
05 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

The Boltzmann Equation Of Phonon Thermal Transport Solved In the Relaxation Time Approximation – II – Data
Analysis / Sparavigna, Amelia Carolina. - In: MECHANICS, MATERIALS SCIENCE & ENGINEERING JOURNAL. - ISSN
2412-5954. - ELETTRONICO. - 2016:3(2016), pp. 1-10. [10.13140/RG.2.1.2026.4724]

Original

The Boltzmann Equation Of Phonon Thermal Transport Solved In the Relaxation Time Approximation –
II – Data Analysis

Publisher:

Published
DOI:10.13140/RG.2.1.2026.4724

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643155 since: 2020-12-19T11:20:53Z

Magnolithe



Mechanics, Materials Science & Engineering, March 2016  ISSN 2412-5954 
 

MMSE Journal. Open Access www.mmse.xyz 
57 

The Boltzmann Equation Of Phonon Thermal Transport Solved In the 
Relaxation Time Approximation  II  Data Analysis 

 

Amelia Carolina Sparavigna1 

 
1  Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy 

 DOI 10.13140/RG.2.1.2026.4724 

 

Keywords: Thermal Conductivity, Phonons, Boltzmann Equation. 

 

ABSTRACT. As discussed in a previous paper [1], the thermal transport in dielectric solids can be obtained by using the 
Boltzmann equation of an assembly of phonons subjected to a thermal gradient. Solving this equation in the framework 
of the relaxation time approximation, from the phonon distribution that we obtain, the thermal conductivity of the solid 
can be easily given. Here we use such an approach to analyse the data of the thermal conductivities of some dielectric 
materials. 

 
Introduction. In a dielectric solid subjected to a thermal gradient, the thermal transport is supported 
by the vibrations of crystal lattice, because other carriers such as electrons freely moving in the solid 
are absent. Therefore, responsible of the thermal conductivity are the phonons which are coming from 
the quantization of lattice vibrational modes. In this manner, phonons arise as the quasiparticles 
occurring because the solid is modelled as an assembly of weakly interacting particles, existing in a 
free volume coincident to that of the considered solid. In this volume, phonons are giving the thermal 
transport. The resistive processes producing a finite thermal conductivity are coming from scattering 
mechanisms due to point- and extended defects of the crystal lattice, from the scattering at the 
boundaries of the crystal and from the cubic terms of lattice Hamiltonian function, which are giving 
phonon-phonon scattering processes. They can differ in normal and umklapp processes [1]; in 
umklapp processes, momentum is transferred to the lattice as a whole, degrading the thermal current. 

The thermal transport of phonons in a semiclassical approach can be determined by means of the 
Boltzmann equation, an equation of statistical mechanics, which is describing system not in the 
thermodynamics equilibrium [2-4]. For phonons, this happens when an assembly of them is subjected 
to a thermal gradient. The solution of the Boltzmann equation had been given by means of several 
approaches; among them, we have proposed a solution based on an iterative method [5-9]. A quite 
simple solution is that given in [1], where we have discussed the relaxation time approximation. In 

this approximation [10-12]. In particular, Callaway investigated the role of isotopic defects as source 
of scattering processes that can strongly reduce the thermal conductivity of solids. Here, we consider 
the relaxation times to determine the thermal conductivity of some dielectric solids. In particular, we 
will discuss the thermal conductivity of Germanium, Silicon and Diamond. 
The thermal conductivity. In a lattice, phonons move changing position and momentum and are 
subjected to collisions. They obey to a general equation, which is the Boltzmann equation of the 
distribution , for a phonon state with wave-number q and polarization p, about position r and 
time t. Let us suppose a gradient T of temperature T = T (r); the gradient is giving origin to a 
diffusion process of phonons. 
Besides diffusion, phonons are also subjected to scattering mechanisms. Then, in the case of 
stationary condition, an equation is originated for the phonon distribution:  
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.  (1) 

 

Eq.1 is the general form of Boltzmann equation for phonons subjected to a thermal gradient [2-4]. 
 is the group velocity of the given phonon mode:  

 

. 

 

For acoustic phonons, this velocity is simply , where  is the speed of the sound for the 
given polarization of the wave, and  is the unit vector of q. 

Eq.1 becomes an integro-differential equation when the scattering term representing the collisions of 
quasiparticles is explicitly given. In the first part of our discussion [1], we have detailed the scattering 
terms and discussed them. Here, we just remember that phonons are scattered by others phonons in 
the three-phonon processes (normal and umklapp), by point- and extended defects of the lattice and 
by the boundaries of the crystal. 
In the case of a small thermal gradient, the equation is solved linearizing it, by considering just small 
deviations from equilibrium. The deviation is given by  , where  is the equilibrium 

distribution. To have the Boltzmann linearized equation in the general case, let us define  as:  

. (2) 

 

In (2) we have the energy of a phonon, which is . Once function  is evaluated, with the 
iterative method [4-9] for instance, the density of the thermal current U can be determined. 

The density current is defined as:  
 

.  (3) 

 

 = NV is the volume of the crystal, N the number of primitive cells of it, having volume V.  In a 
Cartesian frame having unit vectors ui , current U is:  

 

ii
jij x

TU . (4) 
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Tensor  is the thermal conductivity tensor, that in an isotropic crystal, is having non-null terms 
. 

The main difficulty in evaluating (3) is the determination of the phonon distribution . Let us try 
to use relaxation times for this task. The relaxation time approximation consists in writing the 
derivative of the distribution with respect to time as [2]:  
 

. (5) 

 

 is the equilibrium distribution. In (5) we see the relaxation time for the mode (q, p). Joseph 
Callaway defined the difference between the distribution existing when there is a temperature gradient 
and that of equilibrium, which is the Bose-Einstein distribution, as [10-12]: 
 

. (6) 

 

In (6), we used the dimensionless variable  . The thermal current is given by: 

 

.  (7) 

 

In the case of anisotropic solids, we have a tensor for the thermal conductivity:  
 

  (8) 

 

 and  are corresponding to spatial components x, y, z. We have also used the specific heat  

Therefore, we have, in the isotropic case: 
 

. (9) 
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In (9),  is the angle between the group velocity and the thermal gradient. Instead of the summation 
on the phonon states, we can use an integration: 

 

, 

 

 is the volume of crystal. Then: 
 

.  (10) 

 

Call  and thermal conductivity. First of all, let us note that in [10-12], 
Callaway used a Debye-like phonon spectrum and a Debye description of the density-of-states. 
Therefore, the thermal conductivity he derived is suitable for the low temperature region where the 
model is valid. Moreover, an averaged phonon velocity  for longitudinal and transverse branches 
is used. In [10-12], Callaway proposed the following relaxation times for collisions: 
 

 ;  ;  ; , 

 

 is the scattering from impurity such as point-like defects and isotope defects. The isotope 
scattering takes the form proposed by Klemens [13]. The boundary scattering  contains the 
average speed of sound and L the characteristic length of the crystal. Callaway model assumes that 
the scattering at the surface boundary is purely diffusive. The three-phonon normal process is that 
derived by Herring [14] for longitudinal phonon scattering under momentum conservation conditions 
at low temperatures. The relaxation time for an umklapp process was suggested by Peierls [15]. Since, 
in the relaxation time approximation, an addition of the transition probabilities leads to an addition 
of the reciprocal relaxation times, the total relaxation time for the abovementioned scattering 
mechanisms is given by:  
 

. 

 

Let us note that the relaxation time for umklapp processes is  [15]. As a consequence, the 
contribution of such umklapp processes to the thermal resistivity is decreasing when temperature 
decreases. From Eqs. (16), (19)-(21) of [12], Callaway deduced the following expression for the 
thermal conductivity: 
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  (11) 

 

In this equation we have kB Boltzmann constant,  speed of the sound,  Debye temperature, and 
 dimensionless variable . We have the two relaxation times,  and , as given above.  

 

Thermal conductivity of Germanium. Under standard conditions, Germanium is a material having 
the same lattice of diamond. Germanium can be produced, for its use in semiconductors, with a very 
high purity. Since it is an element having five naturally occurring isotopes, of which 74Ge is the most 
common isotope, in the measurements of thermal conductivity in natural samples and in isotopically 
enriched samples, we can see the effect of isotope defects. As told in [12], Glen Slack was the 
researcher that first emphasized the role of isotope effects [16]. Therefore, let us see if expression 
(11) can give us a good agreement with experimental data of Germanium. 

Let us use for Germanium, the following parameters: , ,  
, ,  and . The result of calculation 

is given in the Figure 1, where some experimental data of Geballe and Hull [17] are also given for 
comparison. The upper curve represents the isotopically enriched sample, that is a sample were the 
isotope relaxation time is not considered; the lower curve is giving the thermal conductivity of a 
natural sample. 

 

 
Fig. 1. Thermal conductivity (W cm ) of enriched and natural Germanium. The pure sample 
has the larger thermal conductivity. The dots are representing some of the experimental data of 
Geballe and Hull [17].  
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In the Figure 1, the peak of the thermal conductivity in enriched Ge is not perfectly adapted to 
experimental data; however, this happens also if we use a more precise microscopic model [18]. 
Probably, this is due to the scattering mechanism from boundaries, which is not properly modelled 
by the relaxation time.  

In the Figure 2, it is shown the role of the isotope scattering in reducing the thermal conductivity, for 
different values of parameter A. The other parameters are the same as in the Figure 1. In the Figure 
3, it is shown the role of the characteristic length L of the material in changing the thermal 
conductivity. Note that at high temperatures, length L is irrelevant. In the Figure 3, the isotopic 
scattering is neglected (A=0). The other parameters are the same as in the Figure 1. 

 

 
Fig. 2. Role of the isotope scattering in reducing the thermal conductivity (W cm ). The curves 
are giving the thermal conductivity for several values of A. The other parameters are the same as in 
the Fig.1.  

 

  
Fig. 3. Role of the characteristic length L of the material in changing the thermal conductivity 
(W cm ). Note that at high temperatures, length L is irrelevant. The isotopic scattering is 
neglected (A=0). The other parameters are the same as in Figure 1.  
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A short note on the values of parameters used for calculating the reciprocal of relaxation times could 
be interesting. Let us consider a temperature near the value of the peak of thermal conductivity. For 
instance, we can assume . Parameters A and B2 are that appearing in the reciprocal relaxation 
times  and . We can estimate the phonon frequency that we have in 

reciprocal of relaxation times as . Therefore, considering  and 
: 

 

, 

. 

 

Around the temperature of the peak, these reciprocals of relaxation times are about . The 

reciprocal of relaxation time of the boundary scattering is . It has a value, 
which is not depending on temperature; for this reason, at temperatures above that of the peak, the 
boundary scattering becomes less relevant and negligible, as depicted in the Figure 3. In fact, if we 
consider a higher temperature, for instance , and estimate the reciprocal relaxation times as 
did previously, we obtain: 

 

, 

. 

 
These reciprocals are quite larger than the term coming from the boundary scattering. Let us also note 
that the effect of three-phonon scattering is larger than that of the scattering from isotope defects. 
This is in agreement with an increasing role of phonon-phonon scattering at higher temperatures. 

Silicon thermal conductivity. Silicon is a solid at room temperature, with relatively high melting 
a relatively high thermal conductivity. In its crystalline form, its lattice is, 

like that of Germanium, a diamond cubic crystal structure. Silicon is a semiconductor where the 
number of free charge carriers increases with temperature.  

Let us use for Silicon the following parameters: , , ,  
,  and . The result of calculation from 

Eq.11 is given in the Figure 4. The upper curve represents the isotopically pure sample, the lower 
curve the thermal conductivity of the natural sample. 
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Fig. 4. Thermal conductivity (W cm ) of isotopically pure and natural Silicon. The pure 
sample has the larger thermal conductivity. The dots are representing some of the experimental 
data of Capinski, Maris and Tamura [19].  

 
Diamond. It is a metastable allotrope of carbon, where atoms are arranged in a face-centered cubic 
crystal structure, which is the diamond lattice. In it, each carbon atom is surrounded by four 
neighboring carbon atoms, which are forming a tetrahedral shaped unit. Diamond is a material having 
exceptional physical characteristics. Most notable are its extreme hardness and thermal conductivity 
(900 1 1) [20]. Above 1973 K, and in vacuum or oxygen-free atmosphere, diamond 

 

To apply (11), let us use for diamond the following parameters: , , 
, , ,  and . The 

thermal conductivity is given in the Figure 5. 

 

 
Fig. 5. Thermal conductivity (W cm ) of isotopically enriched and natural Diamond. The 
enriched sample has the larger thermal conductivity. Dots are representing some of the 
experimental data from Ref.20.  
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Another approach based on relaxation times. The Callaway model is not considering any 
distinction between longitudinal and transverse phonon. M.G. Holland in [22], proposed an analysis 
of lattice thermal conductivity, where longitudinal and transverse phonons have their specific 

he same of 
-fully 

diffusive event. However, the main change in his model was in the relaxation times for normal and 
umklapp phonon-phonon scattering mechanisms, which were arranged to capture the high-

for normal and umklapp processes, and are also involving distinct parameters for longitudinal and 
transverse acoustic 

approximation, besides changing the expression of relaxation times it is also possible to add the 
contribution of other scattering mechanisms, such as the four-phonon scatterings (an expression for 
them was given by Klemens [23]), to improve the fitting of theoretical model to experimental data. 
Let us conclude remembering that, as discussed in [1], several other approaches to the analysis of 
thermal conductivity in dielectric solids are possible, from variational techniques to first-principle 
calculations [4, 24-28].  
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