
validation and assurance simplifies tasks for network administrators.

In Figure 1.1, we present the classification of the existing research activities and
technologies we have collected during our research, with the help of four main circles.
This is a Venn diagram that classifies research papers that are listed in Table 1.1.
As indicated in the diagram, some of the items from the list concentrate on specific
research areas, whereas the others cover a broader area of study. In the first circle,
we listed the main research activities in VNF modeling and service functions chains.
Then we analyzed existing literature that discussed the security aspects in NFV/SDN
and grouped them in the second circle, which has a lot in common with the other
circles. The third circle, combines works that tackle the problem of VNE during the
orchestration phase. Lastly, the central fourth circle shows the research activities
in the area of verification or optimization. In this literature review, we did not find
studies on reliable delivery of virtual network services with an assurance about the
safety and security properties, providing at the same time efficient allocation of
the resources. In fact, efficient allocation alone does not assure that connectivity
requirements mandated by the user are satisfied. Even if security property is a
broad term, in this dissertation we use it referring more specifically to isolation and
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reachability-based security. For instance, a security property may ensure the inability
for an attacker located in a specific network location to reach a certain server. Other
security issues, not addressed in this thesis are, for example, avoiding the possibility
of attacks among VMs hosted on the same substrate[21], or avoiding that virtual
resources are mapped on physical resources that do not comply with the security
requirements of the virtual resource [22], or ensuring that the virtual networks of
conflicting operators are mapped to different physical equipment.

As we mentioned earlier, only after the delivery of the service is considered
done, safety or security requirements are generally checked by means of traditional
network verification tools or testing tools. Because of this common, sequential way
of operation, optimization and verification techniques were never addressed jointly
in literature, which is evident because the intersection of the four circles shown
in Figure 1.1 (the white circle in the middle) does not contain papers. Given this
situation, we decided to position our research exactly at this intersection, because we
believe that joining formal verification with optimal network function placement in
the orchestration phase can bring benefits, by totally disallowing the actual delivery
of network services that do not comply with the intended formal properties of such
services.

In order to cover this gap, in Chapter 5 we present an approach addressing all
the four fields presented in the circles, which merges the two main operations in
one step. By means of the developed framework named Verifoo (Verification and
Optimization Orchestrator), we generate an optimal allocation plan considering node
and link parameters (e.g., CPU cycles, path length, delay, throughput, etc.) and
provide a formal assurance of network security policies (e.g., reachability) to achieve
embedding objectives under certain service constraints (e.g., sufficient bandwidth is
available, and latency is within the recommended values). In general, this approach
allows service providers to deliver more reliable and secure network services in an
NFV infrastructure, providing assurance that the network properties are optimally
and correctly enforced, in an automated fashion. Previous studies (e.g., [18, 10]) that
were able to provide formal assurance of various network properties by means of
formal verification of network behavior do not discuss the optimization objectives in
formulating the verification problem. This dissertation fills this gap.

Lastly, in Chapter 6, we present an enhanced version of our framework named
Verefoo (Verified Refinement and Optimized Orchestration), whose purposes go
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beyond the verification and optimal placement of a user-provided service graph.
Indeed, in this enhanced version we also address the extra problem of refining a
given service graph and generating network function configurations automatically,
in such a way that user-provided network security policies are satisfied and resource
consumption is minimized. This enhancement not only prevents human errors, which
would lead to potential deficiencies and conflicts during manual configuration phase,
but also provides faster reaction when a misbehavior of the network is identified. In
order to achieve this goal, we formulate this new joint problem in first-order logic
as a MaxSMT instance, in order to provide high assurance about the correctness
of the solution. As a result, we obtain an optimal placement and selection plan
of network devices in a logical graph, and a minimized number of configurations
of each network function. We also present the complete framework developed to
integrate the proposed approached within well-known orchestrators from the industry
in an automatic fashion. In particular, we first provide a northbound interface based
on REST to the Kubernetes orchestrator (in charge of the orchestration of Dockers
in a cloud scenario) to interact with our Verefoo framework. Secondly, we provide
another approach of integrating Verefoo inside an OpenBaton orchestrator, which is
an orchestration-centric implementation for cloud orchestration, as a plugin.

Chapter 7 finally concludes and provides direction for possible future improve-
ments.



Chapter 2

Background

2.1 NFV and SDN in Telecommunications Service Pro-
visioning

The Telecommunications Service Providers (TSPs) require their network to be highly
secure, reliable and energy efficient. For this reason, traditional infrastructures con-
sisted of dedicated hardware and closed systems. These closed systems often also
integrate software counterparts in addition to hardware components. In spite of the in-
troduction of new technologies and services, the revenue from traditional systems has
drastically decreased, whereas the network usage has increased rapidly. The telecom
industry saw the immense need for adoption of virtualization and cloud computing
technologies after the introduction of "programmable networks". This embarked on
a major movement on the generalization of equipment, fast service delivery, easier
network updates, and reduced maintenance. Therefore, major telecommunications
operators decided to introduce Network Function Virtualization (NFV). The main
design concept of NFV is that the hardware uses unified industrialized servers. The
virtual resource layer is deployed on the server to implement calls to the underlying
hardware resources, and various network element software functions run on the
standard server virtualization software. This in turn, provides flexible sharing and
allocation of resources to improve resource utilization. Overall, NFV improves the
concepts of the Telco over Cloud by delivering the virtualization of whole services,
introducing virtual network functions.
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Fig. 2.1 An Overview of NFV Architecture and NFV Elements.

Currently, several standards organizations namely the European Telecommuni-
cations Standards Institute (ETSI)[23], and the 3rd Generation Partnership Project
(3GPP)[24] are conducting research and developing NFV-related standards. In
addition, there are various open source organizations dedicated to research and pro-
viding open source implementations of NFV open platforms, such as OPNFV[25],
OpenStack[26], and OpenBaton[27].

NFV architecture overview
Figure 2.1 shows the main building blocks of the NFV, which was proposed by ETSI.
The NFV system architecture includes: NFV infrastructure (NFV Infrastructure,
NFVI), VNFs, NFV Management and Orchestration). Below we highlight the
specific description of each component.

• The main function of NFVI is to provide resource pools for VNF deploy-
ment, management, and execution. NFVI needs to virtualize servers used for
compute, network appliances, and storage hardware devices. NFVI can be
deployed across multiple domains.

• VNF implements the functions of traditional hardware telecommunication
network devices. This software implementation of the hardware devices is run
on virtual machines (VMs).
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• The NFV Management and Orchestration (MANO) mainly includes three
parts: an NFV orchestrator (NFVO), a VNF manager (VNFM), and a virtual
infrastructure manager (VIM).

– NFVO is responsible for network services, orchestration and mainte-
nance of physical / virtual resources and policies, and other maintenance
management functions related to virtualization systems. It also allows to
realize network service life cycle management, cooperate with VNFM
to realize VNF life cycle management and global view function of re-
sources.

– VNFM implements the VNF Lifecycle Management (LCM) management
of the VNF, including scaling, instantiation, and termination of VNF
instances. It supports receiving the elastic scaling policy issued by NFVO
to realize the elastic scaling of VNF.

– VIM mainly handles the management, monitoring, fault reporting (for
hardware resources), virtualization resources (i.e., at the infrastructure
layer), and provides a virtualized resource pool for upper-level VNFM
and NFVO.

Software Defined Networking (SDN)
SDN allows administrators to manage the entire network from a functional perspec-
tive. SDN distinguishes the control layer and the data layer of the underlying control
traffic as separate entities, but maintains the connection within. Such separation
provides more granular provisioning, more efficient service delivery and make it
easier to manage. This also means that in the overall design of the network, flexible
and intelligent control can be performed only at the management layer regardless of
the underlying physical resources. SDN simplifies the most complicated and trivial
tasks in the current network ecosystem, so it is only natural to be popular with data
centers. In addition to this, SDN also has positive significance for other aspects such
as the Internet of Things, 5G RAN, and Industry 4.0.

SDN and NFV technologies can be combined to deliver a more open, pro-
grammable and scalable networks, where SDN is in charge of the control plane and
NFV delivers optimized deployment of the services. For example, there is a more
complex and fragmented network system that has been extended to several data
centers. In this case, it is more appropriate to adopt SDN to simplify the control of
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network functions, traffic distribution, or automation. If the existing network environ-
ment is relatively uniform, but needs to implement specific network functions such
as load balancing, one can consider using NFV to reduce overhead and complexity of
hardware devices. In this thesis, we consider a mixture between network virtualiza-
tion and SDN to deliver a more open, programmable and scalable network scenarios.
For instance, to ease the process of defining and allocating Service Function Chains
(SFCs).

2.2 Allocation of Services

Decoupling the hardware devices yields the issue of how service graphs are realized
by the infrastructure network. We need to emphasize that the infrastructure network
can be virtualized too. The problem of allocating service graphs in an infrastructure
network is one of the optimization challenges of an NFV environment and is referred
as the Virtual Network Embedding (VNE)[28] problem. VNE solves the problem of
allocating network services provided by the user. Upon arrival of a service request,
an optimal allocation plan must be found for network nodes in a subtrate network,
to achieve objectives under various constraints (e.g., required storage, bandwidth,
latency). Solving VNE is known to be NP-hard[29]. Additionally, the complexity of
VNE increases if we need to introduce additional constraints about the verification
of the network properties, which will be discussed later in this thesis.

2.3 Formal Methods and Formal Verification

Formal methods are techniques based on mathematical foundations, which are suit-
able for specifying, developing, and verifying computer systems. Applying formal
methods to system design is intented to improve the correctness, and hence the
dependability, of the design using appropriate mathematical analysis, like in other
engineering disciplines. More specifically, formal verification is the way of using
mathematical methods to prove the correctness or inaccuracies in the design process
of computer hardware and software systems, according to some form or specification.
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2.3.1 Verigraph

NFV and SDN introduce new issues including the complexity, vendor compatibility,
maintaining network security and ordering of network and security functions. This
ordering of network functions, allows to prevent conflicts, inconsistencies or sub-
optimizations, especially considering the cases where multi-domain administration
is involved. Currently, most VNFs require a manual input by network administrators,
in order to select specific fields for various low-level configurations.In the context
of telco operators, manual configuration may involve multiple iterations if there
is a misconfiguration in the initial phase. This approach, besides requiring human
intervention and being costly, may require dramatic measures depending on the
size of the network. To address these issues, Verigraph[10] proposes a formal
method relying on network modelling that is then used to verify the satisfiability
of reachability-based properties (named policies) against a network composed of
both stateless and stateful network functions. This work is based on the following
features: (i) reachability checking relies not only on topology constraints, but also on
the configuration of each function in the network (e.g. rules for firewall, blacklists for
antispam functions, packet values for end-host); (ii) the approach has a high usability
because it supports a number of possible network functions so that telco operators
or administrators can describe and in turn verify a variety of network topologies;
(iii) in case of network topology changes, the modelling approach is totally reusable
because it separates the generic forwarding principles from the functional behavior
of the existing network functions.

Verigraph turns the model and the policies into First-Order Logic (FOL), utilizes
a solver to obtain a formal assurance that the correctness of the network behavior is
maintained with respect to the policies. FOL is a formal system, namely in the form
of symbolic reasoning system, also known as quantificational logic and "Predicate
logic", although these statements are not precise enough. We should note that the
first-order logic is different compared to a basic “propositional logic”, as it uses
variables that take values over various domains and quantifiers, such as: ∃ y (exists a
value y ); ∀ y (for all the values of y ).
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2.3.2 Satisfiability problem

The Satisfiability (SAT) problem in computer science and mathematical logic is the
problem of finding whether there is an assignment of the boolean variables of a set
of propositional logic formulas that makes all such formulas true. In 1971, Cook
[30] proved an early NP-completeness result of the satisfiability problem.The SAT
problem was also the first of this kind to be proven. At first, researchers focused on
the application of SAT in hardware testing, circuit verification and other fields. The
development of SAT solvers has found a significant importance in the research of
associated works in the area of Electronic Design Automation (EDA). Then SAT was
widely used and applied to various emerging fields, such as static program analysis,
test case generation, etc. SAT is only oriented to propositional logic formulas, and
for this reason its expression ability has high limitations.

Due to these shortcomings, researchers have extended SAT to SMT. Satisfiability
Modulo Theories (SMT) is oriented to first-order logic formulas. It adds reasoning
about propositional logic and has stronger expressive power. SMT incorporates a
variety of background theories, and propositional variables in the formula. It can
be a theoretical formula that can directly describe the high-level information of the
problem. For example, SMT’s array theory can directly describe array definitions
and related operations. In practical applications, SMT is not limited to a single
theory, usually a combination of multiple theories is used.

2.3.3 Maximum Satisfiability Modulo Theories

When using SMT, very often, we would like to find not only the verification result
but, if the verification succeeds, also obtain the best conditions under which this can
happen, according to some optimization objective. In that instance, the verification
problem becomes also an optimization problem. Optimization problems usually
are modeled as linear programming models. However, translation of a set of first
order logic (FOL) formulas to a linear programming problem is not an easy task
and, in most cases, impracticable. Another option is to turn an SMT problem into
an optimization problem by putting a constraint on an objective function and doing
binary search to find the minimum value of such constraint that does not result
in UNSAT. This allows to keep the problem formulated in a logical language and
provide it to an appropriate solver, capable of jointly performing verification of the
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logic formulas, and optimization. In this dissertation, we are concerned with this
approach, using MaxSMT tools. The MaxSMT problem is the optimization version
of the Satisfiability Modulo Theories (SMT) problem. Both SMT and MaxSMT are
represented by means of propositional logic formulas in the Conjunctive Normal
Form. As we have stated earlier, the aim of the SAT and SMT problems is to
determine a truth assignment that satisfies all of the clauses; otherwise, they return
an unsatisfiability report. At this point, if there is no satisfying model, we still want
to know if there are subsets of clauses that are satisfied, and find the one where as
many as possible are satisfied. This is the idea of the MaxSMT problem. The clause
is a conjunction of literals. In MaxSMT, each literals is assigned with a weight, and
the goal is to solve the optimization problem of minimizing the weight of falsified
collection of clauses. In this kind of problem, the clauses are characterized as hard
or soft clauses. Hard closes are the ones that must be satisfied while soft clauses may
or may not be satisfied. There are various forms of MaxSMT problem and we adopt
Weighted Partial MaxSMT variation, in this thesis. In contrast to other variations, it
allows us to assign weights to soft clauses, where hard clauses must be satisfied and
weights of the satisfied clauses must be maximized.

2.3.4 SMT/MaxSMT solvers

The specific implementations of SMT and MaxSMT solving technologies are called
SMT and MaxSMT solvers. z3 is a new and efficient theorem prover from Microsoft
Research that receives as input sets of FOL formulas. Under the hood, z3 is a
SMT solver. It can resolve satisfaction problems and thus formalize an approach
to constraint programming. An extension of z3 is z3Opt, which can solve the
MaxSMT problem in those scenarios in which arbitrary models are not enough, and
applications want to minimize or maximize values. As z3 is an engine developed to
be used by any other tools, it provides several APIs that can be exploited by various
tools.

2.3.5 MaxSMT example using Z3

In this section, we provide an example to demonstrate the use of Z3 API. We encode
a placement problem using Java API to find the optimal locations of the VNFs in a
substrate network. Let us assume that there are two substrate nodes with 65 GB and
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100 GB available storage to host VNFs. Each VNF requires 5GB, 10 GB and 50GB
available storage to be hosted in a substrate node. Daily financial costs associated
with deploying VNFs on those nodes are fixed: 100 USD and 20 USD respectively.
Our goal is to minimize the number of substrate nodes in use and minimize the
embedding cost (i.e., financial cost ).

To represent the placement problem in Z3, we introduce boolean variables y j and
xi j that take true value when substrate node j is in use and when VNF i is hosted on
substrate node j, respectively. A detailed description of the API can be found here1.

1 //required variables

2 Context ctx = new Context();

3 Optimize mkOptimize = ctx.mkOptimize();

4 BoolExpr x11,x12,x21,x22,x31,x32;

5 BoolExpr y1,y2;

We introduce a bin() function to represent these boolean variables as integer/real
variables. For our example, the sum of all storage required by VNFs allocated on a
substrate node should be less than or equal to the storage available on that substrate
node and it is expressed as:

1 //first substrate node constraints

2 ArithExpr leftSide = ctx.mkAdd(

3 ctx.mkMul(ctx.mkInt(5), bin(x11)),

4 ctx.mkMul(ctx.mkInt(10), bin(x21)),

5 ctx.mkMul(ctx.mkInt(50), bin(x31)));

6 mkOptimize.Add(ctx.mkLe(leftSide, ctx.mkMul(ctx.mkInt(65), bin(y1))));

7 //second substrate node constraints

8 ArithExpr leftSide = ctx.mkAdd(

9 ctx.mkMul(ctx.mkInt(5), bin(x12)),

10 ctx.mkMul(ctx.mkInt(10), bin(x22)),

11 ctx.mkMul(ctx.mkInt(50), bin(x32)));

12 mkOptimize.Add(ctx.mkLe(leftSide, ctx.mkMul(ctx.mkInt(100), bin(y2))));

In addition to these inequalities, we need to represent explicitly that each VNF can be
mapped onto exactly one node. For our example, such constraints take the following
form:

1 mkOptimize.Add(ctx.mkEq(ctx.mkAdd(bin(x11),bin(x12)), ctx.mkInt(1)));

2 mkOptimize.Add(ctx.mkEq(ctx.mkAdd(bin(x21),bin(x22)), ctx.mkInt(1)));

3 mkOptimize.Add(ctx.mkEq(ctx.mkAdd(bin(x31),bin(x32)), ctx.mkInt(1)));

Finally, when substrate node is in use, there is at least one VNF deployed on this
node and for our example we have:

1https://z3prover.github.io/api
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1 mkOptimize.Add(ctx.mkOr(

2 ctx.mkImplies(y1, x11), ctx.mkImplies(y1, x21), ctx.mkImplies(y1, x31)));

3 mkOptimize.Add(ctx.mkOr(

4 ctx.mkImplies(y2, x12), ctx.mkImplies(y2, x22), ctx.mkImplies(y2, x32)));

We use AssertSoft function to minimize the weighted sum of constraints for
the same ID. It is important to use the negation of the variable if there is a need for
minimization.

1 mkOptimize.AssertSoft(ctx.mkNot(y1), 100, "new");

2 mkOptimize.AssertSoft(ctx.mkNot(y2), 20, "new");

By feeding these objectives along with the formulas defined so far to the Z3
MaxSAT solver, we obtain, if possible, a model that satisfies all hard clauses, includ-
ing the ones about capability, while minimizing the number of nodes in use. In the
case of our example, the solver says the model is satisfiable with value true given to
the following variables: x12, x22, x32, y2. We can conclude from the output that all
VNFs are placed at substrate node 2 with the cost of 20.



Chapter 3

Related work

This chapter surveys previous work related to formal assurance of security policies in
automated network orchestration and discusses in detail how our solution advances
the state of the art. First, we review network function modeling in developing
a formal model of network functions for network verification. Then limitations
are listed, which we have faced while observing the different network function
models designed for formal methods. Second, we survey existing literature, which
employs these models in deciding the optimal placement of network functions. We
compare these solutions to ours from several perspectives, and show how our solution
provides a joint optimization and verification for the most current solutions. Finally,
we discuss works in automated network orchestration. We narrow our discussion to
automatic security mechanisms for firewalls.

3.1 Network function modeling

There is currently no standard and well-known modeling language that can be used
to precisely characterize the forwarding behavior of network functions. Existing
literature on modeling network functions is mostly concentrated on data plane or
control plane verification and each tool requires input models written in its own
language. In this section, related work of the field is discussed, then limitations are
listed, which we have faced while observing the different network function models
designed for formal methods.
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3.1.1 Simplicity of models

Modeling of network functions is effective for various uses, ranging from finding
scalability issues in applications to finding network configuration bugs, especially
with the use of formal verification tools. On the other hand, former modeling of
network functionalities is challenging and requires a detailed understanding of the
specific verification tool internals, semantics, and modeling language.

With this problem in mind, the introduction of an automated approach to gen-
erate models eliminates the necessity of having detailed knowledge in the formal
verification domain and helps engineers to quickly determine the behavior of services
comprising different types of network functions, starting from a more user-friendly
description of the involved network functions. Notice that it is well-known how
formal methods do not prevent possible errors in constructing the formal model.
In other words, incomplete or wrong models may lead to errors in the verification
process. However, the investigation of these well-known issues is out of the scope of
our study. Instead, given the fact that formal methods are a widely accepted method-
ology for property verification, we address the challenge of giving to NFV software
providers the possibility to construct formal models by means of a programming
paradigm they are familiar with. This would significantly lower entry barriers to
these powerful verification approaches, somehow also reducing the probability of
introducing errors in the model with respect to the utilization of complex formal
languages.

Imperative languages such as Java, Python, C++ focus on describing how a
program operates. A network function developer can write a code that describes in
exact detail the forwarding decisions that the network function must make when a
packet is received from one of its interfaces as a sequence of steps, without having
the complexity of a function implementation. On the contrary, declarative languages
[31, 32] used in logic-based formal verification tools do not specify a step or sequence
of steps to execute, but rather predicates that must hold. The conceptual gap between
these two paradigms is the vital challenge solved by our approach.
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3.1.2 Support of stateless and stateful functions

The existing verification methods can be divided into two groups according to
their ability to model stateful functions. The former group focuses on modeling
the forwarding behavior of stateless devices(e.g., switches and routers [33, 34],
ACL (Access Control List) Firewall [35], simple load-balancer[14]); by this we
mean that the behavior is not modified until the control plane explicitly changes the
configuration and there is no record of previous interactions. The latter group[36–38]
also considers the devices that are dynamic, in which every packet that the network
device receives may alter the internal state, and the output is dependent on the
sequence of previously encountered packets. Considering the fact that a significant
portion of network devices are stateful, such as learning firewalls, load balancers,
intrusion detection systems and the like, one cannot ignore these devices when
verifying network configurations. Thus, we propose a general template to model,
that covers a wide range of network functions, including both stateless and stateful
ones.

3.1.3 State of the art

There are two categories of related work to be considered. The first category relies on
the analysis of programming languages source code. In the past few years, there has
been a significant amount of work done to provide a proper support for the translation
of programming language sources to the input models of verification tools. Some
of these tools are for example Bandera [39] and JavaPathFinder [40]. Both of them
are founded on model checking, and the output of the tools are related to a generic
computer programs (i.e., they do not extract models of network functions). The
main target of these models is the identification of programming errors and bugs.
In contrast to these works, we consider only the forwarding behavior of network
functions, and we are not interested in all the details of the network function’s
code execution. We also want formal verification of network configurations to be
extremely fast because it has to be performed in real-time when a network change
occurs. For this reason, we need to extract customized, domain-specific models.

A proposal more similar to our target is NFactor [41], which provides a solution
to automatically analyze the source code of a given network function to generate an
abstract forwarding model, motivated by network verification applications. While
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relying on advanced tools([42]) and methods ([43–45]) from the field of code anal-
ysis, there is no requirement on the structure of the written code. This feature is
considered as an advantage from a generality point of view. SymTCP[46] is built on
top of the popular concolic execution engine S2E[47] and analyzed vulnerabilities
in source code of deep packet inspection (DPI) systems for protocol ambiguities. It
proposed automated ways to construct packets that can successfully de-synchronize
the state of a DPI middlebox from that of a (end) server.

Unfortunately, creating a model that captures all code paths of a network function
is challenging because the state processing may be hidden deep in the code. This
may cause the analysis to miss certain state changes. For example, implementations
might use pointer arithmetic to access state variables, which is difficult to trace,
and solutions based on concolic testing do not deal with these language features
appropriately. Another limitation of the approaches based on extraction of models
from source code is that the code of many network functions is proprietary, hence
source code is not available for them.

Another category of approaches and methods for static network analysis is
based on hand-written function models ([13, 18, 12, 10]). For instance, Network
Optimized Datalog [13] requires a Datalog (declarative logic programming language
that syntactically is a subset of Prolog) both for network and function models and
policy specifications. BUZZ [12] relies on manually written models of network
functions defined in a domain-specific language. As stated above, modeling network
functionality for using these tools is challenging and requires a detailed understanding
of the verification tool semantics. Our automated approach to generate models aims
at eliminating the necessity of having detailed domain knowledge and helps network
engineers to quickly determine the behavior of a network function.

On the contrary, SymNet [18] describes models using an imperative, modeling
language, known as Symbolic Execution Friendly Language (SEFL). While the
way this language has been designed has similarities with the modeling technique
we propose, this approach lacks the idea of ease of modeling, by introducing a
new language. Even though the authors provide parsers to automatically generate
SEFL models from real network functions, this generation only covers routers and
switches. Our approach, instead, relies on the well-known user-friendly programming
languages and can be used to describe any kind of virtual network function.
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3.2 Formally verified network function placement

The classical literature on Virtual Network Embedding (VNE) is based on the
Integer Programming (IP) formulation of the problem of optimally mapping VNF
instances to specific nodes and links in the substrate network, but it does not take
into consideration reachability analysis during optimization. A number of NFV
placement or orchestration frameworks have been proposed in the literature. Most
of them, such as PACE [48], propose smart VM placement to deploy VNFs without
considering reachability properties at all, so they cannot optimize or control the way
packets are forwarded. Other state-of-the-art approaches, such as APPLE [49] and
VTVSynth[50], also consider reachability policies while providing VNF placement,
where policies describe the sequence of VNFs that each class of flow needs to
traverse in order. However, these approaches only assure that traffic is forwarded
by the SDN switches according to the policies while they do not provide formal
assurance that reachability policies will really hold because they do not use precise
models of the forwarding behavior of middleboxes.

In contrast to traditional methods for solving the VNE problem based on integer
programming and heuristic methods, which are limited to a set of constraints over
binary, integer, or real variables, the problem addressed in this chapter is to allocate
VNFs while also formally checking that the desired reachability policies will hold,
considering formal models of the forwarding behavior of all the VNFs involved,
including their configurations. Even though the transformation of propositional
calculus statements into integer and mixed-integer programs is possible [51], combi-
natorial encoding is impractical in most cases, and we were often not able to generate
MaxSAT encodings for many of the instances when using it. The reason is that the
formulation we have adopted in this thesis is the first-order logic - an extension of
propositional logic that covers variables for individual objects, quantifiers, symbols
for functions, and symbols for relations.

How to take security properties into account when deploying SGs is another
important consideration. During our research, we observed existing approaches
([52, 53]) on the problem of security-aware optimal VNE. These approaches make an
assumption that each virtual network request has a set of security requirements. These
requirements only comprise constraints on the confidentiality levels of the substrate
nodes and isolation of the resources. In terms of security services, authentication,
data integrity, confidentiality, and replay protection requirements should be provided
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[54],even if the delivery of these requirements depends on the specific configuration
and implementation details. On the other hand, several VNFs (e.g., NAT) can modify
or update packet headers and payloads. In these environments, it is difficult to protect
the integrity of flows traversing such VNFs and reason about reachability properties
without using precise behavioral models of VNFs.

3.3 VErified REFinement and Optimized Orchestra-
tion

3.3.1 Network Security Automation

Automatic security mechanisms have been proposed for firewalls in literature. [55–
57] define policy-based automatic methodologies to configure firewalls with respect
of some security requirements; however, they lack formal assurance of the correctness
and they are designed to work in traditional networks with hardware appliances,
instead of an NFV or cloud environment. Instead, [58–60] enable automation when
fixing firewall misconfigurations, exploiting formal verification at the same time;
nevertheless, these approaches do not allow the creation of the firewall policies from
scratch and, in the case of [58] and [59], they are not still thought for virtualized
networks.

On the contrary, automatic configuration of other NSFs has been investigated less
extensively. [61] represents the most important work for a policy refinement activity
that is not limited to a single kind of function; however, it does not contribute to the
creation of a complex security Service Graph, since it is limited to the configuration
of function chains.

Then, about automatic service composition, [62–65] contribute to create network
services in cloud environments by exploiting novel networking technologies, but
without the support of formal verification. Other works [66] [67] establish the
optimal firewall allocation in a virtualized service according to some cost functions;
even though their purpose is similar to the allocation feature of Verefoo, however,
they do not focus on a larger pool of network functions among which to choose for
enforcing the security policies, neither automatically define their configuration.
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3.3.2 NFV and cloud orchestration

The MANO of an NFV and cloud infrastructure plays a central role in modern
computer networks. Centralizing the deployment, management and monitoring of
the VNFs,simplifies the way the service providers reach their users. Our focus in
this thesis is to provide additional capabilities to the existing MANO solutions by
integrating the framework we presented in this thesis. We have analyzed various types
of cloud MANO platforms on the market and observed that none of them provide
the automatic configuration of VNFs by solving the verification and optimization
problems in one step. We have selected the most popular and widely used projects
that conform to the guidelines of NFV MANO:

• Open Source MANO (OSM) 1 is the prominent framework, proposed by ETSI,
whose design currently inspires all the alternative tools for orchestration of
VNFs in a virtualized environment. Since it is an open source project, it
must be able to interface with a number of functions or platforms that belong
to different vendors. For this reason, a research trend is to define novel
architectural models which can abstract from the vendor-specific peculiarities
of each VNF implementation: examples of this work are modelling languages
such as TOSCA and YANG. [4] OSM offers a multiple VIM support, which
means it could be used with multiple Infrastructure-as-a-Service technologies
(e.g. OpenStack, AWS, OpenVIM, VMware) for resource orchestration. It
allows also to combine them with different SDN Controller technologies (e.g.
ONOS, floodlight, ODL) to manage the underlying connectivity. A monitoring
system and an experimental support for SG are provided as well. In order to
manage the VNFs instance OSM adopts Juju of Canonical as VNF Manager.

• Open Baton 2 is an NFV MANO solution compliant with the ETSI NFV
MANO specifications. It has a modular architecture, in which a message broker
(RabbitMQ) grants the communication between a set of different orchestration
and supplementary services. The main services offered are the orchestration of
resources, the monitoring system and a set of drivers, which allows using this
platform over multiple VIM technologies. In order to extend Open Baton for
supporting other VIMs, one has to create a new driver plug-in and a specific

1Open Source MANO. [Online]. Available: https://osm.etsi.org
2Open Baton. [Online]. Available: https://openbaton.github.io
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VNFM for this technology. This approach gives an interesting flexibility to
VIM support. Indeed, Open Baton has been the first NFV platform to give
support to Docker Engine as VIM. SG mechanisms.

• OpenStack Tacker 3 is an additional service for the OpenStack framework
4. This service provides NFV Orchestration functionalities (e.g. VNFs/NSs
management), leveraging the services included in the OpenStack IaaS platform
(e.g. Neutron, Nova, Heat). The main advantage of using this platform is the
full support for SFC with the service named networking-sfc and SGs; in the
Network Service Descriptor (NSD) we could provide an high-level description
of FSPs and Classifiers as well.

Other works proposed in the literature on NFV and cloud orchestration, that are
worth mentioning, are [68] and [69]. On one side, vConductor [68] is a framework
that can construct and monitor virtual enterprise networks with a multi-objective
resource scheduling of the VNFs. On the other side, [69] describes a model-based
approach that exploits network function-agnostic software components such as trans-
lators and gateways to install functional configurations into each network function
of a complete service that is managed with a framework integrated in a cloud man-
agement platform. These frameworks are richer in terms of security functions that
can be scheduled, but an automatic policy-based configuration is not integrated, thus
requiring a human contribution in the creation of the virtual service; in fact, also [69]
only performs a translation of vendor-independent rules instead of a policy refine-
ment. Finally, [70] proposes a modular NFV architecture that permits policy-based
management of VNFs, handling their whole life-cycle and exploiting an Information
Model to provide an abstraction of network resources, network control functions
and VNFs capabilities; however, their limitation is that the only network security
capability that is modelled is access control.

3Tacker. [Online]. Available: https://docs.openstack.org/tacker/latest/
4OpenStack. [Online]. Available: https://www.openstack.org



Chapter 4

Network function modeling for
verification purposes

4.1 Problem description and contributions

Considering that almost any NFV developer can introduce sophisticated VNF soft-
ware, there is a greater chance of software bug and network configuration errors.
In this regard, a great deal of work is required to preserve safety, security, and the
correctness of the network. For this reason, verification of networks is the main
factor in eliminating faults and building reliable systems. In this regard, traditional
formal methods are believed to be mature and well suited for verifying numerous
network properties in various circumstances ([13, 71, 72]). Those techniques make
use of formal models defined in a specific language and exploit model checking,
theorem proving or SAT solvers to provide formal assurance. This in turn, challenges
developers of VNF software to either acquire the knowledge of formal modeling or
translate the existing code of the network functions into a specific format accepted by
those verification tools. To avoid these difficulties, we introduce a novel framework
consisting of a library, parser, and translator. By means of the typical set of high-level
operations provided by the library, a developer is able to describe the forwarding
behavior of a generic network function in a well-known language. Even if we have
no experimental evidence that it is easier than learning a modeling language, we
believe an automated approach to generate models eliminates the necessity of having
detailed knowledge in the formal verification domain and helps engineers to quickly
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determine the behavior of a VNF-based network, starting from a more user-friendly
description of the involved VNFs.

A base class definition of a generic VNF is provided by the framework. This
base class can be easily extended by inheriting basic properties, methods, and
data types, which allows to customize the behavior of the function and develop
various types of specific network functions. The other element of the framework
is a parser, which is in charge of compiling and analyzing the source code, and
extract a parse tree from it. We represent the parse tree in the form of the platform-
independent XML specification, which represents an abstract formal model of a
VNF. This XML definition may then be converted into various models accepted by
different verification tools. The fairly generic intermediate model generated by the
parser includes all the parameters of the network function behavior, but many of
those parameters are not necessarily used by all verification tools. In such cases,
our translator component designed for each specific verification tool will omit the
parameters not used by that tool from the output model.

In this thesis, we utilize the network verification tools SymNet [18] and VeriGraph
[10] as use cases and Java as a specification language. Despite this, we want
to emphasize that the methodology introduced in this chapter can be represented
by means of various computer programming languages, and due to the level of
abstraction of the intermediate parsed model, we can develop translators even for
other verification tools of network forwarding behavior. First, we provide literature
overview in Section 3.2. Then, we present the approach and the main components of
the framework in Section 3.3, which includes the definition of the Library, Parser
and Translator. Finally we provide the evaluation of the proposed framework.

4.2 User-friendly verification oriented modeling ap-
proach

A library, a parser, and a translator are the main components of the proposed frame-
work. First, we present our library and introduce the main design guidelines in
modeling network functions by means of the imperative programming paradigm. For
the sake of completeness, we also show examples of VNFs from our rich network
function catalog. Next, we describe the fundamental aspect of the parser, which
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allows us to extract an abstract model of a network function from the source code
definition. In general, the parser accepts as an input the source code of the VNF
written respecting the guidelines of the library. Finally, the translator component of
the framework converts the intermediate abstract model into a tool specific repre-
sentation, which would be hard to obtain manually. As a matter of fact, we provide
separate translators for each type of verification tool in order to be compliant with
the language used.

Fig. 4.1 Class diagram of the Library.

4.2.1 Library: Network function catalog

In Figure 4.1 we present a static structure of the library in terms of a class diagram
notation, where the nodes are classes, and the edges are dependencies or generaliza-
tions. It allows a developer to understand the basic building blocks in defining the
NF behavior. Users may simply define forwarding decisions of the network function
in accordance with these design principles. The developer is required to instantiate
objects of the library classes and use available methods that match specific behavior
of individual NFs. The operations include forwarding, blocking or duplicating an IP
packet, matching a specific field of a packet from a table, keeping track of packets
and others. This can be achieved by using the basic syntax of the Java language.

Firstly, for any network function, it is required to create a class that extends the
library class NetworkFunction, which includes generic behavior of a network
function. NetworkFunction is an abstract class whose abstract methods have
to be implemented in the concrete extension provided by the user. The source
code that is shown in Listing 4.1 is an example for an ACL (Access Control List)
enabled stateless firewall. The main method of the class (onReceivedPacket())
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accepts two parameters. The first one represents the incoming packet object while
the second one specifies the interface on which the function has received the packet.
The actions that can be inserted inside onReceivedPacket() are divided into
the following categories: instructions to get, set or check the contents of a packet
field, instructions to store and retrieve a value into/from a lookup table defined by
the user, instructions to define the forwarding action to be performed on a packet
(through a RoutingResult). RoutingResult is the return value type of the
onReceivedPacket() method. It expresses the routing decision of the network
function, after processing of the incoming packet. Its constructor receives the
following input parameters:

• A packet object that the network function produces.

• The action to perform on this packet (forward or drop).

• The forwarding direction (i.e. the interface the packet is forwarded to in case
of forward action).

Considering the fact that the model describes the forwarding behavior of the VNF,
we suppose that the forwarding operation involves a single packet in response
to a received packet. Even if this restriction could be removed by updating the
RoutingResult definition, for all the functions we considered it was not an issue.
Moreover, we aim to provide the assessment of the possibility or impossibility for a
function to deliver a certain type of packets on an interface, rather than representing
exactly how many packets of a certain type it can send for each received packet.

The Interface class provides means to define which logical interface packets
are sent to or received from by a VNF. A typical need when writing network function
models is to differentiate various sets of interfaces. For instance, a NAT (Network
Address Translator) network function separates the network into two areas (an
internal area and an external one) and applies different rules on the incoming packets
if they are received from the internal or the external interface. Incoming packets from
the external interface are forwarded to their destination only if a connection already
exists while packets from the internal interface are always forwarded unless the NAT
runs out of ports. Similarly, most of the network functions such as firewall, NAT,
and others differentiate the interface to which packets can be transferred, from the
interface from which packets arrive. We will refer to them as external and internal
interfaces, respectively, in this thesis.
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1 public class AclFirewall extends NetworkFunction {
2 private Table aclTable;
3 public AclFirewall() {
4 super(new ArrayList < Interface > ());
5 this.aclTable = new Table(2, 0);
6 this.aclTable.setTypes(Table.TableTypes.Ip, Table.TableTypes.Ip);
7 }
8 @Override
9 public RoutingResult onReceivedPacket(Packet packet, Interface iface) {

10 if (iface.isInternal()) {
11 TableEntry entry = aclTable.matchEntry(packet.getField(PacketField.

IP_SRC), packet.getField(PacketField.IP_DST));
12 if (entry != null) return new RoutingResult(Action.DROP, null, null);
13 return new RoutingResult(Action.FORWARD, packet, externalInterface);
14 } else {
15 TableEntry entry = aclTable.matchEntry(packet.getField(PacketField.

IP_SRC), packet.getField(PacketField.IP_DST));
16 if (entry != null) return new RoutingResult(Action.DROP, null, null);
17 return new RoutingResult(Action.FORWARD, packet, internalInterface);
18 }
19 }
20 }

Listing 4.1 Behavior of the ACL firewall represented in an imperative form.

The Packet class models an IP packet and it gives access to the fields of the
IP header that are relevant for the forwarding behavior of the network function. As
it can be seen from Figure 4.1 the enum type PCKField contains the constants
representing the packet header fields that can be modelled. Moreover, our framework
can support TCP and application protocols. For the moment, only HTTP and POP3
are supported for demonstrative purposes. This list can be extended indefinitely
to include more protocols when necessary. It is worth noting that the clone()
method of the class is convenient in case of packet modifications. This, in turn,
allows modifying the “clone” in the meantime keeping the old packet unchanged.

The Table class models a typical lookup table as a collection of TableEntry
objects stored by the network function. For example, in the case of NAT-enabled
network function shown in Listing 4.2, an object of this class stores the pairs
of source/destination IP address/port of open connections. The code of the NAT
VNF consists of three rules due to the three forwarding actions. To represent the
explicit state change that occurs in the stateful VNF, natTable.storeEntry(e) method
invocation is used. In contrast to the matchEntry() method, used to model a table
lookup for the stateless VNF, here the user models a condition stating that there is a
packet received, looking at the VNF’s internal state.
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Table 4.1 List of supported commands, instructions and operators

Data types: int, String, boolean, byte
Boolean operators

Comparison operators
Statements: return, if, if-else,

variable assignment, method invocation

Alternatively, a table object can be used in an ACL firewall to store port numbers
or IP addresses to be blocked. The matchEntry() method of the class, on the
other hand, serves to retrieve an entry from the table matching the value of the object.
The TableEntry class itself contains a list of objects whose size is set according
to the integer that the constructor receives. Moreover, it is necessary to define the
expected field type the table stores. This helps the parser to observe the type of entry
being retrieved from the table and extract the model accordingly. For instance, the
element for IP source address and destination addresses is stored as an IP data type
in the XML notation of the model. The list of currently supported types is given in
enum type TableTypes (see Figure 4.1).

To grant the second objective of our work and to offer greater flexibility, devel-
opers are provided with a sufficient level of freedom to follow the guidelines and
"skeleton" of the model mentioned above as building blocks of complex network
functions. In particular, there is no restriction on the number of tables, conditions,
and on the actions that follow these conditions, on the order of packet operations and
the programming language used to describe these models. However, our framework
supports only a subset of the object-oriented programming language features, which
are supported by C++, Java, Objective-C, and others. The list of supported features
is shown in Table 4.1. While we believe this subset is enough for our purposes, it
can be extended in order to further improve the user experience when specifying
network functions.

4.2.2 Parser: Operating principles of the parser

The parser performs a syntactic analysis of the source code conforming to the rules
of a formal grammar. Next, it builds an in-memory parse tree for easy translation
into another language describing the network function behavior and then converts
the tree into XML notation. This process is made of the following sequence of steps:
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• the identification of the instructions in the code that lead to a packet being sent
through an interface;

• the identification of the instructions related to state insertion (write) and
retrieval (read);

• the identification of the conditions (IF statements) that are traversed to reach
the above-mentioned instructions.

Finally, the analysis lets us identify (i) the possible sequences of instructions
that can modify and finally send a packet, with all the conditions under which each
one of them can be executed and (ii) the sequences of instructions that can lead to a
modification of the state of the network function, and all the conditions under which
each alteration can occur.

The implementation of the parser takes advantage of Abstract Syntax Tree (AST),
which is a tree representation of the abstract syntactic structure of source code. AST
is provided by the compilers of all well-known programming languages like C++,
Java, JavaScript, and Python. The formal model generated by the parser takes a
form that is motivated by the vision of OpenFlow [73] forwarding abstraction of
the form <match, action>. This abstraction model has been borrowed from the
existing modeling techniques [41, 15] and most of the verification tools of forwarding
behavior ([10, 16, 18]) rely on the models of this abstraction.

The parser generates the model in an XML format that expresses this abstraction,
by building the <match, action> pairs from the parsed AST. We classify the boolean
conditions in the code that lead to a return statement or to a state change statement
as “match” and the forwarding and state changes as “action” respectively. The
“match” conditions are further classified into two categories: those that refer to state
variables and those that are state independent. Similarly, the “action” rules are
categorized as: those that trigger a state transition and those that trigger a forwarding
action. They are referred to as “state” and “flow” respectively, as shown in Table 4.2.
This categorization is needed in the translation phase of the model, because the
verification tool-specific model representation is formed depending on the type of
<match, action> tuples. In the following subsections, we walk through the steps
the parser takes in building the abstraction model for stateless and stateful network
functions and cover the classification of rules in detail.
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Table 4.2 Intermediate output of the parser for ACL firewall

1 @Override

2 public RoutingResult onReceivedPacket(Packet packet, Interface iface) {

3 Packet packet_in = null;

4 packet_in = packet.clone();

5 if (iface.isInternal()) {

6 TableEntry entry = natTable.matchEntry(packet_in.getField(IP_SRC),

7 packet_in.getField(PORT_SRC));

8 if (entry != null) {

9 packet_in.setField(IP_SRC, (String) entry.getValue(4));

10 packet_in.setField(PORT_SRC, (String) entry.getValue(5));

11
12 return new RoutingResult(Action.FORWARD, packet_in, extInterface);

13 } else {

14 TableEntry e = new TableEntry(7);

15 e.setValue(0, packet_in.getField(IP_SRC));

16 e.setValue(1, packet_in.getField(PORT_SRC));

17 e.setValue(2, packet_in.getField(IP_DST));

18 e.setValue(3, packet_in.getField(PORT_DST));

19 e.setValue(4, natIp);

20 e.setValue(5, String.valueOf(new_port));

21 e.setValue(6, new Date());

22 packet_in.setField(IP_SRC, natIp);

23 packet_in.setField(PORT_SRC, String.valueOf(new_port));

24 natTable.storeEntry(e);

25 return new RoutingResult(Action.FORWARD, packet_in, extInterface);

26 }

27 } else {

28 TableEntry entry = natTable.matchEntry(

29 packet_in.getField(IP_SRC), packet_in.getField(PORT_SRC),

30 packet_in.getField(IP_DST), packet_in.getField(PORT_DST));

31 if (entry == null)

32 return new RoutingResult(Action.DROP, null, null);

33 packet_in.setField(IP_DST, (String) entry.getValue(0));

34 packet_in.setField(PORT_DST, (String) entry.getValue(1));

35 return new RoutingResult(Action.FORWARD, packet_in, intInterface);

36 }

37 }

Listing 4.2 Behavior of the NAT in an imperative form.
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Stateless network function

As an example, we use the NF definition for an ACL firewall by means of our
library, which is listed in Listing 4.1. This function uses a Table object named
aclTable. The method invocation in line 6 specifies that the table has two columns,
both of type IP address (Table.TableTypes.Ip). The parser will store this
information in the XML notation of the intermediate model. This table acts as
a “blacklist”: if the source and destination IP addresses of the received packet
match an entry in the table, a drop action is performed. The illustration of such
abstraction for the stateless ACL firewall network function obtained automatically
from the simple source code definition, is presented in Table 4.2, where only the
first rule extracted from the code is presented. In fact, for each forwarding action
in the onReceivedPacket() method, the parser constructs a separate rule. The
forwarding actions are recognized by the parser by looking for the presence of
RoutingResult class instance creation in return statements, where the action
argument is equal to Action.FORWARD. For instance, the method in Figure 4.1
leads to the generation of two distinct rules due to the presence of two forwarding
actions (lines 13 and 17, Figure 4.1). Due to the stateless nature of the NF, the final
model does not contain any information regarding the state (i.e., lines 10 and 12 in
Table 4.2 are empty).

The parser proceeds backward in the control graph of the code, starting from the
selected forwarding action until it reaches the entry point of the method. In this way,
it obtains the sequence of statements that have to be executed in order to reach the
selected forwarding action. From this sequence, the parser extracts the conditions
that must be satisfied in order for the sequence to be executed. They are essentially
the conditions of the if statements found in the sequence, plus an additional predicate
taking the form recv(p,i), where p and i are the packet and interface passed to
onReceivedPacket(). This last predicate expresses the condition that packet
p can be received on interface i. In all these conditions, variables are substituted
with the values assigned to them in the sequence of statements, explicitly or implic-
itly. Due to the nature of network functions that we consider, onReceivedPacket()
function do not interface with other definitions/instantiations for handling packet
forwarding, thus avoiding cases of recursive functions.
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Table 4.3 Intermediate output of the parser for NAT (part 1)

Stateful network function

Models of stateful NFs are more complex, because the match field may regard not
only packet flows but also states, and the action to be performed not only may
forward the packets but also may trigger an update on state components. In order to
explain the difference between the two cases, we analyze the outcome of the parser
for a NAT network function. From Figure 4.2, it is easy to realize that the model for
the NAT network function consists of three rules due to the three forwarding actions.
To extract these rules, the parser proceeds in an analogous manner to that shown in
section 4.2.2.

At the beginning the parser classifies this as a stateful network function due to
the explicit state change that occurs in the natTable.storeEntry(e) method
invocation, in line 26, and identifies natTable as part of the function state. In
contrast to the matchEntry() method, used to model a table lookup for the
stateless network function, here the parser classifies the matchEntry() method
invocation listed in line 7 as a state specific conditional statement, which corresponds
to lines 6-10 in Table 4.3. In order to differentiate the received packet from the
modified packet to be sent and from the packet received in the past, we use three
variables p_1, p_0 and p_2. Additionally, the packet modifications done by the NAT
result in a form of constraints, where the source IP and port addresses of the new
packet, that is being sent, must correspond to the values retrieved from the entry,
as shown in lines 6,7 of Table 4.3. Whereas the flow-related, state-independent
conditions in lines 1-5 of Table 4.3 state that the new packet that is being forwarded,
must keep the rest of the fields of the received packet unchanged. This is the first
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Table 4.4 Intermediate output of the parser for NAT (part 2)

1

Match

Flow

recv(p_1,INTERNAL)
2 p_0.IP_DST == p_1.IP_DST
3 p_0.TRANSPORT_P == p_1.TRANSPORT_P
4 p_0.APPLICATION_P == p_1.APPLICATION_P
5 p_0.L7DATA == p_1.L7DATA
6

State

p_0.IP_SRC == "natIP"
7 p_0.PORT_SRC == "new_port"
8 recv(p_2,INTERNAL)
9 !(p_1.IP_SRC == p_2.IP_SRC) ||

10 !(p_1.PORT_SRC == p_2.PORT_SRC)
11

Action
Flow send(p_0,EXTERNAL)

12 State store(p0,"new_port")

rule the parser builds following the if branches in lines 6 and 9 (Figure 4.2). When
the parser visits the else branch of the code that starts at line 14, it extracts the set
of conditions that lead to another forwarding action and builds the rule shown in
Table 4.4. In contrast to the first rule, the second rule contains an action that triggers
a state transition, by storing the new entry in the internal state of the network function
(line 12 in Table 4.4). This implies that the NAT translation table does not contain an
entry matching the IP and port source addresses as given in lines 9,10 (of Table 4.4)
and the new entry is inserted in the translation table of the NAT network function.

The final rule to be extracted covers the behavior of the NAT network function
when receiving a packet from the external interface, which is extracted in a similar
manner. This approach combines network-level abstractions and network function-
level abstractions that, together, make the verification task possible. In other words,
we abstract away (i) the order of packets; (ii)the relationship between the states of
different network functions; and (iii) the relationship between states of different
packets within each network function. The last two abstractions are inspired by
[74, 75]. The primary limitation of this approach is that the state information related
to a specific network function does not reflect the dynamic data plane elements.

4.2.3 Translator: Support for tools that verify forwarding be-
havior of the network

One of the strengths of our approach is the ability to serialize the final model
abstraction across different languages, thus being able to target different verification
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programs. For instance, VeriGraph[76] exploits network function models expressed
as formulas in First Order Logic (FOL) [77], taking the form

1 send(NF, destination, packet) -> CONDITIONS

The main functions that model operational behaviors in a network are:

• Bool send(node_src, node_dest, packet) which returns true if source node
node_src can send packet packet towards destination node node_dest;

• Bool recv(node_src, node_dest, packet) which returns true if destination node
node_dest can receive packet packet from source node node_src.

The right hand side of the formula expresses the conditions under which the
packet is forwarded. These formulas are difficult to write. Hence, VeriGraph can
greatly benefit from the automatic generation of models.

The conditions that are included in each rule are combined in conjunctive normal
form (CNF) in order to obtain a single “match” and “action” rule respectively. For
example, the rule in Table 4.4 results in the following FOL formula for VeriGraph:

Line 1 of this formula is interpreted as that a new packet p0 can be sent to a node
n0 through the external interface of the network function, which is translated as a
negation of isInternal(p_0.IP_DST) VeriGraph specific predicate.
This send action can occur, only if it is not possible to receive another packet p2,
having the same port and source IP addresses as packet p1. The rest of the model
is translated as follows. However, the state transition primitive in line 12 does not
take place in the final translation because VeriGraph does not support data structures
to keep track of the internal state of the network function. Despite this, VeriGraph
can model any stateful function that depends not just on static forwarding rules,
but also on the sequence of previously encountered packets, introducing multiple
implications in the function model.
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Fig. 4.2 SFC-Checker model primitives.

On the other hand, SFC-Checker[15] supports predicates explicitly altering the
state of the network function in the form of temporal forwarding behavior using Finite
State Machines (FSM). Table 4.5 shows the output of the translator for the NAT
network function model rule given in Table 4.4, by means of SFC-Checker supported
primitives shown in Figure 4.2. As evident from the table, the state independent
condition in line 1 of Table 4.4 is translated using the pre-condition primitive IF
introduced in SFC-Checker. Whereas the state-relative conditions in lines 6-10 of
Table 4.4 take the form of state operations primitive - get(). By means of the
set(f.p,"new_port") operation, the information related to the state change
in the NAT table is delivered. This operation is triggered when the translator matches
the double equal sign on the packet p_0, which in fact, the packet to be sent. It
is important to note that the distinction present in the XML representation is not
reflected to this translation and the translator produces a single packet f .p for all
three p_0, p_1, p_2 packets.

Table 4.5 Representation of the NAT model in SFC-Checker format

Match(f,s) Action

IF(f.p.src,INTERNAL),
get(f.p.ip_src)!=f.p.ip_src&&
get(f.p.port_dst)!=f.p.port_dst

forward(f.p,out)
set(f.p,"new_port")
Modify(f.p.ip_src,"nat_ip")
Modify(f.p.port_src,"new_port")
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Fig. 4.3 SEFL instruction set.

Similarly, the Symbolic Execution Friendly Language (SEFL) proposed by Sym-
Net [18] requires models in the <match, action> formalism and replaces unknown
values in the conditions with symbolic values. This helps SymNet to explore different
paths of the model. Eventually, the output of the translation for the NAT models in
Table 4.3 and Table 4.4 is identical to the model demonstrated in SymNet [18]:

It is important to note that SymNet injects only one packet per execution when it
performs verification [78]. Hence, we cannot translate the conditional statements on
multiple packets of our data-driven network functions such as NAT and Web Cache
into SEFL language. As a result, models generated for SymNet cannot take state
into account. In addition, in those network functions the idea of private or public
network is described in terms of specific ports, as there is no such network division
in SymNet. However, by defining a new abstraction, we can generate a model of a
stateful function specifically designed for SymNet only. As our goal is to provide a
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Table 4.6 Elapsed time to parse network function models.

generic modeling language that supports most of the verification tools, this approach
is out of scope for this work.

4.3 Implementation and evaluation

The resulting models, describing the forwarding behavior, are well suited for verifi-
cation of the basic network invariants such as reachability and isolation. Among the
existing logic-based verification tools we selected VeriGraph[10] and SymNet[18]
as use cases to show how the model generated by the parser can be exploited, after
proper translation, by a real verification tool. VeriGraph and SymNet are formal
verification tools that can automatically verify networks by checking certain policies
before the service deployment. In this context, the term network is used to indicate a
chain of network functions such as (load balancer, antispam, packet filter, DPI and
so on) that starts from a source node and ends into a different destination node. In
response to a verification request, a model of the network and the involved network
functions with their configurations, is checked against the provided policies, for
instance isolation properties between multiple devices in the network.

To automatically validate network connectivity policies at scale, both the verifi-
cation engines of VeriGraph and SymNet exploit an off-the-shelf SAT solver (Z3),
which checks the satisfiability of constraints over various theories. The logical formu-
las in this case define the policies to be verified, and the behavior and configuration
parameters of each network function.
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Fig. 4.4 Example topologies generated for our simulations.

In order to check the correctness of the generated final models, we constructed
a set of experiments with different network topologies comprising the catalog of
functions, and we performed a number of custom tests on the selected verification
tools. Verigraph and SymNet can perform different kinds of verification tests:
reachability, which consists of checking if at least one packet can arrive at the
destination from the source node, and isolation, namely, that packets sent from one
host (or class of hosts) can never reach another host (or class of hosts).

Figure 4.4 illustrates the set of topologies adopted for our tests. By means of
these tests, we show that generated abstract models are close to the actual behavior
of network functions and can be used in various scenarios. For instance, topology
(1) involves two firewalls and three end hosts. Firewalls are configured according to
the following policies:

1A. Firewall A denies all traffic between host A and C and the default action of the
firewall is allow.

1B. Firewall B denies all traffic between host B and C and the default action of the
firewall is allow.

This test includes two isolation properties to be checked. In particular, we
consider two packets, one flowing from host A to host C, and another one flowing
from host A to host B. Taking into account the above firewall policies, we expect the
isolation property is satisfied in case of A-to-C, indicating that no packet can reach
the host C from A, while we expect it is not satisfied in the case of A-to-B. The other
test cases are set up as follows (the numbers refer to the corresponding topology in
Figure 4.4):
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2. Rule: firewall denies traffic between NAT and host B. B is located in private
network where NAT table contains an entry related to the previous connection
B-to-A. Property: isolation between hosts A and B. Action: send a packet
from host A to B.

3. Rule: antispam performs an application layer content filtering. A packet
containing a string "discount" in its body is blocked. Property: isolation
between mail server and client. Action: send a packet containing a string
"discount" in its body from client to mail server.

4. Rule: DPI drops a packet containing a specific string in the body of the packet.
Property: isolation between host and web server. Action: send a packet
containing the specific string in the body from host to web server.

5. Rule: local storage of web cache contains
“www.google.it” URL address. Property: isolation between host A and B.
Action: send a web page request containing “www.google.com” URL from
host A to B.

6. Rule: firewall denies traffic between host and web server. Local storage of
web cache is empty. Property: isolation between host and cloud web server.
Action: send a packet from host to web server.

It is also possible to consider more complex, real life scenario, where IDS
contains an entry in its “blacklist” table with not allowed function code equal to 43.
Any specific type of packet not containing a function code equal to 43 expected to
be allowed.

Table 4.7 delivers the results we obtained implementing these categories of
tests in VeriGraph and SymNet. In order to exploit the models generated by our
framework it is required to construct actual service requests forming a chain or graph
by connecting them together with links. Verigraph then uses a different approach to
verify complex service graphs by making the use of chain extraction. This allows
Verigraph to verify a service request comparatively faster than SymNet. In terms
of computation time Verigraph performed more than twice faster compared to the
SymNet verification tool in all scenarios. In the table, ’SAT’ means the isolation
property is satisfied, while ’UNSAT’ means that the isolation property is not satisfied.
Comparing the test results obtained by using a set of manually written models and



42 Network function modeling for verification purposes

the ones obtained by means of the automatically generated ones (starting from the
high-level description and then generated using the parser), we found that results are
identical, as expected. We emphasize that the time required to generate these models
never exceeded one second. Whereas it would require a significant amount of time
from a developer to define hand-written models. This confirms the correctness of
our modeling approach and also shows the efficiency of the developed framework.

Table 4.7 Execution time of VeriGraph and SymNet compared. Column N represents the
number of the corresponding topology illustrated in Figure 4.4.

N Scenario
Verification

results

Time to verify
autogenerated
NF model (ms)

VeriGraph SymNet

(1)
DoubleFwTest A SAT

214 530
DoubleFwTest B UNSAT

(2) CacheNatFwTest SAT 318 787
(3) AntispamTest SAT 275 681
(4) DPITest SAT 192 475
(5) CacheTest UNSAT 260 644
(6) CacheFwTest SAT 200 495

4.4 Discussion

In this chapter, we described a “user-friendly” approach to network function modeling
for formal verification of forwarding behavior. We focus on breaking the barrier
between the two ways of representing a network function: the imperative-centric
function definition (proper of network function developers) and the higher-level
declarative representation (used by formal verification experts in order to instruct
logic-based verification tools). The proposed approach provides a method for NFV
developers to translate from the former to the latter automatically. The method
relies on the modeling technique, which includes a modeling library, a parser, and
a translator. NFV developers who write the actual implementation of the network
function can use the framework to provide a formal description of their functions to
be used in a verification process. Instead of modeling every detail of a VNF, they
can only focus on the forwarding behavior, in order to enable the formal verification
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of typical reachability oriented properties (e.g. isolation or absence of forwarding
loops). This approach tends to be affordable, since owner of the source code has a
full understanding of the function forwarding behavior.

We validated the correctness of the models obtained using our framework by
means of different verification tools.

Considering what are the current requests of the market and looking at the
possible future developments, this framework presents a further step towards the
real implementation of these new concepts inside the networks. In fact, the pro-
posed framework and the available verification tools may be a basic structure to
define Virtual Network Functions and test the overall network functionality before
deployment.





Chapter 5

Formally verified network function
placement

5.1 Problem definition and contributions

The NFV paradigm leads to the virtualization of services and applications that, in
traditional networks, run on proprietary hardware appliances (e.g., firewall, DPI,
etc.). This abstraction allows a more flexible network in which the network functions
that, in this context, are called VNF, can be simply moved from one server to another
one. Moreover, a series of network functions can be chained together to offer more
complex use cases. The use of virtualized applications in place of physical hardware
also enables administrators to take network functions in and out of service and
to scale them up and down quickly. The NFV paradigm is based on the usage
of an orchestrator, which decouples the instances of the network functions from
the requested virtual service. As we have stated in Chapter 1, even though the
orchestrator provides a simple way to deliver or release a service composed of a
series of VNFs, it does not provide verification for the correctness of the whole
service, while providing an optimal placement plan (i.e., VNE). For example, it
does not check if two endpoints are indeed reachable in the service in solving the
VNE problem, as this would require the formulations of how the different VNFs
work. Even though the NFV automation approach offers undeniable great benefits
like scalability, flexibility, and optimization, on the other hand, it poses new issues
regarding misconfigurations and security flaws since it relies upon external tools
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in verifying network properties. This problem can be prominent, especially by
introducing other objectives in addition to verifying the absence of misconfiguration,
such as efficient utilization of resources that host services in physical topology,
where the management and orchestration of the system could reach a high level of
complexity. In spite of wide coverage of the data plane and control plane verification
in the literature, they are usually performed after or before an NFV orchestrator
delivers enforcement of service requests in the infrastructure. However, addressing
the problem of VNE and verification separately can cause problems. For example, if
verification is done after VNE and deployment, misconfiguration can be discovered
only after the actual deployment of the service, which can be risky in some cases (e.g.,
a firewall that lets a dangerous flow pass). In the other scenario, an orchestrator that
receives a verified SG could perform decomposition and then deployment, respecting
the capabilities of the infrastructure, which might be different from the initial layout.
This new actual mapping requires a new verification of the lower layer network
configurations and the same verification process with a different set of VNFs. In case
of a policy violation, the orchestrator must reiterate through the alternative solutions
and again perform the verification.

To address this range of issues, we present a framework named Verifoo (Veri-
fication and Optimization Orchestrator), an extension of Verigraph that is capable
of performing joint optimization and verification. It follows the recent trend for
MANO[4] of many platforms, adding the integration of formal verification with the
placement procedure and thus formally verifying that services work before their
actual deployment. Verifoo can deploy requested SGs by searching from a shared
catalog of resources. Since multiple mappings of an SG onto an infrastructure are
possible, the orchestrator component also performs an optimal placement on the
basis of given performance parameters. It delivers a formal assurance of reachability-
related policies that are relevant for safety and security. It requires, as an input, an
SG, the configurations of the VNFs in the SG, the physical topology, and a set of
network policies to be verified.

In this chapter, we provide three variations of our methodology, focusing, respec-
tively, on typical network infrastructures, on industrial control systems, and on radio
access networks. Before describing the methodology used in Verifoo, in section 3.2
the related literature on verification and optimal VNE is reviewed. Then, in Section
5.4.2, the definition of the problem is given in formal terms, considering an example
of embedding a Service Function Chain (SFC) on a substrate network topology. In
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Table 5.1 Summary of key notations

Section 5.3, an application of the methodology in the context of industrial scenarios
is presented with the formal model of the network policies, which includes new
properties to verify, such as an isolation and alternative path. In Section 5.4, we
present an application of the methodology to the 5G functional split problem, and we
discuss the limitations of integer programming in solving the verification problem
jointly with VNE, by providing an alternative combinatorial representation of the
problem.

5.2 Virtual Network Embedding using Substrate Net-
work

A physical topology (also known as substrate network) is described as a weighted
undirected graph that we indicate by Gs = (Ns,Ls,As

V ,A
s
L)[79–81]. We demonstrate

our methodology with a simple example of a substrate network with two nodes (data
centers), three endpoints, and five links, as shown in Figure 5.1. The notation used
in our formulation is summarized in Table 5.1 (detailed description can be found
in [81]). Ns is used to define the set of physical nodes and Ls is the set of physical
links. We model the service graph as another directed graph Gv = (V v,Lv,Av

V ,A
v
L).

V v is the set of vertices, divided into two disjoint subsets: Nv and Ev. Nv is the
set of VNFs nv to be allocated, while Ev is the set of endpoint VNFs ev, whose
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Fig. 5.1 Mapping of the SFC request on top of physical infrastructure

allocation on the substrate network is assumed to be fixed. Notice that the endpoint
devices do not necessarily have to be virtualized, and they can co-exist as hardware
solutions without affecting our models. Lv is the set of edges (representing the links
that connect VNFs with one another). Each edge has a direction, which means that
outgoing and incoming packet flows are associated with different edges. Finally, Av

V

and Av
L are the sets of values that can be taken by the attributes of vertices and edges,

respectively. Although this model is general enough, allowing various possible
attributes, for simplicity in this work, we consider only a limited set. Each VNF nv

to be allocated has a required storage capacity attribute (i.e., the storage required
by the VNF), denoted storage(nv), a fixed packet processing delay attribute (i.e.,
time required to process the incoming packets), denoted lat(nv), and a functional
type attribute (i.e., which software program the VNF is running), denoted f unc(nv),
where nv ∈ Nv. Depending on the functional type of the VNF, a user may also
define the configuration parameters con f (nv) of that specific VNF, which is another
attribute that contributed to defining the functional behavior of each VNF in the
service graph. All these VNF attributes, here represented as functions, are provided
together with the SG. We stress that the processing delay is inversely proportional to
the computational power assigned to a VNF, and in our model it is a property of the
VNF and not a demand. For what concerns edges, for simplicity we don’t consider
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attributes (i.e., Av
L is assumed to be empty), but our methodology is open to consider

these attributes as well.

Finally, we uniquely identify vertices by means of integer indexes, where vv
j

denotes the vertex with index j. Depending on the type of vertex, vv
j may correspond

to a service node nv
j or service endpoint ev

j. For simplicity, we provide an example of
a service request forming a VNF chain, rather than a more complex graph (see upper
part of Figure 5.1). However, the methodology can be applied to any service graphs,
composed of hundreds of VNFs, as it will be clarified in the evaluation section.

The arrangement in the chain is expressed with indexes, i.e., vv
i is the ith VNF

in the chain. Figure 5.1 demonstrates the use case of mapping a service function
chain consisting of three network functions and two endpoint network devices
on a substrate network of two data centers. Each service graph also contains a
list of network properties to be verified. Initially, our framework supported two
connectivity properties, such as reachability and isolation between endpoints. Later,
we introduced other types of properties that are formalized in Section 5.3. Once
a service graph Gv with configuration parameters and network properties is fed as
an input to the orchestrator, the latter must first provide an assurance that those
properties are satisfied in the presence of VNF configuration parameters, and then
provide an optimal placement plan onto the infrastructure with Docker.

The position of the endpoint VNFs of the service request Gv is assumed to be
already defined in the service request. For this reason, in our scenario, ev

0 and ev
4 are

assumed to be mapped onto endpoints es
0 and es

4 respectively. In Figure 5.1, c is a
shorthand for the storage parameter while l is a shorthand for the latency parameter.
The storage constraint is defined as the virtual disk storage required by the VNF
VMs, which, in the example, is equal to 10 units for all VNFs. In the figure, the
SDN controller is thought of as a part of the Virtual Infrastructure Manager (VIM),
which provides centralized control of the data forwarding plane. All data centers in
the substrate network are connected to a switch or router and they are managed by
the SDN controller. Upon successful verification of the service request forwarding
rules, the orchestrator delivers them to the controller. The service request shown in
Figure 5.1 is a fairly simple chain of VNFs consisting of a web client (ev

0), firewall
(nv

1), a NAT (nv
2), DPI (nv

3), web server(ev
4).

The proposed framework for solving the joint optimization and verification
problem can be integrated inside an orchestrator, or it can co-exist as an external
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component. It receives the service request in addition to configuration parameters
and reachability policies. Then these inputs are converted into a set of first-order
logic formulas categorized as hard clauses. We present these sets of formulas in
Chapter 5.2.1.

Assume that an administrator defines a reachability property between ev
0 and ev

4,
where only HTTP packets with allowed payloads must reach the endpoints while
the other packets cannot, according to the specifications. It is important to note
that we are re-using the same FOL formulas used by Verigraph in order to verify
reachability properties. The reachability policy is satisfied if there is any packet flow
from ev

0 can reach the ev
4, unless the configuration of the endpoint ev

0 is limited to
send a specific type of packet flow. If the endpoint ev

0 is set to send only a certain
type of packet flow, reachability property is restricted to these set of packets. Let us
assume, configuration of the VNFs in the SG is as follows: the firewall is configured
to allow only HTTP packets from ev

0 to ev
4 while the DPI is configured to drop HTTP

packets with certain string that is not allowed (i.e., “blacklist”). If the configuration
of the endpoint ev

0 is set to send a non-HTTP packet or send a packet containing
the “blacklisted” string in the payload, the solver returns an unsatisfiability report to
the administrator. This means that with this specific configuration of the endpoint
network function, the reachability property is not satisfied, for this specific traffic
flow send from the endpoint ev

0. At this point, enforcement of the service is aborted,
and a placement plan is not produced. Instead, if the configuration of the endpoint
ev

0 is set to send HTTP packets with allowed string (i.e., not in a “blacklist”) in the
payload or if it is not specified, the satisfiability result with an optimal placement
plan is produced. Similarly, an administrator can assert an isolation property between
the endpoints (e.g., if affected endpoints need to be isolated). Below we categorize
and describe the first-order logic formulas in detail with an example. Similarly, an
administrator can assert an isolation property between the endpoints (e.g., if affected
endpoints need to be isolated). Below we categorize and describe the first-order
logic formulas in detail with an example.

Resource requirements

In addition to the hard constraints presented by Verigraph, we introduce clauses
representing the resource requirements of VNFs. We introduce boolean variables
yi and xi j that take true value when substrate node ns

i is in use and when network



5.2 Virtual Network Embedding using Substrate Network 51

function nv
i is hosted on substrate node ns

j, respectively. This last predicate is also
denoted nv

i ↑ ns
j. The mapping of a service request is then represented by two mapping

functions: Mn, which maps network functions of the service request onto substrate
nodes that meet their resource requirements , and Me, which maps endpoints. Mn

can be formally defined as follows. For all nv ∈ Nv, Mn(nv) = ns, subject to ns ∈ Ns,
and nv ↑ ns, and, for each j such that ns

j ∈ Ns, ∑
∀i|nv

i ↑ns
j

storage(nv
i )∗ xi j

≤ storage(ns
j)∗ y j (5.1)

where we are assuming the true value of xi j and y j corresponds to 1, while their
f alse value corresponds to 0. The meaning of these inequalities is that the sum of all
storage required by VNFs allocated on a substrate node should be less than or equal
to the storage available on that substrate node. A similar formula can be expressed
for other attributes as well. In Equation 5.1, we are assuming that network functions
from the same service request can share the same substrate node, which is common
in NFV systems, e.g., in order to reduce latency. As a concrete example, the service
request presented in Figure 5.1 gives origin to the following set of inequalities:

10∗ x11 +10∗ x21 +10∗ x31 ≤ 20∗ y1

10∗ x12 +10∗ x22 +10∗ x32 ≤ 10∗ y2

Along with these inequalities, we need to express explicitly that each VNF must
be embedded to only one node. First, we need to represent explicitly that Mn is a
function, i.e. it maps each VNF instance onto exactly one node. For each i such
that nv

i ∈ Nv, this constraint is expressed by the following equation: ∑∀ j|ns
j∈Ns xi j = 1.

For our example, such constraints take the following form:

x11 + x12 = 1 x21 + x22 = 1 x31 + x32 = 1

Finally, for each j such that ns
j ∈ Ns, in order to correctly bind variable y j to

variables xi j, we add the implication y j =⇒
W

i xi j, i.e., when a substrate node
is selected to be used by the service, we must guarantee that at least one VNF is
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deployed on this node. For our example, we express it in the following manner:

y1 =⇒ x11 ∨ x21 ∨ x31 y2 =⇒ x12 ∨ x22 ∨ x32

Routing tables

The forwarding behavior of the service request is expressed by a set of clauses that
represent the static routing information of each VNF. Forwarding behavior formulas
determine to which VNF to send the packets next. We have presented a detailed
discussion of the formulas in our publication [81]. For each VNF vv

i and next hop
vv

i+1, we define a predicate route(vv
i ,v

v
i+1, l

s) which is true if the next hop of vv
i is vv

i+1

and it is reached via link ls. Each substrate link ls is associated with the introduced
latency latency(ls) ∈ As

L.

Due to the assumption that the placement of an endpoint VNF ev
0 in a chain is

known and fixed, the framework constructs a set of soft clauses for each possible
substrate node ns

k onto which nv
1 (the next VNF in the chain) can be allocated:

So f t((route(ev
0,n

v
1, l

s
0k) =⇒ x1k),−latency(ls

0k)) (5.2)

where the notation So f t(c,w) specifies that clause c is a soft clause with weight w.
By defining the opposite of the link latency as the weight, we instruct the MaxSAT
solver to minimize the end-to-end delay of the chosen path in the infrastructure.

For instance, the routing table of the endpoint VNF determines the node to which
the packet is sent based on the next VNF allocation in the chain. Below we present
the actual set of soft constraints of the first endpoint VNF that are generated for the
example given in Figure 5.1:

So f t((route(ev
0,n

v
1, l

s
01) =⇒ x11),−10)

So f t((route(ev
0,n

v
1, l

s
02) =⇒ x12),−20)

(5.3)

Instead, for all the intermediate VNFs nv
i ∈ Nv in the chain, with i > 0, we have a

generalized representation:

So f t((route(nv
i ,n

v
i+1, l

s
jk) =⇒ xi j ∧ x(i+1)k)),

−latency(ls
jk))
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i.e., if an intermediate VNF i sends packets to the next VNF i+1 in the chain through
link l jk, then the corresponding boolean variables xi j and x(i+1)k, which denote the
position of the VNFs, must be true. If two VNFs are allocated onto the same substrate
node, i.e. j = k, we have latency(ls

jk) = 0, and a soft clause with weight equal to
zero is added to the set. For our use case in Figure 5.1 these soft constraints are
generated with respect to the input file:

For nv
1:

So f t((route(nv
1,n

v
2, l

s
11) =⇒ x11 ∧ x21),0)

So f t((route(nv
1,n

v
2, l

s
12) =⇒ x11 ∧ x22),−30)

So f t((route(nv
1,n

v
2, l

s
21) =⇒ x12 ∧ x21),−30)

So f t((route(nv
1,n

v
2, l

s
22) =⇒ x12 ∧ x22),0)

(5.4)

For nv
2:

So f t((route(nv
2,n

v
3, l

s
11) =⇒ x21 ∧ x31),0)

So f t((route(nv
2,n

v
3, l

s
12) =⇒ x21 ∧ x32),−30)

So f t((route(nv
2,n

v
3, l

s
21) =⇒ x22 ∧ x31),−30)

So f t((route(nv
2,n

v
3, l

s
22) =⇒ x22 ∧ x32),0)

(5.5)

For nv
3:

So f t((route(nv
3,e

v
4, l

s
14) =⇒ x31),−40)

So f t((route(nv
3,e

v
4, l

s
24) =⇒ x32),−60)

(5.6)

where Equations 5.6 correspond to the routing table of the last endpoint VNF ev
4

in the chain. We do not include the decision variable x4 j in this formula, as the
placement of this VNF is fixed on a substrate node. Instead, to decide the placement
of the VNF nv

3, we generate all possible permutations for x3 j, where j ∈ Ns. We
need to note that these sets of formulas are generated automatically given the ETSI
compliant Network Service Descriptor (NSD) file, which consists of parameters
following the ETSI MANO specification.

VNE is a multi-objective optimization problem that may involve various cost
functions such as minimization of the end-to-end delay, usage of network resources,
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maximization of the economical profit (related to embedding cost) and others. De-
pending on the needs of a network administrator, it is also possible to give priorities
to different objectives. In order to do that, the multi-objective functions with lexi-
cographical ordering (i.e., optimization is organized in strict priority levels) can be
encoded into MaxSMT using the Boolean Lexicographic Optimization scheme de-
scribed in [82], by assigning weights to each objective function, where the objectives
can be ranked in order of importance. As already noted, weights associated with the
soft clauses for the route predicates allows us to minimize an end-to-end delay. In
this section, we want to introduce the minimization of the number of used substrate
nodes, which can be expressed with an additional soft clause generated for each
substrate node ns

i ∈ Ns: So f t(¬yi,L), where L is a constant selected according to the
target of the minimization: a larger L gives priority to node utilization minimization,
whereas a smaller L gives priority to latency minimization. The MaxSMT solver
attempts to assign f alse values to the boolean variables yi in order to minimize the
penalty for falsified clauses in the current model, thus minimizing the number of
nodes in use. By introducing the same SG in case of changes in security policies, the
solver is able to provide two different outputs. According to the needs of the user,
it delivers a new SG deployment on the substrate network or partial solution that
will not disrupt the already deployed SG. The latter can be achieved, by setting the
variables to a static value, so that the MaxSMT solver will not generate new values
to the corresponding variables

Then, by feeding the MaxSMT solver with the conjunction of the clauses express-
ing the forwarding behavior of the network and the ones representing the placement
constraints, we obtain, at the same time, the verification that the specified policies
hold, and the optimal placement plan, or an indication that the policies are not
satisfied. In the case of our example, the solver produces a satisfiability report with
value true given to the following variables:

x12,x21,x31,y1,y2.

We can conclude from the output that the firewall VNF nv
1 in the chain is placed on

the substrate node ns
2, the NAT nv

2 and the DPI nv
3 on the substrate ns

1. This allocation
of the VNFs on the infrastructure introduces a link latency of 90 ms. An experimental
assessment of this approach is presented in Section 5.3.2.
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Table 5.2 Placement execution time in different substrate networks

Topology Nodes Links Time (s)
Internet2[83] 12 15 0.551
GEANT[83] 23 74 17.674
UNIV1[84] 23 43 20.684

AS-3679[85] 79 147 31.454

5.2.1 Evaluation and analysis

Different scenarios have been evaluated, each one consisting of a substrate network
with a single service request consisting of 4 VNFs to be allocated, with the related
reachability property between the endpoints. As it can be seen from Table 5.2, for
small topologies the placement and verification algorithm is very fast while for larger
scenarios execution time increases. The largest scenario that was tested includes 79
hosts and 147 links, with 4 VNFs to be allocated. In this case, the tool requires an
average of 31 seconds.

Algorithms solving the VNE problem come in two forms: offline algorithms and
online algorithms. Online algorithms are better suited to deal with high dynamicity,
which, however, always comes at the cost of less optimal solutions, relying on
heuristics. Moreover, the online VNE problem is more difficult as we need to
consider the arrival times of the requests and there are more possibilities of inefficient
resource utilization due to time gaps created by earlier mappings. Our version allows
tackling the cases where the service requests are issued well ahead of the time when
their service will be activated, thus allowing for sufficient time for offline planning.
Taking into account that these calculations are performed with an exact method to
obtain an optimal solution in offline mode, the computation time is acceptable. As
the initial results show promises in small to medium instances, we plan, as future
work, to look for improvements of our abstract model in order to cope with even
bigger instances and attain further scalability.

The next experiment provides a comparison between the different time taken by
the algorithm, considering an increasing number of types of deployment constraints
for the VNFs (e.g., the memory that the virtual network function occupies, or the
minimum number of cores it needs). These constraints are added for each node, so
the total number of hard constraints that are added to the z3 computation is calculated
by multiplying the number of types of constraints by the number of nodes that require



56 Formally verified network function placement

a deployment. The constraints have values that do not prevent any of the deployment
to be considered (e.g., all nodes require 1GB of RAM while every host has more
than enough RAM to satisfy the needs of all the nodes), as this experiment only
wants to retrieve the additional computational time needed by z3 to verify these
further constraints. If there are not enough resources available for the placement
plan, then the solver returns UNSAT without any model, and the time taken to
return the result is smaller. The methodology applied for the experiment, as well
as the physical topologies used, are the same that were described previously. In the
Table 5.3, only the number of constraints is specified because similar performance is
obtained regardless of the type of constraints. Moreover, the results show that adding
the constraints led to performance degradation, but the main difference is made by
the presence or absence of constraints and not by their number. This is due to the
internal optimization of the z3 tool respect to the hard constraints.

Topology 0 1 2 3 4 5
2.876 s 3.519 s 3.498 s 3.250 s 3.628 s 3.401 s

Internet2
(+22.36%) (+21.63%) (+13.00%) (+26.15%) (+18.25%)

5.103 s 6.257 s 6.331 s 6.368 s 6.599 s 6.919 s
GEANT

(+22.61%) (+24.06%) (24.79%) (29.32%) (+31.64%)
10.515 s 11.855 s 11.433 s 11.854 s 11.228 s 11.621 s

UNIV1
(+12.74%) (+8.7%) (+12.73%) (+6.78%) (+10.52%)

Table 5.3 Comparison between different number of deployment constraints for the VNFs

5.3 Optimize VNF Placement in Industrial Networks

As we enter the Fourth Industrial Revolution, the industrial sector is undergoing fun-
damental and disruptive changes in the entire product life cycle, focusing heavily on
interconnectivity, automation, machine learning, and real-time data. In order to truly
realize Industry 4.0, the industrial sector needs to adopt technologies relying on NFV
and SDN, as these concepts are becoming increasingly common worldwide. They
enable network operators to reduce expenses due to optimized resource utilization
and deliver reliable services with respect to various network requirements. One of
the fundamental requirements for industrial networks is the end-to-end service delay,
because many industrial automation applications have stringent latency requirements
to meet the needs of real-time data transmission. Another fundamental requirement
is safety, because industrial systems are typically safety-critical, i.e. their failure
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can compromize human lives. For the same reasons, considering the higher inter-
connection and pervasiveness of Industry 4.0 systems, also security is becoming
fundamental. Hence, the approach for joint formal verification and optimized VNE
presented in general terms in the previous subsection can greatly contribute to achiev-
ing all these requirements for Industrial Control Systems (ICS), because formal
verification can provide high assurance that safety and security requirements are met
while optimized VNE can be used to keep end-to-end delays as low as possible.

Given that the virtual functions can be orchestrated and combined as service
function chains between the industrial edge, endpoint devices (Master Terminal
Units (MTUs), Remote Terminal Units (RTUs), Programmable Logic Controllers
(PLCs), Intelligent Electronic Devices (IED), Human Machine Interfaces (HMI),
smart meters, etc.), the resilience delivery problem comes down to select a proper set
of network and security functions and to place them across different substrate nodes
while meeting ultra-reliable low-latency communications’ (URLLC) requirements.
On the other hand, the misconfiguration of VNFs discussed earlier can be detected
either by straightforward simulation/testing or by formal verification techniques.
Since soundness and completeness are not provided by simulation, formal methods
are the most suitable solution, also considering that industrial systems are safety-
critical. Finally, another way used to improve resiliency is the introduction of
fault-tolerance in the network, in the form of alternative paths that can be used in
case the main ones fail.

The VNF placement approach presented in subsection 5.4.2 is demonstrated with
a use case in this section, while leaving the selection of the network and security
functions to be placed in the chain as a separate component to be studied in the
future. In addition, we consider the requirement of providing formal assurance that
the selected function chain correctly implements the required security and resiliency
policies, as presented in the next subsection, and that, at the same time, the latency
requirements are met. The formulation of policies introduced here extends the basic
connectivity policies introduced earlier and enriches the expressiveness of the formal
model. In order to solve the VNE problem in industrial scenarios, our approach
accepts similar inputs: (i) proper models of VNFs representing both their forwarding
behavior and their configuration parameters, (ii) a model of the substrate network,
and (iii) the resiliency policies that must hold in the industrial network. Given these
inputs, it generates a formally verified placement plan.
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Fig. 5.2 Illustration of different scenarios a) reachability and isolation b) alternative path

5.3.1 Policy model

We consider the connectivity policy rule p as a tuple p = (t,s,d), where s and d
represent the source and the destination of a communication, respectively, and t is
the type of policy described below.

Source and destination s and d are both subsets of SG vertices (s,d ⊆ V v).
They can include either single VNFs or zones (e.g., whole IP subnets). For what
concerns the type t, in this thesis we consider it can take one of three different
possible values, but our approach is flexible enough to accommodate other types. In
particular, we consider reachability (R), isolation (I), and the presence of alternative
(A) paths.There is reachability from network node/zone s to d if there exists at least
one path that connects s to d, and in this path, there are no VNFs that block this
communication. While there is isolation from s to d if there is no path that connects
s to d, or there are paths, but in each one of them, there is at least one VNF that
blocks this communication. Finally, there are alternative paths from s to d if there
are at least two disjoint paths that connect s to d, and that do not include VNFs that
block this communication. By disjoint paths, we mean paths that have no shared
edges and vertices.

Two examples are illustrated in Figure 5.2, which represents two possible service
graphs that can be deployed in the infrastructure. In the first scenario, depicted
in Figure 5.2(a), the service graph implements an industry recommended network
security guideline, where the Power Generation field industrial control systems must
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be isolated from a Distribution Substation. This is done by means of a firewall. The
graph also includes an advanced metering infrastructure (AMI) linked to a back-end
server, for instance, a Billing Server and, to increase the overall security of the
service, a DPI module. In this case, the service request may include two connectivity
policies to be verified: clearly, the isolation between the Power Generation field and
the Distribution Substations, but also the reachability between the Billing Server
and the AMI device. A reachability between the Billing Server and the AMI device
defined in scenario (a) can be expressed as:

pa1 = (R,{Billing Server},{AMI})

whereas the isolation rule that isolates two zones can be expressed as:

pa2 = (I,{PLC,RC},{RTU,AMI})

In the second scenario, shown in Figure 5.2(b), the service graph represents
a reliable SCADA backup system where the administrator requires the SCADA
backup endpoint to be reachable by means of two redundant paths with different
security features. Those are provided by a normal connection that passes through
a DPI function in the former and by a VPN tunnel in the latter. The administrator
can, therefore, be interested in verifying that the service request as given satisfies an
alternative path property, i.e. that, with the deployed graph and configurations, the
target is actually reachable by means of the two paths. We may express the policy on
path alternative required in this scenario in the following way:

pb = (A,{Remote User},{SCADA backup})

In both cases, and in general in the industrial field, latency minimization or
bounding is key to guarantee proper operation and performance, while taking care of
data center utilization is important for several reasons ranging from cost reduction to
power saving. Hence, in this use case, we give priority to the minimization of the
latency between the endpoints. We should emphasize that, the introduction of this
policy formalism will not affect the existing formulation consisting of FOL formulas
presented in Section 5.4.2. Instead, it formalizes the representation of complex
network properties that complements the original reachability property adopted from
Verigraph. For instance, alternative (A) paths policy is constructed by asserting the
reachability property on two different chains in an SG.
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Fig. 5.3 Experimental Industrial facility [1] (redrawn). △ a substrate network of 10 nodes
and ⃝ IEEE 57 bus test system

5.3.2 Evaluation and analysis

In order to evaluate our model in an industrial scenario, we reuse the same topology
considered for the substrate network of DCs and Smart Grid devices presented in
[1], where the Internet2 network topology forms the substrate network and the IEEE
BUS 57 test system topology hosts the Smart Grid endpoints. The experimental
topologies are depicted in Figure 5.3. We exploit the same network topology gen-
erator, GENSEN [86], to generate a realistic geographical distribution of grid edge
endpoints. Similarly, the link latency is assumed to be directly proportional to the
Euclidean distances between the endpoints and substrate nodes.

The IEEE Bus 57 Test Case of the American Electric Power System in the
Midwestern, US, includes several sections representing information from different
devices in the power grid. Buses are nodes in the network or substation locations,
and branches are the connections between buses. Each power system bus works
as a gateway router that is connected to the closest substrate network node either
through wired or wireless links (e.g., xDSL, LTE). The gateway routers aggregate
traffics from endpoint VNFs to be forwarded to other endpoints or substrate nodes
throughout the substrate network. In the evaluation phase of the tool, we select
random nodes from the test system topology and map the endpoint VNFs of the
service on them. We illustrate the physical connections that link Smart Grid nodes to
substrate nodes with dashed lines, as shown in Figure 5.3.
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Fig. 5.4 Examples of Service Graph

We consider an initial scenario where the service graph (represented in Figure
5.4(a)) consists of SCADA commodity devices to perform various grid control
applications, SCADA slaves that interact with the control devices, and security
functions in between. For this example, endpoints correspond to the Automation
Control Center (ACC), Metering Data Center (MDC), Remote Terminal Unit (RTU),
and Intelligent Electronic Device (IED) in the Smart Grid network. These endpoints
are connected through an encrypted channel with the help of two VPN termination
network functions nv

1 and nv
2. Additionally, there is an IDS network function nv

3

between the endpoints ACC, MDC, and RTU.

In our service model, we assume the location of the endpoints to be fixed and
associated with specific substrate nodes (i.e., they are not considered in the placement
procedure), whereas the network functions need to be placed in the substrate network.
Concerning the verification aspects, we define two reachability policies in this SG
from RTU to ACC and from MDC to IED.

Let us assume now that a compromised RTU is detected in the field network.
As a reaction, the NFV orchestrator proposes an updated service graph depicted in
Figure 5.4(b) to mitigate the impact of cyber-attacks. This updated SG includes a
firewall VNF nv

4 to block the packets generated by the RTU device from proceeding
to the control center, while the reachability requirement between ACC and RTU is
converted to an isolation policy.

Here we present the results of the updated graph (b), which has different place-
ment in the substrate network compared to the original graph (a). The high-level
representation of the updated service that includes both aspects related to the service
graph (i.e., which network functions implement the service, how they are intercon-
nected among each other) is fed as an input to our tool along with the configurations
of these network functions. The list of these configurations is given below:
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• VPN access nv
1 is configured to have the IP address of the VPN exit nv

2 gateway
as a single parameter.

• VPN exit nv
2 is configured to have the IP address of the VPN access nv

1 gateway
as a single parameter.

• IDS nv
3 contains an entry in its “blacklist” table with not allowed function code

equal to {43}. Any packet containing a function code equal to 43 expected to
be blocked.

• Firewall nv
4 contains an entry {src:RTU dst:ACC sport:∗ dport:∗ proto:∗} in

its ACL table, which blocks packets sent from RTU to ACC.

• ACC is set to generate a packet with a function code different from {43}. In this
way the packet originated from ACC will not be blocked by the intermediate
VNFs.

The required storage capacities of each VNF are integers with a uniform distribution
between 10 and 50, whereas the available storage capacity of each substrate node
varies between 100 and 150. An overall processing delay of each VNF is randomly
determined by a uniform distribution between 50-100 [87]. As the configuration
parameters of the involved VNFs satisfy the new isolation property in Figure 5.4 (b),
a latency-aware optimal placement of VNFs in substrate network is generated as an
output:

x1,9,x2,7,x3,12,x4,3,y3,y7,y9,y12

In this list, we highlighted only the variables whose value is true, which shows
the allocation of the VNFs and occupancy of the substrate nodes. From this output,
we can conclude that the VPN termination nv

1 is placed on the substrate node ns
9,

the VPN termination nv
2 on ns

7, the IDS nv
3 on ns

12 and the firewall VNF nv
4 on the

substrate node ns
3.

Using this exemplified use case, we investigate the performance results compar-
ing the computation time of the proposed approach to the APPLE[49] for various
data sets. We feed our tool with this updated SG, including 8 VNFs on real data sets
of Table 5.4. For each substrate network topology, we use the same IEEE BUS 57
test system topology for Smart Grid endpoints. We limit our study to this data set
only, for the Smart Grid, but any other data set in the “IEEE Common Data” format
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Fig. 5.5 (a) Acceptance ratio over time (b) Computation time depending on the arrival of
service requests (SRs) and size of the substrate network.

is applicable to our approach. The demonstrated results reflect the computation
time of the latency minimization problem under various conditions. Each of these
scenarios consists of a substrate network and service request to be allocated. All
evaluations are executed on a workstation with 32GB RAM and an Intel i7-6700
CPU.

It is evident from the table how the average computation time of the proposed
approach for the Internet2 topology adopted from [1] is low and certainly compliant
with the industrial requirements (less than 1 sec for 10 nodes and 13 links). However,
GEANT, UNIV1, and AS-3679 network topologies show significant computation
overhead due to the much larger network sizes considered. It is important to note that
the different combinations of configurations of network functions and the number of
properties to verify have a small impact on the complexity of the problem in contrast
to the size of the topology.

This approach allows to input multiple service requests arriving at the same
and obtain the placement plan for each request simultaneously. However, this
approach is costly in terms of computation time, as the number of constraints
increase depending on the number of requests. To solve this issue, multiple requests
can be solved sequentially or even in parallel, depending on the availability of support
for parallelism by the MaxSMT solver. In our case, we can exploit parallel disjoint
tactics provided by z3 MaxSMT solver that try different strategies in solving the
problem. However, this analysis is out of the scope of this paper and remains to be
investigated in a separate study.
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Table 5.4 Comparison between Verification and Optimization computation times

Topology Nodes Links Time (O+V) Time (O)[49]
Internet2[83] 10 13 0.6 0.029
GEANT[83] 22 36 15.4 0.1
UNIV1[84] 23 43 22.2 0.235

AS-3679[85] 79 147 35.1 3.013

Instead, the widely accepted sequential approach is more promising in terms of
scalability and covers realistic scenarios, where service requests arrive over time. Fig.
5.5 (a) depicts the acceptance ratio (average number of requests accepted for hosting
in the physical substrate) of the algorithm over time. As shown here, acceptance ratio
declines with the increasing service request arrival rate, as the solver is not able to find
valid assignments within the substrate network. Fig. 5.5 (b) shows the computation
time required to embed service requests with an arrival rate of 5 requests over time.
In order to keep the acceptance ratio of the algorithm equal to 1, we increase the
size of the substrate network over the x-axis. This intensive simulations provides an
estimate on the performance of the tool. However, the network reconfiguration of the
Smart Grid is performed (not frequently) due to many reasons such as weather factors,
protection malfunction, service upgrade or cyber-attacks. The service instantiation
time of major NFV Orchestrators in case of a reconfiguration is usually in the order
of minutes. In comparison, that the computation time introduced by our framework
is satisfactory under these circumstances.

Compared to the time of optimization (O) only given in [49], the time taken
by our optimization and verification tool is higher. However, it is important to
mention that the placement optimization and verification (O+V) of an SG is a
problem fundamentally different and more complex than the simple VNE problem.
APPLE[49] (Automatic aPProach for poLicy Enforcement) is an optimization engine
that solves the VNE problem in a short time, but specific aspects of NFV such as
forwarding behavior, chaining, and models of network functions are not addressed by
the authors of the tool. These additional details that must be considered in our work
certainly introduce further time complexity. However, as part of possible future work,
it would be possible to develop heuristic-based algorithms to profitably consider
much larger network sizes.
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5.4 Multi-Objective Functional decomposition in 5G

5.4.1 Background

We also would like to provide a brief introduction to the 5G Radio Access Network
(RAN) functional decomposition problem, which can be easily modeled as an in-
stance of the VNE problem. Starting from the 3G, the demand for data services,
that is, "mobile Internet access", has suddenly emerged, gradually replacing voice
services and becoming the primary source of revenue for operators. There are many
types of data services, but because of limited network resources, it is impossible to
guarantee that all services can be carried out at full speed. Therefore, different data
services need to be prioritized. In order to better adapt to a variety of application
scenarios and customer needs, and to serve the digital transformation of various
industries, the communications industry has been actively developing 5G [88] tech-
nology, an improved version of 4G network through cloudization and virtualization.
Network slicing is one of the enablers of 5G networks to address the isolation of
the traffic of various industries. By splitting the virtual network into slices on the
substrate network, it isolates the traffic coming from wide range of fields such as
autonomous driving, smart grid, telemedicine and industrial control.

Network slicing is the way of decoupling a hardware infrastructure into multiple
virtual end-to-end chains. Each slice may have independent resources, and they
are completely isolated. Any issue involving a single slice will not impact others.
Combined with 5G application scenarios[24], operators can define different slices
according to different service types, meet different users’ requirements for various
delays, throughput, capacity, and efficiency, and can give users a better experience.
With this respect, NFV and SDN technologies provide essential technical foundations
for slicing. The operator selects the virtual and physical resources it needs for the
specified communication service type in accordance to the SLA (Service Level
Agreement). It includes multiple parameters such as the number of users, QoS, and
bandwidth, and different SLAs that will define different types of communication
services.

According to different business requirements, the wireless network side protocol
stack functions can be flexibly customized and divided too. Compared with the
two-level structure of the baseband processing unit (BBU) and radio remote unit
(RRU) of the 4G wireless access network (RAN), gNB of the new 5G air interface
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Fig. 5.6 Split options in the 4G and 5G signal processing chain

can adopt a three-level structure of a centralized unit (CU), a distribution unit (DU),
and a radio unit (RU) [24]. Figure 5.6 shows this difference highlighting the two-
level structure (4G line), where CU an DU are unified and isolated from RU. The
section of the traditional BBU responsible for the asynchronous processing will
be split and redefined as CU, responsible for processing non-real-time protocols
and services, mainly including packet data convergence protocol (PDCP) and radio
resource control (RRC); part of the BBU and the traditional RRU Merged into RU,
which mainly includes the underlying physical layer (PHY-L) and radio frequency
(RF); the rest of the BBU functions are renamed as DUs, and includes radio link
control (RLC), media access control (MAC) and high-level physical layer (PHY-H)
functions. There are multiple deployment methods for CU and DU of 5G RAN, three
of which shown in Figure 5.6. The simplistic scenario given as 5G (a), where RU and
DU are integrated, can be achieved if CU can connect using fiber. When CU and DU
are combined (i.e., Figure 5.6 5G (b)), the structure of 5G RAN is similar to that of
4G RAN, and it is a two-stage structure of fronthaul and backhaul, but the interface
rate and type of 5G base station (gNB) have changed significantly. When CU and
DU are split (i.e., Figure 5.6 5G (c)), it will evolve into three levels of fronthaul,
midhaul, and backhaul. In the 5G initial stage, RAN network deployment will be
dominated by macro stations; with 5G large-scale commercial use, macro stations
and room-based base stations will be deployed in different scenarios. The specific
deployment method is divided into distributed wireless access networks (DRAN)
and Centralized Radio Access Network (CRAN). The cloudification of the 5G access
network will promote large-scale CRAN deployment with separated CU, DU, and
RU. The decision to choose and optimally allocate the right split in the infrastructure
(e.g., three-tiered substrate network shown in Figure 5.7) will highly depend on
the services, and this introduces a new problem to solve: optimal functional split.
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Fig. 5.7 3 tier RAN functional split in view of different deployment scenarios

In the next section, we show that the joint verification and optimization approach
also allows us to determine the optimal functional split and provide an end to end-
reachability guarantees between the endpoints.

The existing literature formulates the VNE problem using Integer Programming
(IP) formulation, which is limited to a set of constraints over binary, integer, or real
variables. Instead, the approach presented in this thesis allows us to model the prob-
lem and using very expressive constraints. These constraints include configuration
parameters of VNFs, forwarding behavior of the service graph, and complex security
policies, in addition to the usual constraints of the VNE problem. The presence of
these additional constraints allows us to jointly perform VNE and formal verifica-
tion of network properties. To show this and to compare the performance of two
approaches, the Mixed-Integer Quadratically-Constrained Programming (MIQCP)
model is proposed in this section. Continuing the discussion on uRLLC, eMBB,
and mMTC, we analyze how low-latency and high bandwidth requirements of these
traffic classes are met by providing different split options in 5G RAN. The analysis
is performed by finding the optimal placement for the service function chains based
on optimization goals for different network slices. First, we formulate the placement
problem as MIQCP for the RAN requirements in terms of latency and throughput.
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Then we adapt our approach presented in Section 5.4.2 to provide formal verification
and optimal placement of VNFs with propositional logic formulas in Conjunctive
Normal Form.

5.4.2 Mixed Integer Quadratically Constrained Programming

In this section, we list the required input considered in the placement algorithm, and
then we present the MIQCP formulation of the function placement problem.

Following the same approach that we outlined for the general approach, we
model the substrate network, where RAN network function chains are placed, as
a connected directed graph, G = (V,L). V is the set of vertices, divided into two
disjoint subsets: N, E (as shown in Section ). The data rate available is d(v,v′) for
every edge (v,v′) ∈ L and the network links are directed edges with latency l(v,v′).
Upon the arrival of a service request, an orchestrator component of NFV must decide
how to optimally allocate the different ordered sets of radio network functions onto
the substrate network nodes. In these requests, depending on the user-plane (UP) and
control-plane (CP), different orders of functions are specified, which define flows
between fixed start (e.g., user equipment) and end (e.g., IP services) points. With
the set Epairs ⊆ E ×E, we define pairs of start and end point nodes belonging to
different flows.

Our goal is to analyze how low-latency and high bandwidth requirements of
uRLLC, eMBB,and mMTC traffic classes are met by providing different split options
in 5G RAN. The analysis is performed by finding the optimal placement for the
service function chains based on optimization goals for different network slices. The
problem of finding the optimal functional split is analogous to the VNE problem,
which is the main reason why we want to compare the MIQCP model to a MaxSMT
model introduced earlier. We model the placement optimization problem as a MIQCP
with respect to a number of used network nodes, latency, and data rate. The capacity
of network nodes and requirements of different network functions then characterize
the input. The notation used in our derivation is summarized in Table 5.5, where
l(u,u′) is used to define latency between u and u′ and remv,v′ is used to represent a
remaining data rate on (v,v′), when services utilize the same link.
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Table 5.5 Summary of key notations

Domain Parameter Description
∀v ∈V c(v) Substrate node computational

resources in v
∀(v, v′) ∈ L l(v,v′) Latency of (v,v′)

d(v,v′) Data rate capacity on (v,v′)
∀(u,u′) ∈Upairs dreq(u,u′) Data rate demand of (u,u′)
∀(u,u′) ∈Upairs l(u,u′) Latency between u and u′

∀u ∈U p(u) Substrate node demand of u

∀(a,a′) ∈ Epairs
paths(a,a′) Paths between a and a′

lreq(a,a′) Required latency
between a and a′

∀u ∈U , ∀v ∈V mu,v u mapped to v
∀(v,v′) ∈ L,
∀x,x′ ∈V ,

∀(u,u′) ∈Upairs

ev,v′,x,y,u,u′ (v,v′) belongs to path

between x and y, where
u and u′ are mapped to

∀v ∈V usedv At least one request
mapped to v

∀(v,v′) ∈ L remv,v′ Remaining data rate on (v,v′),
when services utilize the same link

Placement Constraints

By Formula ∀u ∈U : ∑
v∈V

mu,v = 1, all virtual nodes must be mapped onto a single

substrate node, iff. the request is to be embedded. If at least one function is mapped
on a substrate node, we denote it as “used” with the constraint: ∀u ∈ U,∀v ∈ V :
mu,v ≤ usedv

Resource requirements such as a required storage of all functions mapped to a
node should be less than or equal to available resources in that node:

∀v ∈V : ∑
u∈U

mu,v · p(u)≤ c(v) (5.7)
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Path Related Constraints:

If (u,u′) pairs are mapped to the (x,y) nodes and an edge in the request belongs to a
path between nodes v and v′, then the path is created between those network nodes:

∀(v, v′) ∈ L,∀x, y ∈V,∀(u, u′) ∈Upairs :

M ≤ mu,x ·mu′,y
(5.8)

For the simplicity, we use variable M in place of ev,v′,x,y,u,u′ .

Moreover, each functional split has different latency requirements for data trans-
fers across the function locations; involves different amounts and types of resources
(computing power, link capacities); and brings different cost savings and performance
benefit. This is expressed by the following constraints:

∀(v,v′) ∈ L,x,y ∈V,(u,u′) ∈ paths(a,a′) :

M · l(v,v′)≤ lreq(v,v′)
(5.9)

According to uRLLC requirements where the sum of latencies of all edges of a
flow should be less than the maximum latency given for that flow is expressed as
follows:

∀(a,a′) ∈ Epairs :

∑
(v,v′)∈L,x,y∈V,

(u,u′)∈paths(a,a′)

M · l(v,v′)≤ lreq(a,a′) (5.10)

The total bandwidth consumed by all the requested source-destination traffic
flows going through an edge should not exceed the bandwidth capacity of this edge:

∀(v,v′) ∈ L :

∑
(u,u′)∈Upairs,∀x,y∈V

ev,v′,x,y,u,u′ ·dreq(u,u′)≤ d(v,v′) (5.11)
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Sum of latencies of network edges belonging to a path where u and u′ are mapped
gives the end-to-end latency of this path:

∀(u,u′) ∈Upairs :

l(u,u′) = ∑
x,y∈V,(v,v′)∈E

M · l(v,v′) (5.12)

Finally, the remaining data rate of an edge is calculated as,

∀(v,v′) ∈ L :

remv,v′ = d(v,v′)− ∑
(u,u′)∈Upairs,

∀x,y∈V

M ·dreq(u,u′)

Objectives

Combinations of different objectives can also be achieved with all the variations of IP.
Combinations for different use case scenarios can result in a different mapping of the
network functions into the network graph. This section describes the multi-objective
algorithm that aims to find the best candidate node for embedding each VNF of a
chain. This algorithm consists of three steps:

Minimizing the number of utilized nodes in the network:

minimize ∑
v∈V

cost(usedv) (5.13)

This objective aims to minimize the cost of utilized DCs and applicable for all
types of services. The cost helps businesses to rent the hardware or software from
infrastructure providers, paying only for what they use. However, it might concentrate
on the placement of functions, which causes congestion in the network. In fact,
centralizing RAN functions within a cloud infrastructure significantly improves cost,
but they can only be centralized so far as the latency budget is still met, plus other
factors such as transport capability.

Maximizing the remaining data rate on network links:

maximize ∑
(v,v′)∈E,v̸=v′

remv,v′ (5.14)
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In order to avoid the congestion in the network, we introduce this objective that
maximizes the data rate on the links leaving more bandwidth for future requests, and
it is only applied for eMBB services.

Minimizing the latency of the created paths: As previously stated, 5G is supposed
to provide users with unprecedented experience with ultra-low latency. However,
there might be multiple paths available between the endpoints that are all compliant
with low latency constraints. In these instances, selection of the path with the
minimum latency is favorable and it can be expressed with the following objective:

minimize ∑
(a,a′)∈lreq

( ∑
P∈paths(a,a′)

( ∑
(u,u′)∈P

l(u,u′))) (5.15)

It is important to note that we were able to transform most of the propositional
calculus statements presented in this thesis into MIQCP. However, the large number
of generated variables used in this approach caused memory failures for bigger
instances. Moreover, MIQCP this encoding was unfeasible to describe the forwarding
behavior and configuration parameters of network functions. This validates our
choice of formulating the joint verification and placement problem as MaxSMT
model, which has a higher descriptive power. In the next section, we present the
performance comparison of these two approaches.

5.4.3 Evaluation and analysis

For the evaluation of the MaxSAT model in the 5G scenario, we have performed the
placement for different sets of deployment requests using the objectives defined. The
costs obtained by the solvers with MaxSAT and MIQCP formulations, in the case
of uRLLC are identical, even if the placement plans were different for some of the
instances. This is explained by the equivalence of different placement plans.

Evaluation results are given in Figure 5.8 showing the scalability of the proposed
approach with respect to the simple RAN service request (i.e., Figure 5.7) that
includes PHY, MAC, RLC, and PDCP. The network functions are modeled as
radio functions without configuration parameters. They act as a simple forwarding
function. The results from our experiments show that the computational cost for
providing formal assurance about reachability in addition to optimal embedding
of virtual functions is greater than the case of the MIQCP model. However, we
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should emphasize that the MIQCP solution only provides an optimal placement plan
and does not provide formal verification of the network properties in presence of
VNF configurations. We conclude that the MaxSMT model is usually slower than
the MIQCP model in finding optimal solutions, but MaxSMT solution allows us to
obtain optimal placement plan with a formal assurance that all network policies are
hold in presence of configuration parameters of complex network devices. In this
chapter, we showed that the closest combinatorial encoding of the same MaxSMT
problem cannot provide the same level of complexity in defining the complex network
constraints.
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Chapter 6

VErified REFinement and Optimized
Orchestration

6.1 Requirements and challenges

Misconfiguration of Network Security Functions (NSFs) such as firewalls and VPN
terminators have recently become the third most critical exploit for cybersecurity at-
tacks, as Verizon underlined in its most recent Data Breach Investigations Report[89].
This problem is intrinsic of the manual approach by means of which network admin-
istrators work since typically filtering or protection rules are distributed on the NSFs
with heuristic and suboptimal criteria based on human common sense [90].

This critical risk motivates the introduction of automated policy-based network
security management tools: they can assist human beings in the creation and config-
uration of a security service by means of an automatic process in charge of creating
the policy of each NSF so as to respect some security requirements, also called
intents, expressing the goals to be compliant with. The advantages of pursuing
Security Automation are evident: some examples are avoidance of human errors,
automatic conflict analysis of the policies, and formal verification of their effective
correctness. A fundamental benefit is, nonetheless, the possibility to pursue opti-
mality: automated algorithms can, in fact, reach the optimal outcomes more easily
than manually. This has undoubtedly a critical impact on the resources that are
needed to create an effective security service. However, despite all these positive
prospects, the research is still moving its first steps towards a fully automated and
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optimized approach; altogether, the number of developed tools is still limited in
this context [61]. Moreover, as demanded by any automatic process, agility is a
fundamental requirement to support a similar approach. From this point of view,
novel networking technologies such as NFV [91] and SDN [92] can bring a heavy
contribution.

A problem that nevertheless arises in this context is the huge variety of tools that
can be used to orchestrate the virtual functions. Although the ETSI defined a standard
architecture [23], each NFV and cloud orchestrator has different peculiarities and
characteristics [93], which reflect the purposes they have been built for and the targets
of their developers or vendors. This has a severe impact on the portability of any
automatic process which would be in charge of the allocation and configuration of
virtual security functions, because it should adapt itself to work with a huge variety
of different APIs, input, and output data formats.

Given all these considerations, in this section, we propose an extension of the
Verifoo framework presented in Chapter 5 and we call it VErified REFinement and
Optimized Orchestration (Verefoo). Its purposes are to refine high-level security
requirements, which are expressed with a human-friendly language, into the optimal
allocation scheme and configuration of the NSFs on a SG representing the network
service [94]. This step is performed in a correctness-by-construction fashion, so
that there is formal assurance of its correctness; moreover, the computed results are
optimal with regard to a set of cost functions, such as minimization of the number of
installed functions or number of rules in their configurations. The architecture of
Verefoo is general enough and can be used with several types of VNFs. Currently, it
has been developed only for firewalls. We plan to address the consideration of other
NSFs in future work.

Finally, the framework is designed to be able to deploy the virtual functions
and configure them through direct interaction with some orchestrators, without
any manual operation. In particular, the two well-known orchestrators that have
been integrated with Verefoo at the moment are Open Baton, which traditionally
manages Virtual Machines in an NFV environment, and Kubernetes, which can be
also in charge of the orchestration of Dockers in a cloud scenario. The remainder
of this chapter is organized as follows. In Section 3.3, related work is presented. In
Section 6.2, the proposed framework and its main implementation components (e.g.,
allocation, selection and placement) are given, whereas Section 6.3 details the model,
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which will formulate both the automatic configuation and the mapping problem in
FOL. After presenting the various integrations of the framework with orchestrators
in Section 6.4, Section 6.5 details the performance evaluation results.

6.2 The Verefoo framework

In this section, we will illustrate the main principles and purposes of the approach
we followed in designing the architecture of Verefoo; in particular, we will provide a
complete overview on the framework, describing the tasks that each module is in
charge of and explaining how it has been integrated with the most well-known NFV
and cloud orchestrators.

6.2.1 The Verefoo approach

Verefoo manages the creation, configuration and orchestration of a complete end-to-
end network security service following a modular approach, that is reflected by the
design of the framework itself.

First of all, Verefoo automatically performs, on a provided Service Graph, an
optimized allocation and configuration of the Network Security Functions (NSFs)
that are necessary to fulfill an input set of Network Security Requirements (NSRs),
which can be expressed by the service designer – i.e. the person in charge of creating
a network service – by exploiting a high-level language. High flexibility is granted
by allowing the users to define the NSRs repository and to create the catalog of
functions available in the system.

The input Service Graph is made by network functions without any security
capability; so, initially it must be automatically transformed into a logical topology,
called Allocation Graph, where, between any pair of virtual functions, an Allocation
Place is created. Each Allocation Place is a placeholder position where a NSF could
be allocated, if it is needed in order to satisfy the input security constraints. An
example is showed in Figure 6.1, where it is worth underlining that each element,
from the NAT to the load balancer, are actually VNFs instead of physical appliances.
Then, to establish the optimal allocation scheme of the NSFs and their configuration,
a correctness-by-construction approach is followed, by the definition of a MaxSMT
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Fig. 6.1 Example network consisting of possible allocation options.

problem that is in charge of automatically choosing which network functions are
needed and where to allocate them; thus, also formal assurance of the correctness is
provided. Optimality is another key factor that has been considered to pursue these
objectives: actually, the best solution is the scenario where the minimum number of
VNFs for security functions are introduced and the minimum number of rules are
configured in their policies.

This first step is completely performed on a logical level. Then, after the creation
of this virtual security service, a second objective is to establish the optimal placement
of each function on the physical servers that compose the substrate network. Other
cost functions are considered in this phase, such as minimization of the latency
between VNFs or resource consumption. Besides, since each NSF is characterized
by configuration rules that are expressed with a medium-level language that provides
abstraction from implementation, a translation is needed to get the vendor-specific
configuration of each virtual function.

Finally, the service is set up by means of an integration with cloud orchestrators,
in order to provide security properties for the communication between end points
or networks. It is important to remark that this result is achieved just starting from
a Service Graph and a set of security requirements as inputs, thanks to the fully
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automatic algorithms that are exploited in the overall approach, as it will be more
extensively explained in the next subsection.

6.2.2 Framework overview

Figure 6.2 presents a complete overview of the framework, so that we can provide a
brief description of each component to give a general idea of the workflow.

According to our vision, the user of the NFV orchestrator - i.e. the service
designer - is able to introduce as input:

• a set of Network Security Requirements (NSRs) to express the security con-
straints which must be fulfilled, by exploiting a high-level or a medium-level
language [61] depending on the experience level of the user, through a Policy
GUI which makes the creation of the requirements easier;

• a Service Graph (SG) or, in alternative, directly an Allocation Graph (AG)
through a Service GUI, which provides access to a Network Functions Catalog
(NF Catalog) from which the user can decide which functions – simple network
functions or also NSFs – immediately allocate on the graph.

A preliminary phase is represented by the Policy ANalysis (PAN); the goal of this
module, which receives the NSRs as input, is to perform a conflict analysis exploiting
well-known techniques [95, 11, 96, 97], to establish if some of the requirements are
in conflict, and to create the minimal set of constraints which must be respected in
the network. It can provide an early non-enforceability report to the service designer
in case the input security requirements are characterized by mistakes which cannot
be solved by means of this automatic process but require a reformulation by the user.

If the specified security requirements are expressed in a high-level language, the
High-to-Medium (H2M) module performs a refinement to get a corresponding set of
medium-level NSRs, which contain all the useful information for the future creation
of the policies of the NSFs automatically allocated on the virtual graph and the
low-level configuration of the VNFs placed on the substrate network. These security
requirements are based on isolation and reachability-based network properties.

Then, a key role is covered by the NF Selection (SE) module; based on the input
high-level and medium-level NSRs, it decides which NSFs are required to satisfy
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Fig. 6.2 Verefoo general architecture.

them, choosing them from a pre-built catalog, that is the same list the service designer
has access through the Service GUI. This step requires an optimization process by
means of which the optimal set of NSFs is selected, even though this operation does
not exploit any knowledge about the topology of the Allocation Graph. This result
is achieved in the following way: at first, SE receives, from a module outside the
framework, the list of the instances of the required security capabilities and then it
searches, among the functions present in the NF Catalog, which ones support the
requested capabilities and selects the optimal functions, taking into account available
physical resources, so as to be able to allocate them in the physical servers. The
selection of functions is subject to the conditions imposed: in the first place the
functions must be able to support the capabilities, but it is also necessary that certain
physical resources are available in order to be able to place the functions on the
servers. In addition, the choice is subject to optimizations: it is possible to reduce the
cost of the functions as well as reduce the amount of resources (e.g. RAM) needed.

The Allocation, Distribution and Placement (ADP) module is one of the main
elements of the architecture, whose purpose is to compute a Service Graph with the
added NSFs and to decide the VNFs placement on the substrate network receiving
as input the medium-level NSRs, the list of selected NSFs and the original Service
Graph or directly the Allocation Graph. The ADP module uses z3Opt [98] as a
MaxSMT solver and Verefoo to provide three main features:
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• given a list of NSFs selected by the NF Selection module, it orchestrates their
allocation on the Allocation Graph — received in input or obtained from the
processed Service Graph -– in order to satisfy the input NSRs expressed by
means of the medium-level language;

• in contemporary with the allocation phase, a second task is the distribution
of the policy rules on the allocated NSFs, always expressed in medium-level
language but not necessarily identical to the input NSRs formulation, because
the policy rules can be minimized according to optimization goals;

• in a secondary step, after the creation of the Service Graph enriched with the
NSFs, the VNFs implementing the network functions of the original Service
Graph and the added NSFs are placed in the physical infrastructure following
the principle of minimizing the resource consumption and at the same time
the medium-level policy rules of the NSFs are translated into the low-level
configuration of the VNFs themselves.

An additional output of the ADP element is the list of medium-level policy rules
by means of which each network function instance must be configured; then, the
corresponding low-level configuration that depends on the specific implementation
of the deployed function is generated by the Medium-to-Low (M2L) module, which
performs a translation of the vendor-independent expressions into the rules which
must be set on the proper function.

6.2.3 Integration with NFV and Cloud Orchestrators

The security service that has been created by the ADP module of Verefoo must be
then instantiated by creating the virtual processes on the physical servers. For this
purpose, communication with orchestrators is needed.

To reach this objective, the complete architecture of the solution we are proposing
in this thesis does not include only Verefoo, that represents the logical computing
core, but also other tools that work as intermediate interfaces between the orches-
trators and Verefoo itself. Figure 6.3 shows four examples of interfaces that can be
developed and included in our framework:

• VeriBaton can provide integration with Open Baton;
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Fig. 6.3 Integration architecture.

• VeriKube can provide integration with Kubernetes;

• VeriMano can provide integration with OSM;

• VeriStak can provide integration with OpenStack Tacker.

Each interface offers RESTful APIs to interact with both the ADP module of
Verefoo, from which it receives all the needed information to create and configure the
security service in the virtualized network, and the NFV or cloud orchestrator, that is
in charge of the set-up and management of the life-cycle for each VNF. The presence
of these interfaces is transparent to the user, who interacts exclusively with Verefoo
as beforehand described, but their role is fundamental. In fact, if all the current
orchestrators such as those that have been named are not able to automatically create
and configure a network service, this becomes possible by means of the integration
with our framework, that is thus achieved without requiring to exploit Verefoo and
the orchestrator separately.

To make clearer how this integration is achieved, in the following section we
first provide the formal model of the presented technique and provide the details
of the integration with two interfaces, VeriBaton and VeriKube, alongside with the
validation of the proposed approach through various use cases in Open Baton and
Kubernetes.

6.3 The Model

An important extension added to Verifoo is the possibility to have VNFs without
any configuration or with partial configuration, giving to the tool itself the task of
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providing the missing configurations as an output. Verifoo generates the configu-
ration with the objective of satisfying all the requested policies while minimizing
the number of generated rules in order to achieve it. For instance, for a firewall, this
translates into the generation of the rules that decide if a received packet needs to be
dropped or not. The auto-configuration does not affect the deployment in any way,
since all the VNFs that are declared in the service graph will be deployed onto a host
in the physical topology even if they still have an empty configuration after the z3
computation (this would mean that even without adding any rules, the policies are
satisfied).

In addition to the FOL formulas presented in Chapter 5.4.2, we introduce ad-
ditional soft clauses, which allow the solver to decide the possible values for the
variables that are not initialized. In this chapter, we have a number of non-limiting
assumptions on the Firewall VNF model. Throughout the thesis we also refer to
firewalls as packet filters that filter on the basis of the IP 5-tuple. A firewall has a
default action and that all the specific rules are of the same type, which is opposite to
the default value (i.e. all ALLOW or all DENY). In this way, we ensure the absence
of conflicts. Moreover, we assume that that a maximum number of rules equal to the
number of security policies expressed by the user, as we are sure that no more than
that number is necessary.

Internally, Verefoo describes the Firewall VNFs that require the autoconfiguration
differently from the models described in Chapter 4. Below we provide the additional
constraints introduced to the existing Firewall VNF model, which allow obtaining
configuration parameters that satisfy the predefined network policies. Clauses listed
in Equations 6.1 allow the solver to decide values for each field of the IP packet
(i.e., src,dst, protocol,src_portanddst_pott). It uses a set of soft clauses that can
be falsified that are associated with the ACL of a Firewall, which, initially, must not
have any entry in the ACL table if the Firewall VNF is not configured. For this reason,
we initialize these values to a “null” (or a value that has the same meaning for the
specific context, e.g. zero for a TCP port), so that the output values of these values
are produced as “null” or 0. During the translation phase of the generated output
model, Verefoo excludes all variables having a “null” value, which is equivalent to
having no rules on this specific Firewall. In conjunction with these soft clauses, also
new hard constraints are declared to model the behaviour of the specific VNF. The
general idea is that following the VNF model, z3 decides which soft clauses will
have values different from their default ones in order to satisfy the requested policies.
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Not using the default value will introduce a penalty that z3 tries to minimize, hence
resultant numbers of significant configuration parameters are the least possible. In
particular, for a firewall, the rules that are generated express an action (ALLOW or
DENY) that is always the opposite of the default one in order to avoid any conflicts.

The soft clauses that are declared for a firewall for each rule are the following:

So f t(src == null,k,“rules“)

So f t(dst == null,k,“rules“)

So f t(protocol == 0,k,“rules“)

So f t(src_port == null,k,“rules“)

So f t(dst_port == null,k,“rules“)

(6.1)

where the first argument of the So f t function represents the constraint that can
be falsified, k is a constant that defines its weight, and the third argument is a
label assigned to differentiate between the classes of soft clauses (the weights of
the constraints in each class are optimized independently from one another). The
previously shown soft clauses are associated each with one of the fields that compose
a firewall rule. In (6.1), protocol is an integer while src, dst, src_port and dst_port
are modeled as belonging to type DatatypeSort. This type is provided by z3 to
allow the developers to define more complex data structures. In fact, src and dst are
abstractions of IP addresses and, as such, they are made of four different integers
that compose the address DatatypeSort. For instance, a source field of the packet
is defined as p0.src_i. Moreover, also the port fields are declared as a particular
DatatypeSort in order to consider the possibility to have an interval (e.g. 10-80)
and not only a single value. This latter DatatypeSort is therefore composed of two
integers that represent the start and the end of the interval. To instruct z3 on which
values are possible for the mentioned DatatypeSort, new hard constraints have been
added.



6.3 The Model 85

For the IPs:

∀{n0,n1, p0} :

recv(n0,n1, p0) =⇒
p0.src._0 > 0∧ p0.src._0 < 255 ∧
p0.src._1 > 0∧ p0.src._1 < 255 ∧
p0.src._2 > 0∧ p0.src._2 < 255 ∧
p0.src._3 > 0∧ p0.src._3 < 255 ∧
p0.dst._0 > 0∧ p0.dst._0 < 255 ∧
p0.dst._1 > 0∧ p0.dst._1 < 255 ∧
p0.dst._2 > 0∧ p0.dst._2 < 255 ∧
p0.dst._3 > 0∧ p0.dst._3 < 255

(6.2)

The formula (6.2) ensures that every packet that is exchanged between the VNFs has
correct IPs. This is because for every packet that is received, there is one that is sent
and vice versa, if it doesn’t break any other constraints (e.g. the packet has some
blacklisted fields). Therefore, it would be redundant to repeat the same constraint
also for the send function since if there is a send, then there is also a corresponding
receive with the same arguments. The only exceptions for this assumption are the
endpoints, for which a packet can be sent even without a corresponding receive
(client endpoint), or a packet can be received even without a corresponding send
(server endpoint). For the ports intervals:

∀{n0,n1, p0} :

recv(n0,n1, p0) =⇒
p0.src_port.start > 0∧ p0.src_port.end < MAX_PORT

∧ p0.dst_port.start > 0∧ p0.dst_port.end < MAX_PORT

(6.3)

where MAX_PORT is defined as the constant 65535.
For the IP related fields, the assignment in (6.1) can be therefore considered as a
view at a higher level of the following formulas (which are the ones that effectively
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are fed into z3):

So f t(src0 == 0,k,“rules“)

So f t(src1 == 0,k,“rules“)

So f t(src2 == 0,k,“rules“)

So f t(src3 == 0,k,“rules“)

(6.4)

with src = (src0,src1,src2,src3). To keep this consistency, one hard constraint is
added to correlate the src variable, that will be used to check for matching fields in
the packets as shown afterwards, with the srci, to which a value will be assigned by
z3.
To improve the potential of the autoconfiguration task, each byte of the IP addresses
can also be assigned to be equal to a wildcard in order to allow z3 to generate rules
that exploit that feature. This obviously leads to a possible further minimization of
the total number of rules. To express this possibility in z3, the assumption that has
been made is that the value "-1" is considered to be the wildcard. This allows the
solver to prefer wildcards when using them is possible. Therefore, to implement this
feature the following declarations must be added:

So f t(src0 ==−1,c,“wildcards“)

So f t(src1 ==−1,c,“wildcards“)

So f t(src2 ==−1,c,“wildcards“)

So f t(src3 ==−1,c,“wildcards“)

(6.5)

In (6.5) it is important to notice that the class is different from the previous declaration
(the weight c can also be different from the previous k but it doesn’t matter as they
are in different classes). Using a different class makes z3 capable of distinguishing
between a “null” rule and a rule with wildcards otherwise it will use them indistinctly.
Here only the src variable is shown but deriving the variables for the dst one is
straightforward.
A generic rule is then declared as a boolean condition that returns true if the fields of
a generic packet p0 match the soft clauses declared in (6.1). At a high level, the rule
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declaration can be written as:

rule = (p0.src == src ∧
p0.dst == dst ∧
p0.protocol == protocol ∧
p0.src_port == src_port ∧
p0.dst_port == dst_port)

(6.6)

where the equalities p0.scr == src and p0.dest == dst, also consider the possibility
to have wildcards (e.g. the comparison between 10.0.0.1 and 10.0.0.-1 returns true).
This is achieved by transforming the mentioned equalities as follows:^

∀i∈{0,1,2,3}
p0.srci == srci ∨ srci ==−1 (6.7)

The condition declared in (6.6) defines the way a packet matches a firewall rule. For
each requested policy, one rule is created to work as a placeholder considering the
worst-case scenario (i.e. every policy needs one rule to be satisfied), however z3
will always assign significant values only to the least number of rules. Nevertheless,
every firewall in the service graph has a number of placeholder rules equal to the
set of policies even if a particular firewall is never traversed by some of the flows
declared in those policies (i.e. the firewall is in neither of the paths that link a source
to a destination specified in a policy, thus it will never be able to affect that specific
flow) leading to the declaration of some unnecessary variables. A brief discussion
about the performance is carried out in the next section.
At this point the firewall behaviour is modelled with a set of hard constraints that use
the rules declared in (6.6). The model may take different form based on the default
firewall action that has been declared in the input service request. If no default action
is declared by the user in the input, in order to have a more conservative approach,
the default action is set to DENY, i.e. drop every packet. If the default action is
ALLOW, the firewall is then modelled by means of the following formulas:

∀{next, p0} :

send( f irewall,next, p0) =⇒
∃{previous}|recv(previous, f irewall, p0)∧¬rule

(6.8)
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∀{previous, p0} :

recv(previous, f irewall, p0)∧¬rule =⇒
∃{next}|send( f irewall,next, p0)

(6.9)

Formula (6.8) states that if a firewall can send a packet p0 to a next node next,
it is necessary that the same packet can be received by the same firewall from a
previous node (previous) and the rule condition, which established if a packet has to
be discarded by the firewall, returns false (i.e., p0 does not match the rule). Formula
(6.9), instead, expresses the inverse implication. In the general case where there are
multiple rules configured in a firewall, the rule condition can be expressed as:_

∀i|ri∈R

ri (6.10)

where R is the set of all the placeholder rules of the firewall. This ensures that the
correct behaviour is applied even if there are multiple firewall rules to consider.

If the default action is DENY the constraints are the same as before but there is
no negation in front of the rule condition as shown below:

∀{next, p0} :

send( f irewall,next, p0) =⇒
∃{previous}|recv(previous, f irewall, p0)∧ rule

(6.11)

∀{previous, p0} :

recv(previous, f irewall, p0)∧ rule =⇒
∃{next}|send( f irewall,next, p0)

(6.12)

In (6.11) and (6.12) the logic is inverted with respect to the one described previously,
in order to fit the opposite default action.
When enforcing the requested policies, one last condition is added to enforce the
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constraints of the specified flow. The constraint for each policy is the following:

∀{next, p0} :

send( f irewall,next, p0) =⇒
p0.lv4proto == speci f ied_lv4proto

∧ p0.src_port == speci f ied_scr_port

∧ p0.dst_port == speci f ied_dst_port

(6.13)

where the speci f ied∗ variables are provided by the user. Having the possibility to
falsify the assignments in (6.1), z3 can choose the right value for a soft clause in
order to satisfy the requested policies in accordance with the default action of the
firewalls, using as few rules as possible.

6.4 Implementation

In order to meet functional requirements, different design approaches of the Verefoo
framework have been considered, taking into account various use case scenarios
and used service orchestrator capabilities and characteristics. Service orchestrators
are a relatively new technology, yet different products are already available from
open-source communities (e.g., Juju, Open Baton, Kubernetes, MAESTRO). The
implementation of the Verefoo use cases will integrate the framework in existing
orchestration frameworks, such as Open Baton and Kubernetes.

6.4.1 Open Baton Verefoo integration

A contribution to Open Baton project has been the most flexible solution considered,
as deep integration with the MANO architecture. The main goal of this integration
is to extend the capabilities of the Open Baton orchestrator in terms of Service
Graph verification and validation, by integrating the tool Verefoo. This solution
allows to interact with the orchestrator introducing graph validation and optimization
in the phase of Network Service catalog upload, thus allowing onboarding of a
Service Graph only after a validation check, rejecting formally invalid descriptors,
and possibly updating the graph to provide optimal placement plan. To achieve this,
we meet the following principles:
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Fig. 6.4 Service request with optional nodes.

• Interface compatibility: the interface used to interact with Verefoo service
should match completely the interface exposed by Open Baton for NSD
onboarding. In this way, the end user can be unaware of Verefoo presence if not
interested, and behave as it was interacting with Open Baton; network services
can be developed following ETSI data model, making Verefoo validation
capabilities pluggable at the user discretion. Verefoo becomes this way a sort
of "proxy" which could be used depending on the needs, with NSD instances
built directly for Open Baton. As communication with Open Baton happens
through a REST interface over HTTP, Verefoo will be itself a RESTful API
server.

• Input validation: Verefoo acts as a validator component for the input provided
to Open Baton, implying that an invalid Service Graph will be blocked before
reaching Open Baton with suitable feedback for the user. It is in charge of
verifying that nodes are correctly organized in a chain, and policies specified as
input such as reachability and isolation between VNFs are satisfiable, assuring
that a service present in the catalog once deployed does behave as expected.

• Graph optimization: once received the optimal service configuration from
Verefoo, the original input should be modified according to it. Possible sce-
narios include removal of nodes from the graph and automatic configuration
firewalls, which should be reflected on the NSD to be uploaded to Open Baton.

To verify the capabilities of the framework, we designed an NSD instance
representing a common use case of the tool and fed it as input to Verefoo. Figure
6.4 describes visually the configuration of the test instance including two web
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Fig. 6.5 General architecture of the ASTRID framework for Kubernetes integration.

client nodes, two firewalls and one NAT VNFs connecting to a web server. The
requirements of the service request are:

• reachability is required between node A and node B;

• isolation is required between node C and node B;

• node 1, 2 and 3 are optional and are not configured.

Once Open Baton (ETSI) compliant NSD description of the service is provided
as an input to the orchestrator, we expect to minimize the number of NSFs, while
satisfying these user requirements. As a result, we obtain a report that the service
validation is successful. Moreover, the Service Graph has been updated as expected,
where node 3 has been removed, while node 1 has been configured to allow traffic
directed from node A to node B, denying everything else.

This validates the proposed approach, successfully presenting a solution capa-
ble of translating the information model based on the ETSI specifications to the
application-specific format defined by the verification engine albeit the substantial
differences in data representation and structure between Verefoo and Open Baton
orchestrator.

6.4.2 Kubernetes Verefoo integration

Kubernetes is an open source system for automating deployment, scaling, and
management of containerized applications. Kubernetes enables to quickly deploy
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containerized applications, scaling it according to the user needs, without having to
stop anything in the process. It is made to be portable, extensive and self-healing,
granting an easier management from people who have to administrate the sys-
tem. The Kubernetes orchestrator is the second orchestrator used for demonstration
and validation. We integrate the Verefoo framework with Kubernetes to provide
lightweight monitoring and enforcement hooks in each virtual function, which can
be dynamically programmed, to react to management events and security alerts, by
invoking specific security services. In this integration Verefoo takes as input the
service topology, the current network configurations, and the security policies, and
returns as output the configuration of the security hooks. In the current implementa-
tion, the scope is limited to automatic firewall configuration. Figure 6.5 presents the
general ASTRID (AddreSsing ThReats for virtualIseD services) project workflow
of the Verefoo integration with Kubernetes orchestrator. ASTRID is a European
project[99], whose goal is to isolate the detection and analysis tasks from the service
graph, by delegating this task to a central orchestrator unit. This allows service
providers to make transparent and shift security, privacy and responsibilities of third
parties. Our implementation involves a number of components of ASTRID frame-
work, and it starts with user delivering policies and Service Graph to the controller,
at this time the enriched Service Graph with all the information model required by
Kubernetes is defined and delivered. At this point security controller sends the user
policy to Verefoo. Kubernetes provides the infrastructure information based on the
deployed graph to the controller, which is then delivered to Verefoo. In the next
step, Verefoo computes formally verified configuration parameters of the firewalls,
in order to satisfy the user policies and delivers them to the controller, which then
sends it back to context broker. Context broker is in charge of enforcing the firewall
rules in the NSFs.

In this context, the results of some performance tests carried out on the introduced
integration are illustrated, in order to show which goals have been achieved and
to understand which limitations should be refined in the future. We focus on two
metrics – numbers of Allocation Places and of Network Security Requirements –,
to perform the scalability tests by increasing one metric to an higher value, while
keeping the others fixed, to understand to which extend the first metric is scalable.
Given this assumption, the results of the performance tests which have been carried
out to understand the scalability of the developed framework are showed in Figure
6.6 for the Allocation Places and for the Network Security Requirements. They have
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Fig. 6.6 Results of scalability tests.

been achieved with a machine characterized by a 3.40 GHz Intel i7-6700 CPU and
32GB of RAM.

This chart shows that the computation time does not increase exponentially either
with the number of Allocation Places or with the number of NSRs. This result is
particularly positive, given the intrinsic worst-case computational cost of a MaxSMT
problem, that belongs to the NP-complete class. Consequently, the framework is
able to manage Service Graphs of medium-big dimensions, with a high number of
links and end points, providing the optimal solution to the presented problem, if
the number of Network Security Requirements is not extremely high. These results
clearly show that the network structure and the number of security requirements
strongly influence time performance, but provides us a strong hint about the fact the
the approach we are following is feasible and worth to be further explored.

6.5 Performance validation results

This section discusses the autoconfiguration performance with a particular focus on
the scalability issues that currently affect it. In order to evaluate the performance of
the proposed approach, a series of charts will be shown, coming from our experiments.
All evaluations are executed on a workstation with 32GB RAM and an Intel i7-
6700 CPU. In these charts, the plotted lines represent the temporal trend of the
autoconfiguration task when the set of policies grows (the number of firewalls is
fixed to one). To have an idea of which feature causes the greatest slowdown, the
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measurements have been performed considering various types of autoconfiguration,
which are:

• Basic autoconfiguration, where the tool is restricted to generate rules that
are composed only by IPs, without the possibility of using the wildcards (in
this case the addresses are modelled in z3 using an EnumSort instead of a
DatatypeSort)

• Quintuple autoconfiguration, which adds the possibility to generate rules that
include also the protocol and the source and destination ports (the IPs are still
EnumSort).

• Wildcards autoconfiguration, where the addresses are considered as a more
complex data structure (here the DatatypeSort is used) and the firewall can
use the wildcards to further minimize the number of rules. However, in this
configuration only the IPs are present in the generated rule, therefore there are
no protocol nor ports.

• All features autoconfiguration, in which the generated rules contain IPs, proto-
col and ports, with the IPs that can also have wildcards.

Fig. 6.7 Refinement comparison with a single VNF

As shown in chart 6.7, using a DatatypeSort to model the IPs (wildcard auto-
configuration), causes a significant slowdown with respect to its counterpart with a
simple EnumSort (basic autoconfiguration). This concept can be further analyzed
in the next chart. In that chart, both the basic and the quintuple autoconfigurations
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are the same as in the chart above, however, in addition, two other lines have been
plotted. One of them refers to the temporal trend of the autoconfiguration task for a
DPI, whose model is exactly the same as the firewall one, but the packet field that
the DPI checks is set to be the body of the packet (modelled as an integer). The other
added line is the result of a firewall that checks only the protocol field, which is also
an integer field. This last configuration has been evaluated only for testing purposes
and has obviously no real application.

Fig. 6.8 Performance comparison with a single network function

As shown in chart 6.8, firewall and DPI have comparable performance when they
both check an integer field. The performance of the firewall begins to degrade when
the field is an EnumSort to the point where the firewall has serious scalability issues
when a DatatypeSort is used (the wildcards autoconfiguration in the previous chart).
In order to limit the scalability problem some modifications have been made on the
behavioural model of the involved VNFs. In particular, these modifications improved
the VNF formulas that were using the existential quantifier ∃ when referring to some
neighbour in a send or recv function. For example, for a firewall:

∀{next, p0} :

send( f irewall,next, p0) =⇒
∃{previous}|recv(previous, f irewall, p0)∧¬rule

(6.14)
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To resolve this kind of pattern, z3 uses the skolemization in order to work only with
universally quantified formulas. In fact, the skolemization is a special procedure that
substitutes every existentially quantified variable with a free function f based on the
variable quantified by the universal quantifier that precedes the existential quantifier.
In order to elaborate more on this, we show the following formulas :

∀x [someConditionOn(x)∧∃{y}|someOtherConditionOn(y)]

becomes

∀x [someConditionOn(x)∧ someOtherConditionOn( f (x))]

(6.15)

Resolving this type of formulas can be heavy with bad impact on performance.
Considering formula (6.14), since in a graph the neighbours of a node are known,
the existential quantifier can be replaced by the enumeration of the neighbours.
Currently in Verifoo there is no distinction between previous nodes and next nodes,
therefore in the enumeration all the neighboursa re listed. This does not create any
inconsistencies in the results because of how the network behaviour is modeled (i.e.
the formulas introduced by the network behaviour will not allow to deliver a packet
to a specific end-point, forwarding the packet backwards in a SG, thus avoiding self
loops). With this modification, the formula becomes:

∀p0 : _
∀i|ni∈N

send( f irewall,ni, p0)

 =⇒

 _
∀ j|n j∈N

recv(n j, f irewall, p0)

∧¬rule

(6.16)

where N is the set of all the neighbours of the firewall. The performance before
the modifications can be seen in Figure 6.9, while the changes introduced by them
can be observed in the Figure 6.10. The performance has been evaluated with
the simpler type of autoconfiguration, the BASIC one which is composed only
by IPs and there is no possibility of using the wildcards. As can be seen, the
modifications have halved the computational cost for the more complex scenario
(more firewall and more policies), but the improvement effect fades in the simpler
one. In conclusion, the performance tests executed on the final solution showed
that the extended network model for service graphs and the new constraints add a
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reasonable amount of computational time. However, the achieved result is satisfying,
considering that it would be less than the time needed in a manual configuration and
that this automated approach would avoid any human error.

Fig. 6.9 Firewall with BASIC autoconfiguration and no modifications

Fig. 6.10 Firewall with BASIC autoconfiguration and modifications



Chapter 7

Conclusion

In order to meet the data processing and real-time computing needs of telco operators,
distributed computing, distributed storage, microservice technology, and various
open source technologies need to be introduced to reduce business support costs.

Nowadays operators propose dynamic network services, where tenants are pro-
vided with a particular degree of flexibility to satisfy their requirements. This allows
users to construct their own virtual services, chaining, and allocating the required
network functions/services in an optimized manner. Providers do not want to pose
limitations also on network function selection (i.e., they would like to allow users
to choose the optimal number of network functions either from the catalog offered
by providers or implemented by third-parties) and are looking for ways to enable
further network services (e.g., network automation).

Currently, multiple stakeholders are involved in the development and standard-
ization of these technologies for network softwarization and their embodiment into
next-generation networks (e.g., 5G) based on SDN, NFV, and Orchestration building
blocks and reference architectures. One of the enablers of this standardization initia-
tive is the ETSI Industry Specification Group regarding the NFV domain, aiming
at specifying a reference architecture. However, the scope of these efforts is rather
limited, and there is still a need for security checking, to achieve elastic scaling of
resources, to improve resource utilization and automatic isolation of faulty devices
to ensure system stability.

In this thesis, we focused on different aspects of a network service life cycle. We
started by defining a “user-friendly” network function modeling approach, which
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allows different vendors to represent an abstract behavior of their network devices.
This, in turn, allows them to use various formal analysis tools to verify, prove,
and modify network device behaviors and configurations without requiring strong
expertise in formal methods.

After generalizing the applicability of the modeling approach to the various
network verification tools, we presented a novel approach of joint optimization and
verification on the basis of the network function models. In particular, we formulated
the optimization and verification problems through the use of MaxSAT, which
requires as an input: (i) abstract models of network functions representing both their
forwarding behavior and their configuration parameters and the interconnections
among functions, (ii) a model of the substrate network, and (iii) the network security
properties that must be satisfied. Given these inputs, it generates a formally verified
optimal placement plan. Even though the two problems of placement and of formal
verification are widely covered separately in the existing literature, to the best of
our knowledge, our approach is the only existing one that solves both problems
in “one shot” by merging these two concepts together. This approach promises
considerable benefits compared to widely known techniques for the virtual network
embedding problem. For the first time, we are able to encode expressive constraints
such as forwarding behavior of the network, configuration parameters of network
functions, and a wide range of security properties in solving an optimization problem.
Moreover, the framework developed on the basis of this methodology suggests an
optimal placement plan for the network functions in order to respect predefined
specifications.

Finally, we have extended this joint analysis approach to automatically define
the optimal allocation scheme and configuration of network function instances by
refining a service graph provided by the service designer, with respect to security
requirements. Our main goal is to provide high confidence that the intended network
security policies are correctly and optimally enforced. After having defined a
general framework to achieve this goal, we focused attention on a specific class
of security functions, i.e. packet filtering firewalls. We developed a procedure for
the automatic optimal allocation and configuration of these functions inside a user-
provided service graph which provides formal assurance that some user-provided
security requirements are satisfied. If requirements are not met, the user receives
UNSAT result. Optimality is achieved minimizing the number of allocated firewall
instances in the service graph, in order to minimize the amount of resources needed
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to deploy the VNFs in the remote servers of a virtualized infrastructure, and by
minimizing the number of rules inside each firewall. The latter allows reducing the
memory required to store the rules and, whilst, to improve the performance of the
VNFs. The presented approach suits the work of a service designer, replacing manual
tasks, and contributes to achieving a correct configuration of a network service, by
means of its formal approach. At the same time, the approach finds an optimal
solution among all the possible ones. Our purpose for a near future is to further
refine the methodology, addressing the automatic allocation and configuration of
other security functions, such as web application firewalls, anti-spam filters and
VPN gateways in a logical service graph. Besides, we are planning to improve
the performance, by pursuing a trade-off between optimality of configurations and
required computational complexity.
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Glossary of terms

SDN Software Defined Networking
NFV Network Function Virtualization
VNF Virtual network functions
MaxSMT Maximum satisfiability modulo theory problem
SR Service requests
SG Service graph
SFC Service function chain
NFVO NFV orchestrator
MANO NFV Management and Orchestration
VNFM VNF manager
VIM Virtual infrastructure manager
VNE Virtual Network Embedding
FOL First-Order Logic
SAT Satisfiability
ACL Access Control List
NSD Network Service Descriptor
AST Abstract Syntax Tree
MIQCP Mixed Integer Quadratically Constrained Programming
NSF Network Security Functions
NSR Network Security Requirements
AG Allocation Graph
BBU Baseband Unit
C-RAN Centralized, Collaborative, Cloud and Clean RAN
CU Central Unit
DU Distributed Unit
eMBB Enhanced Mobile Broadband
PDCP Packet Data Convergence Protocol
RLC Radio Link Control
RRC Radio Resource Control
uRLLC Ultra-reliable low latency communication
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