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Assessing Network Authorization Policies via Reachability Analysis

Cataldo Basilea, Daniele Canavesea, Christian Pitscheidera, Antonio Lioya, Fulvio Valenzaa,b,∗

aDipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
bCNR-IEIIT, c.so Duca degli Abruzzi 24, Torino I-10129, Italy

Abstract

Evaluating if a computer network only permits allowed business operations without transmitting unwanted or mali-
cious traffic is a crucial security task. Reachability analysis – the process that evaluates allowed communications – is
a tool useful not only to discover security issues but also to identify network misconfigurations. This paper presents
a novel approach to quantify network reachability based on the concept of equivalent firewall – a fictitious device,
ideally connected directly to the communicating peers and whose policy summarizes the network behaviour between
them – that can be queried to derive reachability information. We build equivalent firewalls by using a mathematical
model that supports a large variety of network security controls (like NAT, NAPT, tunnels and filters up to the appli-
cation layer) and allows an accurate analysis. The presented approach is efficient and highly scalable, as confirmed
by tests with a large corporate network as well as synthetic networks.

Keywords: network reachability; authorization policies; security policy assessment; network modelling; security
assessment; vulnerability analysis; infrastructure security modelling; risk analysis and management

1. Introduction

At the dawn of computer science, computer networks were designed to freely exchange data. Nowadays, several
security considerations have limited the initial enthusiasm: only data belonging to authorized communications must
be exchanged. These are identified by means of a network authorization policy, which is part of a more general
security policy. Moreover, some data must not be transferred in clear, for instance private or sensitive data that must5

be kept confidential via message or channel protection techniques. Data requiring protection is identified by means of
a so called data protection policy.

The actual enforcement of the security policies is obtained by configuring security controls, e.g. firewalls and
Virtual Private Networks (VPN) gateways, placed in proper points of the network topology. Today’s networked
systems are hard to configure for the administrators, even for skilled ones, because they have to setup different types10

of security controls.
As a consequence, this scenario introduces several issues. It may cause service interruption, malfunctioning, or

disruption, when allowed communications are not properly authorized. Furthermore, it can expose sensitive portions
of the network or open the door for various attacks, when unwanted communications are not properly forbidden. A
secure and correctly working network is a mandatory requirement in several areas, but it is crucial in the context of15

dams, electrical plants and, in general, in infrastructures where huge money and human lives are at stake.
In this paper we are interested in using reachability analysis1 to assess if the network authorization policy is

correctly enforced. This process evaluates the allowed communications, that is, the kind of packets that can travel
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1In literature, the term reachability is also used in the context of computer networks to refer to connectivity issues related to routing problems,
and is thus limited to IP connectivity. In this paper we are interested in verifying the reachability on all the network layers with security analysis
purposes, where routing is only a facet of a bigger problem.
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from one node to another. Network reachability is particularly important in critical systems for avoiding catastrophic
failures and to prevent attacks that might lead to human losses.20

Quantifying reachability is, however, no easy task. There are many security and network controls that may drop,
alter, or forward packets along specific paths. Together with the network endpoints (e.g. workstations and servers,
which merely send and receive packets) there are many classes of controls that affect reachability: filtering controls
permit or block specific traffic, routing controls implement a packet forwarding policy, while packet transformation
devices first modify then forward the packets. Transformation devices include Network Address Translation (NAT)25

or Network Address and Port Translation (NAPT) controls, that alter the packet IP addresses and ports according to
a policy, and IP tunnelling, that encapsulates and de-encapsulates packets, usually after encrypting them. Indeed,
reachability analysis can be applied to different scenarios to cope with different security related tasks. As anticipated,
the most obvious application is the validation of a network authorization policy, as the reachability analysis can be
used to detect permitted and unwanted connections between hosts (i.e. clients and servers). Moreover, it can be used30

to query if services are exposed to new vulnerabilities or common attack vectors. Reachability analysis can also be
used to assist in network design: by working on an abstract representation of the network prior to its deployment, it
permits the anticipation of potential issues and aids in the development of more secure and resilient infrastructures.
Furthermore, reachability analysis may support administrators when performing change impact analysis; by inserting
the desired changes in the network description and executing reachability queries, it is possible to foresee the effects35

of maintenance and update activities.
Reachability can be computed by directly probing an existing network (online analysis) or performing queries on

an abstract representation of the network (offline analysis). Online analysis is the most used in practice, but offline
analysis has many advantages and more applications. Offline analysis is an important modeling tool that can be used
for the study and analysis of security and dependability of both normal systems and critical infrastructures. The main40

advantage of offline analysis is that it does not require physical access to the target network, since it relies on its model.
Furthermore, since it has insight on the configurations it can evaluate reachability issues on a very detailed level and
therefore produce a very comprehensive report. Offline analysis can also be applied during the network design phase
and preempt reachability problems. Drawbacks arise if model on which the analysis is performed does not capture the
actual complexity and implementation details of real networks, resulting in potentially inaccurate reports. However,45

this limitation does not apply to the design phase.
In the literature, other works dealt with offline reachability analysis, which are discussed in Section 7. Four major

limitations are evident in the state-of-the-art. First, several approaches only take into account a subset of the security
controls usually displaced in the network. For instance, Xie et al. [1], Bandhakavi et al. [2], or Sveda et al. [3] provide
limited or no support for transformation controls. This limitation seriously affects the applicability to real cases and50

the analysis accuracy. Second, reachability analysis models that support a broader range of security controls [4]
require a long pre-computation time that makes them unusable on networks of reasonable size with frequent changes
or for evaluating alternative designs.

Third, reachability analysis models that support various security controls and have good performance (such as in
[5]) are unable to perform complex queries concerning multiple hosts and aggregate results, being only able to answer55

point to point communications queries. Forth, none of the existing approaches supports application layer filters nor
end-system firewalls.

We present in this paper a new approach to quantify network reachability that overcomes the major limitations of
current offline analysis approaches.

This new model can deal with a large variety of security controls such as routers, stateless and stateful firewalls,60

end-system firewalls, NAT/NAPT, and tunnelling devices. Moreover, we also support application layer filters, even if
we have tested it only with HTTP, FTP, and DNS. Additionally, our model also comes with improvements on query
flexibility and expressiveness. We provide an extension of the Structured Reachability Query Language (SRQL)
format [4], to support a larger set of options for stateful analysis. The innovation of our approach relies on the concept
of equivalent firewall, a fictitious device, (ideally) directly connected to the reachability query endpoints, whose policy65

summarizes the network behaviour between two endpoints. Equivalent firewall policies deal with a limited portion of
the network (the part that involves the query endpoints), thus they are small and, when they deal with entire subnets
or bigger portions of the network, can be reused for several queries. As a consequence, equivalent firewall policies
can be queried very efficiently to derive specific reachability information. Moreover, the equivalent firewall policy
can also be globally inspected to gain a holistic view of allowed and denied communications.70
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Figure 1: The reference network.

A preliminary version of this work was presented in a conference paper [6]. The main improvements over this
initial version are the support for tunnelling devices and end-system firewalls, the definition of more precise queries
thanks to a richer set of condition types (covering also application layer filters), and more complex Boolean expres-
sions. Furthermore, this paper presents the theoretical foundations proving that the model is flexible and can be
extended with new protocols and additional future security controls.75

This paper is structured as follows. Section 2 introduces a simple but complete reference example used through
the document to present our approach. Section 3 presents our approach to offline analysis, the supported queries and
the improvements over the state-of-the-art. Section 4 introduces our formal model for representing networks, policies
and querying reachability. Section 5 discusses how to create an equivalent firewall with several kind of devices.
Section 6 presents the complexity and correcteness analysis of our model together with an analysis of its performance80

in a prototype implementation and in Section 7 we compare our solution to other state-of-the-art reachability analysis
techniques. Finally, Section 8 draws conclusions and presents future work plans.

2. Reference Example

To make our discussion concrete, we will refer our examples to the scenario in Figure 1 that shows three net-
works 2. A is a company network providing some services to an external office network B. Both A and B outsource85

some of their services to the network C. The three networks are connected via the Internet.
The elements depicted in the figure are:

• firewalls, enforce a network access policy and many of them also provide application layer filtering(fwA2)3,
NAT/NAPT (fwA3 and fwB3), and tunnelling capabilities (fwA1, fwC1, fwB1 and fwB2);

• filtering zones, group elements that can reach each other without passing through a firewall. They are usually90

subnets (as assumed in this paper) or union of subnets. They play an important role in our model as within them
it is impossible to apply any policy (like dropping or ciphering packets).

• clients and servers, are the endpoints and they are shown as connected to the filtering zones they are part of; all
servers are also protected with an end-system firewall.

Networks A, B, and C have been designed hierarchically4, however, for resilience purposes, several redundant95

physical connections have been added. In the figure, double dotted lines represent secure tunnels, while solid edges
depict end-to-end secure channels.

2 The reference example network presented here was not built for a typical real-world scenario. Our purpose was to design the smallest network
able to allow us to present all the interesting query cases we can deal with in order to define our reachability model. For instance, all the NAT rules
would be practically unnecessary.

3More precisely, we assume that fwA2 is able to filter HTTP connections.
4http://docwiki.cisco.com/wiki/Internetwork_Design_Guide
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To avoid long tables (no one wants to read), we use formulas for the addressing scheme:

• zones zAx, zBx, zCx are respectively assigned to the IP ranges 10.1.x.0/24, 10.2.x.0/24 and 10.3.x.0/24;

• endpoints eAx,h (either client or server) are assigned to 10.1.x.h, analogously eBx,h → 10.2.x.h and eCx,h →100

10.3.x.h;

• prior to NAT, the zones zB1, zB2 and zA5 are associated to 192.168.1.0/24, 192.168.2.0/24 and 192.168.5.0/24
respectively;

• the addresses 192.168.5.{3, 7, 17, 41} are NATted 1:1 to 10.1.5.{3, 7, 17, 41} (like it sometimes happens for
public servers) while the rest of the addresses are translated many-to-one to 10.1.5.1.105

Finally, we will denote as fwe1→e2 the equivalent firewall built to answer a reachability query to assess commu-
nications between the endpoints e1 and e2.

3. Our approach: the equivalent firewall

We defined a model to perform offline reachability analysis. Offline reachability analysis is quantified by executing
specific queries, which ask if (a subset of) the traffic between a source and a destination is allowed or denied. Queries110

are formulated in order to identify violations to the authorization policy or to check the expected network behaviour.
The equivalent firewall is the key element of our model. Theoretically, an equivalent firewall is a fictitious security

control used to summarize all the decisions and transformations that the packets undergo when flowing from a source
to a destination. The equivalent firewall behaviour (i.e. its decisions) is defined by means of a filtering policy that
summarizes the actual behaviour of all the security controls in the portion of the network under analysis.115

Practically, a reachability query is translated to a single firewall query executed on the equivalent firewall policy5.
This approach has a main advantage, that is, by analysing a single firewall policy it is possible to black-box analyse
the behaviour of the network between the endpoints, ignoring its internal complexity. This simplification does not
sacrifice diagnostic power, as when creating the equivalent firewall policy we preserve references to rules in the
original controls so that it is possible to identify the cause of a reachability problem. The unavoidable drawback is120

that equivalent firewalls need to be built before executing queries. For instance, the equivalent firewall fwB2,1→A1,1

(see Figure 1) is built to answer the query asking for the allowed communications between cB2,1 and sA1,1. The
fwB2,1→A1,1 policy considers the effects on packets of filtering, NAT, and routing decisions performed at fwB3, then
filtering, channel protection and routing decisions at fwB1, routing decision at rA, and finally, filtering and channel
protection decisions at fwA1. Thus, fwB2,1→A1,1 is queried to know if the communication is allowed, denied, or to125

determine the subset of the traffic that is actually allowed.
Building equivalent firewalls is not computationally expensive as the process considers only the rules that match

source and destination of a query. Therefore, the number of involved rules in the equivalent firewall computation is
small and this guarantees good performance.

Moreover, equivalent firewalls can be reused for queries involving the same (or a subset of the) source and desti-130

nation entities, thus leading to a further optimization. All packets from nodes in the same filtering zone as the query
source (in the previous example zB2) directed to nodes in the same filtering zone as the query destination (that is, zA1)
will encounter the same security controls. Hence, it is convenient to build the equivalent firewall between the source
and destination zones, as all queries between elements in these zones can be executed on it. We name these equivalent
firewalls zone-to-zone equivalent firewalls. Filtering zones are very important for our model: they are the maximal135

subset of the network that can share an equivalent firewall and hence the optimal choice for reusability. If the query
source or destination span more than one filtering zone, the corresponding multi-zone equivalent firewall is obtained
as the union of zone-to-zone equivalent firewalls between a source and destination zone. The multi-zone equivalent
firewall is obtained by simply merging the individual equivalent firewalls. In fact, rules in different zone-to-zone

5By abuse of notation, we will sometimes refer to the equivalent firewall to indicate its policy. An equivalent firewall is a black box security
control, connected to the endpoints, whose behaviour is described by the policy. That is, philosophically, a policy is the intensional definition of an
equivalent firewall.
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equivalent firewalls are non-overlapping and can be directly merged (regardless of the routing paths), because zone140

IP addresses are non-overlapping. As an example, a query about which nodes the host cB2,1 can reach in the range
10.1.1.0/21 requires the calculation of four equivalent firewalls fwB2→A1, fwB2→A2, fwB2→A3, and fwB2→A4. As
it will be clear later, when the model will be presented, the rules from the four equivalent firewalls can be merged
while preserving just the relative priorities among the rules at each firewall.

3.1. Reachability Model145

Having presented the use of equivalent firewalls, we introduce now the process for constructing them, that is, the
underlying network and policy models. Networks are modelled as non-simple graphs6 and standard algorithms are
used to find paths from source to destinations7. Each network node may be associated to one or more capabilities,
used to indicate the type of security control it implements. Currently, we support filtering at all layers8, routing, VPN
tunnelling and NAT/NAPT capabilities.150

Firewall policies are described by means of the geometric model introduced by Basile et al. in [7] and sketched
in Section 4. In this model, rules and queries are hyper-rectangles (or union of hyper-rectangles) and policies are
obtained as superposition of hyper-rectangles. The superposition is regulated by a resolution strategy, like the First
Matching Rule (FMR) strategy that uses priorities to decide which rule prevails in the “overlapping areas”.

To support reachability analysis, we extended the geometric model in several ways. First, we added transformation155

policies and rules. Transformation rules are modelled geometrically via two hyper-rectangles: the first one defines the
domain of packets to transform (transformation input clauses) and the second one defines the domain to which packets
matching the transformation input clauses will be actually transformed (transformation output clauses). However the
most complex extension concerns the ability to compose policies: the extended model permits the composition of
firewall policies arranged in a network topology. The composition is performed by manipulating hyper-rectangles of160

rules from different policies with ad-hoc functions that model how to merge (1) the policies of two or more cascaded
firewalls (serially connected) and (2) transformation policies with filtering policies. Hyper-rectangles of filtering rule
that intersect some transformation output clauses are “translated or stretched” to let the equivalent apply to packets
being transformed the actions they would have applied to the transformed ones (see Figure 2 for a graphical hint).

Routing information is used to determine the paths from source to destination. Therefore, it only serves to identify165

the security controls to compose when building equivalent firewalls. Thus, supporting routing has not required any
modification to the geometric model. However, routing affects the analysis. We support two types of reachability
analysis based on static and dynamic routing information. With static routing information, the static routes (listed
in routing tables) are used to determine the only path from source to destination. Equivalent firewalls are generated
accordingly. On the other hand, with dynamic routing, the paths from source to destination may change over time to170

adapt to topology changes or network failures. Therefore, our dynamic routing analysis does not take into account
routing information and it simply computes all acyclic paths from source to destination. In this case, the equivalent
firewall considers all paths. Moreover, for compatibility with SRQL, we allow the specification of a path in the query,
that is, instantaneous queries. In that case, the equivalent firewall is computed based on the path information, which
can be different from the one implied by static routes.175

When considering multiple paths, as in the dynamic routing analysis, the traffic allowed by two alternative paths
may be different. Therefore, we use different strategies to generate the result: ‘lower bound’, ‘upper bound’ and
‘highlight path anomalies’. The lower and upper bound schemes are defined in [4], while the highlight path anomalies
one is introduced here for the first time:

• lower bound reports only the traffic allowed by all paths, i.e. permitted by all equivalent firewalls computed on180

the paths;

• upper bound reports all the traffic allowed by at least one path, that is, there is at least one equivalent firewall
permitting this traffic;

6A simple graph does not contain loops or multiple edges.
7Liu [4] describes the fundamentals of graph theory for reachability analysis purposes.
8 The current implementation only supports HTTP, FTP and DNS, but our model can be easily extended to support other protocols.
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priority Source IP PortS Dest IP PortD Proto Protocol States Action

r1 1 any any any any any ESTABLISHED,RELATED ALLOW
r2 2 10.1.2.7 any 10.1.1.9 any any any DENY
r3 3 10.1.2.7 any 10.1.1.19 any any any DENY
r4 4 10.1.2.0/24 >1023 10.1.1.0/24 80 TCP NEW ALLOW
r5 5 10.2.2.1 >1023 10.1.1.1 80 TCP NEW ALLOW
· · ·

∞ * * * * * * DENY

Table 1: An excerpt of the filtering rules in fwA1.

• highlight path anomalies, when combining the equivalent firewalls different paths which enforce different ac-
tions are highlighted by means of the Unspecified action. Finding in the equivalent firewall a Unspecified action185

explicitly indicates that the action depends upon the selected path. This is our suggested strategy as it highlights
path inconsistencies.

Depending on the type of unidirectional communications between a source and a destination, our model supports
the possibility to perform three types of queries:

• stateless communication, evaluates the possibility for a packet sent by the source to reach the destination;190

• stateful communication, evaluates the possibility to send packets to and receive answers from the destination
(which cannot send unsolicited/unrelated packets to the source);

• multiple stateful communication, evaluates the possibility for the source to establish more than one simultaneous
connection with the destination. Stateful firewalls may limit the number of connections from the same IP.

Bidirectional communications must be evaluated with two separate queries.195

3.2. Reaction to changes
As all the offline analysis models, changes to the network and its policies may trigger the re-computation of the

equivalent firewalls. Structural changes to a network may or may not have an impact on our model. For instance,
adding/removing a node to a zone does not require the re-computation of the zone-to-zone equivalent firewalls. It
only requires to check the proper zone-to-zone firewall to use when answering a query. Changes to the communi-200

cation backbones or modifications that influence at least an entire zone (such as moving a filtering control), only
require a partial rebuild of the model, since only the equivalent firewalls related to the modified filtering zones need
to be recomputed. The time spent for recomputing the equivalent firewalls can be mitigated by caching the inter-
mediate artifacts obtained when generating them, thus avoiding a complete rebuild of the model. Fortunately, these
re-computations are infrequent since, in critical infrastructures scenarios (e.g. SCADA), massive network updates are205

quite rare. Changes in the security control policies require, in the general case, the re-computation of our model. Also
in this case, only a small subset of the equivalent firewalls needs to be invalidated, that is, the equivalent firewalls
whose computation required the use of the changed policy. The caching mechanism can also adopted here to increase
the performance.

3.3. Query format210

An essential aspect of reachability analysis is the interrogation phase, which is usually performed via a set of
reachability queries. In this scenario, we defined a query language (an extension of SRQL [8]) as follows:

reachability type T
connection type O
fixed path P215

equivalent firewall method E
select F
where B ∧ (action = 〈dec〉)

6



Where:

T can be I for instantaneous queries, LB for lower-bound, UB for upper-bound, H to use the highlight path220

anomalies strategy, and S to force the use of static routing information (default is H).

O can be either SF for stateful analysis, SL for stateless analysis, orMSF for testing multiple stateful connections.

P is a path expressed as a list of network nodes from source to destination (meaningful only if T = I).

E defines the equivalent firewall generation strategy, Z for computing zone-to-zone equivalent firewalls, or Q for
query-specific equivalent firewalls (default is Z).225

F is the set of packet fields Si and our model supports the following ones: source (S) and destination (D ) IP
address, source (SP ) and destination (DP ) port, protocol type (PT ), protocol state (PS ), and application protocol
(AP ). Additionally, we support connection limit (CL ), used to define the maximum number of connections
from the same source IP, time (T ) that determines rule validity period, and HTTP-specific filtering fields, such
as HTTP req method (QM ), HTTP req header (QH ), and HTTP rep header (PH ). We also support hit-limit230

(L ), and hit-limit-burst (LB ) used to specify conditions on rule hits, i.e. the number of times that a given rule is
applied in a given time period. Finally, we allow specification of conditions on URL domains (UD ), URL paths
(UP ), URLs (U ), and browser (B ) that use regular expressions and are supported in the geometric model [6].

B is any Boolean expression of conditions on the previous fields, which includes as subcase the SRQL expression:
(F1 ∈ S1) ∧ · · · ∧ (Fk ∈ Sk) ∧ (action = 〈dec〉)235

Reachability queries can be classified according to the result they return. Some queries only admit a unique
answer, an unconditional allow or deny, while others do not. For instance, given the policy in Table 1, a query asking
if the hosts in 10.1.2.0/24 are allowed to reach the service at 10.1.1.8:80/TCP will return that the traffic is allowed
only from ports greater than 1023. To deal with these cases we added a third result type, partly, indicating that the
communication is allowed only for some packets. Therefore, queries returning “partly” need to report the set of240

allowed or denied connections, which we named the query result domain.
Another important aspect of a query result is its accuracy, a feature that has been ignored in previous works. The

main factors influencing the accuracy are the type of security controls (e.g. firewall, NAT and tunnelling devices) and
their capabilities, the protocol fields on which they can pose conditions and the actions or the transformation that they
can enforce. Therefore, the results may not be reliable when a path contains an unsupported control or a policy with245

unsupported condition types. The accuracy can be evaluated only after its execution. If the query result domain is not
tautological in the domain of an unsupported condition (that is, the action varies according to an unsupported field),
then the analysis is inaccurate. For instance, if communication with a web server is allowed only with safe HTTP
methods, a model that does not consider this field could return that the communication is unconditionally permitted,
which is incorrect. Therefore, we introduce the “accuracy” concept to flag possible errors in our analysis. In this250

way, we accept a complete description of the target network even when it contains items not supported by our model,
rather than generating a false sense of precision by limiting the input to incomplete descriptions containing only the
supported elements (as most models do). Accuracy, in practice, is a self assessment of the reachability model.

In our approach, the query result consists of four parts:

• answer, may be Allow, if all the traffic implied by the query is allowed, Deny, if all the traffic implied by the255

query is blocked, or Partly, if only a subset of the traffic implied by the query is allowed;

• query result domain, the set of the allowed traffic, expressed as a set of rules from equivalent firewall policy.
This field is only used when answer is Partly (see also Section 4.4);

• stateful domain, the set of the allowed stateful answers, that is, the communications from the destination to
the source that are allowed by some stateful rules as replies to allowed communications (used only for stateful260

queries when answer is Partly, see Section 5.3);

• accuracy, reports if any of the security controls in the path is not supported by the model or, if all the controls
are supported, if the query result involves any unsupported field (see Section 5.5).

7



The computed result domain and stateful domain include conditions on all fields to convey full information. The
user can select the fields he is interested in at query time through the select clause. However, result domains can265

be manipulated (e.g. to inspect fields where conditions are non-tautological) or simply viewed, as they are normal
firewall policies.

3.4. Practical use of our model
The proposed algorithm requires three main inputs:

• the network topology, which must include all the network nodes, the security controls (with the explicit indica-270

tion of their capability), and their interconnections;

• the policies of all the security controls and the routing tables of all the routing devices;

• the queries to process.

The equivalent firewalls can be calculated on start-up or on demand. In the former case, the initialization phase,
needed to compute all the equivalent firewalls, takes longer, but all the reachability queries are then instantaneous.275

In the latter case, a database with all the pre-computed equivalent firewalls is maintained. If the equivalent firewall
needed to answer the query is not already available, it is calculated and stored to be reused when required. Equivalent
firewalls corresponding to multi-path analysis are not computed on start-up. When a multi-path query is required, the
equivalent firewalls of all the involved paths are retrieved (or computed if not yet available), then combined according
to the selected strategy (lower-bound, upper-bound, highlight path anomalies), and the result stored.280

3.5. Research issues and contributions
This section lists a set of practical scenarios that we addressed in the definition of our reachability model.

3.5.1. Modelling firewalls and their composition
The first research issue appears if we want to know if the host cA2,1 or the host cA3,1 can reach the company web

server available at sA1,1 on port 80. Since cA2,1 is separated from sA1,1 by fwA1, this query is reduced to a single285

firewall query. Thus we implemented in the geometric model, that already defines firewall policies, what is a query,
the answer and the query domains (section 4.4). On the other hand, communications between cA3,1 and sA1,1 cross
two firewalls, fwA2 and fwA1. Therefore, we model how rules in different firewalls interact and are merged into a
single equivalent firewall policy, starting from the trivial consideration that a communication is permitted only if all
the firewalls in the path allow it (Section 5.1).290

3.5.2. End-system firewalls
An end-system firewall installed on a host or a server influences the reachability properties of the network. Let’s

suppose, for example, that the server sA1,1 has installed an end-system firewall blocking all the traffic arriving from
the zone ZB1. In this case the equivalent firewall must include this filtering policy, so that the reachability analysis
is performed correctly. Therefore, the proposed mathematical model incorporates, when computing a zone-to-zone295

equivalent firewall, the filtering policies at the end-systems (Section 4.2). All the end-system firewalls are modelled as
additional “virtual” devices, serially connected to zone-to-zone equivalent firewall, which process all traffic between
the query endpoints.

3.5.3. Basic VPN
Another issue appears when we want to know if hosts in zB4 can reach the company web server sA1,1. In this300

case, all the network traffic from zA1 to zB4 is encapsulated into a tunnel established at fwB2 and terminated at fwA1.
This tunnel crosses fwB1 and rA that apply their rules to the encapsulated packets. Since the equivalent firewall
directly connects source to destination, it “cannot see” the encapsulated packets that logically pertain to the tunnel.
Therefore, equivalent firewalls have been modelled to include rules that enforce to the original packets the actions
the downstream firewalls apply to encapsulated packets. Therefore, our mathematical model describes how tunneling305

rules change policies of downstream firewalls (i.e. fwB1 and fwA1) to produce the equivalent firewall (Section 5.2).
The equivalent firewall obtained after including the transformation can be later composed with other firewalls in the
path, as in the previous section. Furthermore, we also defined how the secure channel is terminated at the second
endpoint by means of the ‘inverse’ operations that annihilates the effect of first transformation (Section 5.2.3).
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3.5.4. Handling NAT/NAPT310

Modelling NAT/NAPT functionality is needed to know if the client cB2,1 can reach the web service offered by
sA1,1. In this case we have a single transformation, applied to all traffic from zB2 to zA1, fwB3 applies the transfor-
mation to its traffic thus fwB1 contains rules which match the transformed packets. Even in this case, the equivalent
firewall cannot see transformed packets and must enforce the policy on the original ones. Therefore, we also model
NAT/NAPT rules (Section 4.5) and how these rules change downstream firewall policies (Section 5.2). After having315

modified fwB1 policy to match packets before the transformation, the equivalent firewall is obtained by composing it
with other firewall policies in the path.

3.5.5. Multiple transformations
The query asking if cB2,1 is allowed to reach sC1,1 introduces the last issue: how to manage multiple transfor-

mations. In this example all traffic from cB1,1 is NATted at fwB3 then inserted into a tunnel at fwB1. In this case,320

our approach recursively ‘eliminates’ all the transformation controls by adding specific rules to all the downstream
firewalls (Section 5.2.2).

4. Formal policy model

We summarize here the basic concepts of the geometric model presented in [7], then we use it to model transfor-
mation policies and queries for reachability analysis purposes.325

4.1. Modelling filtering devices
In our geometric model a firewall policy is a function represented as a four-tuple (R,R,E, ad), where:

• R = {ri}i, i ∈ [1, n] is the rule set.

• R : 2R → A is the resolution function used to decide the action for packets matching more than one rule. An
example of resolution function is the already presented FMR that, in case of multiple matching rules, selects330

the action from the rule at highest priority. The firewall action set includes “allow” and “deny” actions and will
be indicated as A = {a, d}.

• E = {E1, E2, . . .} is the set of external data associated to the rules. External data are not part of the rules,
nevertheless they are used to take decisions. The association is done using a set of external data functions
εk : R → Ek. FMR uses priorities as external data. In the rest of the paper, the function that associates rules335

to priorities will be denoted by π.

• ad is the default action, applied when a packet matches no rules.

Rules ri = (ci, ai) are composed of a condition clause ci and an action ai ∈ A. The conditions clause is defined
as:

ci = si1 × · · · × si1 ⊆ Si1 × · · · × Sim = S

where each condition sij is a subset of a selector Sij . Examples of selectors are the protocol fields mentioned in
Section 3.3, such as IP source address and port number. The set S =Si1 × · · · × Sim is named decision space. The
condition clause ci is thus a hyper-rectangle (or the union of hyper-rectangles) in S.340

Selectors are categorized as follows:

• exact match selectors, when conditions can be stated using only the = and 6= operators (e.g. P = TCP);

• range-based selectors, when conditions can be stated using = and 6= and inequalities (e.g. DP > 1023), and
their sub-case, the prefix-based selectors, when conditions can be stated by defining a prefix then wildcards
(e.g. D = 1.2.3.*);345

• regex-selectors, when conditions can be stated as regular expressions, and their sub-case, when conditions are
expressed as string matching conditions. Support to the regex selectors has been added into the geometric model
in a previous work [9].
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A condition sij is a point if it is composed of a single element, or a range if it is an ordered (compact) subset of a
range-based or prefix-based selector. A condition clause is a point if all its conditions are points.350

By extending R with R {ri} = ai and R {∅} = ad, a policy p represented as (R,R,E, d) is a function p : S → A
such that, if x ∈ S, p (x) = R {matchR (x) }, where matchR (x) is a subset of R composed of rules that match x,
defined as matchR (x) = {r = (c, a) , r ∈ R | x ∈ c}.

Consider the policy in Table 1. The decision space is:

[0.0.0.0, 255.255.255.255]× [0, 65535]× [0.0.0.0, 255.255.255.255]× [0, 65535]× {TCP,UDP, . . .} × {NEW, . . .}

and, for instance, rule r4 is:355

r4 = (([10.1.2.0, 10.1.2.255]× [1024, 65535]× [10.1.1.0, 10.1.1.255]× {80} × {TCP} × {NEW}), a)

and is associated to its priority with π (r4) = 4. Then the ruleset becomes R = {r1, r2, . . . , r6, . . .}. The last rule,
with the lowest priority, is the default action. The policy becomes (R,FMR,P, d) where P ⊂ N is the set of the used
priorities.

4.2. Adding support for end-system firewalls

End-system firewalls are software applications installed on hosts and servers that filter the network traffic. Their360

key property is that the source or destination of all their rules is the host/server itself. Since the subjects of different
end-system firewall are always different, the rules have no correlation and never intersect each other. This fact gives
the opportunity to merge all end-system firewall rules of one zone into a single virtual firewall. Rules of one end-
system firewall will never change the behavior of rules of another end-system firewall. For this reason, end-system
firewalls are modelled as a fictitious device, named virtual firewall, placed between the border firewall of the zone and365

all hosts/zones.
The policy pV FW = (RV FW ,RV FW , EV FW , dV FW ) of the virtual firewall has the following components:

RV FW = R1 ∪ · · · ∪Rn EV FW = E1 ∪ · · · ∪ En
dV FW = ALLOW RV FW = R1 ∪ · · · ∪Rn

The rule set RV FW is the union of all end-system firewall rule sets. The external data EV FW is the union of all
external data of the end-system firewalls. The default action dV FW is ALLOW because if no rule matches, the virtual
firewall must be transparent. The resolution strategy RV FW is the superposition of the resolution strategies of all the370

involved end-system firewalls. RV FW will only operate among rules from the same end-system firewall, that is, the
actual resolution strategy to apply is selected based on the involved rules.

4.3. Adding support for stateful conditions

Some firewalls allow the use of various stateful conditions to specify sophisticated policies. All stateful conditions
can be easily represented by the geometric model with ad-hoc selectors. Stateful conditions can be used to allow traffic375

belonging to already “established” TCP connections or “related” ones, as in Table 1 or the following iptables rule:
iptables -A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT

To model this case we define a new exact match selector that includes the RELATED, ESTABLISHED, NEW,
INVALID9 values (endowed with = and 6= operations). We denote with S the set of all the possible states.

Stateful firewalls may also enforce bandwidth control. This may be used to specify the maximum number of con-380

nections allowed to a given destination, or the maximum packet rate per destination address and per port. Additionally,
it may be used to bound rule hits, i.e. to limit the packets allowed per time unit (e.g. the iptables “limit” module), as
often done for ICMP packets:

iptables -A INPUT -p icmp -m limit --limit 10/second -j ACCEPT

9According to iptables tutorial, a packet is labelled INVALID if its state cannot be identified or it has no state. This may happen if packets do
not respond to any known connection or the system is running out of memory.

10



In other cases, it is possible to specify the maximum number of connections that can be established between two385

nodes (e.g. the iptables “connlimit” module):
iptables -A INPUT -p tcp --syn --dport 80 -m connlimit --connlimit-above 20 -j REJECT

To model these cases, we defined three range-based selectors: limit, limit-burst, and conn. In particular, conn is
the selector to watch for multiple stateful connection analysis.

4.4. Executing queries and getting results390

Our query format includes options to specify the type of analysis and equivalent firewall:
select Si, Sj , . . . where B ∧ (action = 〈dec〉)

The where clause determines the communications to query. If we represent the Boolean expression B in Dis-
junctive Normal Form, we notice that it is the logical disjunction of AND-ed conditions like the following:

B = (q
(i)
1 ⊆ S1) ∧ · · · ∧ (q(i)

m ⊆ Sm) ⊆ S

therefore B is a hyper-rectangle. It is worth mentioning that if no explicit condition is specified in query condition for
a given selector Sx, the condition is implicitly assumed as tautological (that is, q(i)

x = Sx).
Thus, in the geometric model, the query condition clause B is a hyper-rectangle or the union of hyper-rectangles395

and each query q = (B,dec) is equivalent to a rule whose action is dec and condition B. For instance a query Q1,
asking for the TCP destination ports on the server SA1,1 (10.1.1.1) reachable from the host CB2,1 (10.2.2.1) with a
stateless analysis, generates the query condition q1:

q1 = ({10.2.2.1} × [0, 65535]× {10.1.1.1} × [0, 65535]× {TCP} × S, a)

We introduce here the query processing algorithm. When a query is executed on a firewall whose policy is
(R,R,E, ad) the condition clauses of all rules are intersected with B to form a ruleset composed of the restrictions of
rules whose condition clause intersects B:

R(q) = {rqi = (B ∩ ci, ai) | ri ∈ R ∧ B ∩ ci = ∅}

The query result domain is a new policy
(
R(q),R,E(q), ad

)
where also the external data are restricted to non-discarded400

rules. As an example, the execution of Q1 on fwA1 generates a policy where R(q1) is composed by a single rule:

rqi = ({10.2.2.1} × [1024, 65535]× {10.1.1.1} × {80} × {TCP} × S, {a})

Since Q1 only asks for destination ports, the returned result would be D = {80}.
However, only asking for destination ports does not give precise information. In fact, it is also useful to show

administrators that port 80 can only be reached from registered and dynamic ports [1024, 65535]. Therefore, we can
generalize the scenario by presenting an algorithm for identifying influential selectors. Selectors where the action405

remains the same (for the whole subset in the query condition clause) are marked as uninfluential.
In the last example, regardless of the source and destination IP addresses and protocol states, the answer would be

“allow”. On the other hand, selectors where the action changes are marked as influential, e.g. source port for which
[0, 1023] → d and [1024, 65535] → a, and destination port for which [0, 79] ∪ [81, 65535] → d and {80} → a.
If there are no influential selectors then the query answer is either Allow or Deny. If there are influential selectors410

the result is Partly, even if all selectors in select clause are uninfluential. In fact, if at least one of the influential
selectors is not included in the select clause, the accuracy field of the result is set to influential selectors ignored.

Thanks to the expressivity of our model, we extended the original SRQL syntax to allow the inclusion of more
selectors Si, Sj , . . ., in the select clause.

Processing zone-to-zone queries is an easy task. As a first job, we extend the query condition so that the conditions415

on source and destination IP in B match not only the endpoints specified in the query but the entire IP range associated
to the filtering zone. After this initial modification of the query condition, the query processing algorithm is executed
with no modifications. Finally, when the IP source or destination fields in the query condition clause span more than
one filtering zone, the query condition clause is split in one query condition clause for each couple of zones in the
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source and destination fields. Each query condition clause is used to build an equivalent firewall. The generated420

equivalent firewalls are disjoint (no rules in one equivalent firewall intersect rules in other equivalent firewalls) and
can be merged before executing the query.

4.5. Transformation policies

Transformation policies include actual packet transformation (e.g. NAT/NAPT) and tunnelling controls that use
IP-in-IP to encapsulate packets. We will assume in this model, without loss of generality, that transformations are425

always performed by changing the original packet header instead of adding a new one.
Transformation policies are composed of a set of t transformation rules τi

T = {τi}i, i ∈ [1, t] τi : γ
(in)
i 7→ γ

(out)
i

where γ(in)
i , γ

(out)
i ⊆ T , are the transformation input and output clauses defined as:

γ
(in)
i =

∏
j∈IT

σ
(in)
ij γ

(out)
i =

∏
j∈IT

σ
(out)
ij

σ
(in)
ij ⊆ Sj and σ(out)

ij ⊆ Sj are conditions. Transformation clauses are defined over a transformation space:

T =
∏
j∈IT

Sj ⊆ S

where IT ⊆ [1,m] is the subset of the indices of the selector used to decide transformations, i.e. it is used by some
transformation control in the network to analyse. We will say that Si is in T if i ∈ IT. For instance, in case of NAPT,
source and destination IP addresses, source and destination ports, and protocol type are in T whereas tunnelling
controls currently use IP source, IP destination, and protocol ID fields.430

We preferred to define the transformation space from the filtering space (and we did not define it independently),
because transformation rules operate on filtering rules (see Section 5.2), therefore they need to share the selectors.
Consequently, a transformation policy is a piecewise function in T defined as:

η : T → T

x 7→



γ
(out)
i if x ∩ γ(in)

i

and γ(out)
i is a point

rand
(
γ

(out)
i

)
if x ∩ γ(in)

i

and γ(out)
i is not a point

x ∀i, x ∩ γ(in)
i = ∅

The first case describes one-to-one transformations, that is, if a packet matches a transformation rule all values of
fields in T in the received packet are transformed with the values in the output clause. There is no ambiguity as all the
output values are fixed (i.e. γ(out)

i is a point). The second case describes many-to-one or many-to-many mappings.
In these cases, not all the values in the output clause are fixed (i.e. γ(out)

i is not a point), therefore, the values are

randomly chosen with rand
(
γ

(out)
i

)
. For instance, for many-to-one translation the source port is randomly chosen in435

the dynamic ports (this case is sometimes referred as Dynamic NAT), and for many-to-many translation source port is
randomly chosen in the dynamic ports and source IP is randomly chosen in the source IPs of the output clause. The
last case just says that the packet is left untouched if no rule matched.

We assume that transformation policies do not contain loops or inconsistencies, that is we assume that the follow-
ing properties are always true in transformation policies:

∀i, j, γ(in)
i ∩ γ(in)

j = ∅ (decorrelation)
∀i, j, γ(out)

i ∩ γ(in)
j = ∅ (no chaining)
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The “decorrelation” hypothesis excludes the possibility that two rules intersect, thus rule order becomes uninfluential
and no priorities are needed. The “no chaining” hypothesis excludes the possibility that a packet matches another440

rule after its transformation. This excludes the possibility of transforming a packet more than once in a single control.
Both hypotheses are met in real transformation policies and avoid the unneeded complexity of defining transformation
policies according to the 4-tuple formulation presented in section 4.1 for filtering policies.

5. Generating the equivalent firewall

Having modelled policies for each device category, we proceed to present the generation of equivalent firewalls.445

5.1. Composing filtering policies

To model firewall compositions, it is worth considering that security controls do not directly interact, i.e. there is
no information flow among two security devices concerning the decision. A downstream control just sees the effects
of the decisions of the upstream ones (or it does not see, if the packet is dropped). In our case, filtering devices only
allow two actions, Allow and Deny. A packet can arrive at its destination only if all the devices in the path decide to
forward it. On the other hand, if the upstream control drops a packet as a consequence of a deny rule, then the actions
of the downstream ones on the same packet are irrelevant. To model this scenario, we introduce the serial composition
as the function:

+ : A×A → A

which describes the composition of two actions when the filtering devices are arranged serially:

a+ a = a a+ d = d+ a = d+ d = d

The result is Allow only when both operands are Allow10.
Given the policies p1, represented as (R1,R1, E1, ad1), and p2, represented as (R2,R2, E2, ad2), and the serial

composition ‘+’, we define the composed policy p1 + p2 as a policy (R1 ∪R2,R+,R1,R2
, ad1 + ad2), which uses, the

composed resolution strategy R+,R1,R2
defined as:

R+,R1,R2
: 2R1∪R2 −→ A
S1 ∪ S2 7−→ R1(S1) + R2(S2)

This formula also describes the composition between the default actions, in fact, when S1 = ∅ and S2 = ∅, we
have that R1(S1)+R2(S2) = ad1 +ad2. It is worth noting that (R1∪R2,R+,R1,R2

, ad1 +ad2) is a (single) policy in
the geometric model and describes the behaviour of two serially connected policies. That is, it defines the equivalent450

firewall that can substitute the two original ones.
After having generated the equivalent firewall, this new policy can be transformed using the FMR morphism [7] or

“compressed” [10]. Typically, two firewalls in the same path share many rules. For instance, fwB2 and fwB1 either
share the same rule that allows zB4 to reach zA4 or fwB1 contains a “larger” rule that allows communication between
network B and network A. In both cases, one rule can be dropped so that in most cases the obtained equivalent firewall455

contains about the same rule number as the original firewalls. Even better, since rules that do not concern source and
destination query zones are irrelevant, equivalent firewalls frequently contain (orders of magnitude) less rules than the
original firewall policies.

The approach used to compose two firewalls extends well to more than two serial firewalls as an associative
operation (p1 + p2) + p3 = p1 + (p2 + p3) represented as (R1 ∪R2 ∪R3,R+,R1,R2,R3

, ad1 + ad2 + ad3).460

It is worth noting that different firewalls may not be able to pose conditions on the same fields. Only five-tuple
rules are supported by any firewall. For instance, stateful conditions or application layer conditions are not available
in packet filters. In these cases, before actually composing the policies, we prepare a new decision space that includes
all the selectors in the involved firewalls. Conditions in selectors that cannot be specified in a firewall are assumed

10We use the + symbol because it recalls the operation used to compute total resistance of resistors in series and because it does not extend to
controls other than firewalls.
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Figure 2: Composition of transformation and filtering policies.

as tautological. This simple task, named decision space homogenisation, is fundamental to compose controls and465

execute queries and can be performed once for all security controls in the network.
It should also be noted that rules in the composed firewall are obtained as composition of the original firewall rules,

thus it is possible to maintain a link from equivalent firewall rules to the original ones, which is useful for debugging
purposes.

5.2. Composing transformation and filtering policies470

When a transformation rule matches a packet, it transforms the values in the input clause fields into the values in
the output clause fields. Let us consider a packet x transformed by the NAT policy η into a new packet x′ = η (x)
which is then processed by a firewall with policy p = (R,R,E, ad). To model the composition of NAT and firewall
we can add in the firewall ruleset R a new rule, at higher priority than the existing ones, to tell the firewall to apply
to x the action it would apply to x′. That is, a new rule (x, p (x′)) is added to R. This “packet-wise” approach is475

unfeasible as too many rules would be added to the original policy to support all the possible packets in the query
condition clause. Therefore we take a different approach and proceed rule-wise. We take all the rules r = (c, a) in R
whose condition clause c = s1× s2× · · · ×sm intersects some output clause γ(out)

i of τi = (γ
(in)
i , γ

(out)
i ) and create

from each of them a new rule rT =
(
cT, a

)
where cT = sT

1 ×sT
2 ×· · · ×sT

m and each sT
i ⊆ Si is obtained as follows:

• if Si is in T then sT
i = σ

(in)
i ⊆ Si from γ

(in)
i ;480

• if Si is not in T , then sT
i = si.

Figure 2 presents an example of a policy before and after application of the rule-wise transformation, which
anticipates the formal model presented later in this section. Figure 2a shows the original firewall configuration with
three rules {r1, r2, r3}, and, on the x-axis (the source IP axis), the NAT policy, composed of two rules, one mapping
the x-interval γ(in)

1 into γ(out)
1 and the second mapping γ(in)

2 into γ(out)
2 .485

The rule r1 on the x-axis spans over the entire γ(out)
1 , r2 partly covers γ(out)

1 , and r3 spans over the union of γ(out)
1

and γ(out)
2 . Figure 2b shows the resulting equivalent firewall.

All the three original rules need to be “moved” and stretched before being part of the equivalent firewall to model
the fact that the equivalent firewall has to apply to packets before the transformations, the actions that the original
firewall would have applied to the packets after the transformation.490

Therefore, both r1 and r2 need to be duplicated and modified to fit into γ(in)
1 to originate r(1)

1 and r(1)
2 . r3 has

been first split into two rules, corresponding to subsets γ(out)
1 and γ(out)

2 , then the single sub-rules have been moved
and stretched to fit into γ(in)

1 and γ(in)
2 , respectively, originating r(1)

3 and r(2)
3 .
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5.2.1. Formalization
Changes into condition clauses forced by transformation controls are formally described by the selector substitu-

tion function that substitutes all the selectors in T of ci with the corresponding conditions in γ(in):

Σ(ci, γ
(in)) 7→ c′i =

∏
j∈[1,m]

xij

where xij = sij if j /∈ IT and xij = σ
(in)
ij if j ∈ IT.495

The following functions, working on rules ri = (si,1 × · · · × si,m, ai), help in making this treatment compact:

• in(τi) = γ
(in)
i , named input clause extraction;

• out(τi) = γ
(out)
i , named output clause extraction;

• Ψ (ri) =
∏
j∈IT

sij , named projection on transformation space;

where C(ri) = ci. The new rules added in the downstream policy are obtained by the rule transformation function Θ:500

Θ(ri, τj) : ri 7−→ r
(j)
i

where r(j)
i is defined as:

r
(j)
i =

{
(Σ(ci, in(τi)), ai) if Ψ (ri) ∩ out(τj) 6= ∅

∅ if Ψ (ri) ∩ out(τj) = ∅

Practically, a new rule r(j)
i is returned by the selector substitution function only if ci intersects the transformation-

output clause. If ci does not intersects the transformation-output clause there is nothing to add to R, thus it returns the
empty set. By abuse of notation, we will write ri = Θ−1

(
r

(j)
i

)
if r(j)

i = Θ(ri, c) for some τj .
The last case to cover is when a packet is transformed but, after the transformation, it does not match any rule. In

this case, we must ensure that the equivalent firewall enforces the default action. Therefore, for all the transformation505

rules whose output clause do not intersect any rule in R we create ad-hoc rules (put at higher priority) that enforce the
rules matching the corresponding input clause the default action.

Formally, if ∀ri,Ψ (ri) ∩ out(τj) = ∅ then we create the rules:

r(τj) = (Σ(S, in(τj)), d)

We name D(T ) the set of all the r(τj). The cardinality of D(T ) is always less than or equal to the cardinality of T . By
applying Θ(ri, τj) for all the ri ∈ R and τj ∈ T and by adding the D(T ), we obtain a set of rules:

R(T ) = {Θ(ri, τj)}i,j ∪D(T ), with i ≤ m, j ≤ t

These rules inherit the values of the external data from the rules they are derived from, i.e. the external data
functions in {Θ(ri, τj)}i,j are defined as:

∀k, εk(r
(j)
i ) = εk(ri)

while for the rules in D(T ) it is enough to suppose they have the highest priority.510

By composing the transformation policy defined by T with the policy (R,R,E, d), we obtain the T -modified p
policy, denoted as p(T ), which can be represented as:

(R ∪R(T ),T, E, d)

The T -modified resolution strategy T is defined as:

T :2R∪R
(T ) → A

Meq ⊆ R ∪R(T ) 7−→
{

R (H) if M (T ) 6= ∅
R (M) if M (T ) = ∅

15



priority Source IP PortS Dest IP PortD Proto Protocol States Action

r
(1)
5 5 192.168.1.0/24 >1023 10.1.1.1 80 TCP NEW ALLOW
r

(1)
6 6 192.168.2.0/24 >1023 10.1.1.1 80 TCP NEW ALLOW
r1 1 any any any any any ESTABLISHED,RELATED ALLOW
r2 2 10.1.2.7 any 10.1.1.9 any any any DENY
r3 3 10.1.2.7 any 10.1.1.19 any any any DENY
r4 4 10.1.2.0/24 >1023 10.1.1.0/24 80 TCP NEW ALLOW
r5 5 10.2.2.1 >1023 10.1.1.1 80 TCP NEW ALLOW
r6 6 10.2.2.2 >1023 10.1.1.1 80 TCP NEW ALLOW
· · ·

∞ * * * * * * D

Table 2: An excerpt of the filtering rules in fwA1 after the NAT transformation.

whereMeq = matchR∪R(T )(x) = M ∪M (T ), M ⊆ R, M (T ) ⊆ R(T ), andH = {Θ−1
(
r

(j)
i

)
| r(j)

i ∈M (T )} ⊆ R.
It is worth noting that the T -modified resolution strategies are sound. That is, they give a result for any subset

of R ∪ R(T ), because they always decide by using R and, if available, external data are inherited from the original
rules. Moreover, this is also valid for resolution strategies requiring unique values of the external data, such as FMR
priorities. In fact, after the transformation there are rules with duplicated external data values but they are never used515

in the same decision, as either original or transformed rules are taken into account. Table 2 presents the policy in
Table 1 after the NAT transformation.

5.2.2. Multiple transformations
If, before reaching a firewall, a packet encounters first the transformation control T1 then the T2, we generate the

(T1, T2)-modified p policy p(T1,T2) recursively. That is, p(T1,T2) is the T1-modified pT2 policy: p(T1,T2) =
(
p(T1)

)(T2)
520

In these cases, the rule set is R∪R(T1)∪
(
R ∪R(T )

)(T2)
= R∪R(T1)∪R(T2) ∪R(T2,T1). The resolution strategy

obtained from these two transformations works in stages. First it checks if some of the newly generated rules in
R(T2,T1) apply, then it checks in R(T2), then it checks if some rule from previous transformation apply (R(T1)), finally
it checks in R. Consider the scenario in Figure 3, with two serially connected filtering devices configured to perform
pre- and post-NAT. The steps to obtain the equivalent firewall are:525

• compute the T1,pre-modified p1 (filtering) policy p(T1,pre)
1 (i.e. the inner dashed rectangle in Figure 3);

• compute the (T1,pre, T1,post, T2,pre)-modified p2 (filtering) policy p(T1,pre,T1,post,T2,pre)
2 (i.e. the external dashed

rectangle in Figure 3);

• compute the equivalent firewall peq by serially connecting p(T1,pre)
1 and p(T1,pre,T1,post,T2,pre)

2 .

T1,pre p1 T1,post T2,pre p2 T2,post

fw1 fw2

p
(T1,pr e)
1 p

(T1,pr e ,T1,pos t ,T2,pr e)
2

peq

Figure 3: Composition of two cascaded firewalls with pre- and post-NAT (filtering policies are marked with a double border).
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5.2.3. Inverse transformations530

Another very important case needs to be considered when working with tunnels: inverse transformations. In fact,
NAT/NAPT controls perform the inverse transformation for back traffic based on state information without the need of
explicit rules. For tunnelling, this is not true and the inverse transformation must explicitly indicate the other endpoint
policy. Even if the inverse can be considered as an independent transformation, that would evidently be a sub-optimal
approach. For this reason, we pre-process transformation controls in the path to identify and eliminate inverse rules.535

This scenario usually happens when a gateway with policy p1 contains a rule τ1 : γ(in) 7→ γ(out) and another one
with policy p2 contains a rule τ2 : γ(out) 7→ γ(in). However, rule annihilation must be considered even if a subset of
the input and output clauses intersect. That is, given γ(in)

1 7→ γ
(out)
1 and γ(in)

2 7→ γ
(out)
2 , the annihilation happens if

γ
(in)
2 ⊆ γ

(out)
1 . In this case, instead of eliminating both rules, we simply leave in one of the transformation controls

the “biggest” rule, that is, either γ(in)
1 r γ

(in)
2 7→ γ

(out)
1 or γ(in)

2 r γ
(in)
1 7→ γ

(out)
2 .540

5.3. Processing stateful queries

In our model, executing stateful queries does not require computing a separate equivalent firewall but only chang-
ing the query condition clause. Practically, verifying that also stateful answers from the destination to source are
allowed (i.e. executing a stateful query) is computed by simply performing two more operations. First, we extend the
query condition to a stateful query condition clause whose conditions are:545

• S = the destination address from the original query;

• D = the source address from the original query;

• PS ={ESTABLISHED, RELATED}.

During the computation of the policy restriction (as in Section 4.4), the equivalent firewall rules are also intersected
with the stateful query condition clause. The non-empty intersections become the stateful domain (introduced in550

Section 3.3).
Practically, in the great majority of (if not all) the cases, well configured stateful firewalls only have one single

rule to manage all the stateful communications, usually at very high priority, like r1 in Table 1. Therefore, executing
stateful queries is as fast as the stateless case and produces results that include about the same number of rules.

5.4. Coping with multiple paths555

When dynamic routing analysis is performed, source and destination may be connected through different paths. In
that case, each path generates a separate equivalent firewall11. Therefore, if there are two equivalent firewall policies
p1 and p2 where p1 = (R1,R1, E1, ad1) and p2 = (R2,R2, E2, ad2), corresponding to two paths from source to
destination, their results need to be “merged” to quantify reachability.

The three equivalent firewall compositions introduced in Section 3.1 are formally defined as:560

• lower bound, the equivalent firewall is represented as (R1 ∪R2,R+,R1,R2
, ad1 + ad2), that is exactly the same

as the case of serially connected firewalls;

• upper bound, the equivalent firewall is represented as (R1 ∪ R2,R∗,R1,R2
, ad1 ∗ ad2), where ∗ : A×A → A

is an action composition such that d ∗ d = d and a ∗ d = d ∗ a = a ∗ a = a hold, and

• highlight anomalies, the equivalent firewall is represented as (R1 ∪ R2,R+,R1,R2
, ad1?ad2), where ? : A ∪565

{u} × A ∪ {u} → A ∪ {u} such that a?a = a, d?d = d, and a?d = d?a = u?∗ = ∗?u = u hold. Note that
in this case A is extended to include the Unspecified action u. Rules containing the Unspecified action are the
ones that present path anomalies.

11From the implementation point of view, since these equivalent firewalls share portions of the path, their computation can be optimized.
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5.5. Query accuracy
The types of accuracy results supported are:570

1. unsupported control, if any node in the path has a capability not in the list of supported ones. This model
supports NAT, filtering, and tunnelling and not supported are proxies (with application layer authentication),
load-balancers, and URL-rewriters.

2. unsupported field, if at least one control in the path uses a condition not supported by the geometric model (like
the URL fields of application layer filters listed in Section 3.3).575

3. unsupported action, if an action in any composition is not supported (currently only Allow and Deny can be
composed by action compositions, while tunnelling actions are only used during the inverse transformation).

4. ignored influential selectors, if at least one of the influential selectors is not in the select clause (see Sec-
tion 4).

6. Validation580

We validated our model in different ways, to prove that our model correctly describes the real network behaviour
(correctness analysis), our model can theoretically compute the query results in reasonable time (complexity analysis),
and, finally, our model can practically compute the query results in reasonable time (performance analysis).

6.1. Correctness analysis
We validated the correctness of our model by testing whether the decisions applied by our equivalent firewall are585

the same as the ones applied in the real networks. There are no quantitative measure to evaluate correctness, either
the results are correct or wrong (i.e., Boolean). Practically, all the compositions and transformations presented in
Section 5 have been built to be equivalent to the actual behaviour of the networks. However, we report in this section
a summary of the motivations that prove their correctness. We assume that the functions used to model filtering and
transformation devices are correct as well as the process to actually merge policies (defined and formally proved as590

correct in [7]), and we prove that the atomic compositions correctly model the real network behaviour.
We consider the following atomic compositions: (1) two cascaded firewalls, (2) a filtering control preceded by a

transformation one, and (3) the composition of two alternative paths.

Two cascaded firewalls. The equivalent firewall of two cascaded firewalls is represented by (R1∪R2,R+,R1,R2 , ad1+
ad2). In practice, the original rule sets are merged and the resolution strategy R+,R1,R2

is used. As explained in595

Section 5.1, R+,R1,R2
has been built to first use the original resolution strategies in the original policies, then the

serial composition operator composes the actions. The serial composition ‘+’ perfectly models the behaviour of two
serially connected firewalls (i.e. drop if at least one filtering control would drop). The policy of the equivalent firewall
is globally correct (i.e. the contributions from different possibly overlapping rules are managed correctly) because of
the correctness of the policy merging process.600

A filtering control preceded by a transformation device. In this case the equivalent firewall is described as (R ∪
R(T ),T, E, d). There are three aspects to consider for the correctness analysis: (1) if the original packet is transformed
or not, (2) if the original packet matches any of the rules in the filtering policy, and (3) if the transformed packet
matches any of the rules in the filtering control (it is actually transformed). If the original packet is not transformed,
we have to prove that it will not match any of the rules added by our equivalent firewall construction. Indeed, all the605

rules inR(T ), the ones generated by our construction, have condition clauses derived by the fields in the transformation
input clause, therefore, they will never match a packet that is not transformed. Thus, only rules in R will match the
original packet, and if none of the rules in R matches it, the default action will be applied. If the packet is transformed
and matches any of the rules in the filtering control, we have to prove that the equivalent firewall will enforce the same
action as the original filtering control. Indeed, the equivalent firewall contains the rules in {Θ(ri, τj)}i,j that are at610

higher priority than the original rules. Therefore, the equivalent firewall correctly depicts the real case. Finally, the
packet is transformed but the transformed packet does not match any of the rules in the filtering control, the equivalent
firewall must enforce the default action, even if the original packet matches any of the rules in the filtering control.
Indeed, to address this case the equivalent firewall includes the rules in D(T ).
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The composition of two paths. In this case, the equivalent firewall is obtained by merging the equivalent firewalls615

computed on individual paths using either the lower bound, upper bound, or unspecified function. The proof of the
correctness lies in the definition of the resolution strategies that describe how to compose the actions when rules from
the initial equivalent firewalls would have enforced different actions. Indeed, in the areas of the decision space where
actions from the different paths are conflicting, the lower bound selects deny, the upper bound selects allow, and the
unspecified uses a dummy action, as prescribed. Even in this case, the proof relies on the correctness of the policy620

merging process form.

6.2. Complexity analysis
We present now a brief complexity analysis of the composition algorithms. We introduce some considerations on

the number of equivalent firewalls expected in a network and the number of rules that each equivalent firewall will
contain. First of all, in a network the number of zones, firewalls and rules at each firewall are correlated. In fact, hosts625

and servers (that populate the zones) are connected to firewalls located at the border of a hierarchically structured
network (i.e. networks are mostly shaped as trees with redundant communication edges).

There are also other firewalls in the core of the network, but no hosts or servers are usually located between two
intermediate firewalls, therefore, no other zones are present. Hence, the number of zones is a (small) multiple of the
firewalls placed at the border of the network. The number of zone-to-zone equivalent firewalls grows quadratically630

w.r.t. the number of zones12, however, the fact that the quantity of filtering zones is usually small makes our approach
feasible in real scenarios. Furthermore, several types of reachability queries do not require the computation of all the
possible paths from all zones, but only the actually considered ones.

According to a survey by Algosec13, 93% of deployed firewalls have less than 1000 rules and 60% have less then
200 rules. Firewalls at the edge contain a modest number of rules, since they are connected to a limited number of635

zones (i.e. to a relatively small number of subnets and nodes) they have to protect. On the other hand, firewalls in
the core, which can cover several zones, may have a noticeable higher number of rules. Fortunately, in practice, core
firewalls rules are not very fine grained (rules are given for the entire subnets, not for individual hosts). Therefore, as
confirmed by Algosec, in real networks we expect to have few firewalls with a high number of rules while the majority
of the filtering devices will only contain a small quantity of rules.640

In addition, the number of rules in zone-to-zone equivalent firewalls is very limited. In practice, only a subset
of the rules needs to be considered, i.e. the rules such as ‘the source IPs are in the first zone and the destination IPs
are in the second zone’. If the firewalls have a total number of n rules and there are z zones in the network, the
corresponding equivalent firewall will contain n/z rules on the average. We can easily state that the more the zones,
the more the equivalent firewalls to compute, and the less the rules in the equivalent firewalls and the n/z is the most645

affecting parameter.
We estimate now the computational complexity of compositions. The creation of an equivalent firewall out of two

firewalls (with respectively n1 and n2 rules) takes a constant time14 and initially the equivalent firewall will contain
n1 + n2 rules. However, it is usually convenient to remove the redundancies and those rules not matching the IP
addresses in the source and destination zones. These operations have a quadratic cost in the number of rules (for rule650

pair analysis), and a slightly higher cost for a multi-rule analysis [7] and compression [10]. The conversion of the
equivalent firewall into a FMR policy (that can be optionally done only once for the final result) is in the worst case
exponential, but it has much better performance in real scenarios [7] (e.g. a few seconds for 2500 rules).

We consider now the case of the composition of a transformation policy with t rules with a firewall policy with n
rules. We assume that t = tΘ + tD where tΘ is the number of rules in the transformation rule set T that matches any655

of the rules in the firewall and tD the number of rules that does match any rules. The composition has a complexity
of tΘ · n + tD and the resulting equivalent firewall may contain up to tΘ · n + tD rules. Even in this case, it is
possible to prune the equivalent firewall rules as the transformation rules are non-overlapping. As explained in the
previous sections, it is extremely unlikely that all the transformation rules intersect all the filtering ones, also because
the filtering rules regulate the access control to different filtering zones. Our experiments with realistic networks show660

12If z is the number of zones, we need to compute all the ordered couples, that is z · (z − 1)
13http://wp.eurosecglobal.de/wp-content/uploads/2013/04/www.algosec.com_resources_files_

Specials_Survey%20files_12_10_11_security_complexity.pdf
14Or linear if the programming language cannot merge two lists by means of references/pointers.
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Figure 4: The sample network used for testing and validation purposes.

that the actual computational cost is reasonably low (see Section 6.3). Practically, it shows a bound of n+KtΘ + tD
where K is the maximum number of intersections between rules in filtering and transformation policies. According
to the statistics presented by Taylor [11], K is a small integer (k ≤ 4).

When multiple transformations apply to a path, every firewall policy of n rules is composed with all the upstream
transformations in the path. If each upstream transformation has ti rules, the complexity is theoretically n

∏
i tΘ,i +665 ∑

tD,i, but practically bounded to n+K
∑
i tΘ,i+

∑
i tD,i+T where T takes into account the intersections between

rules in different transformation policies.
The number of paths, quite important for dynamic routing queries, is very limited as the networks are usually

designed hierarchically15 , thus only a few paths are configured between any two nodes (or zones) and this parameter
can be considered another constant. Of course this is not valid for the Internet. However, our solution is not designed670

to analyse the Internet but only Intranets. In our model, the Internet is modelled as a single router that interconnects the
different (geographically separated) parts of the Intranet. Therefore, all the redundant paths available in the Internet
are reduced to one single device.

6.3. Performance analysis
We tested the performance of our implementation in two different scenarios. First, we used a sample network,675

which approximates a corporate network, that has been manually described in-depth with topology data and policies.
Second, we performed more complete performance and scalability tests on synthetic networks.

We executed the tests inside a virtual machine that used two cores of an Intel Xeon E5620 (2.4 GHz) CPU, with
4 GB RAM and Red Hat Enterprise Linux 6 operating system. Each test has been performed 100 times and the results
have been averaged. The tests focused on two parameters: time to compute zone-to-zone equivalent firewalls and time680

to execute queries. Our model has been implemented in Java 1.6. To convey the inputs to our tool, we have defined
two ad-hoc XML (defined via an XML Schema), one for the network topology and one for the security policies.

For the first experiment, we considered the sample network depicted in Figure 4, where the subnets on the top right
corner is marked with ×11 to indicate that the scenario we tested contained eleven replications of the same subnet.
Analogously, the subnet marked with×3 has been replicated three times. The whole network contains 15 firewalls, 15685

NAT/NAPT devices, and about 10,000 hosts (about half of them are WLAN clients). The topology is a star network
with all firewalls connected to a core router. It has 36 filtering zones with private IP addresses, all connected through a
NAT/NAPT, and 30 additional zones with public IP addresses, connected to a firewall, thus making it a 68 zones wide
network (if we include also the Internet). The whole network can be logically partitioned in the following parts:

• The border firewall (fwI) connects the core router to the Internet, contains about 150 rules, and acts also as a690

VPN concentrator for external remote connections.

• The data center contains various services (web, e-mail, file servers, . . . ) some of which are accessible also from
the Internet. It uses 10 zones, connected to the core router via a single firewall (fwDC) with about 50 rules.

• There are 10 wireless networks, connected to the core router via a single device (fwWLAN) acting as NAT/NAPT
and firewall, with about 20 rules. Wireless clients can access Internet and public parts of the corporate network.695

15http://docwiki.cisco.com/wiki/Internetwork_Design_Guide
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• The administration network uses 5 zones for its servers and an additional 5 zones for the employees’ worksta-
tions. All these zones are connected to a firewall (fwA) containing approximately 250 rules. The services in
the 5 server zones have higher security requirements than the ones allocated in the data centre and are accessed
mainly by the users from the 5 administration user zones.

• Laboratories use 3 private networks, each one consisting of 5 zones. Each private network is connected to the700

core router via an individual NAT/NAPT device (NAT). These laboratories can access the corporate network
and the Internet, but are not visible from the outside.

• There are 11 departmental networks, composed of 2 zones each: a private one, connected to the core router by
means of a NAT/NAPT and a firewall (fwDIP), and a public zone connected just via the firewall (fwDIP) to the
core router. The private zone can reach the corporate network and the Internet but is not visible from outside.705

The public zone is reachable from the Internet.

For this network, there are 4624 equivalent firewalls and our implementation calculates all of them in about 3 minutes.
On average, each equivalent firewall contains 130 rules and the composition of two equivalent firewalls for multi-
path analysis takes less than 1 ms. The queries performed over these equivalent firewalls required at most 3 ms to be
executed.710

For the second category of performance testing, we performed an extensive performance and scalability analysis
on synthetic networks. The presented tests focus on how long it takes to calculate one single equivalent firewall. The
calculation of all the equivalent firewalls in a network has a linear dependency on the number of paths and therefore
can be easily calculated based on our results. This approach seems the most efficient since the number of equivalent
firewalls is limited (Section 6.2) and depends on how many variables need to be tested.715

We generated reachability queries between two zones, containing 100 clients and 100 servers respectively. Zones
are connected by a network path containing an increasing number of cascaded firewalls (up to 5), each one configured
with up to 1000 filtering rules. The translation rules implement one of the common transformation policies: NAT
1-to-1, NAT many-to-1, and tunnelling. We used them to generate transformation policies that we applied in different
positions of the path, either before or after a firewall (or both). In the worst case scenario, we considered paths with720

25 translation policies and 5 firewalls, with 1000 filtering rules each.
Practically, we used three independent parameters in our experiments: (i) f , the number of firewalls in each path,

variable from 1 to 5; (ii) n, the number of rules per firewall, which varies from 50 to 1000; (iii) t, the number of
translation policies for each path, which varies from 1 to 25.

Generating rules for the synthetic network test scenarios has been a complex task. Indeed, random generation is725

not suitable, as rules in cascaded firewalls must be related to allow end-to-end communication paths. On the other
hand, manually specifying policies was impossible for the large networks we decided to test. Hence, we constrained
the random process with several requirements. First, we ensured reachability between selected filtering zones. This
implies that “allow rules” must be carefully placed in selected paths. Indeed, when a firewall blocks the communi-
cations for the entire query condition clause, the computation of the equivalent firewall stops and tests are imprecise.730

Furthermore, we generated rules according to the statistical data from Taylor [11] and average number of anomalies
from Al-Shaer [12]. These works estimate the number of rules that intersect simultaneously (up to 5) and the number
of intersecting rules in a rule set (at most 25%).

Figure 5 shows the average time needed to calculate one zone-to-zone equivalent firewall. For all the tests we
calculated a 95% confidence interval, which is depicted as a grey area around the graphs. The first plot (Figure 5a)735

shows the time to compute the equivalent firewall when the number of firewalls varies from 1 to 5, if the number
of rules per firewall is fixed at 1000 and the number of transformations per path is fixed at 25. The second plot
(Figure 5b) shows the time to compute the equivalent firewall when the number of transformations per path varies
from 1 to 25 if there are 1000 rules per firewall and exactly 5 firewalls per path. Finally, the third plot (Figure 5c)
shows the time to compute the equivalent firewall when firewall rules vary from 100 to 1000 if the number of firewalls740

per path is 5 and there are 25 transformations per path. It is possible to see that the computation time depends linearly
on the number of firewalls in the path (Figure 5a) and the number of translation rules (Figure 5b). The number of
rules is the factor that affects the execution time the most. As shown in Figure 5c, the computation time quickly
increases with the number of rules and, in the worst case scenario, reaches about 50 s. These results prove that, since
the equivalent firewall has to be calculated only once, the computation time is more than acceptable also considering745
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Figure 6: Time to compute equivalent firewalls and executing queries.

the huge number of firewalls and transformations in the path. It is worth noting that the majority of firewalls contain
less then 200 rules, where our algorithm takes less than 5 s.

Figure 6a plots the number of rules in the equivalent firewall obtained by serially composing two firewalls, de-
pending on the number of rules in the original firewalls. We see that the number of rules in the equivalent firewall
depends on the number of rules in the involved policies and the number of transformation rules, but it does not de-750

pend on the number of involved policies. Figure 6b shows the average time to compose two zone-to-zone equivalent
firewalls computed on different paths between the same two zones. The calculation time has a slightly more than
linear dependency on the number of rules in the equivalent firewalls. In the worst case tested (the composition of
two equivalent firewalls with 1000 rules each), the computation takes less than 2 s. We measured that the time to per-
form this computation is independent on the strategy (lower bound, upper bound or highlight anomalies). Figure 6c755

plots the average time needed to execute a query on an already computed equivalent firewall. Three types of queries
are evaluated: reachability between two hosts (single-single), between a host and a filtering zone (single-zone), and
between two filtering zones (zone-zone). We measured that query computation time has a linear dependency on the
number of rules in the equivalent firewall. In the worst case scenario, the algorithm only needs 7 ms to calculate the
query result, thus query execution is instantaneous, once the equivalent firewall has been created.760

7. Related works

We present the most influential work in this field and compare them with our proposal.

7.1. Reachability analysis
Authors in [13] define an algorithm for offline reachability analysis on networks containing packet filters, routers

and NAT transformations. Additionally, they proposed the definition of a standard set of queries as “user do not know765

what to query”. However, their solution does not support tunnels and the query interface offers only basic function-
alities. Xie based its reachability analysis on graph theory and dynamic programming [1]. Network is modelled as a
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triple containing the set of routers, their physical connections and a set of labelling functions used to express packet
filtering and transformation rules, so that firewalls and NAT devices can be described. This approach is purely theoret-
ical and thus lacks any experimental results. In addition, it can only be used to represent static NAT and filtering rules770

based on the destination addresses, and it does not take into account the existence of connectionless and connection-
oriented protocols and cannot provide exact reachability values, but only upper and lower bounds. The work in [2]
overcomes some limitations of Xie’s one. Authors use a more general model for describing firewalls, packet filtering
and transformation rules, thus adding the possibility to handle policies that depend on the source addresses and the
filtering states. Also in this case, performance analysis is absent. Another theoretical approach, used to compute the775

network-wide reachability was proposed in [3] where authors use traditional graph-based algorithms, such as Floyd-
Warshall, whereas [1] and [2] require ad-hoc techniques to mimic routing protocols. Additionally, they describe how
to represent both routing and filtering controls, but do not mention how to express packet transformations rules. [14]
is a generalization of Xie’s work based on “header space” information of packets. This approach is compatible with
filtering, routing, and transformation technologies, but it is limited to the classic 5-tuple rules of packet filters and780

cannot be used for filtering and security devices that work at a higher level of the network stack.
Mai et al. [15] present a reachability verification algorithm which is expressed as constraints rather then sets of

packets. The algorithm is based on a SAT solver, where the reachability query is represented as a Boolean formula.
The SAT solver searches for a symbolic packet which can be forwarded between two vertices of the network.

In [4] authors show how to use FDDs (Firewall Decision Diagrams) to compute the reachability of a network.785

This model supports packet routing, filtering and transformation rules. The implementation works in two steps. First,
a pre-computation phase (which can require hours on large networks) is performed. Afterwards, the tool can be used
to retrieve the reachability, by using a SQL-like language named SQRL. We consider this work as the most advanced
one before our work.

Networks can also be viewed as giant finite state machines as in [5], where authors model rules as a Boolean790

expression and represent them by means of BDDs (Binary Decision Diagrams). Rules can be analysed by using CTL
(Computation Tree Logic) and symbolic model checking to infer the reachability. Authors model routers, firewalls,
NAT devices and IPsec gateways, but not NAPT or other packet transformation policies. Also this approach requires
a long pre-computation phase before performing the actual reachability queries.

The presented model and reachability analysis algorithm has the advantage over similar works in literature. We795

summarize them in Table 3. The equality symbol (=) indicates that the proposed model has the same features and
the plus symbol (+) indicates that our approach has this additional feature. Compared to [1, 2, 3], we support a
broader range of security controls. Our model has an advantage over [4] because it has better performance, a more
precise query language, and it supports also end-system firewall. It is superior with respect to [5] because it supports
zone-to-zone queries and end-system firewalls.800

Paper Filtering NAT IPsec End-System Zone-to-Zone
[1, 2, 3] = + + + +
[4] = = = + =
[5] = = = + +

Table 3: Comparison between the state of the art and the proposed model.

7.2. Configuration verification

A different approach to reachability is configuration verification that uses a formal model of the desired network
behaviour as a baseline and checks if the network follows it or not. The perspective is slightly different, as the
behaviour must be defined in advance. An automated validation method for security policies is presented in [16]
for firewall configuration validation and reachability analysis. Authors formally introduce the concept of Executable805

Security Policies and use reachability graphs to ensure that they are conform with the firewall configuration. The
proposed solution can only be applied to the validation of a single packet filter configuration based on 5-tuple rules.
The model does not support other firewall types, translation controls, routers and tunnels.

Finally, recent literature [17, 18] has extended the firewall analysis towards the configuration verification of mid-
dleboxes. Middleboxes are stateful network functions that process traffic based on their configurations and internal810

states, like a learning firewall.
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7.3. Anomaly analysis

Another orthogonal area of research with a similar objective, that is, discovering errors in the implementation of
authorization policies, provides models and tools to perform anomaly analysis whose objective is to identify possible
configuration errors by identifying simultaneously activated rules, i.e. anomalies. This approach cannot interpret the815

“meaning” of rules but only the relations between them, therefore is has a main disadvantage: it can not identify
undesired behaviours of the network. Even in the best case, when numerous redundant and unnecessary rules are
identified, correcting these anomalies does not guarantee that the security controls behave as expected. However, it is
interesting for our research as it can be applied to individual firewall policies and to equivalent firewalls. The anomaly
analysis was first introduced by Al-Shaer [19] for packet filters and serially connected packet filters. From this paper,820

other researchers have proposed alternative models and classifications. Garcia-Alfaro et al. [20] proposed MIRAGE, a
tool for the analysis and deployment of configuration policies also capable of configuring network intrusion detection
systems (NIDS) and VPN routers. Other tools are Firecrocodile [21] that works on Cisco PIX rules, FIREMAN [22]
that also checks if the filtering configurations correctly implement an end-to-end policy.

All these works share the same disadvantages even if they rely on different analysis algorithms: none of them can825

handle other security technologies but packet filters. An example of stateful analysis of a firewall configuration is
presented in [23]. Finally, [7, 24, 25] generalizes Al-Shaer’s classification to multi-rule anomalies, i.e. involving more
than two rules.

8. Conclusions and Future Work

This paper has presented a static reachability analysis approach based on the construction of end-to-end equivalent830

firewalls, using a geometric model of policies.
Our model provides fast and accurate reachability results coupled with an excellent flexibility, allowing its appli-

cation to a wide array of areas such as traditional corporate networks, but also critical infrastructure scenarios.
The proposed approach can represent a large variety of network security controls, such as routers, stateless and

stateful firewalls, NAT/NAPT and tunnelling controls, and allows administrators to execute precise queries, thanks835

to a rich set of conditions types and an improved support for stateful reachability analysis. The approach is efficient
and presents good scalability results. We also provide an extension of the SRQL format supporting a larger set of
reachability analysis options and a richer set of condition types, covering also application layer filters. Moreover, our
approach offers more complex types of Boolean expressions that allow to better characterize the traffic to query.

Our future work aims at increasing the expressiveness of the tool to be as close as possible to real environments.840

The mathematical model of equivalent firewalls can be extended to support other categories of security controls
currently unsupported, like forward and reverse proxies. For instance, currently, our approach does not fully support
all the capabilities of a proxy since we cannot model authentication systems and (stateful) authentication information.
In addition, our model only supports HTTP and some stateful characteristics of the FTP and DNS protocols. However,
we are planning to handle other protocols (e.g. SSH) and message protection techniques (e.g. WS-Security) as well.845

Moreover, this approach suits well virtualized network environments, where most of the topological and configu-
ration data needed to perform an analysis are available at the Management element. Integrating our tool in virtualized
environments and extending our analysis to Software Defined Network is an interesting future improvement.
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