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Estimation of spatio‑temporal parameters 
of gait from magneto‑inertial measurement 
units: multicenter validation among Parkinson, 
mildly cognitively impaired and healthy older 
adults
Matilde Bertoli1,2 , Andrea Cereatti1,2,3, Diana Trojaniello4, Laura Avanzino5, Elisa Pelosin6, Silvia Del Din7, 
Lynn Rochester7,8, Pieter Ginis9, Esther M. J. Bekkers9,10, Anat Mirelman11,12, Jeffrey M. Hausdorff11,12,13 
and Ugo Della Croce1,2*

Abstract 

Background: The use of miniaturized magneto-inertial measurement units (MIMUs) 
allows for an objective evaluation of gait and a quantitative assessment of clinical 
outcomes. Spatial and temporal parameters are generally recognized as key metrics 
for characterizing gait. Although several methods for their estimate have been pro-
posed, a thorough error analysis across different pathologies, multiple clinical centers 
and on large sample size is still missing. The aim of this study was to apply a previously 
presented method for the estimate of spatio-temporal parameters, named Trusted 
Events and Acceleration Direct and Reverse Integration along the direction of Progres-
sion (TEADRIP), on a large cohort (236 patients) including Parkinson, mildly cognitively 
impaired and healthy older adults collected in four clinical centers. Data were collected 
during straight-line gait, at normal and fast walking speed, by attaching two MIMUs 
just above the ankles. The parameters stride, step, stance and swing durations, as well 
as stride length and gait velocity, were estimated for each gait cycle. The TEADRIP per-
formance was validated against data from an instrumented mat.

Results: Limits of agreements computed between the TEADRIP estimates and the 
reference values from the instrumented mat were − 27 to 27 ms for Stride Time, − 68 
to 44 ms for Stance Time, − 31 to 31 ms for Step Time and − 67 to 52 mm for Stride 
Length. For each clinical center, the mean absolute errors averaged across subjects 
for the estimation of temporal parameters ranged between 1 and 4%, being on 
average less than 3% (< 30 ms). Stride length mean absolute errors were on average 
2% (≈ 25 mm). Error comparisons across centers did not show any significant differ-
ence. Significant error differences were found exclusively for stride and step durations 
between healthy elderly and Parkinsonian subjects, and for the stride length between 
walking speeds.
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Conclusions: The TEADRIP method was effectively validated on a large number of 
healthy and pathological subjects recorded in four different clinical centers. Results 
showed that the spatio-temporal parameters estimation errors were consistent with 
those previously found on smaller population samples in a single center. The combina-
tion of robustness and range of applicability suggests the use of the TEADRIP as a suit-
able MIMU-based method for gait spatio-temporal parameter estimate in the routine 
clinical use. The present paper was awarded the “SIAMOC Best Methodological Paper 
2017”.

Keywords: Clinical gait analysis, Spatial and temporal gait parameters, Magneto-
inertial sensors, Wearable sensors, Parkinson, Elderly, Multicentric study

Background
Instrumented gait analysis provides objective and reliable measures of locomotion pat-
terns and their variability. These measures can contribute to the investigation of gait 
pathologies and to the definition of a targeted rehabilitation program [1, 2]. Gait analy-
sis is emerging as an effective tool to detect an incipient neurodegenerative disease or 
to monitor its progression [3, 4]. It has been shown that gait disturbances are an early 
indicator for mild cognitive impairment (MCI) and can predict progression from MCI 
to Alzheimer’s disease [5]. Furthermore, gait performance is also a predictor of fall status 
[6, 7], morbidity and mortality [8, 9].

Objective measures of the temporal and spatial parameters of gait allow to define the 
level of impairment and to characterize functional gait performance, which can serve as 
a biomarker of mobility [4, 6, 10]. The computation of the spatio-temporal parameters 
requires, for each gait cycle, the identification of specific gait events (GEs). These are the 
initial contact (IC) and final contact (FC) of the foot with the ground.

The most commonly used temporal gait parameters include stride and step duration 
and cadence. In addition, spatial gait parameters can be defined from the distance cov-
ered between two consecutive ICs (step and stride length). Gait spatio-temporal param-
eters can be estimated from measurements obtained using various sensing technologies, 
such as foot-switches, inertial sensors, pressure mats, or stereo-photogrammetric sys-
tems. While the latter two technologies are relatively expensive and require a controlled 
and dedicated environment, lengthy set-up and post-processing time, the other two 
options are comparatively inexpensive and easy to use. In particular, magneto-inertial 
measurement units (MIMUs) have been frequently presented as an affordable solution 
to assess gait parameters in a variety of environments [4, 6, 11, 12]. However, the accu-
racy of the gait spatio-temporal parameters obtained using MIMUs can vary remark-
ably depending on the algorithms used to detect ICs and FCs and estimate distances 
[13]. Moreover, methods developed and validated on healthy gait are not guaranteed to 
be effective in assessing parameters for specific pathological gaits [14]. So far, no study 
addressed the robustness of the detection algorithm across data coming from multiple 
clinical centers, despite its value for further supporting clinical use. Finally, and probably 
most importantly, the majority of the studies in the literature validated MIMU-based 
methods for the estimation of the gait spatio-temporal parameters only on limited sam-
ple sizes [14–19].

A promising method for the automatic GEs detection and spatio-temporal parameters 
was presented by Trojaniello et al. [14] and tested in real life settings in successive work 
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by Storm et al. [20]. The method, here named TEADRIP (Trusted Events and Accelera-
tion Direct and Reverse Integration along the direction of Progression), was validated 
on four different gait conditions (i.e. healthy elderly, hemiparetic, Parkinson and choreic 
gait) and two different walking speeds, and it was shown that its performance was com-
parable or better than other methods proposed [20, 21].

The aim of the present study was to further extend TEADRIP validation for the spatio-
temporal parameters estimation to gait inertial data recorded in a multicenter trial (four 
clinical centers) on a very large sample size of participants (236) including patients with 
Parkinson’s disease (PD), MCI and healthy older adults.

Methods
Subjects

Two-hundred-thirty-six community-living older adults who self-reported two or more 
falls within the previous 6 months were enrolled in the study across four clinical centers 
in four countries (Belgium, Israel, Italy, and the UK). The subjects were part of the ran-
domized controlled trial performed within the EU funded V-Time project and the study 
was approved by the medical ethics review committee at each site [22]. Eligible individu-
als were enrolled if they were aged 60–90 years, on stable medication for the past month 
and able to walk for at least 5 min unassisted (refer to Mirelman et al. [23] for additional 
eligibility criteria). Individuals who agreed to participate in the study were asked to sign 
informed written consent. Participants were divided into three groups: older adults with 
no cognitive impairment (ELD), older adults with mild cognitive impairment (MCI) and 
people with Parkinson’s disease (PD). Population characteristics for each clinical center 
are detailed in Table 1.

Instrumentation

Two synchronized MIMUs (Opal, APDM Inc), featuring a tri-axial accelerometer, gyro-
scope and magnetometer (unit weight 22  g, unit size 48.5  mm × 36.5  mm × 13.5  mm) 
were used. Inertial data were streamed wirelessly to a laptop (“robust synchronized 
streaming mode”) and stored for offline analysis. Sampling frequency was set at 128 Hz 
and the accelerometer range at ± 6 g. The MIMUs were attached with velcro straps to 
the subject ankles, laterally, about 30 mm above the malleoli. The sensors were aligned 
approximately along the three anatomical directions with X, Y and Z axes pointing 
downward, forward and to the right, respectively, for the MIMU on the right ankle 

Table 1 Subject characteristics for clinical centers

N total number, ELD healthy older adults, PD Parkinson’s disease subjects, MCI mild cognitive impaired subjects. (Subjects 
between centers were age matched)

Clinical center N Females Males Age
Mean ± SD 
(years)

ELD PD MCI

UNIGE 52 35 17 73 ± 5 16 28 8

KULEU 58 40 18 74 ± 7 27 14 17

TASMC 75 37 38 73 ± 7 20 53 2

NEWCA 51 26 25 74 ± 8 17 30 4

Total 236 138 98 74 ± 7 80 125 31
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(R-MIMU), and downward, backward and to the left for the MIMU on the left ankle 
(L-MIMU) (Fig. 1).

An estimate of the MIMUs local coordinate system (LCS) orientation with respect 
to the global coordinate system (GCS) was provided by the manufacturer’s proprietary 
software. A spot check of the MIMU performance was performed according to the 
guidelines proposed previously [24]. The GEs and spatio-temporal parameters resulting 
from the processing of the recordings of an instrumented 7-m instrumented mat acquir-
ing data at 120 Hz (Zeno Walkway, ProtoKinetics LLC) and analyzed with a dedicated 
software (PKMAS, ProtoKinetics LLC) were used for validation purposes. The instru-
mented mat measurements had a temporal accuracy of ± 1 sample (about 8  ms) and 
spatial resolution accuracy of ± 12.7 mm. The MIMU and the instrumented mat were 
synchronized via hardware (~ 8 ms). A custom-made cable was used to apply an external 
trigger generated by the instrumented mat to the access point controlling the MIMUs.

Experimental protocol

The data acquisition took place in the following laboratories: the Center for the Study of 
Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Israel (TASMC); 
the Neuromotor Rehabilitation Research Group, KU Leuven, Belgium (KULEU); the 
Clinical Ageing Research Unit, Newcastle University and Newcastle upon Tyne Hospi-
tals NHS Foundation Trust, UK (NEWCA); the laboratory of the Department of Neuro-
sciences, University of Genoa, Italy (UNIGE).

Recordings started with subjects standing still for a few seconds at 3  m from the 
instrumented mat and then walking back and forth for about 1  min at a comfortable 
speed (normally paced walk, NW) along a 12-m walkway which included the instru-
mented mat in its central portion. The same protocol was repeated at a higher walk-
ing speed (fast paced walk, FW). Subjects wore their own shoes and they could rest in 
between acquisitions if needed. Walking aids such as canes or tripods were allowed if 
used in daily life.

Gait events identification and gait temporal and spatial parameters estimation

A preliminary analysis was performed to eliminate operator-dependent swap between 
right and left MIMUs.

A first approximate segmentation of MIMU signals into gait cycles was performed 
by detecting the peaks in the medio-lateral (Z) component of the angular velocity. 

Fig. 1 Sensor placement (R-MIMU) and its local coordinate system axes
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These peaks usually occur during the leg swing motion. Gait cycles not detected 
or erroneously detected in this processing phase lead to missed or extra GEs, 
respectively.

Both ICs and FCs were then identified as in [14], although the FC search interval 
was made to begin at the minimum Z angular velocity rather than the maximum Y 
acceleration, being the former easier to identify. An example of IC and FC identifi-
cation during a passage on the instrumented mat is depicted in Fig. 2. Once the ICs 
and FCs were identified from both R-MIMU and L-MIMU signals, the following gait 
temporal parameters were calculated per gait cycle for both sides: Stride Time, Step 
Time, Swing Time and Stance Time.

The stride length was also estimated as described by Trojaniello et al. [14]. For each 
stride, ankle acceleration components were expressed in the GCS and, after gravity 
removal, optimally filtered and direct and reverse integrated (OFDRI technique [25]). 
The direction of progression was found by rotating the axes on the horizontal plane 
until one component of the velocity resulting from the above-mentioned integration 
was maximized. The MIMU acceleration was reoriented accordingly. The acceleration 
component along the direction of progression was integrated by means of the OFDRI, 
using as initial integration value the MIMU estimated forward linear velocity, given 
by the product of the Z angular velocity at mid-stance and the MIMU distance from 
the malleolus [26]. A further simple integration provided the forward displacement 
during a stride cycle (Stride Length). Gait Velocity was calculated for each cycle as 
Stride Length divided by Stride Time.

Temporal and spatial parameters resulting from TEADRIP were discarded when a 
stride was not fully included in the instrumented mat. Spatial parameters were dis-
carded when the estimate of the MIMU GCS orientation as provided by the manu-
facturer’s software failed. In case of freezing of gait for the PD subjects, the relevant 
portion of the trial was excluded from the analysis.

Fig. 2 TEADRIP and instrumented mat gait events. GEs for the first passage over the mat (right side only). GEs 
identified by the TEADRIP method are depicted as red triangles, while GEs identified from the instrumented 
mat are depicted as vertical lines (black IC, blue FC)
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Errors associated to the gait events identification and spatio‑temporal parameters 

estimation

To estimate the accuracy of the TEADRIP method, only gait data recorded while the 
participant walked on the instrumented mat (straight walking without turns) were con-
sidered. This gait data selection was made by excluding, for each passage over the mat, 
MIMU data recorded before the first IC and after the last FC as identified by the instru-
mented mat.

A GEs matching procedure was implemented to ensure that an unexpected additional 
time delay between MIMUs and instrumented mat would not compromise the com-
parison of their outputs. To match a TEADRIP estimated IC with the corresponding IC 
measured with the instrumented mat, a search interval around the latter was defined, 
which spanned from the FC preceding the IC to the FC following the IC. The TEADRIP 
estimated IC that fell in the interval was selected as the matching IC. If more than one 
TEADRIP estimated IC was found in the search interval, the farthest from the IC meas-
ured by the instrumented mat was counted as an extra IC, while if none fell in the inter-
val a missed IC was counted. If an extra TEADRIP estimated IC was found between two 
subsequent mat-measured FCs further apart than 1.3 s (which is approximately the aver-
age higher limit for PD stride duration, [27]), then the entire gait cycle was discarded 
(mat measure failure). The same procedure was applied to match TEADRIP estimated 
FCs to the corresponding FCs measured by the instrumented mat.

For each gait cycle, the stride-by-stride errors affecting the TEADRIP estimations of 
the GEs and the spatio-temporal parameters were computed as differences with respect 
to the relevant measurements obtained from the instrumented mat. Difference plots 
(Bland–Altman) were used to visually check the distributions of the spatio-temporal 
parameters errors between the two measurement systems.

For each subject, the mean error (me) and mean absolute error (mae) values for the 
estimated GEs and gait spatio-temporal parameters were calculated by averaging stride-
by-stride errors computed over the entire gait trial (left and right sides were not differen-
tiated). The standard deviation of the stride-by-stride error (sde) was also determined for 
each recorded trial. The TEADRIP estimations of the gait temporal and spatial param-
eters were also evaluated using the ratio between the mae and the mean value of the 
parameter as measured by the instrumented mat (%mae).

A three-way repeated measures analysis of variance (ANOVA) was performed on 
the mae for both GEs and spatio-temporal parameters to investigate the difference in 
the errors between subject groups (ELD, MCI, PD), between clinical centers (UNIGE, 
KULEU, TASMC, NEWCA) and within imposed walking speed (NW, FW). Since GEs 
mae were found not to be normally distributed (as resulted from a Shapiro–Wilk test), 
they were transformed to a logarithmic scale in order to ensure a normal distribution 
before undergoing ANOVA. Where a significant difference was found, post hoc tests for 
subject groups and clinical centers were performed with Bonferroni correction. All data 
was analyzed using SPSS v.24 (IBM Corporation) at a 5% level of significance.

Results
Over 15,000 gait cycles (see Table 2) were selected from the instrumented mat and com-
pared to those identified using the TEADRIP.
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The mean and standard deviation values of the mean trial values of the spatio-tempo-
ral parameters as determined by the instrumented mat in each clinical center at the two 
gait speeds are reported in Table 3.

Gait event identification and spatio‑temporal parameters estimation errors

The difference plots of Stride, Stance and Step Time and Stride Length are reported 
in Fig. 3. The estimated limits of agreement were 27 ms (2.6%) for Stride Time, 56 ms 
(8.5%) for Stance Time, 31 ms (5.8%) for Step Time and 60 mm (5.3%) for Stride Length.

The values of the me , sde , mae for IC and FC, averaged across the subjects of each 
clinical center, are reported for both for NW and FW trials in Table 4. The GEs errors 
for the participants from Newcastle could not be assessed due to a non-constant delay 
between MIMUs and instrumented mat signals across data acquisition sessions. How-
ever, being the delay constant within any acquisition session, this did not affect the esti-
mation of the errors related to temporal parameters. The same descriptive statistics in 
addition to the %mae are presented in Table 5 for each clinical center (both for NW and 
FW trials) for Stride Time, Stance Time, Swing Time, Step Time, Stride Length and Gait 
Velocity. Table 6 reports the subjects mae averaged across each group for both NW and 
FW trials.

Table 7 summarizes the ANOVA results; significant differences are indicated in italic. 
The analysis across clinical centers for the GE errors were performed only between 
UNIGE, TASMC and KULEU since NEWCA GE errors were not available.

A significant group main effect was found for IC identification. Post hoc analy-
ses revealed that for IC errors there was a significant difference between ELD and PD 
(p = 0.01), with larger errors for the PD group.

While no temporal parameter error showed any center effect, Stride Time and Step 
Time errors were significantly different across groups. Post hoc analyses revealed that 
there was a significant difference for errors between ELD and PD (p = 0.01 for Stride 
Time and p = 0.01 for Step Time), with larger errors for the PD group.

Group did not have a significant effect on the error of spatial parameters, while there 
was a significant effect for walking speed.

Table 2 Number of initial contacs and strides analyzed in each clinical center

The number of Stride Length estimates differs from that of Stride Time since stride length values were not computed for 
those trials in which the estimate of the MIMU GCS orientation failed

Clinical  
center

Initial  
contacts

Stride  
Time  
estimates

Stride  
Length  
estimates

UNIGE 5818 3512 3387

KULEU 5405 4156 4072

TASMC 7168 5824 5759

NEWCA 3632 2636 2585

Total 22,068 16,167 15,840
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Discussion
The tested method was successfully applied on a total of more than 20,000 ICs and 
FCs collected on 236 older adults (healthy, Parkinsonian and MCI participants). In 
performing the validation, additional care had to be taken to deal with limitations 
of the instrumented mat measurements used as reference values for the TEADRIP 

Fig. 3 Difference (Bland–Altman) plots for stride, stance and step durations and for stride length. Limits of 
agreement are, respectively, 27, 56, 31 ms and 60 mm. Red: TASMC; green: KULEU; black: NEWCA; blue: UNIGE

Table 4 Subject mean error, standard deviation and  mean absolute error averaged 
across clinical centers for both walking speeds (gait events)

me : subject mean error averaged across centers; sde : subject error standard deviation averaged across centers; mae : subject 
mean absolute error averaged across centers

Parameter Clinical center me sde mae

NW FW NW FW NW FW

Initial contact (ms) UNIGE 9 9 10 11 15 14

KULEU 3 4 9 9 11 10

TASMC 5 8 10 11 12 13

NEWCA n.a. n.a. n.a. n.a. n.a. n.a.

Final contact (ms) UNIGE − 9 − 9 13 13 20 20

KULEU − 8 − 7 12 14 21 19

TASMC − 3 − 2 12 14 19 17

NEWCA n.a. n.a. n.a. n.a. n.a. n.a.
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Table 5 Subject mean error, standard deviation, mean absolute error and  its relative 
percentage averaged across  clinical centers for  both  walking speeds (spatio-temporal 
parameters)

me : subject mean error averaged across centers; sde : subject error standard deviation averaged across centers; mae : subject 
mean absolute error averaged across centers; %mae : mean absolute error referred to parameter estimate averaged across 
centers

Parameter Clinical center me sde mae mae%

NW FW NW FW NW FW NW FW

Stride Time (ms) UNIGE < 1 < 1 15 14 12 11 1 1

KULEU < 1 < 1 12 11 9 9 1 1

TASMC < 1 < 1 14 13 10 10 1 1

NEWCA − 1 < 1 15 15 12 11 1 1

Stance Time (ms) UNIGE − 20 − 18 17 17 29 27 3 3

KULEU − 11 − 11 17 15 25 22 2 2

TASMC − 8 − 10 17 16 24 23 2 2

NEWCA − 11 − 12 17 15 24 23 3 4

Swing Time (ms) UNIGE 20 18 17 17 29 27 3 3

KULEU 11 11 17 16 25 23 2 2

TASMC 8 10 18 16 24 23 2 2

NEWCA 12 13 17 15 25 23 2 3

Step Time (ms) UNIGE < 1 < 1 16 15 13 12 1 1

KULEU < 1 < 1 14 13 11 11 1 1

TASMC < 1 < 1 16 15 12 12 1 1

NEWCA < 1 < 1 15 14 13 12 2 2

Stride Length (mm) UNIGE − 1 − 3 22 27 21 22 2 2

KULEU − 8 − 5 19 21 22 25 2 2

TASMC − 14 − 15 19 22 26 28 2 2

NEWCA − 4 − 6 19 30 19 27 2 2

Gait Velocity (mm/s) UNIGE − 2 − 4 23 30 21 24 2 2

KULEU − 7 − 5 20 25 21 27 2 2

TASMC − 13 − 16 20 25 25 30 3 2

NEWCA − 4 − 5 18 36 19 31 2 2

Table 6 Group average of  the  subjects mean absolute errors for  the  gait events 
and spatio-temporal parameters for both walking speeds

ELD healthy older adults, PD Parkinson’s disease subjects, MCI mild cognitive impaired subjects

Parameter ELD MCI PD

NW FW NW FW NW FW

Initial contact (ms) 10 11 10 10 14 14

Final contact (ms) 21 20 20 19 20 18

Stride Time (ms) 10 9 10 10 11 11

Stance Time (ms) 24 23 23 23 26 24

Swing Time (ms) 24 23 23 23 27 25

Step Time (ms) 11 10 11 10 13 12

Stride Length (mm) 21 25 19 23 23 25

Gait Velocity (mm/s) 21 29 18 25 22 28
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estimations of the gait parameters, such as steps outside the instrumented surface 
and unexpected failures.

The average values of the spatio-temporal parameters estimated by the instrumented 
mat showed a homogeneity across the clinical centers and values consistent with the 
literature.

The IC me showed, in all centers and at both walking speeds, an average delay of up to 
10 ms as identified by TEADRIP with respect to that identified by the instrumented mat, 
while the opposite holds for the FC. The amplitude of the subjects sde was slightly higher 
for the FC confirming the higher uncertainty in detecting FCs as opposed to ICs encoun-
tered in most validation studies. Similar conclusions can be drawn by looking just at the 
mae values. The opposite delays for IC and FC TEADRIP estimates reflected in a slight 
underestimation of the stance phase and an overestimation of the swing phase, but did 
not have any detrimental effect on the estimation of either Stride Time or Step Time, 
which showed extremely low me values. All temporal parameters exhibited a sde for 
each clinical center between 10 and 20 ms, confirming a limited variability of the errors 
within the trials at both walking speeds and in all clinical centers. The spatial parameters 
me in all clinical centers and for both walking speeds showed a global slight underesti-
mation performed by TEADRIP. Overall, the %mae of both temporal and spatial param-
eters was often below and, except NEWCA Stance Time at FW, never over 3% which is 
an excellent result, although a thorough comparison with the results obtained in studies 
proposing other methods is not straightforward [1, 15–17, 28–34]. Regarding the esti-
mation of the spatial parameters, it has been shown in the study conducted by Hannink 
et al. [35], that the OFDRI technique was the best performing among the double integra-
tion methods for mobile gait analysis tested in their study.

Even more importantly, all results of TEADRIP estimations were extremely consist-
ent across all clinical centers and with the previous results obtained in a single center 
on much smaller population samples [14]. Since the mae, as opposed to the me, is not 
affected by a potential cancellation due to cycle-differences of opposite signs, it was cho-
sen as the quantity to investigate with the ANOVA, which showed minimal statistical 
difference in the performance of the TEADRIP across subject groups, clinical centers 

Table 7 ANOVA results for  the  errors in  determining the  gait events and  the  gait spatio-
temporal parameters

Significant post hoc results: aELD‑PD (p = 0.01); bELD‑PD (p = 0.01); cELD‑PD (p = 0.01). Underlined results are from the 
comparison of UNIGE, TASMC and KULEU only

Initial 
contact

Final 
contact

Stride 
Time

Stance 
Time

Swing 
Time

Step  
Time

Stride 
Length

Gait 
Velocity

Walking speed

 F value 0.12 3.30 0.10 1.78 1.59 2.93 4.78 27.32

 p value 0.73 0.07 0.76 0.18 0.21 0.09 0.03 0.00

Clinical center

 F value 1.97 0.56 2.40 0.60 0.50 0.53 1.66 1.59

 p value 0.14 0.57 0.07 0.61 0.68 0.66 0.18 0.19

Subject group

 F value 5.21 0.64 3.61 0.81 1.02 4.61 0.01 0.13

 p value 0.01a 0.53 0.03b 0.45 0.36 0.01c 0.99 0.88
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and gait speeds. In particular, only spatial parameters errors were significantly different 
between walking speeds. The difference is probably the result of a more difficult esti-
mation of a correct initial constant value needed to estimate velocity from acceleration 
when the task is performed at higher speed.

Consistently with the results of the previous study employing TEADRIP [14], esti-
mates of ICs for PD subjects were affected by errors significantly different from those 
obtained in the ELD subject group. In partial disagreement with the results of the pre-
vious study, a different error between ELD and PD was also found for Stride Time and 
Step Time estimations. However, this difference may be a consequence of the above 
mentioned difference between IC timing errors. These results therefore provide a clear 
insight of the margin of tolerance associated to the estimation of the different temporal 
parameters for different populations. For instance, when estimating the IC, an average 
uncertainty error of 10 ms is expected for ELD and MCI subjects, while slightly higher 
errors (14 ms) should be considered when analyzing PD subjects.

Overall, the results obtained in this study extend the validity of the TEADRIP method, 
originally employed in [14] on four smaller subject groups, and combined with the find-
ings of the work of Storm et al. [20], who applied the same gait parameter estimation 
method to free-living gait, make TEADRIP a well-validated gait parameter estimation 
method.

Conclusions
TEADRIP, the gait parameter estimation method employed in this study, was effectively 
validated on a large number of subjects recorded in four different clinical centers. Not 
only was the performance comparable to that of the instrumented mat used as a refer-
ence, but it was also characterized by a greater amount of recorded data (longer and 
more diversified walks can be instrumented). Furthermore, as demonstrated in earlier 
work [20], these results hold also for outdoor straight line walking. The TEADRIP is 
therefore a valuable candidate for becoming a standard for the estimation of gait spatio-
temporal parameters with MIMUs placed on the ankles.
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