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Abstract: The modeling and design of fiber lasers facilitate the process of their practical realization.
Of particular interest during the last few years is the development of lanthanide ion-doped fiber
lasers that operate at wavelengths exceeding 2000 nm. There are two main host glass materials
considered for this purpose, namely fluoride and chalcogenide glasses. Therefore, this study
concerned comparative modeling of fiber lasers operating within the infrared wavelength region
beyond 2000 nm. In particular, the convergence properties of selected algorithms, implemented within
various software environments, were studied with a specific focus on the central processing unit (CPU)
time and calculation residual. Two representative fiber laser cavities were considered: One was based
on a chalcogenide–selenide glass step-index fiber doped with trivalent dysprosium ions, whereas the
other was a fluoride step-index fiber doped with trivalent erbium ions. The practical calculation
accuracy was also assessed by comparing directly the results obtained from the different models.

Keywords: mid-infrared light sources; near-infrared light sources; rare earth-doped fibers

1. Introduction

Due to many potential applications in medicine, biology, environmental monitoring, and defense,
a large research effort has been devoted to the development of fiber lasers operating at wavelengths
exceeding 2000 nm. Currently available light sources for these wavelengths include gas lasers,
quantum cascade lasers, interband cascade lasers, supercontinuum fiber sources, Raman fiber lasers,
light emitting diodes, optical parametric oscillators, Globar©-type black-body sources, and lanthanide
ion-doped fiber lasers. A particular advantage of lanthanide ion-doped fiber lasers is their high
output beam quality and compact structure: So far, such fiber lasers have only been demonstrated at
wavelengths <4000 nm [1,2]. Very recently, a room temperature fiber laser operation up to 3920 nm has
been demonstrated [3]. For operating wavelengths of up to 2000 nm, silica glass fiber-based lasers can
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be used [4]. Fiber lasers operating at wavelengths from 2000 nm to 4000 nm are based on fluoride glass
fibers. Lanthanide ions that have been so far applied for doping fluoride glass fibers include erbium
(III), holmium (III), and dysprosium (III) [5–12]. For the development of lanthanide ion-doped fiber
lasers operating at wavelengths exceeding 4000 nm, the introduction of lower phonon energy glasses
is required. Particularly good candidates for this purpose are chalcogenide glasses. Chalcogenide
glasses have been shown to have sufficiently good mechanical properties, chemical stability toward
water and oxygen, low loss at the relevant wavelengths, good solubility for lanthanide ions, and they
can be drawn into fibers [13–36]. Thus, both chalcogenide and fluoride glasses have been intensely
studied, both experimentally and theoretically, for applications in fiber lasers [20,36–41].

A vital element in the development process of fiber lasers reaching long operating wavelengths
is their design. Design tools are needed for the optimization of laser parameters so that a lasing
action under optimal conditions can be successfully achieved. Therefore, the properties of various
numerical algorithms applicable to the design and modeling of fiber lasers operating at wavelengths
exceeding 2000 nm were compared in this contribution. In particular, the optical characteristics
of a dysprosium ion-doped chalcogenide glass fiber laser and an erbium ion-doped fluoride glass
fiber laser were numerically studied. For this purpose, several algorithms developed within various
software environments were compared. The dependence of the central processing unit (CPU) time
and calculation residual on the iteration number was used to assess the convergence properties of
individual algorithms.

2. Materials and Methods

Figure 1 shows the configuration of the fiber laser cavity considered. The pump light was applied
at one end of the fiber, whereas the signal and idler waves were collected at the other end of the fiber.
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laser action. Note that the idler wave was trapped within the cavity with the help of high reflectivity 
mirrors, and was used to depopulate level 1. Using the energy level diagram shown in Figure 2 and 

Figure 1. Schematic diagram of the fiber laser cavity.

Two types of fibers were considered. The first one was a chalcogenide glass fiber core doped
with trivalent dysprosium ions, whereas the other one was a fluoride fiber core doped with trivalent
erbium ions. The energy level diagram for dysprosium ions, doped here into a chalcogenide–selenide
glass, is shown in Figure 2. The pump laser, operating at 1710 nm, populated level 2. It was assumed
simplistically that neither significant upconversion nor excited state absorption would take place,
so that only the three lowest-lying energy levels needed to be included in the model. From energy
level 2, a transition could take place to level 1 through either the process of spontaneous or stimulated
emission, thus generating signal photons. Analogous transitions could take place between energy
levels 1 and 0, accompanied by emission of idler photons. Due to the relatively long lifetime of energy
level 1, measured experimentally [27], the inclusion of an idler was essential in obtaining efficient
laser action. Note that the idler wave was trapped within the cavity with the help of high reflectivity
mirrors, and was used to depopulate level 1. Using the energy level diagram shown in Figure 2 and the
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rate equation approach, one could write the following set of coupled algebraic equations that allowed
for the calculation of the energy level populations of dysprosium ions: a11 a12 a13

a21 a22 a23

1 1 1

×

 N0

N1

N2

 =

 0
0

NDy

, (1)

where the sum of level populations N0, N1, and N2 is equal to the total doping concentration NDy,
and the coefficients amn are given by

a11 = σpaφp; a12 = σsaφs; a13 = −σpeφp − σseφs − 1
τ2

a21 = σiaφi; a22 = −σieφi − σsaφs − 1
τ1

; a23 = σseφs +
β21
τ2

. (2)

In Equation (2), σxa is the absorption cross section for signal s, idler i, and pump p, whereas σxe

gives the respective values for the emission cross section. The photon flux is φx for signal s, idler i,
and pump p. The branching ratio is β21 for the 2-1 transition (Figure 2), and τ1 and τ2 are the radiative
lifetimes for levels 1 and 2, respectively (Figure 2). The rate Equation (1) is complemented by the set of
six ordinary differential equations that describe the spatial evolution of the pump, idler, and signal
powers for both the forward- and backward-propagating waves along the z axis:

dP±
p

dz = ∓Γp
[
σpaN0 − σpeN2

]
P±

p ∓ αP±
p

dP±
s

dz = ∓Γs[σsaN1 − σseN2]P±
s ∓ αP±

s
dP±

i
dz = ∓Γi[σiaN0 − σieN1]P±

i ∓ αP±
i

, (3)

where Γx is the confinement factor for signal s, idler i, and pump p; α gives the loss coefficient; and Pp,
Ps, and Pi are the values of the power of the pump, signal, and idler, respectively. The numeric values
of the parameters are given in Table 1. A more rigorous approach, which does not use the confinement
factor approximation, involves the exact calculation of the overlapping integrals between the ion
populations and the electromagnetic field by taking into account the spatial distribution of the optical
propagation modes:

dP±
p

dz = ∓P±
p
∫

Ad

[
σpaN0 − σpeN2

]
ipdA ∓ αP±

p

dP±
s

dz = ∓P±
s
∫

Ad

[σsaN1 − σseN2]isdA ∓ αP±
s

dP±
i

dz = ∓P±
i

∫
Ad

[σiaN0 − σieN1]iidA ∓ αP±
i

, (4)

where Ad is the rare earth-doped region and ip, is, and ii are the normalized intensities of the pump,
signal, and idler optical modes, respectively.

Figure 3 shows the energy level diagram of erbium trivalent ions doped into fluoride glass.
The pump operating at 980 nm promoted ions from the ground state to energy level 2. Also, via excited
state absorption and cooperative upconversion, the ions were promoted to energy level 3. The signal
operated at 2800 nm wavelength and was amplified through interaction with energy levels 1 and 2.
The idler signal may have operated at approximately 1550 nm and interacted with energy levels 0 and
1. In this model, however, it was assumed that the idler signal did not build up due to the cavity loss
encountered. It is noted that in the fluoride fiber laser cavity considered, the inclusion of an idler was
not needed for efficient laser action. From the Er3+ energy level diagram in Figure 3, using the rate
equations approach, one obtained consistently the following set of algebraic equations that enabled
calculation of the populations of the energy levels:
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W22N2
2 − N4

τ4
+ RESA = 0

β43 N4
τ4

− N3
τ3

= 0

RGSA − RSE − RESA +
4
∑

i=3

βi2 Ni
τi

− N2
τ2

− 2W22N2
2 + W11N2

1 = 0

RSE +
4
∑

i=2

βi1 Ni
τi

− N1
τ1

− 2W11N2
1 = 0

−RGSA +
4
∑

i=1

βi0 Ni
τi

+ W22N2
2 + W11N2

1 = 0

, (5)

where the sum of level populations N0, N1, N2, N3, and N4 (Figure 3) is equal to the total doping
concentration NEr. Note that τ1, τ2, τ3, and τ4 are the lifetimes of levels 1, 2, 3, and 4, respectively,
whereas βxy gives the branching ratios from level x to y. W11 and W22 are the cooperative upconversion
coefficients for levels 1 and 2, respectively. RGSA gives the ground state absorption rate, RSE gives
the rate of stimulated emission between levels 1 and 2, and RESA gives the rate of the excited state
absorption from level 2 to level 4:

RGSA =
λpΓpσGSA

hcAe f f
N0

(
P+

p + P−
p

)
, (6)

RSE =
λsΓsσse

hcAe f f

(
b2N2 −

g2

g1
b1N1

)(
P+

s + P−
s
)
, (7)

RESA =
λpΓpσESA

hcAe f f
N2

(
P+

p + P−
p

)
. (8)

Equation (5) is complemented by a set of four ordinary differential equations that describe the
evolution of the pump and signal waves. The degeneracy parameters are g2 = g1 = 2. The values of
the relevant cross sections σse, σESA, and σGSA, confinement factors Γx, wavelengths λx, effective cross
section Aeff, and Boltzmann factors bx are given in Table 2. Aligning the fiber with the z axis of the
coordinate system enabled the following four differential equations to be written in the following form:

d
dz P+

p = −Γp(σGSAN0 + σESAN2)P+
p − αpP+

p
− d

dz P−
p = −Γp(σGSAN0 + σESAN2)P−

p − αpP−
p

d
dz P+

s = ΓsσSE(b2N2 − (g2/g1)b1N1)P+
s − αsP+

s
− d

dz P−
s = ΓsσSE(b2N2 − (g2/g1)b1N1)P−

s − αsP−
s

, (9)

where Ps and Pp are the powers of the signal and pump, respectively, and the superscripts + and − denote
the forward- and backward-propagating waves, respectively. In Equation (9), αx gives the value of loss.Photonics 2018, 5, x FOR PEER REVIEW  5 of 13 
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The pump, signal, and idler powers at the terminating end-fiber faces of the laser cavity were
subjected to the following boundary conditions:

P+
p (z = 0) = rp(z = 0)P−

p (z = 0) +
[
1 − rp(z = 0)

]
Ppump

P−
p (z = L) = rp(z = L)P+

p (z = L)
P+(λ = λ1, z = 0) = rλ1(z = 0)P−(λ = λ1, z = 0)
P−(λ = λ1, z = L) = rλ1(z = L)P+(λ = λ1, z = L)
P+(λ = λ2, z = 0) = rλ2(z = 0)P−(λ = λ2, z = 0)
P−(λ = λ2, z = L) = rλ2(z = L)P+(λ = λ2, z = L)

. (10)

It should be noted that the boundary conditions in Equation (10) dictated the incident pump
power, but not the value of the pump power after it crossed the air-fiber end interface.

Three algorithms, developed by different research groups in different computational
environments, were compared here. The main characteristics considered were the CPU time and the
dependence of the calculation residual on the iteration number. The calculation residual was defined
as the sum of the squared differences between values from the current and previous iterations for
signal, idler, and pump, calculated at z = 0. The CPU time was calculated using system functions.
All three algorithms employed the relaxation method for solving the two-point boundary value
problem, as follows:

• The fiber laser model developed at the Institute of Photonics and Electronics of the Czech Academy
of Sciences (UFE) was implemented in C programming language (gcc 4.9.2) within the Windows
7 operating system, 64 bit Intel core i7-3930K CPU at 3.2 GHz. The UFE model is currently being
developed for the study of longitudinal-mode instabilities and associated buildup of dynamic
fiber Bragg gratings [40].

• The fiber laser model developed at the Politecnico di Bari (PB) was implemented in MATLAB
within the Windows 10 operating system, 64-bit Intel Core i7-4790 CPU at 3.6 GHz. The numerical
integration was carried out using a 4-5 Runge–Kutta algorithm, and the more rigorous overlap
integrals approach was employed.

• The fiber laser model developed at the University of Nottingham and Wroclaw University
of Science and Technology (NU–PWr) was implemented in MATLAB within the Windows 10
operating system, 64 bit Intel Core i5 7th Generation, CPU at 2.5 GHz. The numerical integration
was carried out using a 4-5 Runge–Kutta algorithm.
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3. Results

The modeling parameters for the dysprosium trivalent ion-doped chalcogenide–selenide glass
fiber laser are summarized in Table 1, whereas in Table 2 the modeling parameters for the erbium
trivalent ion-doped fluoride glass fiber laser are given.

It is noted that the value of 1 dB/m for chalcogenide fiber loss at 4600 nm was challenging in
practical realization. However, a low value of the fiber loss is necessary for the realization of an efficient
fiber laser and is thus widely used in fiber laser modeling-related literature [17,25,42–44].

The parameters summarized in Table 2 were extracted from experiments and verified by J.F. Li and
S.D. Jackson by comparing measured and numerical results [11]. Further effort has been undertaken to
verify the reliability of the numerical codes through comparing the numerical results to experimental
measurements [45].

Table 1. Numerical modeling parameters used in simulations, Dy3+-doped chalcogenide glass fiber laser.

Quantity Unit Value

Dy3+ ion concentration NDy cm−3 7 × 1019

Aeff m2 95 × 10−12

Fiber length L m 2.1
Fiber loss at all wavelengths α dB/m 1
Lifetime of level 2 (Figure 2) ms 2
Lifetime of level 1 (Figure 2) ms 5.2
Branching ratio for 2-1 transitions 0.15
Reflectivity for idler, signal, and pump at z = 0 0.2
Reflectivity for idler, signal, and pump at z = L 0.2
Confinement factor for signal 0.8
Confinement factor for idler 0.9
Confinement factor for pump 0.034
Pump wavelength µm 1.71
Signal wavelength (λ1) µm 4.6
Idler wavelength (λ2) µm 3.35
Pump emission cross section m2 0.318 × 10−24

Pump absorption cross section m2 0.501 × 10−24

Signal emission cross section m2 0.912 × 10−24

Signal absorption cross section m2 0.485 × 10−24

Idler emission cross section m2 0.097 × 10−24

Idler absorption cross section m2 0.016 × 10−24

In the simulations, the value of Planck’s constant of 6.62607004 × 10−34 J·s and the value of the
speed of light in free space of 2.99792458 × 108 m/s were used.

Table 2. Numerical modeling parameters used in simulations, Er3+-doped fluoride fiber laser.

Quantity Unit Value

b1/b2 0.1/0.16
W11 m3/s 1 × 10−24

W22 m3/s 0.3 × 10−24

σGSA m2 2.1 × 10−25

σSE m2 4.5 × 10−25

σESA m2 1.1 × 10−25

Γp 0.009
Γs 1.0
Er3+ ion concentration NEr m−3 9.6 × 1026

Pump wavelength λp Nm 976
Pump wavelength λs Nm 2800
Fiber length L m 2.5
Aeff m2 314 × 10−12

αp 1/m 3 × 10−3

αs 1/m 23 × 10−3

Rp (z = 0) 0
Rp (z = L) 0.04
Rs (z = 0) 0.96
Rs (z = L) 0.04



Photonics 2018, 5, 48 7 of 12

Table 3 shows the values of the relevant lifetimes and branching ratios for erbium trivalent ions
doped into a fluoride glass.

Table 3. Branching ratios and level lifetimes for erbium trivalent ions doped into a fluoride glass.

Quantity Unit Value

τ1 ms 9
τ2 ms 6.9
τ3 ms 0.12
τ4 ms 0.57

β21, β20 0.37, 0.63
β32, β31, β30 0.856, 0.004, 0.14

β43, β42, β41, β40 0.34, 0.04, 0.18, 0.44

Figure 4 shows the dependence of the residual and the CPU time in the UFE model. The values of
the CPU time showed a step-wise behavior due to the quantization implemented within the C function
clock that was used in the simulations. In the UFE model, the rate of residual reduction was smaller at
low values of the output power. In particular, at an output power of 200 mW, one can observe that the
residual decreased significantly more slowly than did the other three values of the output power.Photonics 2018, 5, x FOR PEER REVIEW  8 of 13 
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An overall lower rate of the residual reduction in the case of the PB model, when compared to
the UFE model, was observed in the results shown in Figure 5. The simulation time was also at least
three orders of magnitude larger despite the application of a faster processor at PB, which shows the
advantage of direct C programming. Interestingly, the PB model showed a larger rate of residual
decrease for low output powers. Figure 6 shows the results obtained with the NU–PWr model.
When compared to the results obtained with the PB model, one observes a much larger rate of residual
reduction in the NU–PWr model. However, the CPU time in the PB model, when measured per
iteration, was less. The overall calculation time for the PB model had to reach a particular value of
the residual, and this took a significantly longer time than the NU–PWr model. It is noted that for the
PB model, the overlap integrals between the ion populations and the optical modes of pump, signal,
and idler were calculated over the rare earth-doped region according to Equation (4). These integrals
were updated along the fiber length, taking into account the ion population distributions. This caused
a higher calculation time, but allowed higher solution accuracy.
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Finally, in Tables 4–6, the results for the output power and the idler power, calculated using the
UFE and NU–PWr models, are compared for both the dysprosium trivalent ion-doped chalcogenide
glass fiber laser and the erbium trivalent ion-doped fluoride glass fiber laser. For the Dy3+-doped
chalcogenide–selenide glass fiber laser, for the results calculated using the UFE and NU–PWr models,
the relative difference, defined as the ratio between the absolute value of the difference and half of
the sum of the results, was then less than 0.2% for the signal and below 0.22% for the idler wave at
pump powers of 1 W and 5 W, respectively. In the case of the idler wave, the small values of the idler
wave power for pump powers of 0.4 W and 0.2 W made it difficult to achieve small values of the
relative difference. Nonetheless, these results consistently indicated that the idler was below the lasing
threshold. In the case of the Er3+-doped fluoride glass fiber laser, both the NU–PWr and UFE models
calculated results that agreed on all four digits. It is noted that the results shown in Tables 4–6 were
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Table 4. Calculated values of signal output power values for the Dy3+-doped chalcogenide–selenide
glass fiber laser.

Pump Power/W Signal Power (NU–PWr)/W Signal Power (UFE)/W Relative Difference

0.2 4.733 × 10−3 4.731 × 10−3 0.422 × 10−3

0.4 8.744 × 10−3 8.736 × 10−3 0.915 × 10−3

1 49.13 × 10−3 49.04 × 10−3 1.833 × 10−3

5 319.1 × 10−3 318.6 × 10−3 1.568 × 10−3

Table 5. Calculated values of the idler output power values for the Dy3+-doped chalcogenide–selenide
glass fiber laser.

Pump Power/W Idler Power (NU–PWr)/W Idler Power (UFE)/W Relative Difference

0.2 W 0 W 4.140 × 10−6 NA
0.4 W 0 W 9.591 × 10−4 NA
1 W 55.38 × 10−3 W 55.26 × 10−3 2.169 × 10−3

5 W 426.0 × 10−3 W 425.4 × 10−3 1.409 × 10−3

Table 6. Calculated values of signal output power values for the Er3+ ion-doped fluoride glass
fiber laser.

Pump Power Signal Power (NU–PWr)/W Signal Power (UFE)/W Relative Difference

5 W 1.432 1.432 0
10 W 3.171 3.171 0
15 W 4.868 4.868 0
20 W 6.458 6.458 0

4. Conclusions

In this paper, software packages developed within various environments for the modeling
and design of Mid infrared MIR fiber lasers were compared. The analysis was focused on the
comparison of the CPU time and the values of the computational residual. The simulation results
showed an advantage to using direct encoding of the algorithm in terms of the simulation time. Also,
a comparison was carried out between the results obtained by different models. Both in the case of the
Dy3+-doped chalcogenide–selenide step-index glass fiber and in the case of the Er3+-doped fluoride
glass fiber lasers, a very good agreement was achieved between the results calculated using the UFE
and NU–PWr models.
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