
14 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Resource Inference for Task Migration in Challenged Edge Networks with RITMO / Sacco, Alessio; Esposito, Flavio;
Marchetto, Guido. - ELETTRONICO. - (2020), pp. 1-7. (Intervento presentato al convegno 2020 IEEE 9th International
Conference on Cloud Networking (CloudNet) tenutosi a Virtual Event nel 9-11 November 2020)
[10.1109/CloudNet51028.2020.9335807].

Original

Resource Inference for Task Migration in Challenged Edge Networks with RITMO

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/CloudNet51028.2020.9335807

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2862063 since: 2021-07-26T11:06:06Z

IEEE

Resource Inference for Task Migration in
Challenged Edge Networks with RITMO

Alessio Sacco† Flavio Esposito? Guido Marchetto†
†Politecnico di Torino, Italy ?Saint Louis University, USA

Abstract—Edge computing, combined with the proliferation
of IoT devices, is generating new business model opportunities
and applications. Among those applications, Unmanned Aerial
Vehicles (UAVs) have been deployed in several scenarios, from
surveillance and monitoring to disaster response, to precision
agriculture. To support such applications, however, edge network
managers and application programmers need to overcome a
few challenges, e.g., unstable network conditions, high loss
rate, and node failures. Existing solutions designed to mitigate
such inefficiencies by predicting future network conditions
are often computationally intensive and hence less portable
on constrained devices. In this paper, we propose RITMO, a
distributed and adaptive task planning algorithm that aims at
solving these challenges while running on a network of UAV
devices. We model our system as a network of queues, and we
exploit a simple yet effective ARIMA regressor, to dynamically
predict the length of future UAV task queues. Such prediction
is then used to proactively migrate the tasks in case of a failure
or unbalanced loads. Our simulation results demonstrate how
RITMO helps to reduce the overall latency perceived by the
application and anticipates the node overloading by avoiding
agents that are likely to exhaust their computational resources.

Index Terms—task offloading, regression prediction

I. INTRODUCTION

Distributed applications running on Internet of Things (IoT)
devices that require to perform a mission independently are
opening many applications, sometimes improving lives, some-
times even saving them. Typical examples are Unmanned
Aerial Vehicles (UAV) networks, e.g., drones, equipped with
cameras, sensors, or civilian tablets and smartphones [1], [2].
Such systems have been employed, for instance, in disaster
response and environmental monitoring [3], [4], or to provide
connectivity to ground stations [5]. Autonomous and semi-
autonomous drones will continue to help humans accomplish
many tasks, spanning from industrial inspection to survey
operations, from rescue management systems to military or
first responder support. A network of drones can be used,
for example, to collect a massive quantity of data that needs
to be offloaded at the network edge for heavy audio/video
processing, where resources to execute Machine Learning
(ML) algorithms are readily available.

While drone-based and IoT-based applications continue to
grow exponentially, the challenge of keeping an acceptable
quality of service with strict delay constraints for these net-
work increases as well, especially in challenged scenarios [6]–
[8]. This problem depends on the quality of connectivity

among such devices and on the dynamic nature of the tasks
that the drones are required to accomplish.

To provide a persistent and adaptive service, centralized [9],
[10], and distributed [11], [12] solutions that allow an edge
network of IoT, drones, or robots in general, already exist.
These solutions share the use case of multiple IoT agents
accomplishing a mission, but address the problem in different
forms. Some of them focus on the resilient mission planning
problem [12], others on agents’ health-aware solutions [11],
others yet [10] on the problem of enabling agents to au-
tonomously tackle complex, large-scale missions, in the pres-
ence of actuator failures. However, none of them can anticipate
demand fluctuations by looking at the past and learn from
prior errors, such as orchestrating the task assignment through
a resource usage prediction.

In this paper, we propose RITMO (Resource Inference for
Task MigratiOn), an algorithm that proactively redistributes
job loads among multiple processes running within distributed
nodes. To efficiently share the load and minimize the task
completion time, each agent predicts the future queue length
and accordingly migrates jobs (i.e., drone tasks) to less loaded
agents. Our system uses a predictor that determines the agent’s
future load based on time-series forecasting. In particular, we
use the Autoregressive Integrated Moving Average (ARIMA)
algorithm [13]. Unlike other machine learning-based methods,
the features exploited by ARIMA are restricted to just one
value in time-series forecasting. We have experimented that
this property well fits constrained environments such as the
drone swarms offloading tasks to the edge cloud, since this
class of algorithms does not require a large amount of memory.
Such information can then be used to adapt the agent’s load
to a policy profile that can minimize the task completion
time and satisfy the strict time requirements of the task
offloading scenario. Our results show how RITMO provides
better performance with respect to the benchmark algorithms
even for a large number of nodes and when the high rate of
failures generates significantly changing conditions that are
challenging to manage.

The rest of the paper is structured as follows: Section II
presents the most related solutions to RITMO, Section III
introduces the RITMO’s model and formalizes the problem
described in the paper. The algorithm utilized to solve such a
problem is then described in Section IV, while Section V out-
lines the main components of our solution. Then, Section VI
shows the performance of RITMO and the advantages over978-1-7281-9486-8/20/$31.00 ©2020 IEEE

similar solutions. Finally, Section VII concludes our paper.

II. RELATED WORK

The problem of providing a persistent and adaptive service
resilient to failure is crucial for any IoT network in general,
and robotic or drone networks in particular; so it is not sur-
prising that there are several proposed solutions to tackle this
problem. A proper architecture for edge offloading is crucial
for critical applications, e.g., real-time video conferencing
with the incident commander to recognize faces of disaster
victims [14], or the detection of children in an attempt to
reunite them with their families [15], whereas virtual beacons
can be mainly used to track their location.

Recently, decentralized approaches have been proposed to
improve the adaptability and the persistence of distributed IoT
systems [9], [10], [16]–[19]. For example, [20] addresses the
problem of task allocation and scheduling for a heterogeneous
team of human operators and robotic agents. Unmanned agents
interact with the human operator that acts as the central-
ized component. Similar to [20], our solution can also be
used to distribute workload efficiently among agents, but our
predictive system exploits a time series prediction approach
to optimize the system load. Being agnostic to the agent
architecture, our solution can manage both centralized and
distributed management architectures. Inspired by [21], we
utilize a network queuing model to estimate tasks that will
temporarily or permanently disappear from the agent’s queue;
however, our load prediction model is different, as we model
the failure and the overloading of agents and the consequent
reassignment of its task with a regressor algorithm [13]. In [19]
the authors proposed the use of Jackson’s network model to
estimate the number of tasks in the system for a replanning
algorithm that proactively distributes tasks among the agents.
We share with this solution the idea of proactively migrating
tasks, but we differ in the model, the algorithm, and the
architecture presented.

A concurrent learning adaptive control architecture is pre-
sented in HAP [17], which establishes close feedback between
the high-level planning based on Markov Decision Processes
(MDP) and the vehicle-level adaptive control algorithm. This
feedback enables anticipating the failures and proactively re-
assessing vehicle capabilities after the failures, for an efficient
replanning schema that accounts for changing capabilities.
However, while HAP estimates vehicle capabilities using the
adaptive controller’s model of vehicle health, RITMO explic-
itly predicts future load on an agent to adapt the overall load
to the system’s situation.

III. MODEL

This section discusses the task migration problem amongst
the UAVs and formulates a mathematical model to solve this
problem. The system we envision is shown in Fig. 1.

A. System Model

Let A be the set of N nodes denoted as A =
{a1, a2, ..., aN}, where each node has to complete a set of

T5

T5

Fig. 1: System Overview: agents, e.g., UAVs, are modeled as queues contain-
ing tasks. Tasks are migrated from (currently or likely to be) overloaded or
failing nodes to available nodes.

tasks Ti. CPU, memory, and bandwidth available on the node
ai, are Xi, Yi, Zi respectively, where 1 ≤ i ≤ N . While,
xm,i, ym,i and zm,i represent the usage of CPU, memory,
bandwidth of task m on the node ai. Let us denote the amount
of tasks of the i-th node in the t-th time slot as qi(t), which
are independent and identically distributed in different time
slot within [0, qmax

i], qmax
i ∈ IR+. We consider that each

task m has a processing time of tproc(m) seconds. The total
time of execution for the task m that traversed P agents is
hence defined as:

Nm = tproc(m) +

P∑
k=1

tw(k,m) +

P−1∑
k=1

mk, (1)

where tw(k,m) denotes the waiting time for task m on the
node k and mk refers to the migration time when the task
leaves the node k. Due to the application requirements, each
task should be performed in up to R seconds.

B. Problem Formulation

In the light of the aforementioned characterization, we are
ready to expose the problem that RITMO aims to solve.
Formally, the optimization problem whose goal is minimizing
the completion time for all the tasks in the system can be
described as:

min
x

∑
m

Nm (2)

s.t. Nm ≤ R (3)
M∑

m=1

aixm,i≤ Xi ∀i = 1, . . . , N (4)

M∑
m=1

aiym,i ≤ Yi ∀i = 1, . . . , N (5)

M∑
m=1

aizm,i≤ Zi ∀i = 1, . . . , N (6)

xm,i, ym,i, zm,i ≥ 0 ∀i = 1, . . . , N,m = 1, . . . ,M
(7)

We can observe that Eq. 3 imposes the completion time
of any task to be below the maximum possible time R.
The subsequent constraints limit the usage of resources to
be at most the maximum available resources. Given these
conditions, the agent i must take offloading decisions to

minimize the total completion time, and the problem can be
summarized as follows.

Problem III.1. For each period r, the node ai has to choose if
performing locally the tasks currently enqueued or migrating
them to another available node. In the case of migration, the
source node has to select the destination according to some
pre-configured policies.

IV. THE RITMO ALGORITHM

Based on the previous problem and concepts, we design an
algorithm to establish the migration decision. Such a decision
has to determine when the migration starts and where the task
should migrate.

A. Predicting the agent’s load

Our migration mechanism is based on traditional regression
algorithms whose aim is to predict the future values using the
history and the evolution of such value in the past. The history
used is composed of past values associated with the timestamp,
and the presence of such a tuple < timestamp, value > leads
to the name time series. Among the possible methods in this
class of regressor, we select ARIMA [13] for its ability to
account for trend and noise in collections of data. Hence, the
task of load prediction, i.e., queue’s length prediction, can be
formulated as a regression problem, where a real value number
(future load) is predicted on the basis of many single input
features (past load values).

Each epoch t, the monitoring agent collects information on
the queue length. The frequency in the collection of these
metrics largely depends on the time to process a task. For this
reason, in the experiments, we set t to be half of the processing
time to collect fresh data but not overload the node with the
assignment of metrics collection. Data acquired are inserted in
chronological order and comprise the historical dataset used
to build the model and perform the prediction.

The prediction occurs every r seconds. We set this time
interval different to t to decouple the two actions. In the
experiments, we set r to be the processing time. However,
this value can be relaxed in order to predict and migrate tasks
less frequently. At each prediction time, the one-step-ahead
forecasting is computed using ARIMA’s model trained on the
data collected over time. If such a predicted length exceeds a
defined threshold z or the node runs out of available resources,
the migration process begins.

B. Selecting the next node

The destination node of the task migration mechanism can
be chosen according to different policies, herein described,
where each migration policy represents a different profile. The
profile refers to the desirable load on each node, considering
the available CPU, memory, and bandwidth resources of the
node. Hence, prior to the selection of the destination node, the
system computes the time the hosting node would keep the job
queued before execution. It is also possible to assign priority
to avoid large queues that can hinder fast execution. In this
regard, load balancing is one particular case that can happen

when jobs are equally assigned among all the available nodes.
The migration decision is thus performance-agnostic and only
considers the current and estimated node load. Although more
policies can be included in our solution, e.g., by creating and
requesting via our provided APIs, in this paper we limit the
focus on a small yet representative set of migration policies.
The destination node can be chosen according to the following
criteria:

(i) Load Balancing: the easiest schema where tasks are
equally distributed among all nodes. In this case, the migration
manager selects as destination the node with less enqueued
tasks, and in case of more idle nodes, the destination is
uniformly selected within this subset.

(ii) Harmonic: it is a well-known randomized algorithm
often employed to solve the k-server problem [22]. This class
of problem denotes the problem of efficiently move k servers
over nodes of a graph G according to a set of requests, where
a request is a sequence of k-points. It aims at minimizing the
total distance covered by the servers to reach the requested
points. Our strategy differs from the k-server problem but the
policy still uses a version of the Harmonic algorithm to select
the destination. The probability of selecting the node j as
destination is given by:

pj =
qj(t+ 1)−1∑
i qi(t+ 1)−1

, (8)

where qj(t + 1) is the predicted queue’s length of node j at
time t+ 1.

(iii) Cost Minimization: during the execution, a profile
of the available nodes is shaped, which takes into account
the computation resources. Assuming the cost of migrating
depends on the average service time, the destination is chosen
according to the cost of migrating: a node with a lower
average service time has a higher probability to be selected.
We denote the cost of migrating task m from node i to
node j as cmig(i, j,m). The cost is computed as the sum
of: (i) transmission time of task m migrating from i to j,
ttra(i, j,m), (ii) waiting time on the node j, tw(j,m), (iii)
processing time for task m, tproc(m). Formally:

cmig(i, j,m) = ttra(i, j,m) + tw(j,m) + tproc(m). (9)

The processing time depends on the task to be executed, but
for simplicity in the following we consider a fixed quantity
and we often refer to it as tproc. The waiting time on the
destination node tw(j,m) is estimated by using our regressor
algorithm. Hence, with this policy, the prediction is not only
used for establishing when to migrate, but also for estimating
the waiting time on the possible destination nodes.

(iv) Closest Node: the migrating task is assigned to the
closest agent to the source node.

(v) Random: task is migrated to a randomly selected node.
Despite being extremely easy, this strategy may result in good
performance due to the small overhead introduced by the
process of destination selection.

C. Overall Procedure
The algorithm’s scope is to minimize the completion time

of any task by proactively migrating tasks between nodes to
speed-up the computation. The migration is intended to release
resources of overloaded agents and exploiting spare resources
of other available nodes. Two main questions underpins such
a strategy: (i) when and (ii) where. (i) The first aspect is about
when to perform the migration. We start a migration either
when the predicted queue length outstrips a threshold or when
the available resources on the node are insufficient to perform
the task. In these circumstances, the tasks in the queue are
migrated to another node of the system, whose capacity can
fulfill the demand. (ii) When a task is migrated from a known
source, the destination must be selected in order to satisfy the
system requirements. However, since the decision about the
destination node often privileges a key metric at the price of
other quantities, the options described in Section IV-B can be
chosen by the user according to the business logic. It can be,
for example, that the key metric is the speed in deciding, the
average usage of resources, or the average task completion
time. This multitude of options originates diverse policies for
the controller logic that we implemented in the system.

Algorithm 1 Prediction-based migration decision on any node

1: Let t be the epoch, and r the prediction period
2: Let z be the queue size threshold
3: for every epoch t do
4: Monitor the queue and node state
5: if notAvailableResources then
6: dst← get dst(node, t)
7: migrate remaining tasks in the queue to dst

8: if r has elapsed since last prediction then
9: qt+1 ← future predicted queue size on the node

10: if qt+1 > z then
11: dst← get dst(node, t)
12: migrate remaining tasks in the queue to dst
13: close;

Algorithm 1 summarizes our procedure. Every epoch t, the
module running on each node obtains the statistics and saves
them for the next prediction. Such a prediction occurs every
period r and estimates the queue size at time t+1. Once the re-
gressor computes qt+1, it compares this value to the threshold
z, set as a quantity that notifies when many tasks are enqueued.
If qt+1 exceeds z, tasks that are present in the queue at time t
are moved to another node, as previously explained. The func-
tion get dst(node, t) returns the destination node according to
the selected policy, for example, one of the profiles described
in Section IV-B. Moreover, the migration can be triggered by
the absence of available CPU or memory resources on board of
the node i. In this case, the notAvailableResources function
returns true, initiating a new migration.

V. RITMO ARCHITECTURE

We designed an architecture whose aim is to enable policy-
based destination decisions, based on the peculiarities of the

ML Estimator

Network
Monitoring

Load Estimator

Saved models
Controller Logic

Operating System

Historical
Values

IoT Application

Service APIs

Message Parser

RITMO Management Layer

Threshold-

based

Migration

Customizable

Controller

Fig. 2: System Architecture: the management layer sits between the IoT
application and the operating system with the aim of monitoring network
connectivity, estimating the load and migrating tasks with (re-)planning based
customizable controller logic.

use case. For this reason, the system consists of multiple
modules that can be replaced on-demand and in a short time. In
the following, we summarize our network components of the
system, e.g., the APIs, and the agent mission services offered.

Fig. 2 depicts our management architecture, which enables
the monitoring of network connectivity and the replan of the
mission, via estimation of the load on nodes and customizable
controller logic. In fact, our proposed management layer is
located between the Operating System (at the bottom), e.g.,
Robotic Operating System (ROS) [23], and the IoT application
(at the top). The IoT application running on top can take
advantage of the provided API to customize the logic of such
controllers, adapting to diverse business logics, as well as to
adapt the mission planning logic to a centralized or distributed
fashion. An example of these applications is the set-up of
disaster response running live audio/video analytic.

Service APIs allow the customization of two of the main
components: (i) the controller logic to fit multiple challenged
scenarios, (ii) the logic of the mission planning algorithm, ei-
ther in a centralized or distributed fashion. By interacting with
this module, the same program can tailor different contexts,
adapting to different requirements and network conditions.
Another relevant component is represented by the Historical
Values, committed to the maintenance of the past network
states and of the partially replicated database. These values are
then used for the prediction of future states, which leverages
historical dynamic states i.e., states that depend on the net-
work, configuration, and connectivity condition. Responsible
for filling this database is Network Monitoring, that runs a
watchdog process to monitor the connection states. To the
rescue of understanding the messages received as heartbeat
comes the Message Parser module. Our object model is
defined through Google Protocol Buffers [24], which delimit,
serialize, and deserialize the messages.

Controller Logic constitutes the adaptive component that
can module the mission replanning rate of the network of
IoT devices, e.g., drones. As explained in our algorithm (see
Section IV-C), we employ a Threshold-based Migration, that
impose a migration every time that the predicted number of
tasks on the agent exceeds the value of a threshold z. Although
our system provides a default replanning logic, it is modular

0 5 10 15 20
Lag

0.0

0.5

1.0
A

ut
oc

or
re

la
tio

n

(a)

0 5 10 15 20
Lag

0.0

0.5

1.0

Pa
rt

ia
lA

ut
oc

or
re

la
tio

n

(b)

LS Holt Arima Sarima
Algorithm

0.00

0.20

0.40

0.60

0.80

1.00

A
bs

ol
ut

e
re

la
tiv

e
er

ro
r

(c)
Fig. 3: Regressor analysis. (a) Autocorellation function (ACF) and (b) Partial autocorellation function (PACF) of measured data, used for tuning the predictor’s
parameters p and q (c) Error box for different time series algorithms, where ARIMA provides the higher accuracy.

0 10 50 90
Node Failure, %

0

200

400

600

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
s

Ritmo
Apron
Hap

(a)

10 50 100 150
Number of drones, N

0

50

100
Ta

sk
C

om
pl

et
io

n
Ti

m
e,

s

Ritmo
Apron
Hap

(b)

1 2 3 5 10
Node’s Average Distance, m

0

200

400

600

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
s

Ritmo
Apron
Hap

(c)

Fig. 4: System performance evaluation. (a) Comparison of different solutions in terms of time to complete tasks at varying percentage of node failures. (b)
Completion time of different algorithms for an increasing number of nodes. (c) Effect of the average distance between nodes on the task completion time.

and pluggable, and the architecture can be extended with other
user-defined controllers.

The prediction of future tasks into the network occurs
on the basis of the ML estimator, consisting of two sub-
modules. Load Estimator represents the main feature of the
solution, as it predicts the future load exploiting the current
and historical values. Such a prediction attempts to estimate
the relationships between the features, i.e., system state, and
a dependent variable, system load. This prediction leverages
Saved models that are already trained so that the training time
can be not considered.

VI. EVALUATION RESULTS

A. Experimental Setup
To evaluate the performance of the proposed mission plan-

ning, we developed a C++ event-driven simulator, where
a networked fleet of drones tries to accomplish a mission,
represented by a set of geo-locations to reach. For example,
in disaster response, each drone has indeed to explore an area
with a camera and microphone looking for signals indicating
survivors. The migration of drone’s tasks is triggered when the
queue length exceeds a threshold, by using our network model,
and the destination node selection follows a load balancing
profile. In this context, all drones cooperate for the completion
of assigned tasks in the shortest possible time. If not otherwise
specified, during our experimental campaign, we use as default
values a fleet of 50 drones, whose average distance is 1 m
and the percentage of failure is 0%; the destination node is
selected according to the Load Balancing schema. Reported
results are obtained after 35 trials and the graph’s bars refer
to a confidence interval of 90%.

B. Prediction Analysis & Accuracy

The choice of the ARIMA’s parameters requires an initial
study of the prediction performance on a validation set. In
particular, the ARIMA algorithm consists of three parameters:
(i) p captures the number of lag observations included in the
model and is then denoted as auto-regressive component; (ii)
d captures the integrated part of the model, i.e., the number of
times that the raw observations are differenced, also denoted as
the degree of differencing; (iii) q captures the moving average
part of the model and refers to the extent of the moving
average window, also called the order of moving average. To
choose the optimal parameters, the Autocorrelation Function
(ACF) and Partial Autocorrelation Function (PACF) plots were
used to determine the parameters (Fig. 3a): ACF is used to
determine q while PACF for p. ACF is a common method to
establish how well the present value of the series is related
to its past values. On the other hand, PACF measures the
correlation between the time series with a lagged, i.e., past,
version of itself, but after eliminating the already found. The
selection of optimal p and q values occurs as follows: p is the
x-value at which the function of the PACF graph crosses the
upper confidence interval for the first time [25]. Similarly, q
is the x-value where the function of the ACF chart crosses
the upper confidence interval for the first time. Results in
Fig. 3 refer to our collected dataset made of more than 40, 000
historical samples, then split into training (80%), validation
(10%), and test (10%) set, and the error is computed on
the test only. From Fig. 3a and Fig. 3b, it is possible to
identify that p = q = 1. We further investigate empirically the
optimal value of d using the cross-validation, and we found

that d = 1 provides the best performance. We then evaluate
the accuracy of the selected time-series method to compare it
against other time-series algorithms. A good predictor should
at least outperform a very trivial algorithm in which the next
value is the exact replica of the Last Sample (LS). Although
this is not considered as a statistical algorithm given the
simplicity of the method, it is a recommended baseline to
establish the quality of the regressor method. The other time-
series alternatives are: (i) Holt-Winters (Holt), a basic model
that captures three submodels (also known as influences) to fit
a time series, i.e., an average value, a slope (or trend) over time
and a cyclical repeating pattern (seasonality); (ii) SARIMA,
which follows the same definition of the analogous ARIMA
but includes seasonal components of the time series to deal
with seasonal effects. In Fig. 3c we display the error of the
prediction of the mentioned algorithms. The results show that
the ARIMA outperforms the other solutions, as the considered
metric does not exhibit seasonality and ARIMA can hence fit
this context.

C. RITMO Performance

Furthermore, we compare our solution against two other
solutions: HAP [17] and APRON [19]. The former anticipates
failures at the planning level by establishing close feedback
between the high-level planning based on a Markov Decision
Process (MDP) and the execution level. The latter approach
exploits a Jackson’s network model to control operations of
a network of IoT devices while the network states evolve.
Although APRON offers several policies to select the des-
tination, in the following, we set the closest node as the
destination, since it has been shown that this setting provides
better results [19].

Fig. 4a shows the time to complete tasks for the three
algorithms at varying the percentage of failures. We can
observe how RITMO provides the shortest completion time
compared to analogous solutions, given RITMO’s ability to
handle a large number of failures by pro-actively and re-
actively reassign the uncompleted tasks. Moreover, we com-
pare the completion time for an increasing number of nodes in
the system in Fig. 4b. RITMO can exploit all the available re-
sources of agents without overloading them, diminishing tasks’
completion time. In the graph, it can be seen how RITMO
outperforms the other solutions. Besides, the advantage of our
architecture with a more profitable migration comes higher
when the number of nodes increases. In such a case, APRON is
not always capable of exploiting the more available resources
given by more drones in the system. Moreover, in Fig. 4c we
analyze how the average distance among two nodes affects
the system. As expected, when the distance increases, the task
completion time increases as well. However, our results show
how RITMO provides better performance even when the agent
locations may become challenging to manage, indicating the
efficiency of our proposed system.

VII. CONCLUSION

This paper presented RITMO, a management architecture
whose attempt is to increase the resilience in task replan-
ning and migration problems in the presence of challenged
edge networks. RITMO exploits a network queue model and
predicts the number of future tasks in the agent’s queue.
This information is thus used (by the application or the
administrator) to determine the IoT device’s future utilization
and estimate the execution time of coming tasks that need to
be executed or offloaded to the edge cloud. In the use case of
a network of IoT nodes, e.g., UAVs, our results showed how
RITMO is an effective mechanism for policy programmability
of the mission replanning problem for any IoT device deployed
in challenged networked environments.

VIII. ACKNOWLEDGEMENT

This work has been partially supported by NSF awards
CNS-1647084, CNS-1836906 and CNS-1908574.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358,
Fourthquarter 2017.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, Feb 2018.

[3] A. Ventrella, F. Esposito, and A. Grieco, “Load profiling and migration
for effective cyber foraging in disaster scenarios with formica,” in IEEE
4th Conf. on Network Softwarization (NetSoft 2018)., Montreal, Canada,
June 2018.

[4] W. Muhammad, F. Esposito, S. C. Rajashekar, and S. Gururajan, “Vocal
intent programmability for uas in disaster scenarios,” in AIAA Scitech
2020 Forum, 2020, p. 0736.

[5] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based internet of things services: Comprehensive survey and
future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp.
899–922, 2016.

[6] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture
for adaptive task planning in support of iot-based machine learning
applications for disaster scenarios,” Computer Communications, vol.
160, pp. 769 – 778, 2020.

[7] J. Franz, T. Nagasuri, A. Wartman, A. Ventrella, and F. Esposito,
“Reunifying families after a disaster via serverless computing and
raspberry pis (demo),” in IEEE International Symposium on Local and
Metropolitan Area Networks, Washington, DC, June 2018.

[8] A. Sacco, F. Esposito, and G. Marchetto, “A federated learning approach
to routing in challenged sdn-enabled edge networks,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2020, pp. 150–
154.

[9] J.-S. Marier, C. A. Rabbath, and N. Léchevin, “Health-Aware Coverage
Control With Application to a Team of Small UAVs,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 5, pp. 1719 – 1730,
September 2013.

[10] N. Kemal Ure et al., “Decentralized learning-based planning for mul-
tiagent missions in the presence of actuator failures,” in International
Conference on Unmanned Aircraft Systems (ICUAS), 2013.

[11] N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, and J. Vian, “Health
aware planning under uncertainty for uav missions with heterogeneous
teams,” in European Control Conference (ECC), 2013.

[12] Choi, Han-Lim et al, “Consensus-based decentralized auctions for
robust task allocation,” IEEE Trans. on Robotics, Aug 2009.

[13] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis:
forecasting and control. John Wiley & Sons, 2011, vol. 734.

[14] H. Trinh et al., “Energy-aware mobile edge computing for low-latency
visual data processing,” in 2017 IEEE 5th International Conference on
Future Internet of Things and Cloud (FiCloud). IEEE, 2017, pp. 128–
133.

[15] S. Chung, C. Mario Christoudias, T. Darrell, S. I. Ziniel, and L. A.
Kalish, “A novel image-based tool to reunite children with their families
after disasters,” Academic emergency medicine, vol. 19, no. 11, pp.
1227–1234, 2012.

[16] S. S. Ponda, H.-L. Choi, and J. P. How, “Predictive planning for
heterogeneous human-robot teams,” in InfoTech, 2010.

[17] N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, and J. Vian, “Health
aware planning under uncertainty for uav missions with heterogeneous
teams,” in 2013 European Control Conference (ECC). IEEE, 2013, pp.
3312–3319.

[18] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[19] A. V. Ventrella et al., “Apron: an architecture for adaptive task planning
of internet of things in challenged edge networks,” in 2019 IEEE 8th
International Conference on Cloud Networking (CloudNet). IEEE,
2019, pp. 1–6.

[20] C. J. Shannon, L. B. Johnson, K. F. Jackson, and J. P. How, “Adaptive
mission planning for coupled human-robot teams,” in American Control
Conference (ACC), 2016. IEEE, 2016, pp. 6164–6169.

[21] A. Duminuco et al., “Proactive replication in distributed storage systems
using machine availability estimation,” in CoNEXT, 2007.

[22] Y. Bartal and E. Grove, “The harmonic k-server algorithm is competi-
tive,” Journal of the ACM (JACM), vol. 47, no. 1, pp. 1–15, 2000.

[23] Robotic Operating System. http://www.ros.org/.
[24] Google Protocol Buffers. http://code.google.com/apis/protocolbuffers.
[25] J. H. F. Flores, P. M. Engel, and R. C. Pinto, “Autocorrelation and

partial autocorrelation functions to improve neural networks models
on univariate time series forecasting,” in The 2012 International Joint
Conference on Neural Networks (IJCNN), June 2012, pp. 1–8.

