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D. Bazzanella and C. Sanna

LEAST COMMON MULTIPLE OF
POLYNOMIAL SEQUENCES

Abstract. We collect some results and problems about the quantity

L f (n) := lcm( f (1), f (2), . . . , f (n)),

where f is a polynomial with integer coefficients and lcm denotes the least common multiple.

1. Introduction

For each positive integer n, let us define

L(n) := lcm(1,2, . . . ,n),

that is, the lowest common multiple of the first n positive integers. It is not difficult to
show that

logL(n) = ψ(n) := ∑
p≤n

log p,

where ψ denotes the first Chebyshev function, and p runs over all primes numbers
not exceeding n. Hence, bounds for L(n) are directly related to bounds for ψ(n) and,
consequently, to estimates for the prime counting function π(n). In particular, since the
Prime Number Theorem is equivalent to ψ(n) ∼ n as n → +∞, we have

logL(n) ∼ n.

In 1936 Gelfond and Shnirelman, proposed a new elementary and clever method for
deriving a lower bound for the prime counting function π(x) (see Gelfond’s editorial
remarks in the 1944 edition of Chebyshev’s Collected Works [15, pag. 287–288]).
In 1982 the Gelfond-Shnirelman method was rediscovered and developed by Nair [16,
17]. Their method was actually based on estimating L(n), and in its simplest form [16]
it gives

n log2 ≤ logL(n) ≤ n log4,

for every n ≥ 9, which in turn implies

(log2+o(1))
n

logn
≤ π(n) ≤ (log4+o(1))

n
logn

,

after some manipulations. Later, it was proved [18] that the Gelfond-Shnirelman-Nair
method can give lower bound in the form

π(n) ≥C
n

logn
,
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only for constants C less than 0.87, which is quite far from what is expected by the
Prime Number Theorem. (A possible way around this problem has been considered
in [13, 14, 19].)

Moving from this initial connection with estimates for π(n) and the Prime Num-
ber Theorem, several authors have considered bounds and asymptotic for the following
generalization of L(n) to polynomials. For every polynomial f ∈ Z[x], let us define

L f (n) := lcm( f (1), f (2), . . . , f (n)).

In the next section we collect some results on L f (n).

2. Products of linear polynomials

Stenger [12] used the Prime Number Theorem for arithmetic progressions to show the
following asymptotic estimate for linear polynomials:

THEOREM 1. For any linear polynomial f (x) = ax+b ∈ Z[x], we have

logL f (n) ∼ n
q

ϕ(q) ∑
1≤r≤q
(q,r)=1

1
r
,

as n → +∞, where q = a/(a,b) and ϕ denotes the Euler’s totient function.

Hong, Qian, and Tan [6] extended this result to polynomials f which are the
product of linear polynomials, showing that an asymptotic of the form logL f (n)∼ A f n
holds as n → +∞, where A f > 0 is a constant depending only on f .

Moreover, effective lower bounds for L f (n) when f is a linear polynomial have
been proved by Hong and Feng [3], Hong and Kominers [4], Hong, Tan and Wu [7],
Hong and Yang [8], and Oon [9],

3. Quadratic polynomials

Cilleruelo [2, Theorem 1] considered irreducible quadratic polynomials and proved the
following result:

THEOREM 2. For any irreducible quadratic polynomial with integer coeffi-
cients f (x) = ax2 +bx+ c, we have

logL f (n) = n logn+B f n+o(n),
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where

B f := γ−1−2log2−∑
p

(d/p) log p
p−1

+
1

ϕ(q) ∑
1≤r≤q
(r,q)=1

log
$

1+
r
q

%

+ loga+ ∑
p|2aD

log p

(
1+(d/p)

p−1
− ∑

k≥1

s( f , pk)
pk

)
,

and γ is the Euler–Mascheroni constant, D = b2−4ac = d!2, where d is a fundamental
discriminant, (d/p) is the Kronecker symbol, q = a/(a,b) and s( f , pk) is the number
of solutions of f (x) ≡ 0 (mod pk).

Rué, Šarka, and Zumalacárregui [11, Theorem 1.1] provided a more precise
error term for the particular polynomial f (x) = x2 +1,

THEOREM 3. Let f (x) = x2 +1. For any θ < 4/9 we have

logL f (n) = n logn+B f n+Oθ

$
n

(logn)θ

%
.

4. Higher degree polynomials

Regarding general irreducible polynomials, Cilleruelo [2] formulated the following
conjecture.

CONJECTURE 1. If f (x) ∈ Z[x] is an irreducible polynomial of degree d ≥ 2,
then

logL f (n) ∼ (d −1)n logn,

as n → +∞.

Except for the result of Theorem 2, no other case of Conjecture 1 is known to
date. It can be proved (see [10, p. 2]) that for any irreducible f of degree d ≥ 3, we
have

n logn 2 logL f (n) ≤ (1+o(1))(d −1)n logn.

Also, Rudnick and Zehavi [10, Theorem 1.2] proved the following result, which estab-
lished Conjecture 1 for almost all shifts of a fixed polynomial, in a range of n depending
on the range of shifts.

THEOREM 4. Let f (x) ∈ Z[x] be a monic polynomial of degree d ≥ 3. Then, as
T → +∞, we have that for all a ∈ Z with |a|≤ T , but a set of cardinality o(T ), it holds

logL f (x)−a(n) ∼ (d −1)n logn

uniformly for T 1/(d−1) < n < T/ logT .
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Regarding lower bounds for L f (n), Hong and Qian [5, Lemma 3.1] proved the
following:

THEOREM 5. Let f (x)∈Z[x] be a polynomial of degree d ≥ 1 and with leading
coefficient ad. Then for all integers 1 ≤ m ≤ n, we have

lcm( f (m), f (m+1), . . . , f (n)) ≥ 1
(n−m)!

n

∏
k=m

1111
f (k)
ad

1111
1/d

.

Shparlinski [1] suggested to study a bivariate version of L f (n), posing the fol-
lowing problem:

PROBLEM 1. Given a polynomial f ∈ Z[x,y], obtain an asymptotic formula for

log lcm{ f (m,n) : 1 ≤ m,n ≤ N}

with a power saving in the error term.
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