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Abstract Given a set of nodes, where each pair of nodes is connected by several

paths and each path shows a stochastic travel cost with unknown probability dis-

tribution, the multi-path Traveling Salesman Problem with stochastic travel costs

aims at finding an expected minimum Hamiltonian tour connecting all nodes. Under

a mild assumption on the unknown probability distribution, a deterministic

approximation of the stochastic problem is given. The comparison of such

approximation with a Monte Carlo simulation shows both the accuracy and the

efficiency of the deterministic approximation, with a mean percentage gap around

2% and a reduction of the computational times of two orders of magnitude.

Keywords TSP � Multiple paths � Stochastic travel costs � Deterministic

approximation

1 Introduction

Recently, with an increasing worldwide concern for the environment, freight

transportation has been object of new studies aiming at reducing negative
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externalities due to freight distribution operations, such as pollution, accidents,

noise and land use deterioration. In the past decade, City Logistics pushed

researchers towards the definition of new conceptual models of transportation and

supply chain integration in urban areas. These models have been extended with the

introduction of the concept of Smart City (Chourabi et al. 2012), where ‘‘smart’’

implies a plethora of methods and disciplines within a holistic vision to mitigate the

problems generated by population growth and rapid urbanization. In particular,

recent efforts in the planning of freight transportation activities have focused on

greenhouse gases (GHGs) emissions minimization.

In the literature concerning sustainable freight transportation planning, a huge

number of papers deals with two main objectives: the quantification and forecasting

of the GHGs emissions of routing activities (fuel consumption models), and the

environmental concerns integration in the objective function of vehicle routing and

transportation model (Demir et al. 2014). In fact, traditionally the main goal of the

planning of freight transportation has been to minimize the number of vehicles or to

minimize costs (usually associated to travel times or traveled distance).

Furthermore, the attention to GHGs emissions takes greater relevance within

urban areas because congestion is one of the effective factors on greenhouse gases,

particularly CO2. These trends (City Logistics, Smart Cities and the efforts in

reducing GHGs emissions) lead to an increasing attention to the planning of road

freight transportation.

At the same time, transportation technologies and fuels also have improved over

the years developing electric and hybrid vehicles for freight distribution. With the

introduction of new type of vehicles, new requirements arise in the planning of

freight transportation.

The PIE_VERDE project, funded by the European Regional Development Fund

(ERDF), aims at developing new planning tools for freight delivery in urban areas

by means of environmental friendly light duty vehicles. In this project, one of the

goals is to plan and manage a two-echelon delivery service. Trucks are not allowed

to directly enter the city and freight is consolidated in small peripheral depots. The

goods are then delivered to customers using hybrid vehicles (Perboli et al. 2011).

The planning of a hybrid vehicle tour requires the determination of the sequence

of clients to visit and the selection of the powertrain during the tour. In fact, hybrid

vehicles can change the powertrain during a route, impacting on their GHG

emissions, energy and fuel consumption. These vehicles can be fueled by full

thermal, thermal–electric or exclusively electric engine thanks to a rechargeable

energy storage system able to supplement fossil fuel energy for vehicle propulsion.

Additionally, some hybrid vehicles use co-generative thermal engine that exploits

braking power to generate electricity while traveling. Hence, the gain in terms of

GHGs emissions reduction, obtained by a hybrid vehicle instead of a traditional one,

varies according to how the several powertrains have been selected during each

route. An intelligent planning of the powertrain selection is a key factor to

efficiently use a hybrid vehicle.

This paper has been conceived for PIE_VERDE project to create a model able to

optimize both freight vehicle tour and powertrain selection for hybrid vehicles in

parcel and courier deliveries. Our paper aims at meeting several current needs in the
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context of freight transportation planning. First, there is the need of new routing

models that consider the stochasticity of generalized cost functions, which include

both operational and environmental aspects.

Second, new freight distribution business models, such as parcel delivery and

e-commerce freight delivery, require tiny limited time for vehicle fleet planning:

about 30 minutes for planning the full fleet. Hence, the tours must be computed with

a very short computational effort.

Third, in real cases, the distribution of stochastic variables are unknown and it is

not easy and not always possible to derive their distribution from real data because

of the small number of hybrid vehicles applied for freight distribution, the difficulty

or impossibility to access to sensors data and the difficulty of getting data from the

vehicles control unit.

We present the multi-path Traveling Salesman Problem with stochastic travel

costs (mpTSPs), a new stochastic variant of the Traveling Salesman Problem. The

multi paths allow us to consider the multi powertrains of hybrid vehicles and the

presence of multiple paths between two customers. In fact, with the term ‘‘path’’, we

identify the shortest path between two nodes, performed with the selected

powertrain.

In more details, given a graph characterized by a set of nodes, a set of paths,

which connect pairs of nodes, and random travel costs, we want to find an

Hamiltonian cycle which minimizes the expected value of the travel cost of the

cycle. This is computed as the sum of the expected travel costs of the paths

interconnecting the pairs of nodes, where, for each pair of node, only one path can

be selected among the several ones. Furthermore, each path is characterized by a

travel cost. The travel cost is a generalized cost which includes both fuel

consumption and driving time. Additionally, each travel cost is composed of a

deterministic term plus a random term, which represents the travel cost oscillation

due to traffic congestion, driving style, etc. The several combinations between

powertrain and the travel cost oscillation generate different paths between two given

nodes. The model chooses the path between two nodes according to an efficiency-

based decision, i.e., the path with the minimum expected travel cost is chosen.

Moreover, the probability distributions of the travel costs are assumed to be

unknown.

Other applications of the mpTSPs arise in the City Logistics context. Nowadays,

cities offer several services, such as garbage collection, periodic delivery of goods

in urban grocery distribution and bike sharing services. These services require the

definition of fixed tours that will be used from one to several weeks [see, e.g.,

CITYLOG Consortium (2010)]. However, within urban areas, paths are affected by

the uncertainty of travel time. The travel time distributions differ from one path to

another and they are time dependent. Even an approximated knowledge of the travel

time distribution may be made difficult due to the large size of the data involved.

The usage of the travel time’s mean (or other measures of the expectation) may

imply relevant errors when the variance is high.

The scientific contribution of this study is threefold: (i) to introduce the mpTSPs
and give a formulation, in which travel costs are assumed to be uncertain with an

unknown distribution, while, at the best of our knowledge, in the literature travel

The multi-path Traveling Salesman Problem 5

123



costs have always been assumed to fit a specific distribution; (ii) to propose the first

model able to support the planning of hybrid vehicles routing, considering the

several powertrains as well as the stochasticity of the context; and (iii) to derive a

deterministic approximation from the stochastic formulation, which we validate by

means of extensive computational experiments.

In particular, the deterministic approximation becomes a TSP problem where the

minimum expected total travel cost is equivalent to the maximum of the logarithm

of the total accessibility of the Hamiltonian tours to the path set. We evaluate the

quality of the deterministic approximation by comparing it with the Perfect

Information results obtained by a Monte Carlo method. The comparison shows a

good accuracy of the deterministic approximation, with a reduction of the

computational times of two orders of magnitude. Besides, computational results

show how the derived model can be solved with difficulty within the timing

restrictions of the application with a reasonable accuracy.

The paper is organized as follows. In Section 2 a relevant literature is listed.

Section 3 presents the stochastic model of the mpTSPs and Section 4 derives its

deterministic approximation. In Section 5 we compare the results of the

deterministic approximation with the results of a Monte Carlo simulation of the

stochastic problem. Finally, in Section 6 conclusions are drawn.

2 Literature review

A routing problem is said to be static when its input data do not explicitly depend on

time, while it is dynamic if some elements of information are revealed or updated

during the period of time in which operations take place. (Ghiani et al. 2003;

Berbeglia et al. 2010; Pillac et al. 2013) Moreover, a routing problem is

deterministic if all input data are known before routes are constructed, otherwise

it is stochastic.

According to these definitions, our mpTSPs is static and stochastic.

In this section, we discuss the main literature on stochastic TSP, as well as the

results of similar and related problems, including Shortest Path and Vehicle

Routing, showing the differences between our problem and the others introduced in

the literature.

While different stochastic variants of TSP (and more in general of vehicle routing

problem) are present in the literature (Gendreau et al. 1996; Golden et al. 2008;

Pillac et al. 2013), the mpTSPs is absent. For this reason, we also consider some

relevant literature on similar problems, highlighting the main differences with the

problem faced in this paper.

In the literature several stochastic variants of the TSP problems can be found. In

these problems, a known distribution affecting some problem parameters is given

and the theoretical results are strongly connected with the hypotheses on such

distribution. The main sources of uncertainty are related to the arc costs (Leipala

1978; Toriello et al. 2012) and the subset of cities to be visited with their location

(Jaillet 1988; Goemans and Bertsimas 1991).
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If we consider general routing problems, different types of uncertainty can be

considered. The most studied variants are related to customer locations and

demands, with the requests being both goods (Hvattum et al. 2006, 2007; Ichoua

et al. 2006) and services (Bertsimas and Van Ryzin 1991). Only in recent years, the

stochasticity related to travel times has been considered in the literature (Güner

et al. 2012; Kenyon and Morton 2003; Taş et al. 2013).

All the papers presented in this literature review deal with uncertainty of the

routing problems where the magnitude of the uncertainty is limited and the

parameter values are revealed in a time interval compatible with the operations

optimization. Then, even if multiple paths can be present between two given nodes,

the multi-path aspects can be ignored, being possible as a priori choice of the path

connecting the two nodes. In our case, the mpTSPs is thought to be used for

planning a service. Thus, the enlarged time horizon as well as strong dynamic

changes in travel costs due to traffic congestion and other nuisances typical of the

urban transportation induce the presence of multiple paths connecting every pair of

nodes, each one with its stochastic cost.

When we consider other routing problems related to the TSP, a large literature is

available for the stochastic Shortest Path. One of the few papers directly dealing

with multiple paths is due to Eiger et al. (1985). In their paper the authors consider

an extension of the classical shorted route problem where multiple arcs interconnect

the nodes and the costs are uncertain. In particular, they show how, when the

preferences between the arcs are linear or exponential distributed, a Dijkstra-type

algorithm using the mean of the distributions finds an optimal path. Unfortunately,

the results are strictly related to the specific problem, the shortest path, and to the

presence of a Dynamic Programming solution method. Moreover, differently from

our case, the preferences must be exponentially distributed, while we assume that

only the right tail converges to an exponential distribution. Psaraftis and Tsitsiklis

(1993) introduce a variant of the stochastic Shortest Path where the arc costs are

stochastic and dynamic, in the sense that the arc cost is a known function of a

certain environment variable which depends on the time in which we are leaving

from each node. Differently to our case, not only is there one single path associated

to each node, but the environment variable associated to each arc is an independent

stochastic process associated to a finite-state Markov process with a known

transition probability matrix. Thus, this approach is not suitable to urban

transportation, where the estimation of the Markov process could be not usable in

practice. Finally, Jaillet and Melvyn Sim (2013) recently proposed criteria to design

shortest paths when deadlines are imposed to the nodes and the goal of the problem

is to minimize the deviation of the actual arrival time with respect to the desired

one. They also show that the stochastic shortest path with deadlines under

uncertainty can be solved in polynomial time when there is stochastic independence

between the arc travel costs. Even in this case between any pair of node only one arc

exists.

Another research direction in routing of stochastic networks is related to the

usage of an objective function measuring the lateness of the dispatcher when

arriving to the customer site (see Hame and Hakula (2013) and Cordeau et al. (2007)

for a survey). Lecluyse et al. (2009) consider a variant of the Vehicle Routing
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Problem where the travel costs are time dependent and the objective function is a

linear combination of the mean and the variance of the travel costs of the arcs. The

authors introduce instances based on realistic speed profiles and analyze the results

in terms of the 95th percentile of the travel cost distribution, which is assumed to be

lognormal. Lee et al. (2012) formulate another VRP variant where both customer

demands and arc travel times are uncertain. The authors propose a Dantzig–Wolfe

decomposition approach to encapsulate the uncertainty in the solution method and a

Dynamic Programming algorithm to solve the column generation subproblem.

From the literature, two gaps come to light: first, problems considering multi

paths have not been studied yet, particularly, problems taking into account both

multi paths and stochastic costs; second, dealing with freight fleet transportation,

there are no models and methods able to find a solution in short time, taking into

account the effects of stochastic costs.

3 The mpTSPs

To reproduce a real-world transportation network, two layers can be considered: the

physical layer and the logical layer. The physical layer is built by a set of arcs and nodes,

while the logical layer consists of paths and a subset of nodes of the physical layer. A path

in the logical layer connects a pair of nodes via a set of arcs from the physical layer. In this

paper, we consider the logical layer and each path identifies the shortest path between two

nodes. In addiction, each path is characterized by a travel cost which is composed of a

deterministic travel cost plus a random term, which represents the travel cost oscillation

due to traffic congestion, driving style, different powertrains for hybrid vehicles, etc. In

practice, such oscillations are actually very difficult to bemeasured. The scenarios are the

possible realizations of the travel costs in different traffic situations. While at the

operational levelweknowwith agood approximation, for eachpath, the actual travel cost,

this is not true at the planning level, where the tour must be built to cope with different

traffic conditions and other parameters of the routes. Thus, at this level, even knowing the

order of the nodes to visit, the travel cost of each path is a random variable with a

probability distribution which is very difficult to measure in practice. This implies that

such probability distribution must be assumed as unknown.

Let it be

– N: set of nodes

– U: subset of N

– L: set of scenarios

– Kij: set of paths between nodes i and j

– ckij: unit deterministic travel cost of path k 2 Kij

– ~hklij : random travel cost oscillation of path k 2 Kij under scenario l 2 L

– ~ckijð~hklij Þ ¼ ckij þ ~hklij : unit random travel cost of path k 2 Kij under scenario l

– xkij: boolean variable equal to 1 if path k 2 Kij is selected, 0 otherwise

– yij: boolean variable equal to 1 if node j is visited just after node i, 0 otherwise.

8 R. Tadei et al.
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The mpTSPs is formulated as follows

min
fy;xg

Ef~hklij g

X

i2N

X

j2N
yij

X

k2Kij

X

l2L
~ckijð~h

kl
ij Þxkij

2
4

3
5 ð1Þ

subject to

X

j2N:j6¼i

yij ¼ 1 i 2 N ð2Þ

X

i2N:i6¼j

yij ¼ 1 j 2 N ð3Þ

X

i2U

X

j 62U
yij � 1 8U � N ð4Þ

X

k

xkij ¼ yij i 2 N; j 2 N ð5Þ

xkij 2 f0; 1g k 2 Kij; i 2 N; j 2 N ð6Þ

yij 2 f0; 1g i 2 N; j 2 N ð7Þ

The objective function (1) expresses the minimization of the expected total travel

cost; (2) and (3) are the standard assignment constraints; (4) is the subtour elimi-

nation constraints. Constraints (5) link the variables xkij to the yij. Finally, (6)-(7) are

the integrality constraints.

If the probability distribution of travel costs were known, the mpTSPs would be

reduced to a deterministic problem where the expected values would be substituted

to the stochastic travel costs oscillations. This is due to the linearity of the objective

function, as shown by Eiger et al. (1985). Unfortunately, model (1)-(7) considers

stochastic costs with unknown probability distribution. A common way to represent

and solve this type of problems is to discretize the stochastic sources by means of

scenario generation. This implies, even in the case of the Perfect Information

computation, the need to solve several times, at least one for each scenario, the

deterministic counterpart that for the TSP is known to be NP-Hard. Thus, the

computational effort needed to cope with the different scenarios increases rapidly

both with the size of the instance in terms of nodes and multiple paths, and with the
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number of scenarios. As shown in the computational experiences, in fact, a

reasonable trade off between accuracy and efficiency is 100 scenarios. Due to the

need of solving the mpTSPs in a very limited computational time, more efficient

ways for solving it are needed. Thus, in the following we derive a deterministic

approximation of the stochastic problem able to approximate, under a mild

hypothesis on the probability distribution shape, even the case where the probability

distribution in unknown or it is varying from path to path.

Given any pair of nodes i; j 2 N and any path k 2 Kij between them, we assume

that, across the alternative scenarios l 2 L, the travel cost oscillations ~hklij are

independent and identically distributed random variables with unknown probability

distribution, given by the following cumulative right distribution function

Fk
ijðxÞ ¼ Prf~hklij � xg ð8Þ

Although the independence assumption could seem unrealistic, it is frequently done

in the urban path-finding literature (Lecluyse et al. 2009; Jaillet and Melvyn Sim

2013). Moreover, we will see from our computational results, obtained using

empirical data of a middle-sized city, that even with travel cost oscillations which

are dependent our deterministic approximation gives very good results.

The assumption of identical distributions for the travel cost oscillations is quite more

rare and stronger. Nevertheless, it is mitigated, as it is shown in 4, by the fact that the only

common property required to these distributions is to be asymptotically exponential in

their left tail. This is a very mild assumption as we observe that many probability

distributions show such behavior, among them are the widely used distributions

Exponential, Normal, Lognormal, Gamma, Gumbel, Laplace, and Logistic. Also in this

case, our computational results show that even with different probability distributions for

the scenarios the deterministic approximation is very accurate.

Following Tadei et al. (2012), we define ~hkij as the minimum of the random travel

cost oscillations ~hklij of path k 2 Kij across the alternative scenarios l 2 L

~hkij ¼ min
l2L

~hklij k 2 Kij; i 2 N; j 2 N ð9Þ

Let Bk
ij be the cumulative right distribution function of ~hkij

Bk
ijðxÞ ¼ Pr ~hkij � x

n o
ð10Þ

As, for any path k 2 Kij, ~h
k
ij � x () ~hij

kl � x; l 2 L and ~hij
kl
are independent and

identically distributed across the alternative scenarios l 2 L, using (8) one gets

Bk
ijðxÞ ¼

Y

l2L
Pr ~hij

kl � x
n o

¼
Y

l2L
Fk
ijðxÞ ¼ Fk

ijðxÞ
h ijLj

ð11Þ

We relax the problem by assuming that we can choose across all scenarios l 2 L.

Being the routing efficiency-based, the scenario l 2 L that minimizes the random

travel cost ~ckijð~h
kl
ij Þ will be selected.

10 R. Tadei et al.
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Then, the random travel cost of path k 2 Kij becomes

~ckijð~h
k
ijÞ ¼ min

l2L
~ckijð~h

kl
ij Þ ¼ ckij þmin

l2L
~hklij ¼ ckij þ ~hkij k 2 Kij; i 2 N; j 2 N

ð12Þ

The minimum travel cost oscillation ~hkij can be either positive or negative, but, in

practice, its support is such that no negative travel costs ckij exist, so that ~ckijð~hkijÞ is
always non-negative.

For each pair of node ði; jÞ, let us consider the path k� (for the sake of simplicity,

we assume it is unique) which gives the minimum random travel cost.

The minimum random travel cost between i and j is then

~cijð~hk
�

ij Þ ¼ min
k2Kij

~ckijð~h
k
ijÞ i 2 N; j 2 N ð13Þ

and the optimal variables xkij

n o
of problem (1)-(7) become

xkij ¼
1; if k ¼ k�

0; otherwise

�
ð14Þ

Using (13), (14), and the linearity of the expected value operator E, the objective

function (1) becomes

min
fyg

Ef~hk�ij g

X

i2N

X

j2N
yij~cijð~hk

�

ij Þ
" #

¼ min
fyg

X

i2N

X

j2N
yijEf~hk�ij g

~cijð~hk
�

ij Þ
h i

¼ min
fyg

X

i2N

X

j2N
yijĉij

ð15Þ

where

ĉij ¼ Ef~hk�ij g
~cijð~hk

�

ij Þ
h i

i 2 N; j 2 N ð16Þ

The mpTSPs then becomes

min
fyg

X

i2N

X

j2N
yijĉij ð17Þ

subject to (2)–(7).

However, the calculation of ĉij in (17) requires knowing the probability

distribution of the minimum random travel cost between i and j, i.e. ~cijð~hk
�

ij Þ, which
will be derived in the next section.

4 The deterministic approximation of the mpTSPs

By (12) and (13), let

The multi-path Traveling Salesman Problem 11
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GijðxÞ ¼ Pr ~cijð~hk
�

ij Þ� x
n o

¼ Pr min
k2Kij

~ckijð~hkijÞ� x

� �
i 2 N; j 2 N ð18Þ

be the cumulative right distribution function of the minimum random travel cost

between i and j.

As, for any pair of nodes i; j 2 N and any path k 2 Kij,

mink2Kij
~ckijð~hkijÞ� x () ~ckijð~hkijÞ� x, due to (10) and (11), Gijfxg in (18) becomes

a function of the total number jLj of scenarios as follows

Gijðx; jLjÞ ¼ Pr min
k2Kij

~ckijð~h
k
ijÞ� x

� �
¼

Y

k2Kij

Pr ~ckijð~h
k
ijÞ� x

n o

¼
Y

k2Kij

Pr ~hkij � x� ckij

n o
¼

Y

k2Kij

Bk
ij x� ckij

� �

¼
Y

k2Kij

Fk
ij x� ckij

� �h ijLj
i 2 N; j 2 N

ð19Þ

Let us assume that jLj is large enough to use the asymptotic approximation

limjLj!þ1 Gijðx; jLjÞ as a good approximation of GijðxÞ, i.e.

GijðxÞ ¼ lim
jLj!þ1

Gijðx; jLjÞÞ i 2 N; j 2 N ð20Þ

The calculation of the limit in (20) would require knowing the probability distri-

bution Fk
ijð:Þ in (8), which is unknown. From Tadei et al. (2012), we know that under

a mild assumption on the shape of the unknown probability distribution Fk
ijð:Þ (i.e. it

is asymptotically exponential in its left tail), the limit in (20) tends towards the

following Gumbel probability distribution (Gumbel 1958), which is known as the

extreme values distribution

GijðxÞ ¼ lim
jLj!þ1

Gijðx; jLjÞÞ ¼ exp �Aije
bx

� �
i 2 N; j 2 N ð21Þ

where b[ 0 is a parameter to be calibrated and

Aij ¼
X

k2Kij

e�bckij i 2 N; j 2 N ð22Þ

is the accessibility, in the sense of Hansen (1959), of the pair of nodes i; j to the set

of paths between i and j.

Using the probability distribution GijðxÞ given by (21), after some manipulations,

ĉij in (16) becomes

ĉij ¼ �
Z þ1

�1
xdGijðxÞ ¼

Z þ1

�1
x exp �Aije

bx
� �

Aije
bxbdx ¼ � 1

b
ðlnAij þ cÞ

i 2 N; j 2 N

ð23Þ

where c ’ 0:5772 is the Euler constant.

12 R. Tadei et al.
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By (23) and up to the constant � c
b

P
i2N

P
j2N yij ¼ � c

b jNj, (17) becomes

min
fyg

X

i2N

X

j2N
� 1

b
yij lnAij ¼

¼ 1

b
max
fyg

X

i2N

X

j2N
lnA

yij
ij ¼

¼ 1

b
max
fyg

ln
Y

i2N

Y

j2N
A
yij
ij ¼

¼ 1

b
max
fyg

lnU

ð24Þ

subject to (2)-(7), where U ¼
Q

i2N
Q

j2N A
yij
ij is the total accessibility of the set of

arcs of an optimal Hamiltonian tour to the global set of paths.

From (24), it is interesting to observe that the expected minimum total travel cost

is equivalent, but the constant 1
b, to the maximum of the logarithm of the total

accessibility.

5 Computational results

In this section, we present and analyze the results of the computational experiments.

The goal is to evaluate the effectiveness of the deterministic approximation of the

mpTSPs we derived. In our computational experiments, travel costs are associated

to travel times.

We do this by comparing our deterministic approximation with the Perfect

Information case, computed by means of a Monte Carlo simulation performed on

the stochastic problem. The Perfect Information is one of the most used methods in

stochastic programming to evaluate whether an approximated approach is nearly

optimal or inaccurate. The expected value of perfect information (EVPI) measures

the maximum amount a decision maker would be ready to pay in return for

complete information about the future (Birge and Louveaux 1997). An alternative

method to EVPI is the one obtained by replacing all random variables with their

expected values. This is called the expected value problem or mean value problem

and it is used to calculate the value of the stochastic solution (VSS). EVPI measures

the value of knowing the future with certainty, while VSS assesses the value of

knowing and using distributions on future outcomes. Thus, the former is used for

deciding whether to undertake additional efforts becomes more practically relevant,

while the latter is used where no further information about the future is available.

After these considerations, we decided to implement the EVPI approach.

The Monte Carlo simulation is implemented in C??, with the underlying TSP

instances solved by means of the Concorde TSP solver (Applegate et al. 2007; Cook

2012). Experiments were performed on an Intel I7 2 GHz workstation with 8 GB of

RAM.
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Section 5.1 introduces the instance sets. The details of the Monte Carlo

simulation are presented in Section 5.2. The calibration of the parameter involved in

the deterministic approximation of the mpTSPs is described in Section 5.3, whilst

the comparison between the Monte Carlo simulation and the approximated results is

given in Section 5.4.

5.1 Instance sets

No real-life instances are present in the literature for this stochastic version of the

TSP problem. Then, we generate two instance sets. In the first instance set, Set1,

travel times are generated according to realistic rules, i.e. they are related to the

length of the associated arcs of the considered TSP instances and there is no

correlation between different scenarios and the stochastic variables are independent.

In urban areas, travel times are linked to the vehicle speed profile distributions.

Moreover, to assume an actual independence of the vehicle speed of different paths

could be wrong, both from the geographic (portions of paths in common) and from

the time (evolution of the traffic flows in contiguous interval times) point of view.

To take into account these two aspects, the second instance set, Set2, is heavily

based on the real traffic sensor network of the medium sized city, Turin in Italy,

which allows to better reflect real cases of City Logistics applications. Moreover,

time correlation is considered using data taken from a large and continuous interval

time (a full week) and a proper scenario generation algorithm.

5.1.1 Set1

In Set1, we generated instances, partially based on those available in the TSPLIB

(Reinelt 1991) for the deterministic TSP problem. According to the literature, we

generated the stochastic travel times according to the guidelines presented in

Kenyon and Morton (2003):

– Instances. To limit the computational time, which is mainly due to the Monte

Carlo simulation, we considered all instances with a number of nodes up to 200

in the TSP Library set. In particular, we split those instances into two sets: 11

instances with up to 100 nodes (N100) and 15 instances with number of nodes

between 101 and 200 (N200).

– Nodes. The nodes and their position on the plane are the same as the original

TSP instances.

– Multiple paths. The number of paths between any pair of nodes is set to 1, 3, and

5. Although the mpTSPs hypothesizes that several paths are present between any

pair of nodes, we decided to also test the case where only one path is available.

In fact, it is interesting to observe the behavior of the approximation in an

extreme situation where the aspect characterizing the problem is just the

stochasticity of the travel times on a single path.

– Path travel times. The travel time ckij associated to each path k between nodes i

and j is considered as a function of the Euclidean distance between i and j. In

14 R. Tadei et al.
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detail, this travel time has been drawn from UðECij; 3ECijÞ, where ECij is the

Euclidean distance between i and j and U is the uniform distribution. The

random travel time oscillations hkij have been drawn as Dð�ckij=2; 2c
k
ijÞ, where D

is a probability distribution with its support limited to 50 and 100% of the

corresponding deterministic cost, such that ckij þ hkij �ECij. For D we have

considered both the Uniform and the Gumbel distribution.

5.1.2 Set2

As instances of Set1 do not fully reflect real cases of City Logistics applications, in

the following we discuss how we have generated new instances based on the real

traffic sensor network of the city of Turin, in Italy. In fact, the assumptions about the

independence and the equal distribution of the stochastic travel times do not hold in

real urban settings. The aim of Set2 is to introduce spatial and time correlation

between the variables. The spatial correlation is obtained using data taken from real

speed sensors, while the time correlation is imposed by generating scenarios where

the speed profiles of the paths are grouped in subsequent time intervals. In details,

we consider that travel times are directly correlated to speed profile distributions.

Thus, we apply two different speed profile distributions: an empirical one, whose

values are obtained by data from a real sensor network in the city of Turin, and a

theoretical one where the speed values are distributed accordingly to a given

distribution. Being our deterministic approximation based on the extreme values

theory, we choose the Gumbel distribution for the second speed profile. In this way,

the theoretical distribution allows us to measure the error due to the bias introduced

by our approximation itself. Hence, the comparison between the empirical and

theoretical speed distribution results shows the error due to the bias introduced by

our approximation and the error due to the real data distribution.

In the literature, a consistent number of papers investigates the correlation

between speed distribution and travel times, particularly when dealing with road

congestion (Weisbrod et al. 2001; Figliozzi 2010a, b). For example, Figliozzi

(2010a) studies the correlation between congestion, travel times and depot-customer

travel distance.

We follow the same schema presented in Figliozzi (2011) for the empirical speed

profile distribution, because also this paper refers to data provided by a real sensor

network. Furthermore, dealing with travel times, we use a simplified distance

computation, applied in many other papers in the literature, such as Kenyon and

Morton (2003) and Franceschetti et al. (2013):

– Instances. As in Set1, we split these instances into two sets: 11 instances with up

to 100 nodes (N100) and 15 instances with number of nodes between 101 and

200 (N200).

– Nodes. Given the portion of plane containing the nodes of the original TSP

instances and their position, they are mapped over a square of 14 km edge,

The multi-path Traveling Salesman Problem 15

123



which is equivalent to a medium sized city like Turin. The set of nodes is

partitioned into two subsets:

– Central nodes: the nodes belonging to the city center, which are the nodes in

the circle where the center coincides with the geometric center of the 14 km

square and a radius equal to 7 km;

– Suburban nodes: the nodes which are not central.

– Pair of nodes types: the pairs of nodes can be homogeneous or heterogeneous.

– Homogeneous: they are pairs of nodes where the starting node i and the

destination node j are both central. In this case all the multiple paths between

the nodes present the empirical speed profile of a central speed sensor.

– Heterogeneous: these are pairs of nodes where at least i or j belongs to the

suburban set. In this case the multiple paths between the nodes present the

empirical speed profile of a central speed sensor for 1=3 of the paths and a

suburban one for the 2=3 of them if the paths are more than 1. If there is only

one path between i and j, it has a suburban speed profile.

– Multiple paths. The number of paths is set to 3, and 5.

– Speed profile. We use two speed profiles, one empirical based on real data taken

from speed sensors placed in the town of Turin and a theoretical one based on a

Gumbel distribution of the speed profiles. In details, for each path k connecting

nodes i and j and each scenario l, the speed velocity vklij is computed as follows:

– Empirical speed profile distributions, veklij : we generate central and suburban

speed profile distributions from real data on the traffic of Turin available at

the website http://opendata.5t.torino.it/get_fdt. The data of the mean vehicle

speed, expressed in kilometers per hour (km/h), are accessible with an

accuracy of 5 min. We aggregated them in blocks of 30 minutes, for a total

of 48 observations per day. The instances refer to 9 central speed sensors

locations and 18 suburban ones in the period from 13 to 17 February 2013

(see the two circles in Fig. 1, giving the distribution of the actual sensors).

Thus, given a path k associated to a pair of nodes (i,j) in the scenario l, an

empirical speed veklij is randomly taken from the database of the real data.

– Theoretical speed profile distribution: vtklij ¼ Gð�ckij=2; 2c
k
ijÞ, where G is a

Gumbel distribution truncated between �cij and 2ckij and ckij is the mean over

all speed velocities generated by the empirical speed profile distribution of a

path k between the nodes i and j in all the generated scenarios.

– Path travel times. The travel time ~cklij is a function of the Euclidean distance

between i and j, ECij, the type of pair of nodes, k, and the speed profile vklij

associated to the path k between i and j under scenario l. vklij is equal to ve
kl
ij or vt

kl
ij
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accordingly to the used speed distribution, empirical or theoretical respectively.

In detail, this travel time has been computed as

~cklij ¼ ckij þ ~hklij ¼
ECij

vklij
ð25Þ

and

~ckij ¼ El2L
ECij

vklij
ð26Þ

is the average travel time over all scenarios l 2 L, associated to the path k

between nodes i and j. The random travel time oscillations are then computed as

~hklij ¼
ECij

vklij
� El2L

ECij

vklij
ð27Þ

– Time correlation. The time correlation is defined as follows. Given a scenario l�

and the speed sensor associated to the path k between i and j , we randomly

choose among the 48 available a given time block t�. From the empirical speed

profile distribution we obtain vkl
�

ij . Thus, for the next r scenarios the speed sensor

associated to the path k between i and j is fixed and v
kðl�þrÞ
ij is given by the

empirical speed profile distribution at time block t� þ r. The values of time

correlation used in our experiments are 0, 2 and 4 (r ¼ 0 means that the

association between a path, a real speed sensor and the time block is randomly

chosen in each scenario).

5.2 Monte Carlo simulation

To evaluate the stochastic objective function of our problem for Set1, we used a

Monte Carlo simulation. Our Monte Carlo simulation repeats the following overall

process I times:

– Create S scenarios with the random costs hkij generated as described in 5.1.

– Solve each scenario as follows. Build a TSP with the node set equal to the node

set of the stochastic problem. Set the cost cij between nodes i and j as

cij ¼ minkðckij þ hkijÞ. Indeed, when a cost scenario becomes known, its optimal

solution is obtained using, as a path between the two nodes, the path with the

minimum random travel time. The scenarios are solved to optimality by means

of the Concorde TSP solver.

– Given the scenario optima, compute the expected value of the total cost.

– Compute the distribution of the expected value of the total cost for the scenario-

based simulations.

To obtain the most reliable results of the Monte Carlo simulation, we performed a

set of tuning testbeds using a subset of instances (5 from N100 and 5 from N200).

The values for the parameters I (number of repetitions) and N (number of scenarios)
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have been set such that the standard deviation of the distribution of the expected

value was less than 1% of its mean. These values were I ¼ 10 and N ¼ 100.

Concerning Set2, to evaluate the quality of the deterministic approximation

compared to the stochastic objective function of our problem, we used the same

approach previously described for Set1. Thus, the stochastic problem is solved by

means of a Monte Carlo simulation, while when needed, the TSP instances are

solved by means of the Concorde TSP solver (Applegate et al. 2007; Cook 2012).

Each instance is solved using the empirical speed profile and the Gumbel

distribution defined as in Set1. This is done to give a comparison between the ideal

situation for the deterministic approximation (the speed distribution is a Gumbel)

and the empirical one.

Fig. 1 Distribution of central (gray circle) and suburban speed sensors in the city of Turin in Italy
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5.3 Calibration of the b parameter

The deterministic approximation of the mpTSPs requires, see (24), an appropriate

value of the parameter b. This parameter describes the propensity of the model to

choose among the set of the paths characterized by different random travel times.

b is obtained by calibration as follows. Let us consider the standard Gumbel

distribution GðxÞ ¼ exp e�xð Þ. If an approximation error of 2% is accepted, then

GðxÞ ¼ 1 , x ¼ 6:08 and GðxÞ ¼ 0 , x ¼ �1:76. Let us consider the distribution

range m;M½ �. The following equations hold

bðm� fÞ ¼ �1:76 ð28Þ

bðM � fÞ ¼ 6:08 ð29Þ

where f is the mode of the Gumbel distribution GðxÞ ¼ exp e�bðx�fÞ� �
.

By subtracting (28) from (29) one gets for b the value

b ¼ 6:08� ð�1:76Þ
M � m

¼ 7:84

M � m
ð30Þ

According to our random oscillations rule, m is set equal to mini;j ECij. To calculate

M we need to know the order of magnitude of the travel time oscillations in the final

solution. This is needed to avoid considering those paths with travel times very far

from the travel times in the solution, which could lead us to overestimate M. In fact,

the presence of paths with a travel time much greater of the mean travel time is a

quite common situation in the TSP and VRP problems.

M has been calculated as follows

– Solve a TSP instance with the same node set of the stochastic problem and the

cost of each arc determined as cij ¼ mink c
k
ij. Let us call CD the optimum of this

deterministic instance.

– Set m ¼ mini;j ECij and M ¼ 2KCD

jNj , where jNj is the number of nodes and K is

the number of paths. The rationale of the formula for calculating M is that

CD=jNj gives us the order of magnitude of the mean deterministic cost, which,

given the rules we used to generate the instances, can have a maximum

oscillation of 100%. The number of paths K is used for normalizing the

accessibility effect when the path cardinality increases.

More sophisticated methods to calibrate b can be found in Galambos et al. (1994).

5.4 Comparison of deterministic approximation results and Monte Carlo

simulation

Here we summarize the results for all instances with different combinations of the

parameters. The performance, in terms of percentage gap, is defined as the relative
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percentage error of the approximated optimum when compared to the mean of the

expected value given by the Monte Carlo simulation (Maggioni and Wallace 2012).

Table 1 reports the percentage gap for all combinations of the parameters, while

varying the probability distribution (either Uniform or Gumbel) in Set1. The first

two columns display the instance set and the number of paths between any pair of

nodes, while Columns 3-4 report the mean of the percentage gaps. The best mean

values are obtained for the Gumbel distribution. For both distributions, the best

results are obtained with one path between the nodes, with a gap of less than 1% for

the Gumbel distribution. This gap increases with the number of paths. The quality of

the approximation seems to be inversely correlated with the number of nodes.

However, the percentage gap is, in all cases, quite limited, with a worst case of

7.77% for the Uniform and 4.46% for the Gumbel distribution.

Computational times of Set1, expressed in seconds, are reported in Table 2.

Notice that, as the computational time in both cases (Monte Carlo and deterministic

approximation) are mainly given by the TSP instances computational time and the

number of the TSP instances are independent from the number of multiple paths, the

computational times are independent from the number of multiple paths. Thus, the

results are summarized by considering the aggregation of the paths. The Monte

Carlo simulation needs a computational time of about 2 orders of magnitude greater

than the deterministic approximation. This makes the deterministic approximation

increasingly appealing when applied to large instances, where the Monte Carlo

simulation becomes impracticable.

Table 1 Set1: Percentage gap between the deterministic approximation and the Monte Carlo simulation

Nodes Path Uniform Gumbel

N100 1 1.32 0.62

3 3.41 1.86

5 4.01 2.22

Avg 2.91 1.57

N200 1 0.71 0.35

3 7.46 3.13

5 7.77 4.46

Avg 5.31 2.64

Global avg 4.30 2.19

Table 2 Set1: Computational times in seconds of the deterministic approximation and the Monte Carlo

simulation

Nodes Approx Monte Carlo

N100 5.52 523.40

N200 14.54 1507.71

Global avg 10.72 1091.27
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As stated before, our assumptions about the independence and the equal

distribution of the stochastic costs are not holding in real urban case studies. To

show how the accuracy of the deterministic approximation is deteriorated by time

and spatial correlation we present the results of Set2 in Table 3. The table gives the

percentage gaps between the deterministic approximation and the Monte Carlo

simulation for the empirical speed profile distribution and the theoretical one. In

particular, for each value of the Time correlation parameter, a different column of

the empirical speed profile distribution is given.

The first thing that can be noticed is how, by introducing real data which imply a

spatial correlation between the different real roads of the city considered in this

study (r ¼ 0), we have a deterioration of the results quite limited (about 2 %

points). Also the time correlation implies worse results, which are, in any case,

limited in mean to 1%. From the point of view of the number of path, the empirical

speed profile distribution presents a sort of asymptotic behavior, with the main

increase due to the presence of multiple paths, while the gap when considering 3 and

5 multiple paths remains almost stable.

The average percentage gap of the theoretical speed profile distribution shows

that our deterministic approximation introduces a percentage error of about 2 in the

case of 100 nodes and about 3 in the case of 200 nodes. Furthermore, the percentage

error due to the anomalous distribution of real data is about 2 in both cases. Hence,

we can deduce that the approximation correctly behaves even with real data

distribution.

From the computational time point of view, we do not report the details, being

almost equal to the ones of Set1, with the deterministic approximation showing

better performances that can be measured in about 2 orders of magnitude.

In conclusion, the results seem very promising. The deterministic approximation

performs quite well for all types of instances and distributions and guarantees a

good accuracy. The best performance is obtained when the random travel times

have a Gumbel distribution, that is usually the case for real travel time random

oscillations.

Table 3 Set2: Percentage gaps between the deterministic approximation and the Monte Carlo simulation

for the empirical and the theoretical speed profile distributions

Nodes Path Empirical Theoretical

r ¼ 0 r ¼ 2 r ¼ 4

N100 1 2.72 2.87 3.41 0.87

3 4.05 4.32 4.44 2.85

5 4.93 5.87 6.26 2.73

Avg 3.90 4.35 4.70 2.15

N200 1 2.57 3.19 3.24 1.14

3 6.93 8.47 8.69 3.84

5 7.52 9.13 9.84 5.16

Avg 5.68 6.93 7.26 3.38

Global avg 4.79 5.64 5.98 2.76
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6 Conclusions

In this paper we have addressed the multi-path Traveling Salesman Problem with

stochastic travel costs, which consists in finding an expected minimum Hamiltonian

tour connecting all nodes, where between each pair of nodes several paths do exist

and each path shows a stochastic travel cost with unknown distribution.

From a theoretical perspective, the paper shows that, under a mild assumption,

the probability distribution of the minimum random travel cost between any pair of

nodes becomes a Gumbel distribution. Moreover, the expected minimum total travel

cost is proportional to the maximum of the logarithm of the total accessibility of the

Hamiltonian tours to the path set.

The deterministic approximation of the stochastic model provides very promising

results on a large set of instances in negligible computational times.

In conclusion, the performance of the methodology proposed is particularly good

when the probability distribution of the random travel costs of the stochastic model

is a Gumbel distribution, even if good results are also provided with the Uniform

distribution. This feature makes our deterministic approximation a good predictive

tool for addressing stochastic travel costs in multi-path networks.
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