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Abstract—The limited power requirements of new generations
of base stations make the use of renewable energy sources,
solar in particular, extremely attractive for mobile network
operators. Exploiting solar energy implies a reduction of the
network operation cost as well as of the carbon footprint of radio
access networks. However, previous research works indicate that
the area of the solar panels that are necessary to power a
standard macro base station (BS) is large, making the solar
panel deployment problematic, especially within urban areas.

In this paper we use a modeling approach based on Markov
reward processes to investigate the possibility of combining a
connection to the power grid with small area solar panels and
small batteries to run a macro base station. By so doing, it is
possible to exploit a significant fraction of renewable energy to
run a radio access network, while also reducing the cost incurred
by the network operator to power its base stations. We assume
that energy is drawn from the power grid only when needed to
keep the BS operational, or during the night, which corresponds
to the period with lowest electricity price. The proposed energy
management policies have advantages in terms of both cost
and carbon footprint. Our results show that solar panels of
the order of 1-2 kW peak, i.e., with a surface of about 5-10 m2,
combined with limited capacity energy storage (of the order of
1-5 kWh, corresponding to about 1-2 car batteries) and a smart
energy management policy, can lead to an effective exploitation
of renewable energy.

Index Terms—Radio access network, Base station, Energy
consumption, Renewable energy, Green networking, Solar panel

I. INTRODUCTION

Green networking has been a hot research topic for the last
15 years, since the seminal paper by Gupta and Singh [1]
raised the awareness of the networking research community
on the increasing amount of energy necessary to run the
Internet. The attention devoted by researchers to green net-
working is the result of a multidimensional concern, evolving
around three main axes: i) the energy density required to run
networks in large metropolitan areas, ii) the carbon footprint
of the networking domain, iii) the energy contribution to the
operational expenditures (OPEX) of network operators.

A number of international research projects have been
devoted to the issue of energy efficiency in networking
over the last decade, such as EARTH [2], ECONET [3],
TREND [4], and GreenTouch [5]. Many approaches to a more
parsimonious use of energy have been developed within those
projects, mostly related to the introduction of sleep modes (or
low-power-idle modes) in the operation of network equipment
(see for example [6]–[8] for a survey of research in the field).
At the same time, networking component manufacturers man-
aged to develop new generations of devices with an increased
attention to power consumption.

In the particular case of radio access networks (RANs), the
most energy-hungry components are base stations (BSs), that
largely contribute to the OPEX incurred by mobile network
operators (MNOs). Consider for example that China Mobile,
the world’s largest MNO, with a few million installed BSs,
pays an energy bill corresponding to a consumption of several
tens TWh per year [9]. While BS models of the last decade
consumed up to 3.5 kW, the latest models need less than 1
kW [10].

The expected reduction of the energy intake of BSs spurred
investigations of the feasibility of using renewable energy
sources (RES), solar radiation in particular, to power BSs in
locations where the power grid is not available or not reliable,
or just where the cost of connecting the BS to the power
grid is high. Exploiting RES means using ”green energy”
rather than the ”brown energy” available from the power
grid, which is mostly generated by burning fossil fuels. The
results of these studies generally indicate that the area of solar
panels that are necessary to power a BS is large [11]; so large
to make the solar panel deployment problematic, especially
within urban areas.

In this paper, expanding the approach first presented in
[12], we use a modeling technique based on Markov reward
processes to investigate the possibility of combining small
area solar panels and small capacity batteries with a con-
nection to the power grid, aiming at increasing the amount
of green energy used to run the BS, and of reducing the
MNO OPEX due to energy. Brown energy is drawn from
the power grid only when needed to keep the BS running,
or during the night, which corresponds to the period with
lowest energy consumption, hence with lowest energy price.
This has advantages in terms of reduction of both cost and
carbon footprint, since the excess energy that is produced in
periods of very low consumption may be wasted. The key
contributions of this paper are the following:
• We apply a Markov reward model to the investigation

of the energy consumption of a BS connected to a solar
panel, an energy storage and the power grid. The reward
describes the battery charge as a continuous variable,
which in previous studies was shown to be the most
critical system element as regards quantization [13].

• We investigate the difference in behavior and perfor-
mance of the BS power system over the 4 seasons
by considering a location at 45 degrees North (Torino,
Italy), where the impact of seasons is significant.

• We show that small area solar panels (of the order
of 1-2 kW peak, i.e., about 5-10 m2) combined with
limited capacity energy storage (of the order of 1-5 kWh,
corresponding to about 1-2 lead acid, 12 V, 120 Ah, car
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Fig. 1: The considered BS power system.

batteries) and a smart energy management policy, can
lead to an effective exploitation of renewable energy.
That is, can lead to systems where the overall energy cost
(including both capital and operational expenditures) is
less than that for a grid-powered BS, and the fraction of
used green energy is significant.

The rest of this paper is structured as follows. Section II
describes the system setup that we consider in this paper.
Section III illustrates the Markov reward model developed
for the considered scenario. Section IV presents and discusses
numerical results. Section V describes some previous work
related to the content of this paper, and Section VI concludes
the paper.

II. SYSTEM DESCRIPTION

We consider one macro BS, equipped with a solar panel
and an energy storage unit. The BS power system is con-
trolled by an energy management unit (EMU) that is con-
nected to the BS, the solar panel, the energy storage (that we
will simply call “battery”) and the power grid. The considered
setup is illustrated in Fig. 1.

During periods of energy production of the solar panel,
the EMU uses the generated power to run the BS. If the
generated power is less than necessary, power is drained from
the battery. If the generated power is more than necessary, the
excess power is directed to the battery. If the power generated
by the panel is insufficient to run the BS and the battery is
depleted, power is acquired from the grid.

Power can also be drawn from the grid in periods of low
energy cost to recharge the battery for later use. Moreover,
the energy entering and exiting the battery is subject to losses,
that we assume equal to 15% at both the battery input and
output.

A. Energy consumption model

In order to model the BS power consumption we use the
approach that has become standard in the field, and that was
defined in the FP7 project EARTH [2]. The power needed to
operate a macro BS can be expressed as:

Pin = NTX . (P0 + ∆p . Pout), 0 < Pout < Pmax (1)

where NTX is the number of BS transceivers, Pmax rep-
resents the maximum radio frequency output power at full
load for one transceiver, P0 corresponds to the fixed power
consumption for one transceiver when the radio frequency
output power is zero, and ∆p is the slope of the load-
dependent power consumption. Pout is derived as:

Pout = ρ . Pmax, 0 ≤ ρ ≤ 1 (2)
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Fig. 2: Week-day (wd) and week-end (we) traffic loads in a
business (BA) and residential (RA) area.

where ρ denotes the instantaneous normalized BS load.
The power consumption of a LTE macro BS with 3 sectors,

2x2 MIMO, operating over 20 MHz has been derived as in
[10], according to which the typical minimum and maximum
values of the power consumption Pin are 114.5 W and
817.1 W, respectively.

The daily variation of the parameter ρ is defined by
the BS traffic profiles. We use real traces provided by an
Italian mobile network operator [13]. The daily traffic patterns
measured in a cell in a business area (BA) and in a cell in
a residential area (RA), during week-day (wd) and week-end
(we), are provided in Fig. 2, setting the maximum observed
load equal to the maximum load that can be carried by the
BS (i.e., ρ = 1).

B. Renewable energy production model

The parameters of the energy production stochastic model
are derived from two traces available in the Solar Radiation
Data (SoDa) website for the city of Torino, Italy [14].
The first (long-term) trace contains daily average irradiance
values, collected from January 1st 1985 to December 31st
2005. The second (short-term) trace contains hourly average
irradiance values, collected from February 1st 2004 to De-
cember 31st 2006. This data is provided by NASA (USA)
and MINES Paris Tech/Armines (France), considering global
radiation in the horizontal plane.

We aggregate the available long-term and short-term data
into 4 season-based sets: Winter months, from December to
February (90 or 91 days per year); Spring, from March to
May (92 days); Summer, from June to August (92 days);
Autumn, from September to November (91 days). For each
season, from the long-term irradiance data we generate the
average daily energy production of a 1 kW peak (kWp) solar
panel, and we define an energy production histogram by
applying an equal-range discretization. That is, we first divide
the total production range (difference between the maximum
and minimum daily average productions over the 21-year
period in the considered season) into 5 ranges of equal size, as
in [13], and we compute the frequency (probability) of each
interval. This procedure defines day-types, i.e., distinguishes
between 5 types of days based on the average daily produc-
tion. The same data are also used to obtain the probabilities
that a day-type j follows a day-type i, with i, j ∈ [1, · · · , 5].

Given the day-type, using the short-term irradiance data
we also model the hourly energy production. We split the
energy produced at a given hour of a given day-type into
ranges of 100 Wh each, and we build a histogram for all
samples of a given day-type in a given season. The number of
possible intervals of size 100 Wh varies according to season



and it is denoted by N (S)
L for season S, so that the maximum

production in season S is 100·N (S)
L Wh.

Fig. 3 reports the average hourly irradiance profiles for
each season. As expected, irradiance is highest in summer
and lowest in winter, and values of irradiance in spring are
significantly higher than in autumn. Note also the difference
among useful irradiance hours in the different seasons; while
in summer irradiance values are higher than zero from about
5 am to 9 pm, in winter the useful interval is from 7 am to 6
pm. The average daily peaks vary from 333 W/m2 in winter
to 791 W/m2 in summer. In Fig. 4, instead, we disaggregate
the seasonal data, and we report for summer and winter the
average irradiance profiles observed for each day-type. The
figure shows the importance not only of distinguishing the
seasons but also of modeling differences among days of the
same season.

Fig. 5 further disaggregates the irradiance data and displays
the daily irradiance profiles observed for each day-type in
summer and winter. We can see that in summer, day-type 5
corresponds to patterns of high irradiance values, with limited
variability from day to day. For day-types corresponding to
intermediate to low solar irradiance, a higher variability from
day to day can be observed, as well as a more relevant intra-
day variation. For day-type 1 we can note a limited variability
in irradiance in winter but a very high variability in summer.

These intra-day variabilities for a fixed day-type suggest
that a careful description of the renewable energy production
process must account not only for the day-type and the
hour of the day, but also for the possibility of variations in
irradiance within the day-type at a given hour. The histograms
for the different day-types in winter and summer are reported
in Fig. 6, and examples of histograms for specific time slots,
which refer to 12 noon in winter and summer, are reported
in Fig. 7. These histograms provide the probabilities that a
given amount of energy is generated at noon in winter and
summer (similar histograms provide the equivalent data for
other times, as well as for spring and autumn) in the various
day-types.
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Fig. 3: Average daily irradiance per season.
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Fig. 4: Average daytype profiles of solar irradiance in summer
and winter.

III. MARKOV REWARD MODEL

We define a discrete-time Markov chain (DTMC) reward
model for each season S, Z(S) = {z̄(S)

n : n = 0, 1, · · · },
over time slots of duration ∆T , set to 1 h in accordance to
the time granularity of our data about solar irradiance and
traffic and to the findings in [13]. For ease of notation, in
what follows we focus on the description of the DTMC for
a given season, and we drop the index S. However, even if
not explicitly indicated, the model parameter values depend
on season. The DTMC state is defined by three variables:

z̄n = (Wn, Tn, Ln),

where Wn indicates the day-type at step n; Tn represents the
time of the day at step n, and Ln corresponds to the level
of solar irradiance at time Tn. The battery charge level is
captured by an accumulated reward random variable, namely
Bn at step n. Roughly speaking, in each state the reward
varies according to the amount of energy drained from or
stored in the battery. This amount depends on the produced
energy that is a random variable that, in its turn, depends on
the state z̄n.

The DTMC moves from state z̄n = (Wn, Tn, Ln) to state
z̄n+1 = (Wn+1, Tn+1, Ln+1) according to the following
rules.

Flow of time: The daily evolution of the system is orga-
nized into 24 slots, corresponding to the hours of a day:

Tn+1 = (Tn + 1) mod 24. (3)

Day-type variation: The day-type changes at the end of
the day according to the probabilities derived from the long-
term data about the daily irradiance, as described in Section
II:

Wn+1 =

{
Wn with pr. 1 if 0 ≤ T < 23
Wn+1 with pr. P{Wn+1|Wn} if T = 23,

(4)
where P{Wn+1|Wn} is the probability that after a day of
type Wn a day of type Wn+1 follows, computed as described
in the previous section.

Irradiance: The probability that the irradiance is equal to
one of the possible values of Ln depends on the day-type
Wn and the time of the day Tn, according to the statistics
obtained from the short-term irradiance:

Ln = f(Wn, Tn). (5)

This means that including Ln in the DTMC state definition is
not necessary, but convenient for the computation of rewards.

Finally, the battery charge level is a continuous random
variable represented by the accumulated reward. The reward
gained when the DTMC visits state z̄n is r(z̄n) and its value
depends on three variables:
• E(z̄n): the amount of energy that is produced by the

PV panel in state z̄n. This amount depends only on the
panel size and on Ln and it is given by αLn, where α is
a constant that describes the efficiency of the PV panel;

• C(z̄n): the amount of energy that is consumed by the
BS in state z̄n, which depends only on the time of the
day Tn and on the considered traffic profile (residential
or business);

• A(z̄n): the amount of energy that is acquired from the
power grid in state z̄n. This amount depends on the
energy purchasing policy.
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Fig. 5: Daily profiles of solar irradiance in summer and winter.
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Fig. 6: Probability density function of solar irradiance in
summer and winter.
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Fig. 7: Probability density function of solar irradiance at 12
noon in Summer and Winter.

Then, the reward r(z̄n) is expressed as:

r(z̄n) = E(z̄n)− C(z̄n) +A(z̄n). (6)

The battery charging and discharging process is captured
by the evolution of the cumulative reward B, given by:

Bn+1 =

 0, if Bn + r(z̄n) ≤ 0
Bmax, if Bn + r(z̄n) ≥ Bmax
Bn + r(z̄n), otherwise

(7)

where we account for the fact that the battery charge cannot
be negative, and cannot exceed the battery capacity Bmax.

A. Reward Model Solution

The system model we just described belongs to the class
of Markov-modulated fluid flow models with finite buffer,
for which a variety of methods have been derived to obtain
the buffer occupancy steady-state distribution. Classical nu-
merical solution methods rely on solving partial differential
equations (see for instance, [15]). A different set of solution
approaches, developed by Ramaswami and his colleagues
[16], [17], is based on the observation that the steady-state
distribution of Markovian fluid flow models can be obtained
from a quasi birth and death (QBD) queue. The connection to
a QBD reduces the solution of a fluid model to the analysis
of a discrete-time, discrete-state space QBD for which well-
tested stable algorithms exist that avoid the computational
difficulties arising in spectral methods. In this work, we apply
the numerical method presented in [17], since we deal with
the steady-state analysis of the charge in a finite-capacity
battery1.

In a nutshell, the numerical solution method introduced
by Ramaswami et al. in [17] creates coupled queues on a
common probability space, by using a sequence of “spatial
uniformizations”, rather than the usual “time uniformization”
technique [18]. The main idea of the approach is to define
a discretization of the time axis, through a Markovian point
process such that, in the inter-event intervals of that process,
the potential increments to the flow process are identically
distributed exponential random variables. Then, the fluid level
is approximated by a number of exponentially distributed
chunks, and a queuing model that can be represented with a
QBD process is obtained. By letting the parameter of the uni-
formization process define progressively finer discretizations,
the fluid process is obtained as the stochastic process limit
of the work in the queues generated in the solution. Once
the original fluid process is “reduced” to a QBD process,
matrix-geometric analysis can be applied to characterize the
steady-state characteristics of the fluid flow process. We refer
the interested reader to the original paper [17] to get further
details about the numerical method.

B. Energy Management Policies

With the model described above we can represent differ-
ent energy management policies. We consider the following
cases. Only-battery policy. Brown energy is acquired only
when green energy is not available to run the BS, from either
the PV panel or the battery. The amount of energy acquired

1The implementation of the method was kindly provided to the authors
by V. Ramaswami.



from the power grid, A(z̄n), used in (6), when nonzero, is
given by:

A(z̄n) =

C(z̄n)− E(z̄n)−Bn−1 if C(z̄n)− E(z̄n)−Bn−1 > 0
for 0 ≤ Tn ≤ 23

Night-consumption policy. Brown energy is acquired from
the grid, in the interval from midnight to 6 am, in a quantity
equal to what necessary to run the base station, so that no
energy is drained from the battery in this period. Note that in
this period energy prices are lowest. Moreover, brown energy
is acquired also in other periods of the day whenever green
energy is not available to run the BS, from either the PV
panel or the battery:

A(z̄n) = C(z̄n)− E(z̄n)−Bn−1 if C(z̄n)− E(z̄n)−Bn−1 > 0
and if 7 ≤ Tn ≤ 23

C(z̄n) if 0 ≤ Tn ≤ 6

Night-consumption-and-recharge policy. Brown energy is
acquired from the grid, in the interval from midnight to 6 am,
in a quantity equal to what necessary to run the base station
plus an additional amount, denoted M , of either 1 kWh per
hour (version 1), so that in this period the battery level grows
of 7 kWh, or 0.5 kWh per hour (version 2), so that in this
period the battery level grows of 3.5 kWh. As before, brown
energy is acquired also in other periods of the day when
green energy is not available to run the BS, from either the
PV panel or the battery:

A(z̄n) = C(z̄n)− E(z̄n)−Bn−1 if C(z̄n)− E(z̄n)−Bn−1 > 0
and if 7 ≤ Tn ≤ 23

C(z̄n) +M if 0 ≤ Tn ≤ 6

When the acquired energy fills the battery, the value of the
reward representing the battery charge will reach Bmax as
indicated in (7).

C. Performance Measures

From the steady-state distribution of the DTMC reward
model for a given season S, with the steady-state probability
to be in state z̄ denoted by π(S)(z̄), we can evaluate a set of
useful performance metrics:

• P
(S)
e , the empty battery probability in season S:

P (S)
e =

∑
∀W

∑
∀T

∑
∀L

P [B = 0|z̄ = (W,T,L)]π(S)(z̄).

When the battery is empty and no energy is produced,
some brown energy has to be taken from the grid to
power the BS.

• E[Q(S)], the hourly average amount of energy purchased
from the power grid under the only-battery and the night-
consumption policies, in season S:

E[Q(S)] =
∑
∀W

∑
∀T

∑
∀L

A(W,T,L)π(S)(W,T,L).

In the night-consumption-and-recharge policy, during the
night hours, to account for the possibility that the extra-
energy M is not acquired because the battery is full,

the component M of the reward A(W,T,L) is summed
only if the battery is not full:

E[Q(S)] =
∑
∀W

∑
∀T

∑
∀L

[C(W,T,L) +

+M(1− Pf (W,T,L))]π(S)(W,T,L)

where Pf (W,T,L) is the probability that, in state
(W,T,L), the battery is full.

• E[X(S)], the hourly average cost of the energy pur-
chased from the power grid under the only-battery and
the night-consumption policies, in season S:

E[X(S)] =
∑
∀W

∑
∀T

P (S)(T )
∑
∀L

A(W,T,L)π(S)(W,T,L),

where P (S)(T ) is the electricity price, which depends
on the season and on the time of the day T . Like for
the amount of purchased energy, also for the evaluation
of the cost, under the night-consumption-and-recharge
policy, we need to take into account that the extra-energy
M is purchased only if the battery is not full:

E[X(S)] =
∑
∀W

∑
∀T

P (S)(T )
∑
∀L

[C(W,T,L) +

+M(1− Pf (W,T,L))]π(S)(W,T,L)

• EG, the yearly energy purchased from the grid:

EG = 24
∑
∀S

E[Q(S)]D(S),

where D(S) is the total number of days in a given season
S.

• CG, the yearly OPEX due the purchased brown energy:

CG = 24
∑
∀S

E[X(S)]D(S).

Moreover, the yearly CAPEX of PV panels, denoted by
CPV , and the CAPEX resulting of the battery usage, denoted
by CB , are defined as:

CPV =
cPSPV

lP
(8)

CB =
cBSB

lB
, (9)

where cP is the cost for 1 kWp of PV panel capacity, SPV

is the PV panel capacity, cB is the cost for 1 kWh lead-acid
battery capacity, SB is the battery capacity, lP is the lifecycle
of a PV panel (in years) and lB is the expected lifespan of
the set of batteries (in years).

Finally, the green-to-brown energy ratio, denoted by GB,
is defined as:

GB =
EBS − EG

EG
, (10)

where EBS is the yearly BS energy consumption.

IV. NUMERICAL RESULTS

As already mentioned, we consider one macro BS with
2 transceivers, adopting the BS models of [10] with the
corresponding energy consumption. We consider the traffic
profiles presented in Fig. 2, focusing on the residential week-
day version, which was shown in [12] to be more critical due
to the temporal mismatch between energy production peak
and traffic peak. Recall that we assume energy losses of 15%
at both the battery input and output.



Moreover, we consider three values for the PV panel size:
1, 2 and 5 kWp, and three battery capacities: 1, 2 and 5
kWh. As already noted, these PV panel sizes correspond to
about 5, 10, and 25 square meters, and the battery capacities
correspond to about 1 or 2 car batteries (considering 12 V,
120 Ah, lead-acid batteries).

An ideal system configuration should yield small empty
battery probability, so that little brown energy must be
acquired from the grid, and a full battery probability not
too close to 1, in order to avoid wasting the green energy
produced by the PV panel. In our previous work [12], results
showed that, as expected, for growing PV panel size, the
probability that the battery is empty decreases, while the
probability that the battery is full grows. The best choice
of the PV panel size is however quite dependent on the
solar irradiance levels, hence on the season. This led to
the suggestion of adopting different approaches to energy
management in the different seasons.

However, the real driver to convince a network operator to
adopt renewable energy to power base stations must be based
on the possibility of a reduction in the total cost to power
the base station, including both capital and operational ex-
penditures (CAPEX and OPEX), combined with a significant
reduction of the carbon footprint, that today can represent
a competitive advantage in the attraction of customers. In
Fig. 8 we show for the four considered energy management
policies, the three PV panel sizes, and the three battery sizes,
the total amount of energy bought from the grid, the yearly
CAPEX due to the PV panel (assuming a panel duration of
25 years and a cost of 660 C/kWp), the yearly CAPEX due
to storage (assuming a 100 C/kWh lead-acid battery cost
and a maximum of 3000 discharge cycles before replacement
[19]), the cost of the energy bought from the grid (assuming
real prices from the Italian electricity market provided by
GME [20]), and the total cost to power the base station. We
can see that (small) cost reductions can only be obtained
with PV panel sizes equal to either 1 or 2 kWp, and battery
sizes equal to 1 or 2 kWh, and only with the Only-battery
and Night-consumption energy management policies. The
adoption of different energy management policies in different
seasons yields small additional cost savings (not shown in the
plots) with small PV panel sizes only. For example, with 1
kWp panel size and 2 kWh battery, the additional saving is
about 2.5%; increasing the battery size to 5 kWh brings the
additional saving to almost 6%. Larger sizes of battery (above
10 kWh) yield overall CAPEX and OPEX costs higher than
the cost of BSs systems powered only by the electrical grid.

This is quite an interesting result, since it proves that
small solar systems, including a PV panel of limited size and
a small battery, which are easily deployable also in urban
environments, can help the operator reduce costs, while also
allowing a reduction of the RAN carbon footprint.

The question about the effectiveness of such small systems
in reducing the carbon footprint of the base station is an-
swered by the results in Fig. 9, which plots the ratio between
the amounts of green and brown energy used to power the
base station. Results show that the cases that yield a cost
reduction, and in which the ratio is close to 1 are those
with battery capacity of 2 kWh and PV panel sizes of 2
kWp. This means a reduction of 50% of the brown energy
consumed by the base station, with the associated reduction
of its carbon footprint, using manageable size PV panels and

batteries, and decreasing the overall cost with respect to the
traditional connection to the power grid.

It must be noted that the results in Fig. 9 also show that
larger battery capacities yield further reductions of the carbon
footprint, but, as we already noted, do not allow a reduction
of the overall cost.

V. RELATED WORK

The increasing number and variety of works available in
the literature about green mobile networks shows the raising
interest about the use of RE to make communication networks
more energy efficient [21]–[23].

Most related with this paper are the works that aim at mod-
eling the behavior of BS power systems based on renewables,
with the objective of understanding the characteristics of these
systems and providing guidelines for correct dimensioning
[13], [24]–[26]. Those works rely on Markovian models for
computing BSs performance, in which battery charge levels
are explicitly modeled as one of the Markov chain state-
variables. To the best of our knowledge, our works are the
first that apply Markov reward models for dimensioning both
panel and battery sizes of BS renewable power systems.
Applying reward technique to describe the battery charge as
a continuous variable enables a more accurate performance
evaluation of a BS system, given that previous studies showed
that battery modeling is the most critical system element as
regards quantization [13].

VI. CONCLUSIONS

In this paper we considered a base station that, besides
being connected to the power grid, is equipped with a solar
panel and an energy storage unit, with the objective of
reducing both the total cost of the base station power system,
and the base station carbon footprint.

By modeling the system as a Markov reward process, we
investigated three energy management strategies: i) brown
energy is drained from the grid only when the battery is
empty, ii) the base station is powered through brown energy
from the grid also during night, when the price of electricity
is low, and, iii) during night, in addition to the energy needed
to run the BS, some brown energy is proactively stored in the
battery for future use.

Results show that some (admittedly small) overall cost
saving, together with significant (of the order of 50%) carbon
footprint reductions can be obtained with PV panel sizes of
the order of 10 square meters and 1 or 2 car batteries for
energy storage. This makes the adoption of mixed base station
power system, composed of a connection to the grid, a solar
panel and a battery, feasible in a large number of scenarios,
including urban environments, where network densification
will soon call for the deployment of many new base stations.
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Fig. 8: Energy bought from the grid per year and yearly CAPEX/OPEX in residential areas for different battery and PV
panel sizes, and for different energy management policies
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