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Abstract— In previous papers we have addressed the prob-
lem of testing Random Number Generators (RNGs) through
statistical tests, with particular emphasis on the approach we
called second-level testing. We have shown that this approach
is capable of achieving much higher accuracy in exposing non-
random generators, but may suffer from reliability issues due
to approximations introduced in the test. Here we consider the
NIST Frequency Test and present a mathematical expression
of the error introduced by approximating the effective discrete
distribution function with its continuous limit distribution. The
matching against experimental data is almost perfect.

I. INTRODUCTION

Random Number Generators (RNGs) represent a funda-
mental component in many applications; for example they
are critical for the security in some cryptographic primitives
[1]. Several architectures of RNGs have been proposed in
recent years, ranging from jitter measurements [2] to quantum
effects observation [3], including generators based on chaotic
dynamic [4]. In order to choose among this pletora of possible
solutions, it is fundamental to assert the RNG quality.

For this reason the interest on tests for randomness has
grown significantly. In this paper we focus on the class of
tests known as statistical tests for randomness [5], [6]. Even
if different methods have recently been proposed based on
the direct estimation of the entropy a sequence of events
[7], all these methods require some assumptions on the input
sequence. On the contrary, statistical tests can effectively work
as blackbox tests.

The main problem on statistical test is the interpretation of
the results. Roughly speaking, while a failed test is a serious
indicator for the weakness of a RNG, a passed test does not
provide a direct positive proof for the quality of a RNG.
Mathematically, a test can be schematically described as a
function looking at a sequence of n events (e.g. a sequence
of n bits) and giving as output a number in [0, 1], called a
p-value. Intuitive speaking, the p-value is the quantification
of how much the sequence under test “appears more random”
than an effectively random generated sequence.

When we assume the input sequence is composed by ran-
dom variables, also the p-value is a random variable depending
on them. When the input sequence is true random, i.e. all
events are independent and drawn according to the same
known distribution, the p-value is uniform distributed in the
interval [0, 1], and its cumulative distribution function (cdf)
is Fu (x) = x. When we model the sequence generation
as a process producing non-independent events (i.e. pattern
or regularities are introduced in the sequence) or not dis-
tributed according to the expected distribution, the p-value is

distributed according to a cdf Fnu (x) (that depends on the
test and on the generator model) where p-values around zero
are much more probable than others.

Given a sequence and its p-value, the interpretation of
the test is the following. Fixed a level of significance α,
we consider a sequence true random if its p-value p > α.
Immediately, one can found that this approach is not exact but
it is possible to commit errors, hence the name “statistical”:

• given a true-random sequence, the probability to fail the
test is Prob {p ≤ α} = Fu (α) = α (Type I error)

• given a dependent sequence, the probability to pass the
test is Prob {p > α} = 1− Fnu (α) = β (Type II error).

Usually this is not a problem, since both α and β are typi-
cally small. The National Institute of Standard and Technology
(NIST) in its suite SP800-22 [5] suggests α = 0.01, while the
value of β depends on the test and on the statistics of the
generator under test, and, of course, on α. Its computation
is not trivial; usually the better the test, the lower β; the
more similar the generator to a true random process, the lower
β. Note that this is the classical approach named statistical
hypothesis testing [8].

We showed in [9] that using a second-level approach it is
possible to get more accurate results, i.e. fixed the same Type
I error probability, it is more difficult for a non-true random
sequence to pass a test. This approach is already discussed by
NIST in its document [5, chap. 4], and consists in repeating
the statistical test over many different sequences, and checking
if the distribution of the obtained p-values matches an uniform
distribution.

With this aim, NIST suggests a chi-square goodness-of-fit
test. Note that this test is again a statistical test and gives
another (a second level) p-value; for this reason we call this
approach second level testing.

We showed that regrettably this approach may produce
unreliable results. In fact, in every statistical test some ap-
proximations are adopted, introducing errors in the p-value
computation and so in the p-value distribution. As a result,
matching a distribution of p-values coming from true random
sequences against an uniform distribution may result in failing
the test.

Following [9], in this paper we focus on the Frequency
Test included in the NIST suite. This tests uses a binomial
distribution approximated with a normal distribution. In [9] we
analyzed this test, finding a limit on the sensitivity of a chi-
square test used as a second-level test to ensure that the normal
approximation does not generate unreliable results. Here we
consider this approximation under a different point of view,
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i.e. that we are approximating a discrete distribution with a
continuous one. With this approach we will be able not only
to say if the second-level test is reliable or not, but also to
compute the error in the second-level p-value.

The paper is organized as follows. Section II will provide
a mathematical background on the Frequency Test and on the
chi-square goodness-of-fit test. In section III we will find an
expression for the effective distribution of the p-values in a
Frequency Test, and how deviations from uniform reflect in
error in the second-level test. Finally, section IV provides some
examples of how to ensure a second-level reliable test.

II. MATHEMATICAL BACKGROUND

In the following we provide a very short mathematical
background on a statistical test considering two cases, the
NIST Frequency Test and the Pearson’s chi-square test.

Given a sequence of n events X(1), . . . , X(n), a statistical
test can be defined as a test function T = T

(
X(1), . . . , X(n)

)
.

If we assume a true random input sequence, T is a random
variable whose mean value T0 and probability distribution
can be computed from the X(i) statistics. The p-value of
an observed sequence X

(1)
obs, . . . , X

(n)
obs is by definition the

probability that a random sequence has a T more distant from
T0 with respect to Tobs = T

(
X

(1)
obs, . . . , X

(n)
obs

)
. So, given a

distance ‖T − T0‖ → R+ and the cumulative probability dis-
tribution function F‖·‖ (x) = Prob {‖T − T0‖ < ‖x− T0‖},
the p-value is expressed as p = 1− F‖·‖ (Tobs). In this way:

• p = 1, if T = T0;
• p → 0, if ‖T − T0‖ → ∞;
• for a true random sequence, p is a random variable

uniformly distributed in [0, 1].

A. NIST Frequency Test

The sequence X(i) is a sequence of bits, with X(i) =
{−1,+1}. The test function is the sum of all X(i):

S =
∑

i=1,...,n

X(i)

S is distributed according to a binomial distribution, with
mean value S0 = 0. The distance from S0 can be simply com-
puted as |S|. Since for large n, the binomial distribution can
be approximated with a normal distribution, the distribution of
|S| can be approximated with a half-normal distribution, so

p = erfc

( |Sobs|√
2n

)

where erfc(x) is the complementary error function.

B. chi-square goodness-of-fit test

The test function is the distribution of the n samples X(i) in
k subgroups, called bins. If the X(i) have a continuous distri-
bution, the bins are obtained as a partition of the definition set
of the X(i); let also πj be the probability that a sample X(i)

is in the j-th bin, with j = 1, . . . , k. The observed number
Oj of samples belonging to the j-th bin is compared with the
expected number Ej = nπj ; the distance between Oj and Ej
is given by:

χ2 =
∑

j=1,...,k

(Ej −Oj)
2

Ej

For a random input sequence, this is a random variable
distributed according to a chi-square distribution with k − 1
degree of freedom, so [8]

p = 1− γ
(
(k − 1) /2;χ2

obs/2
)

Γ ((k − 1) /2)

where γ (k;x) and Γ (k) are respectively the incomplete and
the complete gamma function.

III. ERROR ON A SECOND-LEVEL NIST FREQUENCY TEST

In the NIST Frequency test, S can only assume values in
a subset of all integer numbers between −n and n, more
precisely even numbers if n is even, and odd numbers it n
is odd. The probability that S is equal to r is given by

fr = f−r = 2−n

(
n

r+n
2

)
�
√

2

πn
e−

r2

2n (1)

This is a standard Gaussian approximation, since (1) is the
probability density function (pdf) of a normal random variable.

Note that we are approximating a discrete distribution with
a continuous distribution; let us assume that in all the points
where the discrete pdf is defined (i.e. in all possible value of
S) the introduced error is negligible. In other word, let us try
to use the approximated expression instead of the binomial
coefficients, and look for deviations from the uniform in the
p-values distribution due only to the discrete pdf.

Let us also suppose for simplicity that n is even; so |S| can
only assume the n/2+1 even values between 0 and n. This
means that also the p-value can assume only n/2+1 values;
since we know the probability of every S, we can compute
the pdf of the generated p-values as the discrete distribution

f (erfc)(x) =
∑

r=2,4,...,n

2

√
2

πn
e−

r2

2n δ

(
x−erfc

(
r√
2n

))
+

√
2

πn
δ(x− 1) (2)

where δ (x) is the classical Dirac delta function.
Note that for the case p = 1 the general rule does not apply.

In fact the p-value p = 1 is generated only by S = 0, while
for any other p-value the probability is doubled since it can
be generated both by S and by −S.

The integral of (2) gives the cdf, that is

F (erfc)(x) =
∑

r=2,4,...,n

2

√
2

πn
e−

r2

2n u

(
x−erfc

(
r√
2n

))
+

√
2

πn
u(x− 1) (3)

where u (x) is the unit step function and again the case p = 1
has to be considered separately.

The cdf (3) is a step-wise function approximating the
continuous uniform cdf; an example for n = 100 is shown
in Figure 1. Note that this distribution effectively converges to
the continuous uniform distribution, i.e. (2) converges weakly
to the uniform pdf, and (3) converges punctually to the uniform
cdf [10].

Note that the presence of the sum in (3) may lead to
computational problems; for this reason we have found an
approximation

F (erfc) (x) � x+ d (x) z (x) = x+ ε (x) (4)

with

d (x) =

√
2

πn
e
−
(
erfc−1

(x)
)2

z (x) =
√
2n erfc−1 (x) (mod 2) − 1
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Fig. 1. Comparison between discrete cumulative distribution function for
p-values generated by Frequency Test for n = 100 and continuous uniform
cumulative distribution function.

The computation of (4) is not reported here; intuitively
d (x) expresses the height of the steps, while z (x) the shape.
Supposing (1) holds, the introduced error on both edges of all
steps is zero; the only approximation error (that can be shown
to be very small) is given by the fact that (4) is actually not
stepwise constant.

Having an expression for F (erfc) (x), we can look at the
deviation from uniform in the p-value distribution. Let us
assume to have N p-values, and perform a chi-square test
dividing the interval [0, 1] in k subintervals

[
j−1
k , j

k

]
. If we

look for “classical” uniformity, i.e. if we assume F (x) = x,
we have

π′
j = F

(
j

k

)
− F

(
j − 1

k

)
=

1

k
(5)

however since we have an analytic form for F (erfc) (x), we can
compute

π′′
j =

1

k
+ ε

(
j

k

)
− ε

(
j − 1

k

)
(6)

Distribution (6) has (5) as limit distribution when n grows to
infinity. For a finite value of n a small difference exists: Figure
2 shows the comparison in the case n=220 between (5), (6)
and the experimental distribution we have found averaging
results from some different RNGs including [2], [3], [4] and
the BBS generator [11]. The empirical distribution matches
(6).

Even if the difference between distributions (5) and (6)
is relatively small (below 2% in the above example), when
increasing N the chi-square test may become sensitive enough
to distinguish between the two distributions. In this case,
testing observed frequencies of the p-values against (5) or (6)
may lead to completely different results.

More precisely, we know that the expected distribution is
well approximated by (6); however, for sake of simplicity, we
want to test the observed distribution against (5); this results in
an error in the computation of the distance χ2. We anticipate
here that we are able to evaluate this error as an average error.
In fact suppose to know that testing an observed distribution
Oj against (6) gives a distance χ2

0. Testing the same Oj against

 0.0635

 0.0625

 0.0615

 16 13 10 7 4 1

Theoretical distribution
Observed distribution

Uniform distribution

Fig. 2. Comparison between the theoretical distribution (6), the observed
distribution and the uniform distribution (5) for n = 220 and k = 16.

(5) gives a distance χ2 that is generally different from χ2
0:

χ2=
∑

j=1,...,k

(
N
k
−Oj

)2
N
k

=
∑

j=1,...,k

(
Ej−Nε

(
j
k

)
+Nε

(
j−1
k

)
−Oj

)2
N
k

=

=
∑

j=1,...,k

(Ej−Oj)
2

N
k

+Nk
∑

j=1,...,k

(
ε

(
j

k

)
−ε

(
j − 1

k

))2

+2k
∑

j=1,...,k

(Ej−Oj)

(
ε

(
j

k

)
−ε

(
j − 1

k

))
(7)

where we indicated with Ej the expected values of the Oj

assuming a distribution (6), while N/k is the expected value
of the Oj assuming distribution (5).

The first term of (7) can be approximated with a small error
with χ2

0; the second term is a constant; the third term is a
random variable, depending on the Oj

We can consider the average error on all Oj sequences
giving χ2

0. Note that in this case the Oj are random variables
that are not independent (there are two constraints, the first
given by χ2

0 and the second by
∑

Oj = N ); however every
Oj has Ej as expected value. This means that the average
contribute of this third term vanishes:

χ2� χ2
0 +Nk

∑

j=1,...,k

(
ε

(
j

k

)
−ε

(
j − 1

k

))2

= χ2
0 +NCχ2

where Cχ2 is implicitly defined.
Figure 3 shows a comparison between the expected value of

the normalized value χ2/ (k − 1) theoretically computed and
experimental results for different values of n and N . There is
an almost perfect matching between the curves. Note that we
used this normalization since χ2

0 is a chi-square distributed
random variable whose expected value is k − 1. The trend
of figure has been observed for all RNGs mentioned above.
Figure 3 refers to the BBS, since this was the only one able
to to generate the amount of bits necessary to compute the
≈ 106 p-values used to plot the figure.

From the knowledge of the error on the distance χ2 we can
compute the error on the p-value p of the chi-square test. If
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Fig. 3. Comparison between the observed value of χ2/ (k − 1) for different
values of N , with k = 16 and n = 10·210 (solid line), n = 100·210 (dashed
line), n = 220 (dotted-dashed line), along with their theoretically expected
values (dotted lines).

p0 = 1 − Fχ2

(
χ2
0

)
is the p-value we get using (6), and we

suppose that the error is small, we can write:

p = 1− Fχ2

(
χ2
0 +NCχ2

)
� 1− Fχ2

(
χ2
0

)
− fχ2

(
χ2
0

)
NCχ2

i.e. the average error on the chi-square test p-value is

p− p0 � −fχ2

(
F−1
χ2 (1− p0)

)
NCχ2 (8)

where Fχ2 (x) and fχ2 (x) are respectively the cdf and the
pdf of a chi-square distribution with k−1 degrees of freedom.

We can notice that the error p − p0 is always negative
(fχ2 (x) is a pdf), and depends linearly on N. Furthermore, for

k ≥ 4, fχ2

(
F−1
χ2 (x)

)
is a concave function, with a maximum

in x = γ ((k − 1) /2, (k − 3) /2).

IV. EXAMPLES

Equation (8) can be easily used to verify or ensure the
reliability of a chi-square test. For example, we can consider
a Frequency test with n = 220 and suppose to require an error
on the chi-square p-value |p− p0| < 0.01 on the whole range
0 ≤ p0 ≤ 1 using k = 10 bins. In this case

Cχ2 sup
0≤p0≤1

fχ2

(
F−1
χ2 (1− p0)

)
= 1.67361 · 10−6

that means
N < 5975

Under the same assumptions as before, we could be inter-
ested in accuracy not in the whole range 0 ≤ p0 ≤ 1 but in
a smaller range. For example we have a level of significance
α = 0.01 and we are interested only in the probability that
p < α. In this case we need accuracy only around p = 0.01:

Cχ2fχ2

(
F−1
χ2 (1− 0.01)

)
= 5.70634 · 10−8

of course in this case we must require a much smaller error,
for example |p− p0| < 0.001; with this bound we get

N < 17524

As last example, consider to have n = 220 and N = 10000.
We want to know if it is possible to have a maximum average
error |p− p0| < 0.01. We need to find all k for which

Cχ2 sup
0≤p0≤1

fχ2

(
F−1
χ2 (1− p0)

)
< 10−6

Note that despite the trend,
Cχ2 sup0≤p0≤1 fχ2

(
F−1
χ2 (1− p0)

)
is not strictly increasing.

For this reason we can expect a non-compact set of solution.
In the example we have

k = {3, 4, 5, 6, 9}

V. CONCLUSION

In this paper we have analyzed the Frequency Test included
in the well known NIST SP 800-22 test suite looking for
deviation from uniform in the p-value distribution. In particular
we have supposed to ignore the errors introduced by the
normal approximation used in the test but still consider a
discrete distribution. We then focused on the error given
by approximating a discrete distribution with a continuous
distribution. We were able not only to express an upper bound
on the reliability of a second-level test based on the Frequency
test, but also to give an expression for the average error on
the second-level p-value. This is supported by experimental
results.

The condition we have introduced here can be used to
choose the parameters of a second-level test; in this paper
we have presented few examples of how to perform a reliable
second-level test given different targets and conditions.
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