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Abstract 

In structural engineering beams with non-constant cross-section or beams with variable cross-section represent a 
class of slender bodies, aim of practitioners’ interest due to the possibility of optimizing their geometry with respect 
to specific needs. Despite the advantages that engineers can obtain from their applications, non-trivial difficulties 
occurring in the non-prismatic beam modeling often lead to inaccurate predictions that vanish the gain of the 
optimization process. As a consequence, an effective non-prismatic beam modeling still represents a branch of the 
structural engineering of interest for the community, especially for advanced design applications in large spans 
elements. 

A straight beam of length l with variable inertia J(z) is provided in figure, subject to a generic live load condition 
q(z). The vertical displacement y(z) can be obtained from the solution of the differential equation of the elastic line, 
i.e., taking into consideration the inertia variability and neglecting, as first approximation, any shear contribution. 
Even if this solution is an approximate one, it is able to deal with the problem in its basic formulation. 

In this paper a solution for the problem stated is formulated using a series expansion of solutions, in a general load 
and cross section variability condition. Solution is thus obtained for a generic rectangular cross section beam with a 
variable height. Analytical solution is presented and evaluated using numerical evaluation of some cases of practical 
interest. 
 
Keywords: Structural Design, Structural Optimization, Parametric Design, Architectural Design 
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1. Introduction 

In structural engineering beams with non-constant cross-section or beams of variable cross-section are represents a 
class of slender bodies, object of practitioners’< interest due to the possibility of optimizing their geometry with respect 
to specific needs. Beams with variable cross-section are widely adopted in many engineering fields, such as large span 
structures (bridges)[1], protective structures [2] or mechanical components [3]. Interests in such type of structures 
recently emerged in other disciplines, such as energy harvesting [4]. Evidences of variable cross-section largely emerge 
in damaged structures [5],[6],[7]. The modeling of such elements is nontrivial since the variable properties of the cross-
section do not allow for straightforward solutions, event for simple geometries, loads and boundary conditions [8],[9]. 
Therefore, numerical tools need to be considered for solving such problems. Recently, a novel theory based on a simple 
definition of kinematics, equilibrium and constitutive equations was proposed for non-prismatic beams by Balduzzi et 
al. [10]. They showed that in Timoshenko beams the stress distribution of stresses due to the geometry play a relevant 
role in the response of the element. In addition, axial and shear-bending problems are strictly coupled. The solution of 
their model requires advanced numerical techniques, as reported in [1]. Other approaches can be found in the literature 
to solve the variable cross-section beams. Attarnejad et al. adopted displacement functions coupled with structural 
matrices [11], Beltempo et al. derived the displacements though the Hellinger-Reissner functional theory [12], 
Shooshtari and Khajavi proposed a procedure based on shape functions and stiffness matrices [13]. 

Despite the real advantages that practitioners can have from the use of beams with variable cross-section (for 
example, tapered beams), the nontrivial procedures and difficulties emerging in the solution vanish the gain of the 
optimization process [14]. In this conference paper we propose a simple solution scheme for an Euler-Bernoulli beam 
with variable cross section. Despite simple, the model offers interesting possibilities for future optimization 
procedures. 

The paper is organized as follows: Section 2 details the basic theoretical aspects, Section 3 proposes the solution 
scheme based on power series. Section 4 illustrates the problem of applying boundary conditions to the solution and 
Section 5 proposes an example. 

2. Elastic line for beams with variable cross-section inertia 

The elastic line formula for the transversal displacement of beams is a well-known mathematical expression that 
originates from Euler-Bernoulli beam theory [15]. Consider a straight beam with variable cross-section inertia (Fig.1). 
The length of the beam is denoted as ℓ and 𝑧 direction coincides with beam axis. Beam cross-section inertia is denoted 
as 𝐽(𝑧) . The beam is loaded with a variable load, denoted as 𝑞(𝑧) . The displacement 𝑣  of the beam along the 
transversal 𝑦-axis is related to the other variables as: 
 

𝑑*

𝑑𝑧*
𝐸𝐽 𝑧

𝑑*𝑣
𝑑𝑧*

= 𝑞 𝑧 , 

 
where 𝐸 is the Young’s modulus of elasticity. Considering that the function representing the inertia belongs, at least, 
to 𝐶* differentiability class, the previous expression can be rewritten as: 
 

𝑑*𝐽
𝑑𝑧*

𝑑*𝑣
𝑑𝑧*

+ 2
𝑑𝐽
𝑑𝑧
𝑑1𝑣
𝑑𝑧1

+ 𝐽
𝑑2𝑣
𝑑𝑧2

=
𝑞 𝑧
𝐸
. 
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Fig. 1. Example of a beam with variable height, thus, variable stiffness. The distributed load is not constant along the length of the beam. For sake 
of simplicity, the beam has fixed supports at both ends. 

3. Power series solution 

The partial differential equation describing the transversal displacement at each position z along beam axis can be 
solved using various mathematical techniques. As described in the introduction, the solution of the equation can be 
performed through numerical integration. 

To overcome such problem, we propose a solution based on power series. The idea at the base of the method is that 
the lateral displacement can be expressed as 
 

𝑣 = 𝑎5𝑧5
6

578

, 

 
where 𝑎9, with 𝑖 = 1. . ∞, is a set of constant terms to be determined on the bases of the boundary conditions. The 
length ℓ of the beam is finite, thus a normalization of the position in the range [0;1] can be done. The power series 
expansion of the lateral displacement, thus, becomes 
 

𝑣 = 𝑎5

6

578

𝑧
ℓ

5
. 

 
Similarly, the variable inertia and the applied loads are expressed as 
 

𝐽 = 𝑗5

6

578

𝑧
ℓ

5
 

 
and 
 

𝑞 = 𝑞5

6

578

𝑧
ℓ

5
. 

 
In case of constant load, 𝑞8 is the only nonnull term of the series. The solution scheme consists in deriving the previous 
terms and inserting them in a unique expression with the same summation index. Details on how to deal with power 
series solutions of differential equations are provided in [16]. 

`

q(z)

z

y
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The elastic line differential equation can be rewritten as 
 

𝒩(5?@A*)
II ℐ(@?*)II + 2𝒩(5?@AD)

III ℐ(@?D)I + 𝒩(5?@)
IV

5A*

@78

𝑎(5?@A2)𝑗@ −
𝑞5ℓ2

𝐸

6

578

𝑧
ℓ

5
= 0 

 
where  
 

𝒩H
II = (𝑡 + 1)(𝑡 + 2) 

𝒩H
III = (𝑡 + 1)(𝑡 + 2)(𝑡 + 3) 

𝒩H
IV = (𝑡 + 1)(𝑡 + 2)(𝑡 + 3)(𝑡 + 4) 

 
and 

ℐLI = 𝑡 + 1  
ℐLII = 𝑡 + 1 (𝑡 + 2) 

 
From the previous equation, a general expression for the coefficient 𝑎(5A2) can be found: 
 

𝑎 5A2 =
1

𝒩5
IV𝑗8

𝑞5ℓ2

𝐸
− 𝒩(5?@A*)

II ℐ(@?*)II + 2𝒩(5?@AD)
III ℐ(@?D)I + 𝒩(5?@)

IV
5A*

@7D

		𝑎(5?@A2)𝑗@ . 

 
The previous equation represents the general expression for computing the coefficients of the power series of the 
lateral displacement of a straight beam with variable cross-section inertia and variable distributed load. 
 
The coefficient 𝑎 5A2  can be evaluated starting from the previously computed terms and from the known values of 𝑗@ 
and 𝑞5. The values 𝑎8, 𝑎D, 𝑎* and 𝑎1 have to be determined from the boundary conditions. 
 

4. Boundary conditions and coefficients 𝒂𝟎, 𝒂𝟏, 𝒂𝟐 and 𝒂𝟑 

The boundary conditions allow to determine the values 𝑎8, 𝑎D, 𝑎* and 𝑎1. For a fourth-order differential equation, 
4 boundary conditions have to be determined. In power series solutions adopted in physics, the initial conditions, i.e. 
at 𝑧 = 0, are provided. This allows to directly evaluate the unknown four coefficients. In structural mechanics, the 
boundary conditions (b.c.) are usually provided for both ends of the beams. The conditions are directly related to the 
supports of the beams. For example, the fixed end at 𝑧 = 0	can be described through two b.c.: 
 

𝑣 0 = 0									𝜑 0 =
𝑑𝑣
𝑑𝑧 T78

= 0. 

 
A simply supported end at 𝑧 = ℓ can be mathematically described as 
 

𝑣 ℓ = 0									ℵ ℓ = −
𝑑*𝑣
𝑑𝑧* T7ℓ

= 0. 

 
Focusing the attention on beams with fixed-fixed boundary conditions, it clearly results that 𝑎8 = 0 and 𝑎D = 0. The 
terms 𝑎* and 𝑎1 must be determined from the solution of the following system of equations 
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𝑎* + 𝑎1 + 𝑎5
6

572
= 0

2𝑎* + 3𝑎1 + 𝑛𝑎5
6

572
= 0

 

 
where 𝑎2, 𝑎W, … are computed through the expression previously mentioned. To solve this problem an optimization 
scheme is proposed in which dimensionless kinematic quantities expressing the displacement and the rotations are 
minimized. 

5. Example 

As an example of the approach herein presented, a straight doubly fixed beam is proposed, as sketched in Fig. 2. 
The beam has variable cross-section depth defined as a function of beam length 

 

 

Fig.2. Example of a beam with variable depth and loading. 

 
 

ℎ
ℓ
= 0.1 − 0.1

𝑧
ℓ
+ 0.08

𝑧
ℓ

*
, 

 
and a variable distributed load defined as 
 

𝑞
𝐸ℓ*

= −1 + 4
𝑧
ℓ

×10?\. 

 
Dimensionless quantities are adopted following Buckingham’s 𝛱-theorem. The length of the beam and material 
Young’s modulus are chosen as repeating terms. Considering a dimensionless beam width 𝑏/ℓ = 0.5 , the 
dimensionless inertia is 
 

𝐽
ℓ2
≈ 0.0026 − 0.0078

𝑧
ℓ
+ 0.0141

𝑧
ℓ

*
− 0.0151

𝑧
ℓ

1
+ 0.0113

𝑧
ℓ

2
− 0.0050

𝑧
ℓ

W
+ 0.0013

𝑧
ℓ

d
. 
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In order to determine the coefficients 𝑎8, 𝑎D, 𝑎*  and 𝑎1 , the optimization procedure previously described was 
implemented on Matlab considering a maximum summation index equal to 2000. An unconstrained nonlinear 
minimization scheme was adopted to solve the optimization problem. The following parameter vector results 
 

𝑎8			𝑎D		𝑎*		𝑎1 = 0			0			0.004006			0.001676 . 
 

The stem plot of Fig. 3 reports the values of the coefficients 𝑎5 for 𝑛 = 0. .500. Double colors are adopted for 
marking positive and negative coefficients. Since the y-axis of the plot is in logarithmic scale, the values of the 
coefficients decreases with increasing coefficient index, 𝑛. As an example, the coefficient 𝑎*888, referring to the 
maximum computed index, is equal to 3.39 x 10-99. Fig. 4 shows the displacement of the beam under variable 
distributed load. It is observed that the boundary conditions are satisfied since the displacement and the curvature at 
𝑧	 = 	0 and 𝑧	 = ℓ are null. The forces diagrams, i.e., bending moment and shear force, are reported in Fig. 5. 
 

 

Fig. 3. Stem plot of the coefficients 𝑎5 for 𝑛	 = 	0	. . . 500. Negative values are marked in red and logarithmic y-axis is adopted. 
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Fig. 4. Plot of the vertical displacements of the beam under the variable distributed load. The maximum displacement 𝑣/ℓ = 6.59 × 10-4 occurs at 
𝑧/ℓ = 0.5675. 

 

Fig. 5. Plot of the bending moment and shear force diagrams. The plotted forces are dimensionless. 

6. Conclusions 

Structures with variable cross-section elements are common in civil and mechanical engineering. The solution of 
such elements, i.e., the evaluation of the end reactions, the displacement and the internal forces, is usually obtained 
through numerical integration schemes or FEM modeling. We proposed a novel solution scheme based on power 
series solution for estimating the end reactions and the displacement of such type of beams. The method integrates the 
fourth-order ordinary elastic line differential equation considering the effects of variable inertia. The idea at the base 
of the method is that the lateral displacement can be expressed as a summation of terms. Substituting the terms into 
the original differential equations, a recurrence formula that allows to compute the coefficients of the power series 
can be found. An optimization algorithm is proposed for estimating the initial terms, which depend on the boundary 
conditions. 

The proposed example, despite simple, clearly shows the capabilities of the method, with reference to the possible 
implementations for studying the behavior of structures with known variable inertia [17], components subjected to 



8 Author name / Procedia Manufacturing  00 (2019) 000–000 

corrosion with variable resisting area [18], or for the optimization of the structural behavior by varying cross-section 
depth. 
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