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Abstract

We investigate the spectrum of the Laplace equation with various, Steklov and Dirichlet, Neu-
mann, boundary conditions in the singularly perturbed two-dimensional domain Ωε = Ω \ (ωε

1 ∪
. . . ∪ ωε

2) with small holes ωε
j of diameter O(ε), ε > 0 being a small parameter. We consider all

possible combinations of boundary conditions, but the interior boundaries γεj = ∂ωε
j , j = 1, . . . , J ,

are supplied with conditions of the same type and, of course, the Steklov spectral condition is al-
ways put on either Γ = ∂Ω, or γε = γε1 ∪ . . . ∪ γεJ . We construct the asymptotic as ε → +0 of the
eigenvalues λεn and the corresponding eigenfunctions uεn. However, the main attention is paid to the
analysis and error estimates for eigenvalues that present all peculiarities of the asymptotic proce-
dures, while afterwards formulation of theorems on asymptotics of the corresponding eigenfunctions
becomes rather standard. Furthermore, the most representative analysis are given in the Steklov–
Neumann and pure Steklov problems, so that the Steklov–Dirichlet prolem is discussed condensely.
The distinguishing feature of the two-dimensional boundary value problems is the dependence of
asymptotic terms on the additional parameter ζ = | ln ε|−1, either polynomial and rational, or ana-
lytic and homomorphic, and we discard such dependencies for various distributions of three types of
the above-mentioned boundary conditions. In general situation only the “logarithmic" asymptotics
with remainder of order ηk is available but the perturbation of a simple eigenvalue of the limit
problem gets the power-law type with a remainder of order εmzk. At the same time, the power-law
asymptotics can be derived also in the case of a κ-multiple limit eigenvalue when all κ asymptotic
forms for the perturbed eigenvalues have different higher-order terms.

For the pure Steklov problem, we are able to construct and justify the asymptotics of eigenvalues
in both, the low-frequency O(1)O and middle-frequency O(ε−1) ranges of the spectrum. However,
if the Neumann or Dirichlet conditions enter the problem, only either low-, or middle-frequency
range becomes suitable for the asymptotic analysis. With the Neumann or Dirichlet condition on
the interior boundary γε, we obtain a limit problem in the intact domain Ω and the low-frequency
range is available while these conditions on the exterior boundary Γ give rise to the limit family of
exterior Steklov problems in Ξj = R2\ωj , j = 1, . . . , J , which describe asymptotics of the perturbed
spectrum in the middle-frequency range. The pure Steklov problem in Ωε accepts both types of the
above-mentioned limit problems

Keywords: Steklov spectral problems, singularly perturbed domains, asymptotics of eigenfunctions
and eigenvalues
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1 Introduction
?⟨subsec1⟩?1.1 Formulation of problems
⟨subsec11⟩We consider the Laplace equation

∆xu
ε(x) = 0, x ∈ Ωε, (1.1) 1

in the planar domain

Ωε = Ω \
J⋃

j=1

ωε
j , (1.2) 2

where Ω and ωj , j = 1, . . . , J are domains in the plane R2 enveloped by simple closed smooth (for
simplicity of class C∞) contours Γ = ∂Ω and γj = ∂ωj , respectively. Furthermore,

ωε
j = {x : ξj = ε−1(x− xj) ∈ ωj}, (1.3) 3

where x1, . . . , xJ are some fixed points in Ω, xj 6= xk for j 6= k, and ε ∈ (0, ε0] is a small parameter
while the bound ε0 > 0 is fixed such that

ωε
j ⊂ Ω, ωε

j ∩ ωε
k = ∅, j, k = 1, . . . , J, j 6= k for ε ≤ ε0.

If necessary, we diminish ε0 in the sequel but keep the notation. We assume that ωj contains the
coordinate origin.

We supply the equation (1.1) with various boundary conditions on the exterior Γ and interior
γε1, . . . γ

ε
J parts of the boundary Γε = ∂Ωε including at least one of the following Steklov spectral

conditions
∂νu

ε(x) = λεuε(x), x ∈ Γ, (1.4) 4

∂νu
ε(x) = λεuε(x), x ∈ γεj , j = 1, . . . , J, (1.5) 5

where ∂ν is the outward normal derivative and λε is the spectral parameter. In addition to the overall
Steklov problem (1.1), (1.4),(1.4), we consider all possibl variants of boundary value problems replacing
one of the Steklov conditions (1.4) or (1.5) with either the Neumann conditions

∂νu
ε(x) = 0, x ∈ Γ, (1.6) 6

∂νu
ε(x) = 0, x ∈ γεj , j = 1, . . . , J, (1.7) 7

or the Dirichlet ones
uε(x) = 0, x ∈ Γ, (1.8) 8

uε(x) = 0, x ∈ γεj , j = 1, . . . , J. (1.9) 9

The variational formulation of any introduced problems requires to find an eigenpair {λε, uε} ∈ R×Hε

verifying the integral identity

(∇xu
ε,∇xv

ε)Ωε = λε(ρεuε, vε)Γε ∀vε ∈ Hε, (1.10) 10

where ∇x = grad, ρε = 0 on Γ, resp. on γε = γε1 ∪ . . . ∪ γεJ , in the case when the condition (1.4), resp.
(1.5), is excluded, (, )γ is the natural scalar product in the Lebesgue space L2(γ), and Hε is the Sobolev
space H1(Ωε) if none of the Dirichlet conditions (1.8) and (1.9) is involved into the problem but Hε is
the subspace H1

0 (Ω
ε,Γ), resp. H1

0 (Ω
ε, γε), if the conditions (1.8), resp. (1.9), is imposed. Here,

H1
0 = (Ωε, υε) = {uε ∈ H1(Ωε) : uε = 0 on υε}

for any υε ⊂ Γε.
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In any case, problem (1.10) has the eigenvalue sequence

0 ≤ λε1 < λε2 ≤ λε3 ≤ . . . ≤ λεn ≤ . . .→ +∞, (1.11) 11

where the eigenvalues’ multiplicity is taken into account, and the corresponding eigenfunctions uεm ∈ Hε

can be subject to the normalization and orthogonality conditions

(ρεuεm, u
ε
n)Γε = δm,n, m, n ∈ N = {1, 2, 3, . . .}, (1.12) 12

where δm,n is the Kronecker symbol.

1.2 Existing asymptotic results
⟨subsec12⟩Asymptotic structures in the spectral Steklov problems having a close relation to the water-wave prob-

lems in finite ponds and infinite channels, cf. [1] and [2] and many other monographs and review papers,
have been examined in many publications with various formulations and by different approaches. Let
us mention some of them.

Infinite asymptotic series for eigenpairs of the Steklov problem (1.10), (1.4), (1.5) in a domain
Ωε ⊂ Rd, d ≥ 3, with only one cavity1 Ωε of type (1.3) have been constructed in paper [3] and estimates
of asymptotic remainders with any prescribed precision order have been derived. Although asymptotic
procedures are based on the well-known methods of compound asymptotic expansions, cf. [4, Ch. 2, 4,
11], the very distinguishing feature of the particular Steklov problem considered in [3] is the existence
in the low and middle-frequency ranges of the spectrum of two families of eigenvalues which can be
decomposed as infinite asymptotic series2 in powers in ε. The methods used in [3] do not directly
work for the two-dimensional problems in the present paper because of the logarithmic behaviour of
the fundamental solution Φ(x) = −(2π)−1 ln |x| of the Laplacian in the plane R2 — the fact that Φ(x)
in dimension d ≥ 3 decays as O

(
|x|2−d

)
at infinity was crucially used in [3]. However, in Section ?? we

essentially modify the asymptotic method and derive asymptotic expansions f eigenvalues in both the
low and middle-frequency ranges of the spectrum (1.11) of the Steklov problem (1.10), (1.4), (1.5) in
Ωε.

Another type of asymptotic analysis on the basis of a fruitful approach developed in [6], [7], was
applied for eigenvalues of the Steklov problem in the domain Ωε with a single hole ωε

1, i.e., for J = 1
in (1.2). It is proved that simple eigenvalues are analytical functions of ε for dimensions d ≥ 3 and
in two variables ε, | ln ε|−1 in dimension d = 2. Meanwhile, this asymptotic analysis applies forcefully
for eigenvalues in the low-frequency range of the spectrum. Although results in [6] do not provide
explicit formulas for the above-mentioned analytic functions, they demonstrate that some of the formal
asymptotic series constructed in [3] do converge. We emphasize tat this type of convergence cannot be
verified by means of the asymptotic analysis in the paper [3] as well as by general approaches in the
book [4].

1.3 Preliminary description of our further results
?⟨subsec13⟩? A specificity of two-dimensional problems, stationary and spectral, respectively, have been observed in

the original papers [8] and [9], see also the monographs [10] and [4], namely, it had been discovered that
terms in the asymptotic series for solutions and eigenpairs, respectively, are rational and holomorphic
functions of z = | ln ε|−1. In this way, it had become possible to sum up series in powers of z obtained in
preceding studies of two-dimensional boundary-value problems with singular geometrical perturbations,
however, summation of series in powers of ε is not available within the approach in [4] and [10] using
the methods of compound and matched asymptotic expansions.

1Both the assumptions J = 1 and d ≥ 3 are important for the techniques used in [3]
2The authors do not know other singularly perturbed problem where, in addition to eigevalues of order ε0 = 1,

complete asymptotic expansions can be derived for eigenvalues of order ε−1, see discussion in [5] and Section ??.
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The above-mentioned types of dependence on z will be proven in Sections 3.4, 5.1, 5.2 and 4.1,
4.3, 5.3, respectively. Note that asymptotic expansions derived in Sections 3.1 and 3.2 do not involve
logarithms at all.

All the problems under consideration enjoy an interaction of the holes ωε
1, . . . , ω

ε
J , but not in the

main asymptotic term. In the low-frequency range of the spectrum of problems with the Steklov
condition (1.4) on Γ such interpretation occurs in the low-frequency range at level ε2, ε and | ln ε|−1

for the conditions (1.7), (1.5) and (1.9) on γε, respectively. At the same time, the Steklov condition
(1.5) on γε provides the interaction in the middle-frequency range in the first correction term of order
ε−1| ln ε|−1 or ε−1| ln ε|−2. In any case the main term of the power-law asymptotics takes this interaction
into account. It should be mentioned that our other results about the Laplace equation in Ωε ⊂ Rd

with the Steklov and Neumann condition on γε and Γ, respectively, indicate a strong interaction of
holes in dimension d ≥ 3, namely, the exterior problems in Ξj are linked by modified Steklov conditions
on ∂ωj , j = 1, . . . , J . It is remarkable that the Dirichlet condition on Γ annuls the interaction effect.
Similar effects of far-field interaction of small perturbations has been detected in papers [11], [12], [13]
but in a quite different spectral problem with local concentrated masses in a three-dimensional domain
with the Neumann boudnary condition.

The spectral problem (1.1), (1.4), (1.5) with the Steklov condition on the boundary ∂Ωε = Γ ∪ γε
possesses some individual and exceptional features. As in the above-mentioned paper [3] for d ≥ 3, we
will detect two series of eigenvalues from the sequence (1.11) in the form

λεn = λ0n +O(ε| ln ε|) (1.13) ser1

λεn(ε) = ε−1 (µp(z) +O(ε| ln ε|)) . (1.14) ser2

The series (1.13) involves the eigenvalue sequence {λεn}n∈N of the Steklov problems in the intact do-
main Ω and describes the spectrum and describes the spectrum of the Steklov problem in Ωε in its
low-frequency range. The series (1.14) is related to the middle-frequency range and is generated by
eigenvalues of the family of exterior Steklov problems in Ξ1, . . . ,ΞJ . The first series is also detected
by Theorem 6.4 on convergence, while this theorem does nothing with the second series because the
eigenvalues in (1.14) rush to infinity when ε→ +0 and, therefore, change their numbers in the ordered
eigenvalue sequence (1.11) indefinitely many times.

1.4 Structure of the paper
?⟨subsec14⟩? In Section 2 we sketch the main known information about various limit problems in Ω and Ξj , whose

eigenpairs and special solutions enter into the asymptotic expansions of the eigenpairs of the problems
formulated in Section 1.1.

In 3 and 4 we deal with two variants of the Neumann–Steklov and Dirichlet–Steklov problems in Ωε

and demonstrate that the behaviour of the spectrum (1.11) is crucially dependent on the position of
the spectral boundary condition on either the exterior part of Γ, or the interior part γεj of the boundary
∂Ωε, while the procedures to construct the asymptotics (1.13) and (1.14) look quite similar to the ones
in Section (3.1) and (4.1), respectively.

The convergence theorems for eigenvalues of the various problems under consideration are collected
in Section 6. With the help of the classical Lemma on “almost eigenvalues" (a direct consequence
of the spectral decomposition of the resolvent) in Section 7 we prove estimates for the asymptotic
remainders in the derived asymptotic expansions and conclude with all theorems on asymptotics that
are formulated in Sections 3–5.
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2 Auxiliary information
⟨sec2⟩2.1 The interior Steklov problem

?⟨subsec21⟩? It is well-known that the problem

−∆xu
0(x) = 0, x ∈ Ω0, ∂νu

0(x) = λ0u0(x), x ∈ Γ, (2.1) 21

has the eigenvalue sequence

0 ≤ λ01 < λ02 ≤ λ03 ≤ . . . ≤ λ0n ≤ . . .→ +∞, (2.2) 22

and the corresponding eigenfunctions u0m ∈ H1
0 (Ω) can be subject to the normalization and orthogo-

nality conditions
(u0m, u

0
n)Γ = δm,n, m, n ∈ N. (2.3) 23

The principal eigenfunction u01(x) = |Γ|−1/2 is constant, and |Γ| is the length of the contour Γ.

2.2 The exterior Steklov problem
⟨subsec22⟩Considering the problem

−∆ξw
j(ξ) = 0, ξ ∈ Ξj , ∂ν(ξ)w

j(ξ) = µjwj(ξ), ξ ∈ γj = ∂ωj , (2.4) 24

in the exterior domain Ξj = R2\ωj , we introduce the space Hj as the completion of C∞
c (Xij) (infinitely

differentiable and compactly supported functions) in the norm

||w;Hj || =
(
||∇ξw;L

2(Ξj)||2 + ||w;L2(γj)||2
)1/2

. (2.5) 24N

An equivalent weighted norm(
||∇ξw;L

2(Ξj)||2 + ||(1 + |ξ|)−1(1 + | ln ξ|)−1w;L2(Ξj)||2
)1/2 (2.6) 25

results from the calssical Hardy inequality with logarithm∫ +∞

R
ρ−1

∣∣∣ln ρ

R

∣∣∣−2
|W (ρ)|2 dρ ≤ 4

∫ +∞

R
ρ

∣∣∣∣dWdρ (ρ)

∣∣∣∣2 dρ, ∀W ∈ C∞[R,+∞), W (R) = 0 (2.7) 25N

together with the Poincare inequality

||w;L2(B2R \ ωj)|| ≤ cR
(
||∇ξw;L

2(B2R \ ωj)||+ ||w;L2(γj)||
)

where the radius R > 0 is chosen such that the disk BR = {ξ : |ξ| < R} contains ωj . The last condition
in (2.7) is achieved by multiplication of w with an appropriate cut-off function.

Constants belong to Hj and therefore, due to the compact embedding Hj ⊂ L2(γj), the variational
formulation of problem (2.4)

(∇ξw
j ,∇ξv

j)Ξj = µj(wj , vj)γj ∀vj ∈ Hj (2.8) 26

possesses the eigenvalue sequence

0 = µj1 < µj2 ≤ µj3 ≤ . . . ≤ µjn . . .→ +∞, (2.9) 27

and the corresponding eienfunctions wj
n ∈ Hj can be subject to the normalization and orthogonality

conditions
(wj

m, w
j
n)γj = δmn, m, n ∈ N. (2.10) 28

These eigenfunctions admit the asymptotic form

wj
n(ξ) = bjn + w̃j

n(ξ) (2.11) 29

where bjn is a constant and the remainder w̃j
n satisfies the estimates

|∇k
ξ w̃

j
n(ξ)| ≤ ck,n (1 + |ξ|)−1−k , k = 0, 1, 2, . . . , ξ ∈ Ξj . (2.12) 30
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2.3 The Dirichlet problems
⟨subsec23⟩We will need the Green function G(x, y) in the domain Ω, which is a distributional solution of the

problem
∆xG(x, y) = δ(x− y), x ∈ Ω, G(x, y) = 0, x ∈ Γ, (2.13) D01

where δ is the Dirac mass and y ∈ Ω is a parameter. The function Gj(x) = G(x, xj) with the logarithmic
singularity at the fixed point xj admits the asymptotic form

Gj(x) = δj,k
1

2π
ln

1

rk
+ Gjk +O(rj), rj = |x− xj | → +0. (2.14) D02

The coefficients Gjk, k = 1, . . . , J , compose the J × J-matrix G which is symmetric.
The exterior homogeneous (ψ = 0) Dirichlet problem

∆ξw
j(ξ) = 0, ξ ∈ Ξj , wj(ξ) = ψ(ξ), x ∈ γj , (2.15) D03

has a solution with logarithmic growth at infinity, namely, the logarithmic capacity potential (see, e.g.,
[14], [15])

Ej(ξ) =
1

2π
ln

1

|ξ|
+

1

2π
ln clog(ωj) + Ẽj(ξ) (2.16) D04

where clog(ωj) > 0 is the logarithmic capacity of the set ωj ⊂ R2 and the remainder Ẽj admits the
estimate (2.12) (recall thet the coordinate origin ξ = 0 belongs to ωj). For any smooth ψ, problem
(2.15) has a unique solution wj ∈ Hj in the form (2.11), where w̃j fulfils the estimates (2.12) and the
constant bj is computed as follows:

bj =

∫
γj

ψ(ξ)∂ν(ξ)E
j(ξ) dsξ. (2.17) ?D05?

2.4 The Neumann problems
⟨subsec24⟩The generalized Green function of the Neumann problem in Ω is defined as the distributional solution

of the problem

∆j
xG(x, y) = δ(x− y)− |Ω|−1, x ∈ Ω, ∂νG(x, y) = 0, x ∈ ∂Ω, (2.18) N09

where |Ω| is the area of Ω and the function G is of mean zero over Ω. In this way, the problem (2.18)
with the right-hand side

a1δ(x− x1) + . . .+ aJδ(x− xJ) (2.19) N10A

has a solution in L2(Ω) if and only if
a1 + . . .+ aJ = 0. (2.20) NN10

The exterior Neumann problem

−∆ξw
j(ξ) = 0, ξ ∈ Ξj , ∂ν(ξ)w

j(ξ) = ψ(ξ), ξ ∈ γj , (2.21) N01

with smooth right-hand side ψ of mean zero over γj has a solution in Hj defined up to a constant
addendum. Hence, in view of representation (2.11), the decaying (bjn− 0) solution exists and is unique.

If ∫
γj

ψ(ξ) dsξ 6= 0,

problem (2.21) has a solution with logarithmic growth at infinity.
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Setting ψp = ∂ν(ξ)ξp in (2.21), we observe that
∫
∂ωj

ψp(ξ) dξ = 0 and find a decaying solution

wj
p ∈ Hj . Furthermore, this harmonics gets the decomposition

W j
p (ξ) =

2∑
q=1

M j
pq

∂Φ

∂ξq
(ξ) + W̃ j

p (ξ) (2.22) N02

where Φ(ξ) = −(2π)−1 ln |ξ| is the fundamental solution of the Laplacian in R2 and the remainder gets
much faster decay than in (2.12)

|∇k
ξW̃

j
p (ξ)| ≤ ck (1 + |ξ|)−2−k , k = 0, 1, 2, . . . , ξ ∈ Xij . (2.23) ?N03?

According to [14, Appendix G], the coefficients Mpq in (2.22) form a 2× 2-matrix M j =M(ωj), which
is called the virtual mass matrix of the set ωj ⊂ R2. This matrix is always symmetric and negative
definite, since the domain ωj has positive area |ωj |. Notice that M(T ) is degenerate for a straight crack,
e.g., M11(T ) =M12(T ) = 0 for T = {ξ : ξ2 = 0, |ξ1| < l} because ψ1 = 0.

3 The Steklov-Neumann problems
⟨sec3⟩3.1 The Neumann conditions at small holes

⟨subsec31⟩The asymptotic ansätze for an eigenpair {λε, uε} of problem (1.1), (1.4), (1.7) look quite simple

λε = λ0 + ε2λ′ + λ
ε
, (3.1) N1

uε(x) = u0(x) + ε
J∑

j=1

χj(x)w
j(ξj) + ε2u′(x) + uε(x), (3.2) N2

where {λ0, u0} is an eigenpair of the limit Steklov problem, wj is a boundary layer term localized in
the vicinity of the hole ωε

j by the cut-off function χj ∈ C∞
c (Ω),

χ(x) = 1 in dj − neighbourhood of xj , dj > 0,

χjχk = 0 for j 6= k, χj = 0 near Γ.
(3.3) chi

The correction terms λ′ and u′ are to be determined, while the remainders λ̃ε and ũε will be estimated
in Section ? ????.

Since the harmonics u0 is smooth near the points P 1, . . . , P J , the leading term in (3.2) leaves the
discrepancy

∇xu
0(P j) = ∂νx

j +O(ε)

in the Neumann condition (1.7) on the contour γεj = ∂ωε
j , which can be compensated in main by the

linear combination
wj(ξj) = −∇xu

0(xj) ·wj(ξj) (3.4) N3

of the special solutions (2.22) to the exterior Neumann problem (2.21). Here, the central dot stands
for the inner product in R2 and

xj = (x1 − xj1, x2 − xj2) and wj(ξj) = (wj
1(ξ

j),wj
2(ξ

j))

are vector functions in Ω and Xij , respectively.
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We insert (3.2) into the Laplace equation (1.1) and use the decomposition (2.22) for the boundary
layer term (3.4). Performing the coordinate change ξj 7→ xj = εξj , and collecting coefficients of ε2

yield the Poisson equation

−∆xu
′(x) = f ′(x) := −

J∑
j=1

[∆x, χj(x)]∇xu
0(P j) ·M j∇xΦ(x− xj), x ∈ Ω. (3.5) N4

Here, [∆x, χj ] = 2∇χj · ∇x +∆xχj is the commutator of the Laplace operator and the cut-off function
χj , that is, a first order differential operator, whose coefficients vanish near the point xj , where Φ(x−xj)
gets a singularity. Furthermore, according to (3.3), we derive from (1.4) and (3.1), (3.2) the boundary
condition

∂νu
′(x)− λ0u′(x) = g′(x) := λ′u0(x), x ∈ Γ. (3.6) N5

If λ0 is a simple eigenvalue in (2.2). then problem (1.4), (1.5) gets only one compatibility condition
which, in view of the normalization condition (2.3), reads∫

Γ

g′(x)u0(x) dsx +

∫
Ω

f ′(x)u0(x) dx = 0 ⇒ λ′ = λ′||u0;L2(Γ)||2 = S0 := −
∫
Ω

f ′(x)u0(x) dx. (3.7) N6

Integration by parts yield

S0 =
J∑

j=1

∇xu
0(xj) ·M j

∫
Ω
u0(x)[∆x, χj(x)]∇xΦ(x− xj) dx =

=
J∑

j=1

∇xu
0(xj) ·M j lim

δ→0

∫
Ω\Bj

δ

u0(x)∆x

(
χj(x)∇xΦ(x− xj)

)
dx =

= −
J∑

j=1

∇xu
0(xj) ·M j lim

δ→0

∫
∂Bj

δ

(
u0(x)

∂

∂rj
∇xΦ(x− xj)− ∂u0

∂rj
(x)∇xΦ(x− xj) dsx

)
dsx =

= −
J∑

j=1

∇xu
0(xj) ·M j 1

2π

∫
∂Bj

δ

(
(∇xu

0(xj) · xj)
∂

∂rj

xj

r2j
− (∇xu

0(xj) · ∂x
j

∂xj
)
xj

r2j

)
dsx =

=

J∑
j=1

∇xu
0(xj) ·M j∇xu

0(xj). (3.8) N7

Here, Bj
δ = {x : rj := |x − xj | < δ} is a disk, dsx is the elementary arc length, and M j is the virtual

mass matrix of the set ωj , see Section 2.4.
Thus, we conclude that the correction term in (3.1) takes the form

λ′ =
J∑

j=1

∇xu
0(xj) ·M j∇xu

0(xj) ≤ 0, (3.9) ?N8?

while a solution of problem (1.4). (1.5) exists and, being defined up to addendum c′u0, becomes unique
under the orthogonality condition (u′, u0)Γ = 0.

3.2 A multiple eigenvalue
⟨subsec32⟩Let λ0 = λ0n be and eigenvalue of problem (2.1) with multiplicity κ > 1, i.e.,

λ0n−1 < λ0n = . . . = λ0n+κ−1 < λ0n+κ. (3.10) N9
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Then we seek for κ numbers λ′n, . . . , λ′n+κ−1 in the ansatz (3.1) for the eigenvalues λεn, . . . , λεn+κ−1 and
set

up0(x) = cpnu
0
n(x) + . . . cpn+κ−1u

0
n+κ−1(x), p = n, . . . , n+ κ− 1, (3.11) N10

in the ansatz (3.2) for the corresponding eigenfunctions uεn, . . . , uεn+κ−1 where the coefficient columns
cp = (cpn, . . . , c

p
n+κ−1) satisfy the relations

cp · cq = δp,q, p, q = n, . . . , n+ κ− 1. (3.12) N11

Repeating the above computations and arguments, we arrive at problem (3.5), (3.6) for u′p and λ′p with
evident modifications. Due to assumption (3.10), this problem gets κ compatibility conditions, namely
its right-hand sides must be orthogonal to the eigenfunctions u0n, . . . , n0n+κ−1, cf. (3.7). An obvious
modification of calculation (3.8) turns these conditions into the algebraic system

Mncp = λ′pc
p (3.13) ?N110?

where Mn is a κ× κ-matrix with entries

Mn
kl =

J∑
j=1

∇xu
0
l (x

j) ·M j∇xu
0
k(x

j). (3.14) N12

Thanks to the general properties of M j , see Section 2.4, the matric Mn is symmetric and negative, so
that the system (3.12) has the eigenvalues

λ′n ≤ λ′n+1 ≤ . . . ≤ λ′n+κ−1 ≤ 0 (3.15) N13

and the corresponding eigenvectors cn, . . . , cn+κ−1 ∈ Rκ can be subject to the orthogonality and nor-
malization conditions (3.12). This instantiate the asymptotic ansätze (3.1) and (3.2).

Let us formulate an assertion that will be prove in Section ?????

⟨AS1⟩Theorem 3.1. For any N ∈ N, there exist positive εN and cN such that the entries of the eigenvalue
sequences (1.11) and (2.2) of problem (1.1), (1.4), (1.7) and (2.1), respectively, are in the relationship

|λεn − λ0n − ε2λ′n| ≤ cNε
3 for ε ∈ (0, εN ], n = 1, . . . , N, (3.16) N15

where the correction term λ′n are found by the above described procedure.

3.3 Lower-order terms
?⟨subsec33⟩? As it was mentioned in Section 1.2, the paper [3] provides complete asymptotic expansions of eigenpairs

for the Steklov problem in dimension d ≥ 3. General asymptotic procedure from [4, Ch. 2, 3, 11] allow
to construct infinite asymptotic series for eigenpairs in problem (1.1), (1.4), (1.7). However, we will not
present adaptation of the procedures and only list some particular features of the analysis.

First of all, in the case κ = 1 in (3.10), i.e., λεn is a simple eigenvalue, the procedure becomes quite
elementary and routine, because the main terms in the ansätze (3.1) and (3.2) are entirely defined at
the above-presented original step, while all further steps repeat the first one in whole. However, for the
multiple eigenvalue λ0n in (3.10) with κ ≥ 2, the main terms un0, . . . , un+κ−10 in the eigenfunction ansätz
(3.2) are linear combinations (3.11) with certain coefficient columns which are uniquely determined by
the normalization and orthogonality conditions (3.12) if and only if the eigenvalues of the κ×κ-matrix
M with entries (3.14) are simple. On the contrary, for an eigenvalue λ′p of multiplicity τ > 1,

λ′n ≤ λ′p = . . . = λ′p+τ−1 ≤ 0, (3.17) lamb
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the columns cp, . . . , cp+τ−1 belong to a τ -dimensional subspace in Rκ, but remain unfixed. In this way,
to specify even the main asymptotic terms of the eigenfunctions uεp, . . . , uεp+τ−1, it is necessary to find
out lower-order terms and to derive an algebraic system of type (3.14) with a τ × τ -matrix M′′. As a
result, one computes the second correction terms λ′′p, . . . , λ′′p+τ−1 in the asymptotic forms

λεq = λ0n + ε2λ′p + ε3λ′′q +O(ε4), q = p, . . . , p+ τ − 1, (3.18) qpt

as eigenvalues of the matrix M′′. If these eigenvalues are simple, the expansions (3.18) are split at
level ε3 and continuation of the procedure again becomes uncomplicated. At the same time, no tool
is created yet to predict if all eigenvalues in the sequence (1.11) can be asymptotically separated in
finite number of steps in the procedure. Anyway, a symmetry of the domain (1.2) provides multiple
eigenvalues of problem (1.1), (1.4), (1.7).

A distinguishing feature of this problem is that all asymptotic terns of asymptotic expansions of
eigenpairs do not depend on ln ε — this property can be verified by means of induction, cf. [16], — but
we avoid to present necessary cumbersome calculations here. We emphasize that in all other problems
investigated in this paper, such dependence occurs in either main, or first correction term.

3.4 The Neumann condition at the exterior boundary
⟨subsec34⟩For an eigenpair of problem (1.1), (1.5), (1.6), we accept the asymptotic ansätze

λε = ε−1µε, µε = µ(z) + µ̃ε, (3.19) E1

uε(x) = a(z) +
J∑

j=1

(
zaj(z)Gj(x) + χj(x)w

j(ξj , z)
)
+ ũε(x), (3.20) E2

where µ, a and aj are smooth functions in z ∈ [0, z0], z0 > 0,

z = | ln ε|−1, (3.21) zet

Gj(x) = G(x, xj) are particular generalized Green functions introduced in Section 2.4, and wj are
boundary layer terms possessing the decay property (2.12). To make the linear combination ofG1, . . . , GK

in (3.20) harmonic, we assume that the coefficient column a⃗(z) =
(
a1(z), . . . , aJ(z)

)
fulfils (2.20), that

is, a⃗(z) ∈ RJ
⊥ where

RJ
⊥ =

{
a ∈ RJ : e⊤a = 0, e = (1, . . . , 1)⊤ ∈ RJ .

}
(3.22) E3

Notice that we did not normalize the function (3.20) in L2(γε). At the same time, the factor ε−1 is put
into (3.19) in order to have

0 = ∂ν(x)w
j(ε−1(x− xj))− λεwj(ε−1(x− xj)) = ε−1(∂ν(x)w

j(ξj)− µεwj(ξj)) (3.23) EE0

and > stands for transposition. Inserting (3.19), (3.20) into the equations (1.1), (1.6) and using the
decomposition (2.14) of the generalized Green functions, we arrive at the following family (j = 1, . . . , J)
of the exterior problems

−∆ξw
j(ξ, z) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j(ξ, z) =µ(z)wj(ξ, z) + a(z) + z

(
aj(z)

1

2π
ln

1

ε
+

J∑
k=1

Gjka
k(z)

)
− (3.24) E4

−z
aj(z)

2π

(
∂ν(ξ) − µ(z)

)
ln

1

|ξ|
, ξ ∈ ∂ωj .
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First of all, setting z = 0 in (3.24) yields

−∆ξw
j(ξ, 0) = 0, ξ ∈ Ξj , (3.25) E5

∂ν(ξ)w
j(ξ, 0) = µ(0)

(
wj(ξ, 0) + a(0) + (2π)−1aj(0)

)
, ξ ∈ Ξj , (3.26) E6

Regarding (3.26) as an exterior problem with the fixed Neumann datum ψj , we write the conditions∫
γj

ψj(ξ) dsξ = µ(0)|γj |
(
〈wj〉(0) + a(0) +

aj(0)

2π

)
= 0, j = 1, . . . , J, (3.27) E7

assuring the existence of bounded solutions, see Section 2.4, where

〈wj〉(z) = 1

|γj |

∫
γj

wj(ξ, z) dsξ. (3.28) E8

For any µ(0) > 0 and 〈wj〉(0) =
(
〈w1〉(0), . . . , 〈wJ〉(0)

)⊤ ∈ RJ , the system (3.27) has a unique solution
a(0) ∈ RJ

⊥, see (3.22), so that the boundary condition (3.26) turns into

∂ν(ξ)w
j(ξ, 0) = µ(0)

(
wj(ξ, 0)− 〈wj〉(0)

)
ξ ∈ ∂ωj . (3.29) E9

Finally, since a constant satisfies (3.25), (3.29) for any µ(0). we impose the orthogonality condition∫
∂B

RJ

wj(ξ) dsξ = 0 for some Rj > 0, BRj ⊃ ωj . (3.30) N23

The variational formulation of problem (3.25), (3.29), (3.30) reads: to find {µ,wj} ∈ R × Hj⊥ such
that

(∇ξw
j ,∇ξv

j)Ξj = µ(wj − 〈wj〉, vj − 〈vj〉)γj ∀vj ∈ Hj⊥, (3.31) N25

where, according to Section 2.2,

Hj⊥ = {wj ∈ Hj : (3.30) is fulfilled}. (3.32) N24

As usual, the integral identity (3.31) is obtained by integration by parts: for any vj ∈ C∞
c (Xij), we

have

0 = (−∆ξw
j , vj)Ξj = (∇ξw

j ,∇ξv
j)Ξj − (−∂ν(ξ)wj , vj)γj =

= (∇ξw
j ,∇ξv

j)Ξj − µ(wj − 〈wj〉, vj)γj

The substitution vj 7→ vj − 〈vj〉 in the last scalar product is possible because 〈wj − 〈wj〉〉 = 0.

⟨BOT⟩Lemma 3.1. Problem (3.31) gets the eigenvalue sequence

0 < µj2 ≤ µj3 ≤ . . . ≤ µjn ≤ . . .→ +∞, (3.33) E10

with entries taken form the eigenvalue sequence (2.9) of the exterior Steklov problem (2.8). The corre-
sponding eigenfunctions wj

n ∈ Hj⊥ take the form wjst
n −bjstn , where wjst

n ∈ Hj are the Steklov eigenfunc-
tions satisfying (2.10) and (2.11), and fulfilling the intrinsic orthogonality and normalization conditions

(wj
n − 〈wj

n〉, wj
m − 〈wj

m〉)γj = δm,n m.n ∈ N. (3.34) E11
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Proof. Since, owing to the orthogonality condition (3.30), the left-hand side of (3.31) is a scalar product
in the Hilbert space (3.32), the conclusion on the spectrum (3.33) of problem (3.31) is obtained in a
standard way on the basis of the Riesz representation theorem.

The first eigenpair {µjst1 , wjst
1 } of the pure Steklov problem (2.8) is {0, const} and, therefore, ac-

cording to (2.10), we have
〈wj

n〉 = 0, n = 2, 3, 4, . . . (3.35) EE1

In view of (3.35) the difference wj
n = wjst

n − bjst1 = w̃jst
n , see (2.11), satisfies equation (3.25) and the

boundary condition (3.29). Furthermore, w̃jst
n ∈ Hj⊥ because∫

∂B
Rj

w̃jst
n (ξ) dsξ = − lim

R→+∞

∫
∂BR

(
(w̃jst

n (ξ)∂ρ ln
ρ

Rj
− ln

ρ

Rj
∂ρw̃

jst
n (ξ))

)
dsξ

and this limit vanishes due the estimates (2.12). Thus, a Steklov eigenpair gives rise to an eigenpair of
problem (3.31). The inverse statement is obvious because the function wj

n−〈wj
n〉 satisfies the equations

(2.4) and falls into the space Hj containing constants, see (2.5) and (2.6).

The correspondence between eigenvalues in (2.9) and (3.33) discarded in Lemma 3.1, avoids the null
eigenvalues µj1 = 0 of the exterior Steklov problems in Ξj , j = 1, . . . , J , so that the limit problem (3.25),
(3.29), (3.30) (or (3.31) in the variational form) does not describe asymptotics of the spectrum of the
original problem (1.1), (1.5), (1.6) completely. Clearly, λε1 = 0 is a simple eigenvalue in (1.11) with a
constant eigenfunction, so that other eigenfunctions uεn with n > 1 enjoy the orthogonality condition

J∑
j=1

∫
γε
j

uεn(x) dsx = 0, n = 2, 3, 4, . . . (3.36) ?E0?

To detect other J − 1 eigenvalues in (1.11) generated by J eigenvalues µ11 = . . . = µJ1 = 0, we specify
the ansatz (3.19) as follows:

µ(z) = 0 + zµ′(z). (3.37) E12

Then, the limit passage z → +0 in (3.24) shows that wj(ξ, z) is a decaying solution of the homogeneous
(ψ = 0) exterior Neumann problem (2.21) and, therefore,

wj(ξ, z) = 0 + zwj′(ξ, z). (3.38) E13

In view of (3.37) and (3.38), after multiplying with z−1 = | ln ε|, the limit passage in (3.24) leads to the
problem

∆ξw
j′(ξ, 0) = 0, ξ ∈ Ξj , (3.39) ?E113?

∂ν(ξ)w
j′(ξ, 0) = ψj(ξ) := µ′(0)

(
a(0) + (2π)−1aj(0)

)
+ (2π)−1aj(0)∂ν(ξ) ln |ξ|, ξ ∈ γj .

This is nothing but the exterior Neumann problem which, accordin to Section 2.4, has a unique decaying
solution wj′ provided

0 =

∫
γj

ψj(ξ) dsξ = µ′(0)|γj |
(
a(0) + (2π)−1aj(0)

)
− aj(0). (3.40) ?E14?

Here, we have applied the trivial equality

1

2π

∫
γj

ln |ξ| dsxi = − 1

2π

∫
∂BR

∂ρ ln ρ dsξ = −1. (3.41) EEE

In this way we have arrived at the algebraic system

M ′a⃗(0) = µ′(0) (2πa(0)e+ a⃗(0)) (3.42) E15
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with the diagonal J × J-matrix

M ′ = diag{M1, . . . ,MJ}, Mj = 2π|γj |−1 (3.43) EE15

Recalling that a⃗(0) ∈ RJ
⊥, we denote by P⊥ = I − J−1E the orthogonal projector on the subspace

(3.22) where I is the J × J identity matrix and the matrix E contains the value 1 at each position.
Projecting (3.42) onto RJ

⊥, we find the positive eigenvalues

µ′2(0), . . . , µ
′
J(0) > 0 (3.44) E16

of the symmetric matrix P⊥MP⊥, while the corresponding eigenvectors a⃗2(0), . . . , a⃗J(0) form an or-
thonormalized basis in RJ

⊥ and the scalars a2(0), . . . , aJ(0) are computed according to formula

ak(0) =
(
2πJµ′k(0)

)−1
e⊤Ma⃗k(0), k = 2, . . . , J. (3.45) ?E17?

These deliver main terms in the asymptotic ansätze (3.19) and (3.20) specified by the restrictions (3.37)
and (3.38).

3.5 Simple eigenvalues
⟨subsec35⟩We join the eigenvalue sequences (2.9) with j = 1, . . . , J into the common monotone sequnec

0 = µ1 = . . . = µJ < µJ+1 ≤ µJ+2 ≤ . . . ≤ µN ≤ . . .→ +∞ (3.46) E18

of eigenvalues of the exterior Steklov problems (2.4) in the exterior domains Ξj , j = 1, . . . , J , Let µN
be a simple eigenvalue in (3.46), that is, µN is a simple eigenvalue of one Steklov pronlem, say in
Ξ1, but µN does not belong to the spectra of the Steklov problems in Ξ2, . . . ,ΞJ . Surely, n > J and
µN = µ1n > 0, so that, by Lemma 3.1, µ1n is simultaneously a simple eigevalue in (3.33), j = 1, while
the problems (3.31) with j = 2, . . . , J and µ = µ1n are uniquely solvable in Hj⊥.

We recall that, according to our above calculations,

µ(z) = µ1n + zµ′(z), w1(ξ, z) = w1
n(ξ) + zw′(ξ, z),

a(z) = a(0) + za′(z), a⃗(z) = a⃗(0) + z⃗a′(z), (3.47) E19

wj(ξ, z) = 0 + zwj′(ξ.z), j = 2, . . . , J,

where {µ1n, w1
n} is an eigenpair of problem (3.31), j = 1, and w1

n satisfies (3.19), while a(0) ∈ R and
a⃗(0) ∈ RJ

⊥ are found from system (3.27).
We aim to determine the correction terms in (3.47) as real analytic functions in z ∈ [0, z0], z0 > 0.

To this end, we consider the whole problems (3.24) involving the dependence on (3.21). regarding them
as the exterior Neumann problems, we write the standard compatibility conditions

0 = µ(z)|γj |

(
〈wj〉(z) + a(z) +

1

2π
aj(z) + z

J∑
k=1

Gjka
k(z)

)
− zaj(z) + zaj(z)µ(z)lj (3.48) E20

where we use the equality (3.41) as well as the notation (3.28) and

lj =
1

2π

∫
γj

ln
1

|ξ|
dsξ. (3.49) E21

These allow us to rewrite the problems as follows:

−∆ξw
j(ξ, z) = 0, ξ ∈ Ξj
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∂ν(ξ)w
j(ξ, z) = µ(z)

(
wj(ξ, z)− 〈wj〉(z)

)
− zaj(z)φj(ξ, µ(z)), ξ ∈ γj (3.50) E22

where
φj(ξ, µ) =

1

2π
(∂ν(ξ) − µ) ln

1

|ξ|
+ 1− µlj ,

∫
γj

ψj(ξ, µ) dsξ = 0. (3.51) E23

At the same time, relation (3.48) converts into the algebraic system

a(z)e+
1

2π
a⃗(z) + zGa⃗(z) + 〈w⃗〉(z) = z

2π
M

(
1

µ(z)
I+ L

)
a⃗(z) (3.52) E24

where M is the matrix (3.43) and L = diag{l1, . . . , lJ} .
Now, we insert (3.47) into (3.50) and after a simple calculation obtain

−∆ξw
j′(ξ, z) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j′(ξ, z)− µ1n

(
wj′(ξ, z)− 〈wj′〉(z)

)
= µ′(z)

(
wj(ξ, 0)− 〈wj〉(0)

)
− (3.53) E25

− (aj(0) + zaj′(z))φj(ξ, µ1 + zµ′(z)), ξ ∈ ∂ω.

As as mentioned, under the orthogonality condition in (3.51) the problem (3.53) with j ≥ 2 is uniquely
solvable so that denoting Rj(µ1n) the inverse operator and recalling wj(ξ, 0) = 0 yield

wj′(·, z) = −
(
aj(0) + zaj(z)

)
Rj(µ1n)φ

j(·, µ1n + zµ′(z)). (3.54) E26

The problem (3.53) with j = 1 has µ1n as a simple eigenvalue and, by the Fredholm alternative, requires
one additional compatibility condition which, in view of w1(ξ, 0) = w1

n(ξ) and (3.34), takes the form

µ′(z) =
(
aj(0) + zaj′(z)

) (
w1
n − 〈w1

n〉, φj(·, µ1n + zµ′(z))
)
γj
. (3.55) E27

Thus, problem (3.54) with j = 1 becomes as follows:

−∆ξw
1′(ξ, z) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
1′(ξ, z)− µ1n

(
w1′(ξ, z)− 〈w1′〉(z)

)
= φ1′(ξ, a′(0) + za1′(z), µ1n + zµ′(z)) := (3.56) ?E28?

(a′(0) + za1′(z))
(
(w1

n(ξ)− 〈w1
n〉)
(
w1
n(ξ)− 〈w1

n〉, φ1(·, µ1n + zµ′(z)
))

γ1
− φ1(ξ, µ1n + zµ′(z)), ξ ∈ γ1,

and its solution w1′(·, z) ∈ H1⊥ exists and is determined up to an addendum cw1
n, while the orthogonality

conditions (
w1′(·, z)− 〈w1′〉(z), w1

n − 〈w1
n〉
)
γ1

= 0 (3.57) E29

makes the solution unique. Hence, this solution can be written as

w1′(·, z) = (a1(0) + za1(z))R1(µ1n)φ
1′(·, a1(0) + za1′(z), µ1n + zµ′(z)). (3.58) E30

This solution belongs to the subspace

H1⊥(µ
1
n) = {w1′ ∈ H1⊥ : (3.57) is fulfilled} (3.59) ?E32?

In accordance with (3.54) and (3.58), we put

〈w〉(z) = r(⃗a(0) + z⃗a′(z), µ1n + zµ′(z)). (3.60) ?E31?
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Finally, we recall the definition of a(0), a⃗(0) and transform (3.52) into

a′(z)e+
1

2π
a⃗′(z) = h(⃗a(0) + za⃗′(z), µ1n + zµ′(z)) :=

:=
1

2π
M

(
1

µ1n + zµ′(z)
I+ L

)
(⃗a(0) + z⃗a′(z)) + G (⃗a(0) + z⃗a′(z))−

− r(⃗a(0) + z⃗a′(z), µ1n + zµ′(z)) (3.61) E35

Thus,
a′(z) = J−1e⊤h(⃗a(0) + z⃗a′(z), µ1n + zµ′(z)), (3.62) E33

a⃗′(z) = 2πP⊥h(⃗a(0) + z⃗a′(z), µ1n + zµ′(z)). (3.63) E34

Now we join the unknowns as follows:

u(z) = (w1′(·, z), µ′(z), w2′(·, z), . . . , wJ ′(·, z), a′(z), a⃗′(z)) ∈ H :=

= H1⊥(µ
1
n)× R×H2⊥ × . . .HJ⊥ × R× RJ

⊥, (3.64) E36

and rewrite formulas (3.58), (3.55), (3.54) with j = 2, . . . , J and (3.62), (3.63) as a nonlinear abstract
equation

u(z) = T(z, u(z)) in H. (3.65) E37

Let us list some obvious properties of the operator T. First, T(0, u) is independent of u and we set
u0 = T(0, 0). Second, the operator is linear in the function unknowns w⃗′(·, z), polynomial in the
algebraic unknowns a′(z), a⃗(z) and rational in µ′(z) (recall that µ1n > 0 in (µ1n + zµ′(z))−1, see (3.61).
Third, for a small z the mapping v 7→ T(z, v) is a contraction in the ball

B(u0) = {v ∈ H; ||v− u0,H|| ≤ ρ}, ρ > 0 is small, (3.66) ball

namely,
B(u0) 3 v 7→ T(z, v) ∈ B(u0),

||T(z, v1)− T(z, v2);H|| ≤ cz||v1 − v2;H|| ∀v1, v2 ∈ B(u0).

Thus, the Banach contraction principle ensures the existence of a unique solution u(z ∈ B(u0) of the
abstract equation (3.65), which additionally admits the estimate

||u(z)− u0;H|| ≤ cz

and is analytic abstract function in z ∈ 0, z0 with some z0 > 0.
The solution (3.64) of equation (3.65) implying conditions to solve the family of problems (3.24),

j = 1, . . . , J , determines all detached terms in the asymptotic ansätze (3.19) and (3.20). Let us
formulate an error estimate which will be verifies in Section 7 ?

⟨AS2⟩
Theorem 3.2. Let µN = µ1n be a simple eigenvalue in the united sequence (3.46) of the spectra of the
exterior Steklov problems (2.4), j = 1, . . . , J . Then the estimate

|λεN − ε−1
(
µ1n + zµ′(z)

)
| ≤ cN (1 + | ln ε|) ε ∈ (0, εN ] (3.67) E38

is valid for the corresponding entry of the Neumann–Steklov problem (1.1), (1.5), (1.6), µ′(z) is an
analytic function in z ∈ [0, zN ], and εN , cN and zN are some positive numbers.
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3.6 Eigenvalues of order ε−1| ln ε|−1

⟨subsec36⟩The condition in Theorem 3.2 on the simplicity of µN reject from consideration the null eigenvalues of
the Steklov problems (2.4) in the case J > 1, However, if all eigenvalues (3.44) of the matrix P⊥MP⊥,
see (3.43), are simple, a slight modification of the reduction scheme in Section 3.5 allows us to construct
and solve nonlinear equations of type (3.65) in order to find the correction terms µ′j(z) in the ansätze

λεj = ε−1(0 + zµ′j(z) + ˜̃µεj), j = 2, . . . , J (3.68) E39

for the initial entries of the sequence (1.11) which starts with λε1 = 0.
?⟨HYP⟩?Remark 3.1. A direct calculation shows that

µ′2 =
1

2
(M1 +M2) for J = 2,

µ′2,3 =
1

2

(
M1 +M2 +M3 ±

√
M2

1 +M2
2 +M2

3 −M1M2 −M2M3 −M1M3

)
for J = 3.

These formulas provoke the hypothesis: all eigenvalues of the matrix P⊥MP⊥ are simple provided the
lengths |γ1|, . . . , |γJ | of the contours ∂ω1, . . . , ∂ωJ are mutually different. We not know how to confirm
it.

Let us consider the case

|γ1| = . . . = |γJ | ⇒M1 = . . . =MJ =: m. (3.69) E40

Then eigenvalues of the matrix P⊥MP⊥ = mP⊥ are

0 and µ′2(0) = . . . = µ′J(0) = m > 0 (3.70) E41

while the eigenspace corresponding to m is nothing but RJ
⊥ and an eigenvector corresponding to null

is e, see (3.22). We accept the asymptotic ansätze (3.19) and (3.20) specified as follows:

µ′(z) = zm+ z2µ′′(z), wj(ξ, z) = zwj′(ξ, 0) + z2wj′′(ξ, z), (3.71) E42

a(z) = a(0) + za′(z) ∈ R, a⃗(z) = a⃗(0) + z⃗a ′(z) ∈ RJ
⊥

(compare with (3.37), (3.38), and (3.70)). Inserting (3.71) into problem (3.24) extracting term of order
z2 yield the exterior Neumann problems

∆ξw
j′′(ξ, 0) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j′′(ξ, 0) = m

(
wj′(ξ, 0) + a′(0) +

1

2π
aj′(0) +

J∑
j=1

Gjka
k(0)

)
+ (3.72) ?E43?

+ µ′′(0)

(
a(0) +

1

2π
aj(0)

)
− aj′(0)

1

2π
∂ν(ξ) ln

1

|ξ|
+maj(0)

1

2π
ln

1

|ξ|
, ξ ∈ γj .

Note that the terms of order 1 = z0 and z vanish. To assure the existence of the decaying solution, we
apply the standard compatibility condition from Section 2.4 and, after using formulas (3.69), (3.41),
and (3.49), we obtain the equality

2π(〈wj′〉(0) + a′(0) +
1

2π
aj′(0) +

J∑
j=1

Gjka
k(0))+ (3.73) E44

+ 2πµ′′(0)m−1(a(0) +
1

2π
aj(0))− aj′(0) +maj(0)lj = 0
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We observe that aj′(0) disappears from (3.73) and recall that, according to (3.38) and (3.42)

wj′(ξ, 0) = aj(0)wj(ξ) (3.74) ?E45?

where wj is a decaying harmonics in Ξj satisfying the condition

∂ν(ξ)w
j(ξ) = 1 + (2π)−1∂ν(ξ) ln |ξ|, ξ ∈ ∂ωj . (3.75) E45N

We compose a linear system from equations (3.73), j = 1, . . . , J , and project it onto RJ
⊥ while noting

that the component ce in the system can be annulled by fixing the number 2πa′(0) on the left of (3.73).
As a result, we obtain the following eigenvalue problem in RJ

⊥

µ′′(0)⃗a(0) =M ′′a⃗(0) (3.76) E46

where
M ′′ = −mP⊥(2πG + 2πW +mL)P⊥, (3.77) E47

L = diag{l1, . . . , lJ}, W = diag{〈w1〉, . . . , 〈wJ〉}. (3.78) EE47

We emphasize that the matrix P⊥GP⊥ is symmetric, cf. a comment to (2.14), and the definition (2.18)
of G. The matrix (3.77) depends on the shape of ω1, . . . , ωJ through the values lj and 〈w1〉, j = 1, . . . , J
as well as on the shape of Ω and the position of the points x1, . . . xj ∈ Ω. through the matrix g.

The limit problem (3.76) in the (J − 1)-dimensional subspace RJ
⊥ gives us the real eigenalues

µ′′2(0), . . . , , µ
′′
J(0) (3.79) E48

and the corresponding orthonormalized eigenvectors a⃗(2)(0), . . . , a⃗(J−1)(0), which together with the
scalars a(2)(0), . . . , a(J−1)(0), computed from (3.73) concretize the main terms in representation (3.71)
and the ansätze (3.19), (3.20).

If all the eigenvalues (3.79) are simple, a slight modification of the procedure applied in Section 3.5
allows us to contruct the correction term z2µ′′(z) in (3.71) as an analytic function in z. In this way, we
formulate the following assertions, see Section 7 ?

⟨AS3⟩Theorem 3.3. The initial positive terms in the eigenvalue sequence (1.11) of problem (1.1), (1.5),
(1.6) satisfy the formulas

|λεj − ε−1zµ′j(0)| ≤ cjε
−1z2 for z ∈ (0, zJ ], j = 2, . . . , J, (3.80) E49

where µ′j(0) are eigenvalues (3.44) of the matrix P⊥M
′P⊥ and cJ , zJ are positive numbers. If addition-

ally, the relation (3.69) is valid and the eigenvalues (3.79) of the matrix (3.77) are simple, then

|λεj − ε−1µ′j(0)| ≤ c′j | ln ε|2 for z ∈ (0, z′J ], j = 2, . . . , J, (3.81) ?EE50?

where c′J , z
′
J > 0 and µ′j is an analytic function in z ∈ [0, z′J ] such that µ′j(z) = m+ zµ′′j (0)+O(z2) with

coefficients from (3.69) and (3.79).

3.7 General situation
⟨subsec37⟩Without assumption on simplicity of eigenvalues in the united spectrum (3.46) of the exterior Steklov

problems (2.4), j = 1, . . . , J , we were able to construct the “logarithmic” asymptotics of eigenvalues
of problem (1.1), (1.5), (1.6), however with precision of arbitrary order zN . In the case of a simple
eigenvalue µN the result of Theorem 3.2 demonstrates that the formal asymptotic series in power
of z converges. The same can be said about the result of Theorem 3.3. For an eigenvalue µN of
multiplicity κN > 1, we can establish that the series converges only in the case when, at q-th step of
the asymptotic procedure with a certain q ∈ N, we obtain just κN different terms µqN , . . . , µ

q
N+κN−1
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and simultaneously fix the main terms in the expansion (3.20) of the eigenfunctions uεN , . . . , u
ε
N+κN−1.

At the same time, no tool is known yet to conclude in advance that such “asymptotic splitting” of the
eigenvalues λεN , . . . , λ

ε
N+κN−1 can be predicted to occur in finite number of steps.

We formulate a simplest assertion which relates the sequences (1.11) and (3.46) and reflects the
traditional principle of the first non-trivial asymptotic term.

⟨AS4⟩Theorem 3.4. For any N ≥ J , there exist positive numbers cN and zN such that the first N eigenvalues
of problem (1.1), (1.5), (1.6) satisfy the estimates

|λεj − ε−1zµ′j(0)| ≤ cNε
−1z2 for z ∈ [0, zN ], j = 2, . . . , J,

|λεn − ε−1µ′n| ≤ cNε
−1z for z ∈ (0, zN ], j = J + 1, . . . , N,

where µ′2(0), . . . , µ
′
J(0) are positive eigenvalues of the matrix P⊥M

′P⊥, see (3.43), and µJ+1, . . . , µN
are positive entries of the united sequence (3.46) of the exterior Steklov problems.

4 The Steklov-Dirichlet problem
⟨sec4⟩4.1 The Dirichlet conditions at small holes

⟨subsec41⟩To construct asymptotics of eigenpairs in the problem, we employ an algorithm from [9], see also [4,
Ch. 9, §1 and §2], which originally served for other perturbed problems. We accept the asymptotic
ansätze

λε = λ0 + Λ(z) + λ̃ε, (4.1) D1

uε(x) = u0(x) + U(x, z) +
J∑

j=1

(
aj(z)Gj(x) + χj(x)wj(ξj , z)

)
+ ũε(x). (4.2) D2

First of all, we assume that λ0 is a simple eigenvalue of the limit Steklov problem (2.1) in Ω, for
example, λ0 = 0, and the corresponding eigenfunction u0 is normalized in L2(Γ), see (2.3). We need
to find the main correction terms {Λ(z), U(x, z)} depending on the small parameter z, the dacaying
boundary-layer terms wj(·, z) in Ξj , j = 1, . . . , J , as well as the coefficients a⃗(z) = (a1(z), . . . , aJ(z))⊤ of
a linear combination of the generalized Green functions of the Steklov problem (2.1) with the spectral
parameter λ = λ0 defined similarly to (2.22) as the distributional solution to the problem

−∆xG
j(x) = δ(x− xj), x ∈ Ω, ∂νG

j(x)− λ0Gj(x) = u0(xj)u0(x), x ∈ Γ, (4.3) ?D3?∫
Γ
u0(x)Gj(x) dsx = 0. (4.4) D3N

These solutions obey the decomposition (2.14) with a symmetric coefficient matrix G = (Gjk)
J
j,k=1.

We insert (4.2) into the Dirichlet condition on γεj and obtain

wj(ξ, z) = −u0(xj)− U(xj , z) + aj(z)
1

2π
ln(ε|ξ|)−

J∑
k=1

Gjka
k(z), ξ ∈ γj . (4.5) D5

According to Section 2.3, a decaying harmonics wj with the Dirichlet datum (4.5) exists if and only if

aj(z)
1

2π
(| ln ε|+ ln clog(ωj)) +

J∑
k=1

Gjka
k(z) = −u0(xj)− U(xj , z). (4.6) D7

Moreover, it is unique and takes the form

wj(ξ, z) = aj(z)Ẽj(ξ), (4.7) ?D6?
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see the logarithmic capacity potential (2.16). Setting

u⃗ 0 = (u0(x1), . . . , u0(xJ)), U⃗(z) = (U(x1, z), . . . , U(xJ , z)), (4.8) ?D7N?

N = N + (2π)−1diag {ln clog(ω1), . . . , ln clog(ω
J)}, (4.9) D9

the system of equations (4.6) gives us the coefficient column

a⃗(z) = −z
(
(2π)−1I+ zN

)−1
(
u⃗ 0 + U⃗(z)

)
. (4.10) D8

Clearly, (4.10) is an analytic function in z ∈ [0, z0] if U⃗(z) possesses the same property, and moreover
a⃗(0) = 0.

We find the pair {U,Λ} from the Steklov problem

−∆U(x, z) = 0, x ∈ Ω,

∂νU(x, z)− λ0U(x, z) = F (x, z) :=

:= Λ(z)

(
u0(x) +

J∑
j=1

aj(z)Gj(x) + U(x, z)

)
+ u0(x)

J∑
j=1

aj(z)u0(xj), x ∈ Γ,

(4.11) D10

and impose the orthogonality condition∫
Γ
u0(x)U(x, z) dsx = 0 (4.12) D10N

to make the solution U unique. Since λ0 is simple, problem (4.11) gets the only compatibility condition
(F, u0)Γ = 0 which, in view of (4.4) and (4.12), converts into

Λ(z) = −a⃗(z)⊤u⃗ 0 = z(u⃗0)⊤((2π)−1I+ zN )−1(u⃗ 0 + U⃗(z)) (4.13) D11

where (2.3) and (4.10) were used.
We regard (4.11)–(4.13) as a non-linear system for {U(·, z),Λ(z)} ∈ H2

⊥(Ω;λ0)×R, whereH2
⊥(Ω;λ0) =

{v ∈ H2(Ω) : (v, u0)Γ = 0}. The non-linearity is quadratic. The mappings H1/2
⊥ (Γ) 3 F 7→ U ∈

H2
⊥(Ω;λ0) and H2

⊥(Ω) 3 U(·, z) 7→ {U(·, z)|Γ, U⃗(z)} ∈ H
1/2
⊥ (Γ)×RJ are an isomorphism and a compact

operator, respectively; here H1/2
⊥ (Γ) is the Sobolev–Slobodetski space under the orthogonality condition

(v, u0)Γ = 0. Finally, in view of (4.13) and (4.9), we have

Λ(0) = 0 ∈ R, a⃗(0) = 0 ∈ RJ ⇒ U(x, 0) = 0.

Summing up the above-listed properties of the system (??)–(4.13), we apply the Banach contraction
principle and find a unique small solution which satisfies the estimate

|Λ(z)| = ||U(·, z);H2
⊥(Ω;λ0)|| ≤ cz

and depends analytically on z ∈ [0, z0], z0 > 0.
The following assertion will be proved in Section 7 ?

⟨AS5⟩Theorem 4.1. Let λ0 = λ0n be a simple eigenvalue of the Steklov problem (2.1). There exist positive εn
and cn such that the entry λεn of the eigenvalue sequence (1.11) of problem (1.1), (1.4), (1.9) satisfies
the inequality

|λεn − λ0n − Λn(| ln ε|−1)| ≤ cnε for ε ∈ (0, εn] (4.14) D13

where the analytic function z 7→ ΛN (z) is found from problem (4.11)–(4.13) and enjoys estimate (??).
?⟨DirNull⟩?Remark 4.1. If λ0 = λ0n = 0 and therefore u0(x) = |Γ|1/2, then, according to (4.13) we obtain

Λ1| ln ε|−1 =
2π

| ln ε|
|u⃗0|2 +O

(
| ln ε|−2

)
=

2πJ

| ln ε||Γ|
+O

(
| ln ε|−2

)
.
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4.2 A multiple eigenvalue
?⟨subsec42⟩? Assuming that λ0 = λ0n is an eigenvalue of multiplicity κ > 1, see (3.2), we keep the ansätze (4.1) for

λεn, . . . , λ
ε
n+κ−1 and (4.2) for uεn, . . . , uεn+κ−1, but accept the representations (3.11) of the main regular

terms up0, p = n, . . . , n + κ − 1, with the coefficient columns cp(z) = (cpn(z), . . . , c
p
n+κ−1(z))

⊤ and the
eigenfunctions u0n, . . . , u0n+κ−1 of problem (2.1) which correspond to λ0n and fulfil the orthogonality and
normalization condition (2.3).

Let us list changes in the asymptotic procedure of Section 4.1 while seeking the main terms in the
following ingredients of the ansätze:

Λp(z) = zΛ′(z), Up(x, z) = zU ′
p(x, z), aj(p)(z) = zaj′(p)(z), wj

(p)(ξ, z) = zwj′
(p)(ξ, z), (4.15) D99

First of all, the particular generalized Green functions are found from problem

−∆Gj(x) = δ(x− xj), x ∈ Ω,

∂νG
j(x)− λnG

j(x) =

n+κ−1∑
q=n

u0q(x
j)u0q(x), x ∈ Γ,

∫
Γ
u0q(x)G

j(x) dss = 0, q = n, . . . , n+ κ− 1.

Second, we compute the coefficients

aj′(p)(0) = −2πu⃗ p0 = −2π
n+κ−1∑
m=n

cpmu
0
m(xj) (4.16) D15

from the compatibility condition (??) in the exterior Dirichlet problem, see (4.5). Then, we compose
the right-hand side of problem (4.11) for U ′

p(x, z) and Λ′(z):

F ′
p(x, z) = Λ′(z)

(
up0(x) +

J∑
j=1

aj′(z)Gj(x) + U ′
p(x, z) +

n+κ−1∑
q=n

u0q(x)

J∑
j=1

aj(z)u0q(x
j)

)
. (4.17) D16

Finally, the compatibility conditions∫
Γ
u0m(x)F ′

p(x, z) dsx = 0, m = n, . . . , n+ κ− 1 (4.18) D17

in the Steklov problem Ω lead us to the linear algebraic system

Λ′
p(0)c

p
m = 2π

n+κ−1∑
q=n

cpq

J∑
j=1

u0q(x
j)u0m(xj), m = n, . . . , n+ κ− 1. (4.19) D18

We have set z = 0 in (4.17), (4.18) and have applied (4.16), (2.3). The κ×κ-matrix U of system (4.19)
is a sum of the symmetric positive matrices

U j = (U j
qm)n+κ−1

q,m=n , U j
qm = 2πu0q(x

j)u0m(xj) (4.20) ?D19?

and possesses κ eigenvalues
0 ≤ Λ′

n(0) ≤ . . . ≤ Λ′
n+κ−1(0). (4.21) D20

The corresponding eigenvectors can be subject to the orthogonality and normalization condition (3.12),
The main correction terms in the asymptotic ansätze (4.1), (4.2) specified by (4.15), have been

constructed. If all eigenvalues (4.21) are simple, repeating of arguments in Section 3.5 helps to find the
ingredients (4.15) as analytic functions in z ∈ [0, zn], zn > 0. However, we do not know an elementary
geometric condition to provide this simplicity. In any case, the procedure to construct formal series in
power of z = | ln ε|−1 for the eigenpairs {λεp, uεp}, p = n, . . . , n+ κ− 1, can be continued. Nevertheless,
in Section 7 ? we will prove error estimates for the detected correction terms only.
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⟨AS6⟩Theorem 4.2. For any N ∈ N, there exist positive zN and cN such that the entries of the eigenvalue
sequences (1.11) and (2.2) for problems (1.1), (1.4), (1.9) and (2.1) are in the relationship

|λεn − λ0n − zΛ′
n(0)| ≤ cN z2 for z ∈ (0, zN ], n = 1, . . . , N, (4.22) D21

where Λ′
1(0), . . . ,Λ

′
N (0) are determined by the above-descried procedure.

4.3 The Dirichlet condition the exterior boundary
⟨subsec43⟩As in Sections 3.4–3.6, the asymptotic ansätze for the eigenpairs {εεn, uεn} of problem (1.1), (1.5), (1.8),

with indexes n = 1, . . . , J and indexes n > J are different. We proceed with the construction of
asymptotics, cf. (3.68),

λεp = ε−1(0 + zµp(z) + µ̃εp), p = 1, . . . , J, (4.23) D22

of the initial terms in the sequence (1.11). Inserting (4.23) and the ansätz

uεp(x) =

J∑
j=1

(ajp(z)G
j(x) + χj(x)w

j
p(ξ

j , z)) (4.24) D23

for eigenfunctions into the Laplace equation (1.1) and the Steklov condition (1.5) on γεj , we obtain the
problem for the boundary-layer term

∆ξw
j
p(ξ, z) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j
p(ξ, z) = zµp(z)(w

j
p(ξ

j , z) + ajp(z)
1

2π
ln

1

ε|ξ|
+

J∑
k=1

Gjka
k
p(z)− (4.25) D24

− 1

2π
ajp(z)∂ν(ξ) ln

1

ε|ξ|
, ξ ∈ γj .

We set z = 0 in (4.25) and write the standard compatibility condition in the exterior Neumann problem
which, owing to (3.41), turns into the equations

µp(0)a
j
p(0) = 2πajp(0) (4.26) D25

so that we arrive at the formula µ1(0) = . . . = µJ(0) = 2π which is not very informative because cannot
provide the splitting of the eigenvalues λε1, . . . , λεJ . Thus we continue and write

µp(z) = 2π + zµ′p(z), ajp(z) = ajp(0) + zaj′p (z), wj
p(ξ, z) = wj

p(ξ, 0) + zwj′
p (ξ, z) (4.27) D26

where a⃗(p)(0) ∈ RJ is still arbitrary and wj
p(ξ, 0) = ajp(0)wj(ξ), where wj is a decaying harmonics in

Ξj with the Neumann datum (3.75). Inserting (4.27) into (4.25) and collecting terms of order z, we
obtain the exterior Neumann problem

= ∆ξw
j′
p (ξ, z) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j′
p (ξ, z) = µp(0)

(
wj
p(ξ

j , 0) +
1

2π
aj′p (0) +

1

2π
ajp(0) ln

1

|ξ|
+

J∑
k=1

Gjka
k
p(0)

)
+

+ µ′p(0)
1

2π
ajp(0)−

1

2π
aj′p (0)∂ν ln

1

|ξ|
, ξ ∈ γj .
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The same compatibility condition as above gives us the relation

2π|γj |(ajp(0)(〈wj〉+ lj) +

J∑
k=1

Gjka
k
p(0)) + µ′p(0)

1

2π
|γj |ajp(0) = 0. (4.28) D27

Notice that aj′p (0) disappeared due to (4.26) and the quantity (3.49) was involved. Employing the
matrices (3.78), we rewrite the relations (4.28), j = 1, . . . , J , in the form

µ′p(0)⃗a(p)(0) =M ′a⃗(p)(0), M ′ = −4π2(W + L+W). (4.29) D28

Hence, in (4.27),
µ′1(0) ≤ . . . ≤ µ′J(0) and a⃗(1)(0), . . . , a⃗(J)(0) ∈ RJ (4.30) D29

are eigenvalues of the symmetric matrix M ′ in (4.30) and the corresponding orthonormalized eigenvec-
tors.

This asymptotic procedure can be continued. If all eigenvalues in (4.30) are simple and therefore the
eigenvectors are fixed uniquely, a slight modification of the approach in Section 3.6 helps to determine
the ingredients (4.27) in the ansätze (4.23), (4.24) as analytic functions in z ∈ [0, zJ ], zJ > 0 .

The eigenvalue asymptotics (4.23) are generated by the null eigenvalues of the exterior Steklov
problems (2.4) in Ξ1, . . . ,ΞJ . As for positive eigenvalues in the united sequence (3.46) of the exterior
Steklov eigenvalues, we may repeat the consideration in Section 3.5 on simple eigenvalues and the
representation (3.19) with an analytic function µ in the variable (3.21). However, we present error
estimate only for the main asymptotic terms in the logarithmic decompositions which is in accord with
the concept of the first nontrivial correction term, cf. Theorem 3.4.

⟨AS65⟩Theorem 4.3. For any N ∈ N, N ≥ J , there exist positive zn and cN such that the entries in the
eigenvalue sequences (1.11) and (3.46) of problem (1.1), (1.3), (1.8) and the exterior Steklov problems
(2.4) with j = 1, . . . , J , respectively, are in the relationship

|λεn − ε−1z(2π + zµ′n(0))| ≤ cNε
−1z3 for z ∈ (0, zN ], n = 1, . . . , J, (4.31) D30

|λεn − ε−1µn| ≤ cNε
−1z for z ∈ (0, zN ], n = J + 1, . . . , N, (4.32) ?D31?

where µ′1(0), . . . , µ
′
J(0) are eigenvalues of the matrix M ′, see (4.30) and (4.29).

5 The pure Steklov problem
⟨sec5⟩5.1 Preliminary discussion

⟨subsec51⟩ In this section we consider problem (1.1), (1.4),(1.5) with the spectral Steklov condition on the whole
boundary ∂Ωε = Γ ∪ γε. Asymptotic procedures remain quite simial to the above-described ones, but,
in contrast to our analysis in sections 3 and 4 we will construct two types of eigenvalue asymptotics,
namely, we will employ the ansätz (3.1) in the low-frequency range of the spectrum (1.11). The
possibility to accept different ansätze discovered in the paper [3] and clarified in dimension d ≥ 3 only,
is supported by the following observation.s. First of all, for λε = λ0 + o(1), the Steklov condition (1.5)
in the stretched coordinates reads:

ε−1∂ν(ξ)w
ε(ξ) = λεwε(ξ), ξ ∈ ∂ωj , ⇒ ∂ν(ξ)w

ε(ξ) = . . . , ξ ∈ ∂ωj . (5.1) S0

Thus, neglecting the small right-hand side forms the Neumann boundary condition as in Section 2.4.
At the same time, for λε = ε−1µε, µε ≥ c > 0, the Steklov condition (1.4) on the exterior boundary Γ
turns into the Dirichlet condition (1.8) in the following way:

∂νu
ε(x) = ε−1µεuε(x), x ∈ Γ, ⇒ uε(x) = ε(µε)−1∂nu

ε(x), x ∈ Γ. (5.2) ?S00?

In Section ? we will continue to discuss two asymptotic series of eigenvalues in the sequence (1.11).
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5.2 The low-frequency range
⟨subsec52⟩Let λ0 be a simple eigenvalue in (2.2). For an eigenvalue of problem (1.1), (1.4), (1.5), we accept the

ansätze
λε = λ0 + λλ′ + λ̃ε, (5.3) S1

uε(x) = u0(x) + ε
J∑

j=1

χj(x)w
j(ξj) + εu′(x, z) + ũε(x) (5.4) S2

which look quite similar to (3.1) and (3.2) but have a different order of the correction terms and allow
for the dependence on ln ε. This dependence is caused by our observation (5.1), namely, the term
ελεuε(xj + εξj) in the boundary condition on γj = ∂ωj furnishes the following Neumann datum for the
boundary-layer term

ψj(ξj) = −λ0u0(xj)−∇xu
0(xj) ·ν(ξ) ξj .

Hence, a solution to the exterior Neumann problem in Ξj takes the form

wj(ξj) = −λ0u0(xj)|γj |wj
0(ξ

j)−∇xu
0(xj) ·wj(ξj) (5.5) S3

where in addition to (3.4) the special solution wj
0 of problem (2.21) with ψ(ξj) = |γj |−1 appears.

According to Section 2.4 such problem does not have a bounded solution but the solution with the
logarithmic growth at infinity

wj
0(ξ

j) =
1

2π
ln

1

|ξj |
+ w̃j

0(ξ
j) (5.6) S4

where the remainder satisfies (2.12) and the coefficient of ln |ξj | is found by the calculation∫
∂ωj

∂ν(ξ)w
j
0(ξ) dsξ = − lim

R→+∞

∫
∂BR

∂wj
0

∂|ξ|
(ξ) dsξ = 1.

In view of (5.5) and (5.6), (2.22) we obtain the following problem for the correction terms:

−∆xu
′(x, z) = f ′(x, z) := λ0

J∑
j=1

u0(xj)
|γj |
2π

[∆,χj(x)]

(
ln

1

|x− xj |
− ln ε

)
, x ∈ Ω,

∂νu
′(x, z)− λ0u′(x, z) = λ′u0(x), x ∈ Γ. (5.7) S5

Recalling that λ0 is a simple eigenvalue of the Steklov prolem (2.1) and the corresponding eigenfunction
u0 is normalized in L2(Γ), we write the only compatibility condition in problem (5.7) as follows:

λ′ =

∫
Γ
|u0(x)|2 dsx = −

∫
Ω
u2(x)f ′(x, z) dx =

= −λ0
J∑

j=1

u0(xj)
|γj |
2π

∫
Ω
u0(x)[∆,χj(x)]

(
ln

1

|x− xj |
− ln ε

)
dx =

= −λ0
J∑

j=1

u0(xj)|γj | lim
δ→+0

∫
Ω\Bδ(xj)

u0(x)∆x

(
χj(x)(Φ(x− xj)− ln ε

2π

)
dx =

= −λ0
J∑

j=1

u0(xj)|γj | lim
δ→+0

∫
∂Bj

δ

(
u0(x)

∂

∂xj
Φ(x)−

(
Φ(x)− ln ε

2π

)∂u0
∂xj

(x)

)
dsx =

= −λ0
J∑

j=1

|u0(xj)|2|γj |.

(5.8) S6
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Thus, the correction term in the ansätz (5.3) for a simple eigenvalue is obtained. Notice that, although
u0(x, z) depends on ln ε through the right-hand side in (5.7), the number λ′ is independent of ln ε.

For a multiple eigenvalue λ0n as in (3.10), arguments and computation are very similar. We assume
the representation (3.11) of the main term in the ansätze (??) for the eigenfunctions uεn, . . . , uεn+κ−1

and, with the help of an evident modification of calculation (5.8), we conclude that the numbers
λ′n, . . . , λ

′
n+κ−1 in (3.15) and the coefficient columns cn, . . . , cn+κ−1 subject to (3.12), are found from

the algebraic system (??) where Mn is a symmetric negative matrix of size κ× κ with entries

Mn
kl = −λ0

J∑
j=1

u0l (x
j)|γj |u0k(xj). (5.9) S7

Let us formulate an assertion that will be verifies in Section ? .
⟨AS7⟩

Theorem 5.1. For any N ∈ N, there exist positive εN and cN such that the entries of the eigenvalue
sequences (1.11) and (2.2) of problems (1.1), (1.4), (1.5), and (2.1), respectively, are in the relationship

|λεn − λ0n − ελ′n| ≤ cNε
2| ln ε|2 for ε ∈ (0, εN ], n = 1, . . . , N, (5.10) S8

where the correction terms λ′n are found by the above-described procedure.

It should be mentioned that both the problems in Theorem 5.1 have the null eigenvalue, for which
the estimate (5.10) is of no need.

5.3 The middle-frequency range
⟨subsec53⟩As it was mentioned in Section 5.1, the formal procedure to construct main terms in the asymptotics of

the eigenvalues (3.19) of the Steklov problem (1.1), (1.4), (1.5) is the same as for the Steklov–Dirichlet
problem (1.1), (1.5), (1.8). However, the final assertion differs slightly from Theorem 4.3. We will
formulate this theorem and comment on it, see also Section 7?, as well as investigate in detail the case
of a simple eigenvalue skept in Section 4.3.

⟨AS8⟩Theorem 5.2. For any N ∈ N, N ≥ J , there exist positive zN , and cN such that, for the entries
µ1, . . . , µN of the united eigenvalue sequences (3.46) of the exterior Steklov problem (2.4) with j =
1, . . . , J fulfil the inequalities

|λεpn(ε) − ε−1z(2π + zµ′n(0))| ≤ cNε
−1z3 for z ∈ (0, zN ], n = 1, . . . , J, (5.11) zz1

|λεpn(ε) − ε−1µn| ≤ cNε
−1z for z ∈ (0, zN ], n = J + 1, . . . , N, (5.12) zz2

where λεp1(ε), . . . , λ
ε
pN (ε) are eigenvalues of the Steklov problem (1.1), (1.4), (1.5) in Ωε, pn(ε) 6= pm(ε)

for n 6= m, and µ′1(0), . . . , µ
′
J(0) are eigenvalues of the matrix M ′ composed in Section 4.3.

Notice that the estimates (4.31), (4.31) of Theorem 4.3 involve eienvalues λεn from (1.11) and µn
from (3.46) with the same indexes n = 1, . . . , N , while in Theorem 5.2 the index pn(ε) of the Steklov
eigenvalue in Ωε differs from n, depends on the small parameter ε and grows unboundedly as ε→ +0.
The latter property is supported by the following observation based on Theorem 5.1: the number N ε

of eienvalues λεn ∈ (0, 2πε−1) subject to the estimate (5.10) tends to infinity when ε → +0 while
pn(ε) ≥ N ε for n = 1, . . . , N .

As in Section 3.5, we now consider a simple eigenvalue µN in the united sequence (3.46), namely
µN = µ1n is a simple eigenvalue of the exterior Steklov problem (2.4) with j = 1 (in necessary, we relabel
the holes Ωε

1, . . . ,Ω
ε
J) while µN does not belong to the spectrum of other problems with j = 2, . . . , J .

In particular, N > J and µ1n > 0. The corresponding eigenfunction w1
n enjoys the normalization (2.10)

and the representation (2.11). We accept the ansätze

λε = ε−1(µ1n + zµ′(z) + µ̃ε, (5.13) se1
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uε(x) =
J∑

j=1

(zaj(z)Gj(x) + wj(ξj , z)) + ũε(x), (5.14) se2

where G1, . . . , GJ are particulat Green functions, see (2.13) and (??) and

wj(ξ, z) = wj(ξ, 0) + zwj′(ξ, z), (5.15) se3

w1(ξ, 0) = {w̃1
n(ξ), w2(ξ, 0) = 0, . . . , wJ(ξ, 0) = 0, (5.16) se4

are boundary-layer terms with the decay property (2.12). Aiming to determine µ′(z), a⃗(z) = (a1(z), . . . , aJ(z))
and w⃗ ′(z) = (w1′(·, z), . . . , wJ ′(·, z)) as analytic functions in (3.21), we insert (5.13)–(5.15) into the
Laplace equation (1.1) and the Steklov conditions (1.5); notice that the Dirichlet condition (1.8) is
fulfilled completely. Since the boundary layers (5.15) decay as O(|ξ|−1), the discrepancy in (1.1) is
small, of order ε, and we obtain the problems

−∆ξw
j(ξ, z) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j(ξ, z) = ψj(ξ, z) := (µ1n + zµ′(z))(wj(ξ, z) + zaj(z)

1

2π
ln

1

ε|ξ|
+ (5.17) se5

+ z

J∑
k=1

gjka
k(z)) + z

aj(z)

2π
∂ν(ξ) ln |ξ|, ξ ∈ γj ,

which again are considered as exterior Neumann problems with fixed right-hand side ψj(ξ, z). To have
ψj(ξ, 0) = 0, we put

a⃗(z) = a⃗(0) + z⃗a ′(z), a⃗(0) = (2πb1n, 0, . . . , 0)
⊤ ∈ RJ . (5.18) se6

We emphasize that a1(0) = 2πb1n with b1n taken from (2.11) provides the equality w1
n(ξ) = w̃1

n(ξ) +
(2π)−1a1(0) on the right of (5.17) after setting z = 0.

Applying the standard compatibility condition for the existence of a unique decaying solution of
problem (2.21) and taking (5.15), (5.16), and (5.18) into account, we arrive at

0 =
1

z

∫
γj

ψj(ξ, z) dsξ = (µ1n + zµ′(z))|γj |(〈wj′〉(z) + 1

2π
aj′(z)+

+ (aj(0) + zaj′(z))lj +

J∑
k=1

Gjk(a
k(0) + zak′(z)))− (aj(0) + zaj′(z)), (5.19) se7

where (3.41) and (3.49) were used.
First, we deal with j > 1 when aj(0) = 0 according to (5.18). By (5.19) and (5.16), we convert

problem (5.17) into
−∆ξw

j′(ξ, ′) = 0, ξ ∈ Ξj ,

∂ν(ξ)w
j′(ξj , z)− µ1n(w

j′(ξ, z)− 〈wj′〉(′)) = zφj(ξ, z) := (5.20) se8

= zµ′(z)(wj(ξ, z)− 〈wj′〉(z))− z(µ1n + zµ′(z)aj′(z)

(
1

2π
ln

1

|ξ|
− 1

|γj |
lj

)
+

+ zaj′(z)

(
1

2π
∂ν(ξ) ln |ξ|+

1

|γj |

)
, ξ ∈ γj . (5.21) {?}

In view of Lemma 3.1 the positive spectra of problems (2.4) and (3.25), (3.29) coincide with each other,
and thus, problem (5.20) with j = 2, . . . , J has the parameter µj = µ1n outside the spectrum (3.33) and

25



has a unique decaying solution because the right-hand zφj(ξ, z) (fixed, at the moment) is of zero mean
over γj . At the same time, the relation (5.19) with j > 1 can be rewritten as follows:

aj(z) = −〈wj′〉(z)− gj1a
1(0)− zlja

j′(z)− z

J∑
k=1

Gjka
k′(z)− zaj′(z)

(µ1n + zµ′(z))|γj |
. (5.22) se9

Let j = 1. Since µ1n is a simple eigenvalue of problem (5.17) with j = 1, we have to take into account
the additional compatibility condition while rewriting the boundary condition as follows:

∂ν(ξ)w
1(ξ, z)− µ1nw

1(ξ, z) = ψ1(ξ, z) := ψ1(ξ, z)− µ1nw
1(ξ, z), ξ ∈ γ1. (5.23) ?smu1?

The right-hand side ψ1
0 must be orthogonal in L2(γ1) to the eigenfunction w1

n of the exterior Steklov
problem in Ξ1 and this requirement

z−1

∫
γ1

w1
n(ξ)ψ

1
0(ξ, z) dsξ = 0

converts into the following equation for the correction term µ′(z) in (5.13):

µ′(z) = µ′(z)

∫
γ1

|w1
n(ξ)|2 dsξ =

∫
γ1

w1
n(ξ)

(
(µ1n + zµ′(z))(w1′(ξ, z) +

1

2π
a1′(z)+

+ (a1(0) + za1′(z))
1

2π
ln

1

|ξ|
+ G11a

1(0) +

J∑
k=1

G1ka
k′(z))+ (5.24) ba1

+
1

2π
(a1(0) + za1′(z))

)
∂ν(ξ) ln |ξ|

)
dsξ. (5.25) {?}

Finally, we transform the Neumann compatibility condition in problem (5.17) with j = 1 and transform
the relation

z−1

∫
γ1

ψ1(ξ, z) dsξ = 0

into the following equation for the last scalar unknown a1′(z), see (5.18),

a1′(z) =
a1′(0) + za1′(z)

|γ1|(µ1n + zµ′(z))
− 〈w1′〉(z)− (a1(0) + za1′(z))lj− (5.26) ba2

− G11a
1(0)− z

J∑
k=1

G1ka
k′(z).

Now problem (5.17), j = 1, takes the form (5.20), j = 1, while formula (5.24) for µ′(z) assures its
compatibility condition ∫

γ1

(w1
n(ξ)− 〈w1〉)φ(ξ, z) dsξ = 0.

Thus, collecting the derived relations (5.20), (5.24), (5.22), (5.26) gives us an abstract equation of type
(3.65) with a contraction operator T(z, ·) in a small ball (3.66) for the vector

u(z) = (w1′(·, z), µ′(z), w2′(·, z), . . . , wJ ′(·, z), a⃗ ′(z)). (5.27) ba3

Arguing in the same way as in Section (3.5), we find a solution (5.27) and concretize the asymptotic
ansätze (5.13) and (5.14) specified in (5.15), (5.16), and (5.18).

?⟨AS9⟩?Theorem 5.3. Let µN = µ1n be a simple eigenvalue in the united sequence (3.46) of the spectra (2.9)
of the exterior Steklov problems (2.4), j = 1, . . . , J . Then there exist εN , cN > 0 and p1n(ε) ∈ N such
that

|λεp1n(ε) − ε−1
(
µ1n + zµ′(z)

)
| ≤ cN for ε ∈ (0, εN ]. (5.28) fin

Here εεp1n(ε) is an eigenvalue of the pure Steklov problem (1.1), (1.4), (1.5), and µ′ is an analytic function
in z = | ln ε|−1 ∈ (0, | ln εN |−1] determined by the above procedure.

26



6 The convergence theorems
⟨sec6⟩6.1 The Steklov problem

⟨subsec61⟩We fix a number n ∈ N and consider the eigenpair {λεn, uεn} of problem (1.1), (1.4), (1.5). In Remark
?? we show that

λεn ≤ cn for ε ∈ (0, εn] (6.1) T1

with some εn > 0. From (6.1) and (1.10),(1.1) with ρε = 1 on Γε, it follows that

||∇xu
ε
n;L

2(Ωε)||2 = λεn||uεn;L2(Γε)||2 ≤ cn. (6.2) ?T2?

We now construct an extension û ε
n ∈ H1(Ω) of uεn such that

||∇xû
ε
n;L

2(Ω)||2 ≤ c||∇xu
ε
n;L

2(Ωε)||2. (6.3) T3

To this end, we introduce the function

BR \ ωj 3 ξ 7→ U ε
nj(ξ) = uεn(x

j + εξ) (6.4) T4

and its mean-value
U

ε
nj = |BR \ ωj |−1

∫
BR\ωj

U ε
nj(ξ) dξ.

The Poincaré inequality

||U ε
nj − U

ε
nj ;L

2(BR \ ωj)|| ≤ cj ||∇ξ(U
ε
nj − U

ε
nj);L

2(BR \ ωj)|| = cj ||∇ξU
ε
nj ;L

2(BR \ ωj)||

assures that the difference U ε⊥
nj = U ε

nj − U
ε
nj satisfies

||U ε⊥
nj ;H

1(BR \ ωj)|| ≤ cj ||∇ξU
ε
nj ;L

2(BR \ ωj)||

and has an extension Ũ ε
nj ∈ H1(BR) such that

||Û ε
nj ;H

1(BR \ ωj)|| ≤ cj ||∇ξU
ε
nj : L

2(BR \ ωj)||. (6.5) T5

Setting

û ε
n(x) = uεn(x), x ∈ Ωε, û ε

n(x) = Û ε
nj(ε

−1(x− xj)) + U
ε
nj , x ∈ ωε

j , j = 1, . . . , J, (6.6) T6

provides the desired extension and proved (6.3) on the base of (6.5) and (6.4).
In view of (6.1) and (6.3) we find a positive infinitesimal sequence {εk}k∈N such that, as ε = εk →

+0,
λεn → λ̂ 0

n , (6.7) T7

û ε
n ⇀ û 0

n weakly in H1(Ω) and strongly in L2(Γ). (6.8) T8

Hence, performing the limit passage ε = εk → +0 in the integral identity (1.10) with a test function
v ∈ C∞

c (Ω \ {x1, . . . , xJ}), we observe that, for a small ε = εj , λεn(uεn, v)γε
j
= 0 and obtain

(∇xû
0
n ,∇xv)Ω = λ̂ 0

n(û
0
n , v)Γ, (6.9) T9

while any test function v ∈ H1(Ω) is available in (6.9) due to a density argument. To conclude that
{λ̂ 0

n , û
0
n} is an eigenpair of problem (2.1), it suffices to verify that

||û 0
n ;L

2(Γ)|| = 1. (6.10) T10

27



To this end, we write the estimates

||r−1
j (1 + | ln rj |)−1u;L2(Ω)||2 ≤ c||u;H1(Ω)||2, j = 1, . . . , J, (6.11) ?T11?

which are supported by the one-dimensional Hardy inequality with logarithm∫ 1

0

1

r
| ln r|−2|U(r)|2 dr ≤ 4

∫ 1

0
r

∣∣∣∣dUdr (r)
∣∣∣∣2 dr ∀U ∈ H1(0, 1), U(1) = 0. (6.12) HAR

Furthermore, applying to û ε
n the trace inequality

||u;L2(γεj )||2 ≤ cε(1 + | ln ε|)2!!u;H1(Ω)||2 (6.13) T12

which can be derived by the coordinate dilation x 7→ ξj = ε−1(x− xj) and using (6.13), we see that

1 = ||uεn;L2(Γε)||2 = ||û ε
n;L

2(Γ)||2 + ||ûεn;L2(γε)||2 → ||û 0
n ;L

2(Γ)||2 (6.14) T13

and (6.10) is true, indeed.
Unfortunately, the above arguments do not help us to verify that λ̂ 0

n = λ0n and û 0
n = u0n. We

however formulate the final assertion whose proof will be completed in Section ?????.
⟨COS⟩Theorem 6.1. The eigenvalue sequence (1.11) and (2.2) of problem (1.1), (1.4), (1.5), and (2.1),

respectively, are in the relationship
λ0n = lim

ε→+0
λεn. (6.15) ?T14?

Moreover, the eigenfunctions u0n, n ∈ N, satisfying the normalization and orthogonality conditions (2.3),
can be obtained by the limit passage (6.8) from the eigenfunctions uεn, n ∈ N, satisfying condition (1.12).

6.2 The Steklov condition on Γ only
⟨subsec62⟩The above considerations apply to the Neumann–Steklov and Dirichlet–Steklov problems (1.1), (1.4),

(1.6), and (1.1), (1.4), (1.9). Moreover, in the Dirichlet case the extension of uεn ∈ H1
0 (Ω

ε, γε) by zero
over the holes is available while in both cases the conclusion (6.14) simplifies, too.

The next assertion will be finalized in Section ????
?⟨COND⟩?

Theorem 6.2. Theorem 6.1 remains valid under the change (1.5) 7→ (1.7) and (1.5) 7→ (1.9).

6.3 The Dirichlet condition on Γ
⟨subsec63⟩Let {λεn, uεn} be an eigenpair of problem (1.1), (1.5), (1.8), while ||uε;L2(γε)|| = 1 and, as will be

explained in Section 7.1,
λεn =≤ cnε

−1. (6.16) K1

We denote uε
n =

√
εuεn and derive from (1.10) and (6.16) that

||∇xu
ε
n;L

2(Ωε)||2 = ε||∇xu
ε
n;L

2(Ωε)||2 = ελεn||uεn;L2(γε)||2 ≤ cn. (6.17) ?K2?

We construct the extension ûε
n ∈ H1(Ω) of uε

n such that

||∇xu
ε
n;L

2(Ω)|| ≤ c||∇xu
ε
n;L

2(Ωε)|| ≤ cn, (6.18) K0

see (6.6) and (6.3), and, owing to (1.8), apply the Friedrichs inequality

||uε
n;L

2(Ω)|| ≤ c||∇xu
ε
n;L

2(Ω)|| ≤ cn. (6.19) K3
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We set
wjε
n (ξj) = χj(x

j + εξj)uε
n(x

j + εξj) (6.20) K4

and observe that, according to (1.12), with ρε = 1 on γε and definitions (6.20), (3.3),

1 =

J∑
j=1

∫
γε
j

|uεn(x)|2 dsx = ε−1
J∑

j=1

∫
γε
j

|û ε
n(x)|2 dsx =

J∑
j=1

∫
γj

|wjε
n (ξ)|2 dsξ,

||∇ξw
jε
n ;L2(R2 \ ωj)||2 =

∫
B2R/ε\ωj

|χj∇ξû
ε
n + û ε

n∇ξχj |2 dξ = (6.21) K5

=

∫
Ωε

|χj∇ξû
ε
n + û ε

n∇ξχj |2 dx ≤ cj ||û ε
n;H

1(Ω)|| ≤ cnj .

The Poincaré inequality also demonstrates that

||wjε
n ;L2(B2R/ε \ ωj)||2 ≤ c

(
||∇ξw

jε
n ;L2(B2R/ε \ ωj)||2 + ||wjε

n ;L2(γj)||2
)2 ≤ c. (6.22) K6

Hence, wjε
n ∈ Hj has a norm uniformly bounded in ε, compare (2.6) and (6.21),(6.22). We recall (6.16)

and find a positive infinitesimal sequence {εk}k∈N such that, as ε = εk → +0,

µεn = ελεn → µ̂ 0
n , (6.23) K7

wjε
n → wj0

n weakly in Hj and strongly in L2(γj), L
2(B2R \ ωj). (6.24) K8

For any v̂j ∈ C∞
c (R2 \ ωj), we insert the test function vε(x) = ε−1/2v̂j(ε

−1(x − xj)) into the integral
identity (1.10), observe that vε ∈ H1

0 (Ω
ε,Γ) for a small ε > 0, and perform the limit passage ε + 0.

Since wjζ
n (ε−1(x− xj)) = ε1/2uεn(x) for x ∈ supp vε while wjε

n = 0 on γεl with l 6= j, we have

0 = (∇xw
jε
n ,∇xv

ε)Ωε − λε(wjε
n , v

ε)γε
j
→

→ (∇xiŵ
j0
n ,∇ξ v̂j)R2\ωj

− µ̂ 0
n(ŵ

j0
n , v̂j)γj = 0. (6.25) ?K8N?

Now, we can take any v̂j ∈ Hj because C∞
c (R2 \ωj) is dense in Hj . Hence, {µ̂ 0

n , ŵ
jε
n } is an eigenpair of

the exterior Steklov problem (2.8) provided ŵ j0
n 6≡ 0. On the base of (6.20) and (6.21) we obtain that

1 =

J∑
j=1

||uεn;L2(γεj )||2 =
J∑

j=1

||wj0
n ;L2(γj)||2 →

J∑
j=1

||wj0
n ;L2(γj)||2 = 1.

Thus, at least for one index j = 1, . . . , J the limit passages (6.23), (6.24) give us an eigenpair.
To formulate the final assertion whose proof will be concluded in Section 7 ? ????, we join the

eigenvalue sequences (2.9), j = 1, . . . , J , into

0 = µ01 = . . . = µ0J < µ0J+1 ≤ µ0J+2 ≤ . . . ≤ µ0n ≤ . . .→ +∞. (6.26) K9

In other words, (6.26) consists of all eigenvalues of the exterior Steklov problems (2.8) in the domains
Ξ1, . . . ,ΞJ .

⟨COD⟩Theorem 6.3. The eigenvalue sequences (1.11) and (6.26) of problems (1.1), (1.5), (1.8) and (2.8),
respectively, are in the relationship

µ0n = lim
ε→+0

ελεn, n ∈ N. (6.27) K10

The vector eigenfunctions Wn = {w1
n, . . . , w

J
n} ∈ H1 × . . .HJ of the family of exterior Steklov problems

can be obtained through the limit passage (6.24) and fulfill the normalization and orthogonality conditions

J∑
j=1

(wj
n, w

j
m)γj = δn,m n,m ∈ N. (6.28) ?K11?
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6.4 The Neumann condition on Γ
?⟨subsec64⟩? We again take an eigenpair {λεn, uεn} with the normalized eigenfunction in L2(γε) and a positive eigen-

value satisfying (6.16) (see Remark ??). We denote by ûε
n ∈ H1(Ω) the extension of uε

n =
√
εuεn ful-

filling (6.18). However, the Neumann condition (1.6) at the exterior boundary Γ rejects the Friedrichs
inequality (6.19) but, as its substituter, we apply the inequality

||ûε
n;L

2(Ω)||2 ≤ c

||∇xû
ε
n;L

2(Ω)||2 +

∣∣∣∣∣
∫
∂BR(x1)

ûε
n(x) dsx

∣∣∣∣∣
2
 . (6.29) K12

Here, we took into account that the Dirichlet semi-norm degenerates for constant functions only and
used lemma about equivalent norm. Note that the circle ∂BR(x

1) around the hole ωε
1 is involved and

BR(x1) ∩ ωε
j = ∅ for j = 1, . . . , J .

To estimate the last term in (6.29), we first observe that the functions (6.20) are harmonic in
B2R \ ωj , they satisfy condition (3.23) and are subject to the estimate

||∇ξw
jε
n ;L2(B2R \ ωj)||2 + ||wjε

n ;L2(∂ωj)||2 ≤ ελεn + 1 ≤ cn. (6.30) ?K13?

Hence, using local estimates [17] of solutions to elliptic problems yields

||wjε
n ;L2(∂BR)|| ≤ ||∂ρwjε

n ;L2(∂BR)|| ≤ c||wjε
n ;H2(BR \ ωj)|| ≤ c

(
||∆wjε

n ;L2(B2R \ ωj)||+

+ ||∂ν(ξ)wjε
n − µεnw

jε
n ;H1/2(∂ωj)||+ ||wjε

n ;L2(B2R \ ωj)||
)
≤ (6.31) K14

≤ c
(
0 + 0 + ||∇wjε

n ;L2(B2R \ ωj)||+ ||wjε
n ;L2(∂ωj)||

)
≤ cn.

Owing to equations (1.1) and (1.6), we have

J∑
j=1

∫
∂BR

∂ρw
ε
n(ξ) dξ =

J∑
j=1

∫
∂BεR(xj)

∂ru
ε
n(x) dsx = 0. (6.32) K15

We set a1 = J − 1 and a2 = . . . = aJ = −1 in (2.19), cf. (2.20), and insert the harmonic linear
combination

G(x) = (J − 1)G1(x)−G2(x)− . . .−GJ(x)

of the particular generalized Green functions Gj(x) = G(x, xj), see (2.18), into the Green formula on
Ω\ (BεR(x

1)∪ . . .∪BεR(x
1)) together with the function uε

n. Sice, according to the decomposition (2.14)
of Gj ,

G(x) = (2π)−1bj | ln ε|+O(1), ∂rjG(x) = O(ε−1), x ∈ ∂BεR(x
j),

we detect that, in view of (6.31),

1

2π
| ln ε|

∣∣∣∣∣∣
J∑

j=1

bj

∫
∂BεR

∂ρw
jε
n (ξ) dξ

∣∣∣∣∣∣ ≤ c

J∑
j=1

(
||∂ρwjε

n ;L2(∂BR)||+

+||∂ρwjε
n ;L2(∂BR)||

)
≤ cn (6.33) K16

Combining (6.32) and (6.33) leads us to∣∣∣∣∣
∫
∂BεR(x1)

∂r1u
ε
n(x) dsx

∣∣∣∣∣ =
∣∣∣∣∫

∂BR

∂ρw
1ε
n (ξ) dsξ

∣∣∣∣ ≤ cn
| ln ε|

. (6.34) K17
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Now, we apply the Green formula for uε
n and ln(R−1rj) in the annulus BR(x

1) \ BεR(x
1) to conclude

that

1

R

∣∣∣∣∣
∫
∂BR(x1)

uε
n(x) dsx

∣∣∣∣∣ =
∣∣∣∣ ∫

∂BεR(x1)

(
uε
n(x)

∂

∂rj
ln
rj
R
−

− ln ε∂rju
ε
n(x)

)
dsx

∣∣∣∣ ≤ ∣∣∣∣ ∫
∂BR

(
|w1ε

n (ξ)|+ | ln ε||∂ρw1ε
n (ξ)|

)
dsξ

∣∣∣∣ ≤ cn.

Here, we used (6.31) and especially (6.34) with the infinitesimal bound cn| ln ε|−1.
Thus, the right-hand side of (6.29) is uniformly bounded in ε ∈ (0, εn] with some εn > and we have

the desired estimates
||wjε

n ;Hj || ≤ cn, j = 1, . . . , J,

for the functions (6.20) and (6.24). Now we repeat word-by-word the arguments from Section 6.3 and
conclude with the convergence theorem on the eigenvalue problem with the Neumann conditions on Γ
and the Steklov conditions on γε1, . . . , γεJ .

⟨CON⟩Theorem 6.4. The assertions of Theorem 6.3 remain valid for the eigenpairs of problem (1.1), (1.5),
(1.6).

7 Justification of asymptotics
⟨sec7⟩7.1 The middle-frequency range of the pure Steklov problem

⟨subsec71⟩The Sobolev space H1(Ωε) with the scalar product

〈uε, vε〉ε = (∇ξu
ε,∇ξv

ε)Ωε + (uε, vε)∂Ωε (7.1) J1

is denoted by Hε. we introduce the positive continuous symmetric, and therefore self-adjoint, operator
T ε as follows

〈T εuε, vε〉ε = (uε, vε)∂Ωε ∀uε, vε ∈ Hε. (7.2) J2

Since the embedding H1(Ωε) ⊂ L2(∂Ωε) is compact, this property is attributed to T ε as well. Hemce,
by [18, Theorems 10.1.5 and 10.2.2], the essential spectrum of T ε consists of the only point τ = 0 while
the discrete spectrum constitutes the positive infinitesimal sequence

τ ε1 ≥ τ ε2 ≥ . . . ≥ τ εn ≥ . . .→ +0 (7.3) J3

where the eigenvalues multiplicity is taken into account. Comparing (7.1), (7.2) and (1.10) with ρε = 1,
we see that the variational formulation of problem (1.1), (1.4), (1.5) is equivalent to the abstract
equation

T εuε = τ εuε in Hε. (7.4) J4

with the spectral parameter τ ε,

τ ε = (1 + λε)−1 ⇔ λε = (τ ε)−1 − 1. (7.5) J5

The relationship (7.5) transforms (7.3) into the unbounded sequence (1.11); in particular τ ε2 > τ ε1 = 1.
The next assertion is known [19] as Lemma on “almost eigenvalues and eigenvectors” and follows

directly from the spectral decomposition od resolvent, cf. [18, Ch. 6, Section 2].

31



⟨NEAR⟩Lemma 7.1. Let Uε ∈ Hε and tε ∈ R+ be such that

||Uε;Hε|| = 1, ||T εUε − tεT ε;Hε|| == δε ∈ (0, tε). (7.6) J6

Then the closed segment [tε− δε, tε+ δε] contains at least one eigenvalue of the operator T ε. Moreover,
for any α > 1, there exists a coefficient columns cε = (cεK(ε), . . . , c

ε
K(ε)+X(ε)−1)

⊤ ∈ RX(ε) such that

||Uε −
K(ε)+X(ε)−1∑

k=K(ε)

cεku
ε
k;Hε|| ≤ 2

α
,

K(ε)+X(ε)−1∑
k=K(ε)

|cεk|2 = 1 (7.7) J7

where τ εK(ε), . . . , τ
ε
K(ε)+X(ε)−1 is the list of all eigenvalues in (7.3) which belong to [tε − δεα, tε + δεα]

and the corresponding eigenvectos uεK(ε), . . . , u
ε
K(ε)+X(ε)−1 of T ε are orthonormalized in Hε.

Based on the analysis in Section 5.2, we propose the following approximations for eigenpairs;

tεp = (1 + λ0n + ελ′p)
−1, Uε

p = ||Vε
p ;Hε||−1Vε

p , p = n, . . . , n++κ− 1. (7.8) J8

Vε
p(x) = up0(x) + εup′(x, z) + ε

J∑
j=1

χj(x)w
pj(ξj), (7.9) ?J9?

where λ0n > 0 is an eigenvalue of the Steklov problem (2.1) with multiplicity κ ≥ 1, see (3.10), up0

are linear combinations (3.11) of the corresponding eigenfunctions u0n, . . . , u0n+κ−1, orthonormalized
in L2(Γ), (2.3), with coefficient columns cn, . . . , cn+κ−1 which are eigenvectors of the matris M with
entries (5.9), while λ′n, . . . , λ

′
n+κ−1 are the corresponding eigenvalues, (3.15). Finally, wpj are the

usual boundary-layer terms but the solutions (5.5) of the exterior Neumann problem in Ξj with the
logarithmic growth as |ξ| → +∞.

Let us mention that, by construction,

||∇xu
p0;L2(Ω \ Ωε)|| ≤ cε, ε||∇xu

p′;L2(Ωε)|| ≤ cε, ε||up′;L2(Γ)|| ≤ cε| ln ε|
||Vε

p ;L
2(γεj )|| ≤ cε1/2,

ε||∇x(χjw
pj);L2(Ωε)|| ≤ cε

J∑
j=1

(∫
Ωε

r−2
j dx

)1/2

≤ cε| ln ε|1/2

and hence, according to (2.1), (2.3), and (??),

|〈Vε
p ,Vε

q 〉ε − δp,q(1 + λ0n)| ≤ |(∇xu
p0,∇xu

q0)Ω + (up0, uq0)Γ − δp,q(1 + λ0n)|+

+ cε| ln ε| =
n+κ−1∑
k,l=n

cpkc
q
l ((∇xu

0
k,∇xu

0
l )Ω + (u0k, u

0
l )Γ)− δp,q(1 + λ0n)|+

+ cε| ln ε| = 0 + cε| ln ε|. (7.10) J10

To compute the value δεp in Lemma 7.1, we write

||T εUε
p − tεpUε

p ;Hε|| = sup |〈T εUε
p − tεpUε

p ,Wε〉ε =
= ||Vε

p ;Hε||−1tεp sup |(∇xVε
p ,∇xWε)Ωε − (λ0n + ελ′p)(Vε

p ,Wε)∂Ωε | = (7.11) J11

= ||Vε
p ;Hε||−1tεp sup |(∆xVε

p ,Wε)Ωε + (∂νVε
p − (λ0n + ελ′p)Vε

p ,Wε)∂Ωε |

Here the supremum is computed over the unit sphere in Hε, i.e., ||Wε;Hε|| = 1, that, in particular,
means:

||∇xWε;H1(Ωε)||+ ||r−1
j (1 + | ln rj |)−1Wε;L2(Ωε)||+ ε−1/2| ln ε|−1||Wε;L2(γεj )|| ≤ c. (7.12) J12
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In view of (7.8) and (7.10), the factor of the last supremum in (7.11) is uniformly bounded in ε. By
construction in Section 5.2 we have

−∆xVε
p = Fε := −ε∆xu

p′ − ε

J∑
j=1

[∆x, χj ]w
pj = −ε

J∑
j=1

[∆x, χj ]ŵ
pj

and
|(Fε

p ,Wε)Ωε | ≤ cε2||Wε;L2(Ωε)|| ≤ cε2

because |w̃(ξj)|+ |∇xw̃(ξ
j)| ≤ cε for x ∈ supp|∇xχj |, see (2.12) and (3.3). Furthermore, on the exterior

boundary we obtain

g0εp = ∂νu
p0 + ε∂νu

p′ − (λ0n + ελ′p)(u
p0 + εup′) = −ε2λ′pup′,

|(g0εp ,Wε
p)Γ| ≤ cε2||Wε

p ;L
2(Γ)|| ≤ cε2.

Finally, on the boundaries γεj of the small holes we have

gjεp (x) = ∂ν(x)(u
p0(x) + εup′(x, z) + εwpj(ξj))− (λ0n + ελ′p)(u

p0(x) + εup′(x, z) + εwpj(ξj)) =

= (∂ν(ξ)w
pj(ξj) + ∂ν(ξ)ξ

j · ∇xu
p0(xj)− λ0nu

p0(xj)) + g̃jεp (x), |g̃jεp (x)| ≤ cε| ln ε|,

and, owing to (7.12),

|(gjεp ,Wε)γε
j
| ≤ cε| ln ε||γεj |1/2||Wε;L2(γεj )|| ≤ cε2| ln ε|2.

Collecting these estimates, we see that

δεp = ||T εUε
p − tεpUε

p ;Hε|| ≤ cnε
2| ln ε|2 (7.13) ?38?

and, therefore, one finds at least one eigenvalue of the operator T ε such that

cnε
2| ln ε|2 ≥ |τ εmε(p) − tεp| = |(1 + λεmε(p))

−1 − (1 + λ0n + ελ′p)
−1|. (7.14) J13

A simple calculation derives from (7.14) estimate (5.10) for λεmε(p) and λ0n + ελ′p. We however cannot
conclude that mε(p1) 6= mε(p2) in the case p1 6= p2 and
lambda′p1 6= λ′p2 .

In order to prove that a cε2| ln ε|2-neighbourhood of the point λ0n+ελ′p contains at least τ eigenvalues
λλεmε(p), . . . , λ

ε
mε(p)+τ−1 for an eigenvalue λ′p of the matrix Mn with multiplicity τ > 1, see (3.17), we

employ the second part of Lemma 7.1 and find orthonormalized columns cε(p), . . . , c
ε
(p+τ−1) ∈ RX(ε) such

that

||Uε
q − Sε

q ;Hε|| ≤ 2α−1, q = p, . . . , p+ τ − 1. (7.15) J14

Here, Sε
q is the linear combination indicated in (7.7) for Uε

q and X(ε) is the number of eigenvalues of
T ε in the segment

[tεp − αδε•, t
ε
p + αδε•], δε• = max{δεp, . . . δεp+τ−1} ≤ c•ε

2| ln ε|2.

We have

|(cε(k))
⊤cε(l) − δk,l| = |〈Sε

k, S
ε
l 〉ε − δk,l| =

= |〈Sε
k, S

ε
l − Uε

l 〉ε + 〈Sε
k − Uε

k ,Uε
l 〉ε + 〈Uε

k ,Uε
l 〉ε − δk,l| ≤ (7.16) JJJ

= 2α−1 + 2α−1 + cε| ln ε|.

33



Here, we used the equality ||Sε
k;Hε|| = 1 according to (7.7) and the estimate |〈Uε

k ,Uε
l 〉ε− δk,l| ≤ cε| ln ε|

supported by (7.10). Thus, for a small ε > 0 and a big α > 1, the columns cε(p), . . . , c
ε
(p+τ−1) ∈ RX(ε)

are almost “almost orthonormalized” so that X(ε) ≥ τ indeed and the segment (7.15) contains at least
τ eigenvalues τ εmε(p), . . . , τ

ε
mε(p)+τ−1 of the operator T ε, while the relationship (7.5) delivers the desired

eigenvalues λεmε(p), . . . , λ
ε
mε(p)+τ−1 of the Steklov problem (1.1), (1.4), (1.5).

In a small neighbourhood of each eigenvalue λ0n of the Steklov problem in Ω with multiplicity κn
we have found eigenvalues

λεmε(p), . . . , λ
ε
mε(p)+κn−1 ∈ [λ0n − Cnε, λ

0
n + Cnε] for ε ∈ (0, εn] (7.17) J15

of the Steklov problem in Ωε. This fact confirms the relation (6.1) required in Section 6.1 to prove
the convergences (6.7) and (6.8). Moreover, m(ε) ≥ n in (7.17). Recalling all the above estimates
and the bounds cnε2| ln ε|2, in order conclude the proof of Theorem 5.1, we need to verify the equality
m(ε) = n. To this end, arguing by contradiction, we may assume thatm(ε) > n, and for an infinitesimal
positive sequence {εn}n∈N, we detect eigenvalues λε1, . . . , λεn+κn

∈ [0, λ0n + Cnε] and the corresponding
eigenfunctions uε1, . . . , uεn+κn

∈ H1(Ωε), verifying condition (1.12) with ρε = 1. Thus, in view of
formulas (6.7), (6.8) and ||uεp;L2(γεj )|| ≤ cpε

1/2| ln ε|, the limits ũε1, . . . , ũεn+κn
∈ H1(Ω) indicated in

Section 6.1 satisfy the orthogonality and normalization conditions (2.3), but correspond to eigenvalues
λ̃ε1, . . . , λ̃

ε
n+κn

in the segment [0, λ0n] which contains just n + κn − 1 eigenvalues in the sequence (2.2).
This contradiction concludes the proof of Theorem 5.1.

7.2 The Dirichlet and Neumann conditions at small holes
?⟨subsec72⟩? Theorem 3.1 about asymptotics of the spectrum (1.11) of problem (1.1),(1.4), (1.6) considered in

Sections 3.1, 3.2 and 6.2 can be proved just along the same lines as in the previous section. The
only deviation appears in the improved bound in estimate (3.16), due to the visible differences in the
asymptotic ansätze (3.1),(3.2), and (5.3), (5.4), which in turn provide different orders of discrepancies
in abstract equations of type (7.4), see the last formula in (7.6).

Much more significant deviation of the bounds O(ε) and O(| ln ε|−2) is observed in the estimates
(4.14) and (4.22) in Theorems 4.1 and 4.2 serving the Stekhlov–Dirichlet problem (1.1), (1.5), (1.8).
The difference originates in the use of “logarithmic” and “power-low” asymptotic expansions while the
latter, in some sense, is obtained by summation of infinite series in powers of z = | ln ε|−1. We will
further comment of these kinds of expansions in the next section.

7.3 The Neumann condition at the exterior boundary
⟨subsec73⟩We again use Lemma 7.1 on “almost eigenvalues and eigenvectors” but in a bit different framework.

Namely, instead of the scalar product 7.1 in the Sobolev space Hε = H1(Ωε), we employ the following
one:

〈uε, vε〉ε = (∇uε,∇vε)Ωε +
1

ε
(uε, vε)γε . (7.18) V1

The new factor 1/ε of the last term in (7.18) and its restrictrion on the interior boundary γε = γε1∪. . .∪γεJ
is due to the replacement of the spectral parameter λε 7→ µε and its disappearance from the boundary
condition on Γ, cf. (3.19) and (1.6). At the same time, the operator T̃ ε is still defined by (7.2) and the
variational formulation (1.10) of problem (1.1), (1.5), (1.6) is equivalent to the abstract equation (7.4)
with the new spectral parameter

τ ε = (ε−1 + λε)−1 = ε−1(1 + µε)−1 ⇐⇒ λε = (τ ε)−1 − ε−1. (7.19) ?V2?

Notice that τ ε1 = ε and λε1 = 0 in (7.3) and (1.11), respectively. To prove Theorem 3.2 about pertur-
bation of a simple eigenvalue µN = µ1n in (3.46), see 3.5, we choose the folllowing approximation of an
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eigenpair {λεN , uεN}:

tεN = (ε−1 + ε−1(µ1n + zµ′(z)))−1, Uε
N = ||Vε

N ;Hε||−1Vε
n,

Vε
n(x) = a(z) +

J∑
j=1

(zaj(z)Gj(x) + χj(x)w
j(ξj ; z)) (7.20) V3

extracting the ingredients (3.47) of the asymptotic ansätze (3.19) and (3.20). First of all, we observe
that formulas (7.20) and (7.18) assure the inequalities

|tεN | ≥ cε, C ≥ ||Vε
N ;Hε|| ≥ c > 0. (7.21) ?V4?

Then, the discrepancy δεn in (7.6) is equal to

sup |〈T εUε
N − tεNUε

N ,Wε
N 〉ε| = ||Vε

N ;Hε||−1tεN sup |(∇Vε
N ,∇Wε)Ωε − ε−1(µ1n + zµ′(z))(Vε

N ,Wε)γε | ≤
≤ cε sup |(∆Vε

N ,Wε)Ωε − (∂νVε
N − ε−1((µ1n) + zµ′(z))Vε

N ,Wε)γε |
(7.22) V5

where the supremum is computed over the unit sphere in Hε, i.e., ||Wε;Hε|| = 1.
?⟨LL⟩?Lemma 7.2. The inequality

||uε;L2(Ωε)|| ≤ c(1 + | ln ε|)||uε;Hε|| (7.23) V6

is valid where j = 1, . . . , J , rj = |x−xj | and the factor c is independent of uε ∈ H1(Ωε) and ε ∈ (0, ε0],
ε0 > 0.

Proof. For the extension û ε ∈ H1(Ω) of uε ∈ Hε, see (6.3), we set

û ε(x) = û ε
0 (x) + û ε

⊥(x),

∫
Ω
û ε
⊥(x) dx = 0.

Owing to the Poincaré inequality supported by the last orthogonality condition we have

||û ε
⊥;L

2(Ω)||2 ≤ cΩ||∇û ε
⊥;L

2(Ω)||2 = cΩ||∇û ε;L2(Ω)||2 ≤ c||uε;Hε||2.

Applying the one-dimensional Hardy inequality (6.12) in polar coordinates and the trace inequality
(6.13) we obtain

||uε;Hε||2 ≥ 1

ε

J∑
j=1

||uε;L2(γεj )||2 ≥
1

ε

J∑
j=1

(
1
2 ||û

ε
0 ;L

2(γεj )||2 − ||û ε
⊥;L

2(γεj )||2
)

hence

|û ε
0 |2 ≤ 2|γ|

(
||uε;Hε||2 + 1

ε

J∑
j=1

||û ε
⊥;L

2(γεj )||2
)

≤ c(1 + | ln ε|2)||uε;Hε||2.

According to (3.47) and (2.12), the harmonics wj gets the decay rate

|wj(ξ, z)|+ (1 + |ξ|)|∇ξw
j(ξ, z)| ≤ cj(1 + |ξ|)−1. (7.24) V0

Hence, thanks to (7.23), the term |(∆Vε
N ,Wε)Ωε | in (7.22) satisfies

|(∆Vε
N ,Wε)Ωε | ≤ c||Wε;L2(Ωε)||

J∑
j=1

max
x∈υj

(
|∇xw

j(ξj , z)|+ |wj(ξj , z)|
)
≤ cε(1 + | ln ε|) (7.25) V7
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because |ξj | ≥ cjε
−1, cj > 0 for x ∈ υj = supp|∇χj |. Furthermore, wj solves problem (3.24), and

therefore

∂∇uVε
N − ε−1(µ1n + µ′(z))Vε

N =

J∑
k=1

ak(z)
(
∂νG̃

k(x)− ε−1(µ1n + zµ′(z))G̃ k(x)
)
, x ∈ γεj

where

G̃ j(x) = Gj(x) + χj(x)
1

2π
ln

1

rj
−

J∑
k=1

χk(x)Gjk, G̃ k ∈ C∞(Ω),

is the regular part of the generalized Green function, see (2.18) and (2.14). As a result, we have

|
(
∂νVε

N − ε−1(µ1n + zµ′(z))Vε
N ,Wε

)
γε | ≤ c

J∑
j=1

|γεj |−1/2||Wε;L2(γεj )|| ≤

≤ cε1/2ε1/2||Wε;Hε|| = cε. (7.26) V8

In view of (7.25) and (7.26) the discrepancy (7.22) does not exceed cε(1+| ln ε|) and Lemma 7.1 delivers
an eigenvalue τ εm(ε) of the operator T ε defined in (7.2), such that

|τ εm(ε) − tεN | ≤ cε2(1 + | ln ε|)

yields
|µ1n + zµ′(z)− ελεm(ε)| ≤ cNVε(1 + | ln ε|)(1 + µ1n + zµ′(z))(1 + ελεm(ε)). (7.27) V9

If ε ≤ εN and εN > 0 is fixed to fulfil

cNεN (1 + | ln εN |)(1 + µ1n + | ln εN |−1µ′(| ln εN |−1)) ≤ 1

2
, (7.28) ?V10?

we derive 1 + ελεm(ε) ≤ 2(1 + µ1n + zµ′(z)) from (7.27) and conclude the estimate (3.67) for λεm(ε).
The coincidence m(ε) = N follows from Theorem 6.4 on the convergence (6.27) of eigenvalues of the
Steklov–Neumann problem (1.1), (1.5), (1.6); see the end of this section.

Let s now confirm assertions of Theorems 3.4 and 3.3. First of all we consider a positive eigenvalue
µN of multiplicity X ≥ 1 in the sequence (3.46), i.e., similarly to (3.17) we have

0 ≤ µN−1 < µN = . . . = µN+X−1 < µN+X . (7.29) ?U1?

By Lemma 3.1, µN appears just X times in the spectra (3.33) of problems (3.25), (3.29), (3.30) (or
(3.31) in the differential form) with j = 1, . . . , J and we form the vectors w⃗(p) = (w1

(p), . . . , w
J
(p)),

p = N, . . . , N ∗X − 1, as follows:

µN = µj
mj =⇒ wj

(p) = wj
mj and wk

(p) = 0 for k 6= j.

The eigenfunctions wj
mj obey the normalization and orthogonality conditions (3.34) so that

(w⃗(p), w⃗(q))γ :=

J∑
j=1

(wj
(p), w

j
(q))γj = δp,q, p, q = N, . . . , N +X − 1. (7.30) ?U2?

In Lemma 7.1 we set

tεp = (ε−1 + ε−1µN )−1 = ε(1 + µN )−1, p = N, . . . , N +X − 1. (7.31) ?U3?

Uε
p = ||Vε

p ;Hε||−1Vε
p , Vε

p(x) = a0(p) +
J∑

j=1

(zaj(p)G
j(x) + χj(x)w

j
(p)(ξ

j)),
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where the scalar a0(p) and the column ⃗a(p) = (a0(p), . . . , a
0
(p)) ∈ RJ

⊥ are found from the system

a0(p) + (2π)−1aj(p) = −〈wj
(p)〉, j = 1, . . . , J. (7.32) U4

The discrepancies

δεp = ||Vε
p ;Hε||−1tεp sup |(∆Vε

p ,Wε)εΩ − (∂νVε
p − ε−1µNVε

p ,Wε)γε | (7.33) U5

with p = N, . . . , N + X − 1 and ||Wε;Hε|| = 1 are evaluated quite similar to the above calculation.
Indeed, the scalar product in L2(Ωε) from (7.33) satisfies (7.25) and, owing to (7.33) and (2.14), we
have

∂νVε
p(x)− ε−1µNVε

p(x) = gεjp(x) := (7.34) U6

= ε−1
(
∂ν(ξ)w

j
(p)(ξ

j)− µN (wj
(p)(ξ

j)− 〈wj
(p)(ξ

j)〉)
)
+

+ ε−1z
aj(p)

2π

(
∂ν(ξ) − µN

)
ln

1

|ξj |
− z(∂ν(x) − ε−1µp)

J∑
k=1

ak(p)(G
j(x)−

δjk
2π

ln
1

RJ
, x ∈ γj .

The first expression on the right-hand side of (7.34) vanishes due to the definition of wj
(p) and, therefore,

|gεjp(x)| ≤ cε−1z and

|(∂νVε
p − ε−1µNVε

p ,Wε)γε | ≤ c
J∑

j=1

||Wε;L2(γεj )|||γεj |1/2max
x∈γε

j

|gεjp(x)| ≤ (7.35) U7

≤ cε1/2||Wε;Hε||ε1/2ε−1z = cz = c| ln ε|−1.

From formula (7.39) below, it follows that ||Vε
p ;Hε|| ≥ c > 0 and, hence, (7.33) and (7.25), (7.35) give

us:
δεp ≤ cNε| ln ε|−1

while Lemma 7.1 delivers an eigenvalue τ εmp(ε) of T ε enjoying the inequality

|τ εmp(ε) − ε(1 + µN )−1| ≤ cNε| ln ε|−1. (7.36) U8

Similarly to (7.37), (7.24) we impose a proper restriction ε < εN and derive from (7.36) that

|λεmp(ε) − µN | ≤ 2cN | ln ε|−1(1 + µN )2. (7.37) U9

It suffices to prove that indexes of entries in the sequence (1.11) involved into (7.37) are nothing but

mN (ε) = N, . . . ,mN+X−1(ε) = N +X − 1. (7.38) ?U0?

First of all we prove that there exists at least X different eigenvalues λεM verifying the inequality (7.37),
maybe, with a bigger bound CNε| ln ε|−1. To this end, we compute the following scalar products (7.18)
of Vε

p and Vε
q .

Recalling that xj ∈ ωε
j and wj

(p) satisfies (2.12) yields

z2
∫
Ωε

|∇xG
j(x)|2 dx ≤ cz2

(
1 +

∫ R

ερ

(
1

r

)2

r dr

)
≤ cz with R, ρ > 0,

∣∣∣∣ ∫
Ωε

∇x(χj(x)w
j
(p)(ξ

j)) · ∇x(χj(x)w
j
(q)(ξ

j)) dx−
∫
Ξj

∇ξw
j
(p)(ξ

j) · ∇ξw
j
(q)(ξ

j) dξ

∣∣∣∣ ≤ cε.
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Furthermore, the relation (7.32) yields

|Vε
p(x)− (wj

(p)(ξ
j)− 〈wj

(p)(ξ
j)〉)| ≤ cz for x ∈ γεj .

As a result, we obtain the inequalities

|〈Vε
p ,Vε

q 〉ε − δp,q(1 + µN )| ≤ cz. (7.39) UUU

Notice that the subtrahend δp,q(1+µN ) is due to the normalization and orthogonality conditions (3.34)
and the integral identity (3.31). From (7.39) we derive that ||Vε

p ;Hε|| =
√
1 + µN +O(

√
z) and

|〈Uε
p ,Uε

q 〉ε − δp,q| ≤ cz, p, q = N, . . . , N +X − 1. (7.40) ?U11?

Now we denote by Sε
N , . . . , S

ε
N+X−1 the linear combination of the orthonormalized eigenvectors uεκ(ε), . . . , u

ε
κ(ε)+X(ε)−1 ∈

Hε of the operator T ε which correspond to eigenvalues in the segment [tε − δεα, tε + δεα] with tε = tεp,
δε = max{δεN , . . . , δεN+X−1} and α > 1. For the coefficient columns cεN , . . . , c

ε
N+X−1 of these combina-

tions, we repeat the calculation (7.16) to derive the estimates

|(cε(p))
⊤(cε(q) − δp,q| ≤ 4α−1 + cz, p, q = N, . . . , N +X − 1,

and to conclude the inequality X(ε) ≥ X for small z and α−1 because cεN , . . . , c
ε
N+X−1 ∈ RX(ε) are

“almost orthonormalized” vectors. Similar arguments apply to the eigenvalues λε1, . . . , λεJ obtained as
perturbation of the null Steklov eigenvalues µ11, . . . , µJ1 = 0 in exterior domains, indicated in (3.80) but
excluded from our previous consideration. However, we have to take into account correction terms of
order ε−1z, so that the factor z in all above derived estimates are replaced by z2.

the above listed inferences allow us to conclude with proofs of Theorems 3.4 and 3.3 with the help of
Theorem 6.4 when hypothesis (6.16) is confirmed. This is to be done by means of traditional arguments,
cf. the end of Section 7.1 with an obvious and slight modification.

7.4 The Dirichlet and Steklov conditions at the exterior boundary
?⟨subsec74⟩? For the Dirichlet–Steklov (1.1), (1.5), (1.8), the asymptotic procedure and the justfication approach are

quite the same as for the Neumann–Steklov problem (1.1), (1.5), (1.6) presented in Section 3.4–3.7 and
7.3. Howevere, a simplification occurs due to the Dirichlet condition on Γ, which assures the Friedrichs
inequality

||û ε;L2(Ω)|| ≤ cΩ||∇û ε;L2(Ω)|| (7.41) U12

which replaces the inequality (7.23) with the big factor 1+ | ln ε| in the case of the Neumann condition
on Γ.

A Poincaré inequality, similar to (7.23)

||û ε;L2(Ω)|| ≤ cΩ
(
||∇û ε, L2(Ω)||+ ||∇û ε;L2(Γ)||

)
≤ C||uε;Hε|| (7.42) U13

is valid in the case of the pure Steklov problem (1.1), (1.4), (1.5), because the norm ||uε;Hε|| generated
by the scalar product (7.1), contains the trace norm ||uε : L2(Ω)||. The inequality (7.23), as well as
(7.41) and (7.42), is used to estimate discrepancies left in the Laplace equation (1.1) by the approximate
eigenfunctions due to the multiplication. of the boundary layer terms wj with the cut-off functions χj .
Since wj(ξ) decays as O(|ξ|−1) at infinity, these discrepancies are of order ε and, therefore, the big
factor 1 + | ln ε| does not play any role in the error estimation for the “logarithmic” asymptotics, cf.
Theorem 3.4, 4.3 and 5.2. However, in the case of the powrer-law asymptotics the disappearance of
1 + | ln ε| from (7.42) makes the bound of the error estimate (5.28) for the Steklov problem less than
the bound of (3.67) for the Neumann–Steklov problem.
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One important point which distinguishes Theorem 5.2 from Theorem 3.3 and 4.3, is but the different
indexes pn(ε) and n of the eigenvalues in the error estimates (5.11), (5.12) has been discussed in Section
5.3. The very reason of this disparity, namely the accumulation of the spectrum of problem (1.1), (1.4),
(1.5), in the low-frequency range, is reflected in the justification scheme too: all the rescaled eigenvalues
ελεn converge to +0, so that an important step in the scheme displayed in the end of Section 7.1 and
7.3 cannot be performed in the middle-frequency range of the spectrum of the pure Steklov problem.
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