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Abstract—Medical data exchange between diverse e-health
entities can lead to a better healthcare quality, improving the
response time in emergency conditions, and a more accurate
control of critical medical events (e.g., national health threats
or epidemics). However, exchanging large amount of information
between different e-health entities is challenging in terms of secu-
rity, privacy, and network loads, especially for large-scale health-
care systems. Indeed, recent solutions suffer from poor scalability,
computational cost, and slow response. Thus, this paper proposes
Medical-Edge-Blockchain (MEdge-Chain), a holistic framework
that exploits the integration of edge computing and blockchain
based technologies to process large amounts of medical data.
Specifically, the proposed framework describes a healthcare
system that aims to aggregate diverse health entities in a unique
national healthcare system by enabling swift, secure exchange
and storage of medical data. Moreover, we design an automated
patients monitoring scheme, at the edge, which enables the remote
monitoring and efficient discovery of critical medical events.
Then, we integrate this scheme with a blockchain architecture
to optimize medical data exchanging between diverse entities.
Furthermore, we develop a blockchain-based optimization model
that aims to optimize the latency and computational cost of
medical data exchange between different health entities, hence
providing effective and secure healthcare services. Finally, we
show the effectiveness of our system in adapting to different
critical events, while highlighting the benefits of the proposed
intelligent health system.

Index Terms—Blockchain, edge computing, Internet of Medical
Things (IoMT), priority assignment, remote health monitoring.

I. INTRODUCTION

Advances in e-health and Internet of Medical Things (IoMT)
technologies can play an integral, crucial, and evolving role
in providing swift responses to outbreaks and health crises.
The intensive and easy deployment of IoMT devices enable
intelligent health systems to acquire massive amounts of data
that require efficient processing and transferring [1]. In light
of the recent pandemic, the development of smart and secure
health system with efficient medical data exchange capabilities
across diverse entities becomes a worldwide interest. A pivotal
contribution towards the development of intelligent health
system can be achieved by automating most of the healthcare
functions to provide efficient healthcare services. Emerging
technologies, such as Artificial Intelligence (AI), Edge Com-
puting, and Blockchain, can turn this vision into reality. Such

technologies can transform the traditional health system into
an intelligent health system that enables effective collection,
processing, and exchange of medical data. Indeed, intelligent
health system can support diverse functions, including event
detection and characterization, real-time remote monitoring,
and speeding up clinical trials of new treatments.

In the era of smart health, all health-related services should
be executed in an efficient and distributed way. Thus, this
paper proposes a secure intelligent health system that enables
efficient medical data exchange and real-time remote moni-
toring of the patients’ status outside health entities. Such a
system is of extreme importance, especially during pandemics,
since it allows for minimizing the patients’ visits to the health
entities, and hence it minimizes the loads on these entities
and the risks of physical contact with the patients. However,
remote accessibility of medical data by different entities comes
with processing, communications, and security challenges [2],
[3]. Typically, traditional healthcare systems implement weak
security measures which could jeopardize the security of the
overall system. For instance, from 2016 to 2017, the number
of reported health-related attacks increased by 89% as reported
in [4]. Also, several reports have shown that hospitals are
facing a surge of cyberattacks during the recent COVID-
19 pandemic [5]. These attacks can shut down services and
impede healthcare [6].

In this paper, we propose Medical-Edge-Blockchain
(MEdge-Chain), a framework that integrates edge computing
and blockchain technologies to process the exchange of med-
ical data, and thus address the design of an efficient, secure,
and decentralized health system to fulfil the aforementioned
challenges. We envision that bringing the intelligence close
to the users/patients, using edge computing, along with ex-
changing the important data over a blockchain network is
a key for optimizing medical data delivery. On one hand,
blockchain is a decentralized ledger of transactions that are
shared among multiple entities while preserving the integrity
and consistency of the data through smart contracts [7], [8].
Hence, it effectively supports data processing and storage at
different entities as well as their interconnections. Blockchain
also provides traceability and audibility of transactions from
multiple organizations, for instance, this can play a crucial role



in tracking the supply chain of certain drugs/vaccine during
clinical trials. On the other hand, being decentralized allows
for the potential application of edge computing, which enables
a swift and portable detection of adverse events at the edge,
and providing an immediate response from healthcare entities
even when hospitals are overcrowded. We therefore aim at
paving the way to design an efficient intelligent health system
that addresses the above aspects through:

1) Designing a secure and decentralized health system that
relies on blockchain and edge computing technologies to
provide intelligent and optimized medical data exchange
between diverse entities, e.g., hospitals, health insurance
companies, etc.

2) Developing an automated patients monitoring scheme at
the edge. The proposed scheme allows for an accurate
detection of the changes in the patients’ records, hence
ensures a fast notification about the patient’s state,
at the edge-level, while allowing for exchanging only
important information with the different participating
entities in the intelligent health system.

3) Integrating the proposed edge scheme in a multi-channel
blockchain architecture with a flexible, optimized con-
figuration model, which allows for: (i) assigning differ-
ent priorities for the acquired transactions based on their
urgency level and importance; (ii) optimizing blockchain
channels configuration to adapt to diverse types of
applications/data with different characteristics.

4) Demonstrating the effectiveness of the proposed system
in improving the performance of healthcare systems
using a real-world dataset.

The rest of the paper is organized as follows: Section
II presents the related work. Then, we introduce the main
challenges that will be tackled in this paper, and the proposed
system architecture and framework in Section III. After that,
Section IV presents our patients monitoring scheme, while
Section V introduces our blockchain optimization model with
the priority assignment task. Performance evaluation of our
system is then discussed in Section VI. Finally, the paper is
concluded in Section VII.

II. RELATED WORK

This section discusses the related work which we have
divided into two folds, medical data exchange solutions, and
data exchange solutions addressing the security and scalability
issues leveraging blockchain within healthcare systems.

A. Medical data exchange

Medical data exchange has attracted major attention with
several works focusing on monitoring new virus outbreaks,
such as the COVID-19 pandemic [9] and west Africa Ebola
epidemic [10]. It is crucial to acquire medical information
scattered across distributed healthcare entities to support in-
depth data analysis and maintain personalized healthcare.
However, large-scale data collection and processing while
considering security and public trust is challenging [11]. The
Cyberattacks on healthcare entities and privacy leakage threats

put serious obstacles on exchanging private medical data.
Moreover, relying on a centralized entity or web resources [7]
for storing the data will not be adequate in case of epidemics.

Traditionally, public health systems deploy personnel in
areas where the epidemic is centered to collect relevant infor-
mation. This usually results in physically contacting infected
individuals [12]. Then, data processing and analysis are per-
formed in a central entity using the received periodic informa-
tion from the infested areas. For instance, during the severe
acute respiratory syndrome (SARS) outbreak in Toronto, an
important step to perform seamless outbreak management was
building an outbreak management database platform. This
platform enables the exchange of public health information,
gathering clinical information from hospitals, and integrating
them into an interoperable database [13]. With the help of
IoT and recent technologies, medical data exchange during
epidemics can be run more smoothly. Thanks to the advances
of edge computing and blockchain technologies, designing a
secure, collaborative health model to implement the integration
of multiple national and international entities is now more
realizable than ever before.

B. Blockchain for medical data exchange

The power of security in blockchain comes from the col-
lective resources of the crowd since most of the entities have
to verify each block of data using a consensus algorithm, e.g.
DPoS [14], [15]. Thus, the correctness of the acquired data
can be guaranteed as long as the majority of the entities are
honest. Also, any cyberattack has to beat the resources of the
whole crowd collectively to be able to hack the integrity of
the data, which makes attacks on the blockchain impractical
[7], [16]. Blockchain can also serve as data centers since the
functions of data storage and data search can be implemented
in the blockchain using the indexed encrypted data, i.e., stored
in the blockchain [17].

Recently, blockchain has been widely used as an appro-
priate infrastructure for healthcare data sharing due to its
transparency, tamper-evidence, decentralization, and powerful
security features [18], [19]. Different types of blockchain
have been envisioned for the healthcare sector, including per-
missioned and permissionless blockchains [20]. Permission-
less blockchains offer decentralized and secure data sharing,
however, when advanced control and privacy are required,
private or permissioned models turn out to be more efficient.
Several blockchain frameworks (e.g., Ethereum and Hyper
ledger Fabric), smart contracts1, and consensus algorithms
have been investigated in the literature [21]–[23].

The blockchain architectures that have been proposed so far
in the literature can be broadly classified into two categories:
patient-based and entity-based. In patient-based architectures,
patients participate in the blockchain [24], [25]; in entity-
based architectures, instead, health organizations, hospitals,

1A smart contract is a software that contains all instructions and rules agreed
upon by all the entities to be applied on the blockchain: all the transactions
need to be consistent with the smart contract before being added to the
blockchain.



research institutes, and alike are the main actors, while patients
only interact with the health organizations to acquire the
service they need [26]. For instance, [14] exploits blockchain
to link patients, hospitals, health bureaus, and diverse health-
care communities for enabling comprehensive medical records
sharing and review. [27] presents a user-centric medical data
exchange solution, where a mobile application is used to
gather the data from wearable devices, then sharing the data
with healthcare providers and insurance companies using
permissioned blockchain. [28] introduces a blockchain-based
system that enables data provenance, auditing, and control over
shared medical data between different entities. This system
utilizes smart contracts and an access control scheme to detect
malicious activities on the shared data and deny access to
offending entities. [29] proposes to use two blockchains
to store electronic medical records (EMRs) and personal
healthcare data (PHD) separately. Indeed, [29] aims to address
the challenges of system throughput and fairness, due to the
significant difference between storing and exchanging the PHD
and EMRs, by leveraging two blockchains. However, most of
the aforementioned approaches suffer from poor scalability,
computational cost, and slow response. We therefore envision
a solution that combines the blockchain-enabled architecture
with intelligent processing at the edge so as to support secure
exchange and processing of medical data. A preliminary
version of our study has been presented in [30], where only
a single-channel blockchain architecture is considered without
edge functionality and priority assignment.

III. CHALLENGES, ARCHITECTURE, AND FRAMEWORK

In this section, we first highlight the key challenges of med-
ical data processing/exchange, then we present our MEdge-
Chain architecture and framework to address these challenges.

A. Challenges for efficient medical data exchange

For providing efficient healthcare services, piles of informa-
tion from diverse locations (e.g., hospitals, clinics, etc) should
be collected, processed, and analyzed. However, acquiring and
exchanging such amount of information between different e-
health entities at different geographical locations is challeng-
ing. Thus, the following issues have to be adequately addressed
using the proposed MEdge-Chain architecture.

Limited resources: Given the increasing load on the hospi-
tals, especially during the spread of infectious diseases (such
as the recent COVID-19 outbreak), it is always recommended
to move the patients with mild conditions into home care.
However, remote monitoring of a large number of patients
from different locations puts a significant load on wireless
network. For instance, high-quality Electroencephalography
(EEG) monitoring application can generate sample rate 250
sample/sec for each patient. Hence, for monitoring only the
EEG signals of 30 patients, we need to transfer a data size
of length 10.5 Gbps per day (assuming that each sample is
represented in 2 bytes).

Secure connectivity: Medical data exchange across mul-
tiple organizations imposes major challenges on the system

design in terms of network load and security. Indeed, the
dramatic increase in the number of cyberattacks, directed to
healthcare entities, has set a severe pressure on the healthcare
system to securely collect, process, and share private medical
data from different locations [6]. Thus, innovative methods
for secure data access, processing, and analysis are needed to
handle the enormous amounts of data from different locations.

Monitoring large number of patients: One major aspect
for remote monitoring or home care is the precise monitoring
of large number of patients at the same time. Healthcare
systems must support efficient monitoring for the patients’
state, in a timely manner, inside and outside the hospitals.

B. MEdge-Chain architecture

To address the above challenges, we propose the following
MEdge-Chain system architecture, which is comprised of
diverse e-health entities whose fundamental role is to monitor,
promote, and maintain people’s health. The proposed MEdge-
Chain architecture, shown in Figure 1, is divided to two main
networks: (a) a Local network, and (b) a blockchain network.
For the sake of scalability, we consider that the intended
e-health entities gather health-related data from the local
network, process these data, and share important information
through the blockchain network. The shared data are validated
and stored locally by the various entities in the blockchain,
which are trusted entities with large storage and computational
capabilities [31].

The local network stretches from the data sources located
on or around patients to the Local Healthcare Service Provider
(LHSP), like e.g., a hospital. It contains the following major
components:
a.1) Internet of Medical Things (IoMT): A combination of
Internet of Things (IoT) devices attached/near to the patients
to be leveraged for monitoring health conditions and activities
within the smart assisted environment. Examples include: body
area sensor networks (i.e., implantable or wearable sensors that
measure different biosignals and vital signs), smartphones, IP
cameras, and external medical and non-medical devices.
a.2) Local Healthcare Service Provider (LHSP): An LHSP is
a medical facility which monitors and provides the required
healthcare services for the local patients, records the patients’
state, and provides prompt emergency services if needed. Most
importantly, the LHSP plays a significant role in monitoring
the patients’ state not only inside the medical facility (intra-
medical-facility patient care), but also outside such facilities,
as e.g. home patient care related services. Also, it can be
connected with the private clinics that may transfer patients
to it for more advanced care, or even with the patient’s close
circle to follow up on the patient’s conditions.

As far as the blockchain network is concerned (see Fig-
ure 1), the core is the multi-channel blockchain-based data
sharing architecture that enables secure access, processing,
and sharing of medical data among diverse e-health entities.
Blockchain is indeed particularly suitable for secure medical
data exchange because of its immutability and decentralization
features, which are perfectly consistent with our proposed



Fig. 1. The proposed MEdge-Chain system architecture.

MEdge-Chain architecture. Using blockchain, all transaction
blocks (i.e., containing health-related information) can be
securely shared, accessed, and stored by physicians, decision
makers, and other healthcare entities. The latter include, but
are not limited to:
b.1) External Edge (EE): In the proposed architecture, a
hospital or a LHSP have more advanced tasks than the ones
mentioned above: it can act also as an EE that is respon-
sible for data storage, applying sophisticated data analysis
techniques, and sharing important health-related information
with public health entities. Hence, leveraging the power of
edge computing, each entity can verify the authenticity and
integrity of the medical data at the EE before sharing it within
the blockchain.
b.2) Ministry of Public Health (MOPH): The main role
of MOPH is monitoring the quality and effectiveness of
healthcare services through coordination with different health
entities. MOPH waives the responsibility of healthcare ser-
vices to the hands of public and private health sectors while
regulating, monitoring, and evaluating their healthcare services
to guarantee an acceptable quality of care.
b.3) Other entities: Different entities can be also part of our
MEdge-Chain system, such as National Institutes of Health
(NIH), insurance companies, and pharmacies. For instance,
NIH are major players in clinical research and health educa-
tion.

C. The proposed MEdge-Chain framework

The ultimate goal of our MEdge-Chain system is to fulfill
diverse challenges of medical data exchange mentioned above
through implementing the following main functionality at the
edge and blockchain (see Figure 2): (i) data collection, feature
extraction, and patients’ state monitoring, in order to ensure

Entity 1
SmartHome

Patient

Private Clinic

BM

Entity N

Patient

Urgent

Normal

Non-urgent

Channel 2

Channel 1

Channel 3

· Data collection.

· Feature extraction.

· Patients' state monitoring.

· Priority assignment. 

· Blockchain channel allocation.

· Blockchain configuration optimization.

Fig. 2. Diagram representing the proposed MEdge-Chain framework,
highlighting the different tasks performed by the edge and BM, as well as the
corresponding data flow.

high-reliability and fast response time in detection of critical
medical events; (ii) secure data accessibility anytime and
anywhere to different entities.

We envision that integrating edge computing with
blockchain in our MEdge-Chain framework provides a poten-
tial solution to all of the aforementioned challenges. Indeed,
leveraging edge computing allows for defining when and what
data to share through the MEdge-Chain system. This is
essential for ensuring that the most important and up-to-date
information is available for investigation. In this context, we
propose an automated patients’ state monitoring scheme at the
edge, which enables:

1) collecting the data of different patients (inside or outside
the hospital);

2) identifying specific features from the acquired data that



TABLE I
LIST OF SYMBOLS USED THROUGHOUT THE PAPER.

Symbol Meaning Symbol Meaning
y(k) Discretized EEG Signal S Average Sojourn Time (Different Priorities)
N Number of Samples n Number of Transactions per Block
M Mean χ and t Maximum and Minimum of n
σ2 Variance L, lm Block Variation Latency, Normalized Latency Metric
R Root Mean Square η, ηm Security Metric, Normalized Security Metric
ν‘ Kurtosis C, cm Cost Metric, Normalized Cost Metric

ymin Minimum of y α, β, γ Weighting Parameters
ymax Maximum of y m Number of Selected Validators
δ Statistical Indicator m∗, n∗ Optimal m,n
δ̄ Mean of δ M and v Maximum and Minimum of m
C Number of Channels U Utility Function
P Number of Patients ρ Validator Payment
K change indicator vector B Transaction Size
ω Status of Patient q Indicator factor representing the network scale
Se Average Sojourn Time (Equal Priorities) K Computational Resources
λ Arrival Rate O Verification Feedback Size
µ Service Rate rd and ru Downlink and Uplink Transmission Rates
Sg Sojourn Time (Different Priorities) ψ Statistical parameter belonging to the block verification process

are informative and pertinent to the patients’ state;
3) detecting major changes in the patients’ state leveraging

the identified features.

After processing the acquired information at the edge, we
define the critical events that should be shared with other en-
tities through permissioned blockchain. A general blockchain
architecture mainly consists of: data sender, Blockchain Man-
ager (BM), and validators. First, the data senders upload their
data, in a form of “transactions”, to the nearby BM. Then,
the BM acts as a validators’ manager: it distributes unverified
blocks to the validators for verification, triggers the consensus
process among the validators, and inserts the verified block in
the blockchain [14]. Hence, the BM acts as the leader, while
the validators are the followers that cooperate to complete the
block verification task.

In our framework, we consider a multi-channel blockchain,
where each channel corresponds to a separate chain of trans-
actions that can be used for enabling data access and private
communications among the channel users. Leveraging such
architecture allows for treating different health-related events
effectively. In particular, we consider three channels in our
blockchain, channel 1 for urgent data (such as emergency
notifications), channel 2 for non-urgent data but requiring a
high security level (such as confidential legal messages), and
channel 3 for normal data. The aim of proposing a multi-
channel blockchain architecture, in our work, is motivated by
the fact that when there is a minimal trust amongst participat-
ing entities (or when the transactions generated are not urgent)
spending more time to verify and secure the transactions would
be highly desirable. On the other hand, when the participating
entities share high level of trust or when the nature of the
transactions generated is urgent, enforcing high security will
slow down the transaction throughput unnecessarily. This is
particularly evident for the case of healthcare applications,
where supporting swift response, in case of emergency, is

a major goal for emergency care. Hence, urgent data (i.e.,
require minimum latency) should be given the highest priority
and will deal with a less-restricted Blockchain, i.e., with
minimum number of validators.

Accordingly, we propose three new tasks at the BM:
1) priority assignment, which aims to assign different pri-

ority levels for the received transactions from diverse
entities based on their urgency level and arriving time;

2) blockchain channel allocation, which allocates the re-
ceived transactions to the appropriate channel based on
their urgency and security levels;

3) blockchain configuration optimization, where different
blockchain configuration parameters are optimized based
on diverse application requirements and data types.

We remark that the BM has a logical role that any entity in
the proposed architecture can take on, possibly by taking turns,
or that can be taken by the leading organization that wants to
share its data [32].

In what follows, we present how the above functionality
can be implemented at the edge and BM. Table I presents the
main symbols used in the following sections.

IV. IMPLEMENTING THE EDGE FUNCTIONS

This section presents the first stage in our framework, which
focuses on the edge functionality that aims at: (i) detecting the
critical events at the edge level, and (ii) obtaining when and
what data to share through the MEdge-Chain system, lever-
aging diverse blockchain channels. In particular, we consider
as a case study how to increase the security and efficiency
of clinical trials2 for experimental medications and vaccines.
Indeed, during epidemics, it is crucial to test new/different
medications and vaccines on large number of patients with

2Clinical trials or clinical studies test potential medications/vaccines in
larger number of volunteers/people with the disease to investigate whether
they should be approved for wider use in the general population [33].



different circumstances and from different locations. Hence,
if our MEdge-Chain system can adequately monitor this large
number of patients, from different locations, before, during,
and after taking a medication, it can speed up the testing
process, which may help save more lives during epidemics.
Moreover, it allows for conserving hospitals’ facilities to
absorb critical cases by enabling remote monitoring outside
the hospitals. Thus, we propose an efficient, low-complexity
and automated patients monitoring scheme at the edge.

Our scheme was designed leveraging real-world biologi-
cal data that has been collected from patients undergoing
routine planned treatment. The acquired data includes 14-
channel EEG signals and routine observational data, such
as temperature, blood pressure, and so on. Monitoring EEG
signals provides an additional source of information to help
in detecting changes of the patients’ state, and to monitor the
dosage of hypnotic drugs. The choice of considering EEG data
in our work is motivated by the fact that EEG data is the main
source of information depicting brain activities and disorders,
which makes it the essential data for diagnosis of several
brain disorders (such as Alzheimer’s disease, Parkinson’s,
Epilepsy, and other seizure disorders) and brain-computer
interface (BCI) applications.

Our data has been collected from 30 patients taking a
specific medication during three different sessions. The three
sessions represent the data of a patient before, during, and
after taking the medication. More description about the data
collection is presented in Section VI. However, without loss
of generality, the proposed scheme and methodology can be
easily applied to different types of data. The proposed scheme
comprises the following main steps.

A. Feature extraction

The first step in our edge scheme is identifying the main
statistical features that are informative, representative, and
pertinent to our data changes detection. As shown by the
signal behavior in Figure 3, it is difficult for the doctors to
differentiate and detect the changes. However, after analyzing
these signals, we found that they exhibit different mean,
variance, and amplitude variations. Moreover, it is crucial to
consider as relevant features the Root Mean Square (RMS),
i.e., a good signal strength estimator, and kurtosis, i.e., a
measure of the tailedness of the probability distribution. We
therefore select the following four features, in addition to the
minimum yminij and maximum ymaxij values of the acquired
data:
Mean

Mij =
1

N

N∑
k=1

yij(k), (1)

Variance

σ2
ij =

1

N

N∑
k=1

|yij(k)−Mij |2, (2)
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Fig. 3. An example of the acquired EEG signals, from one channel, in time
domain: before, during, and after given the medication to a patient.

Root mean square

Rij =

√√√√ 1

N

N∑
k=1

|yij(k)|2, (3)

Kurtosis

νij =
1
N

∑N
k=1 (yij(k)−Mij)

4(
1
N

∑N
k=1(yij(k)−Mij)2

)2 , (4)

where yij(k) is the values of input EEG signal for channel i
and patient j, and N is the number of samples. Accordingly,
for a given patient j, the above features will be calculated,
for each EEG channel i, to represent the patient’s state over a
time window of N samples.

B. Changes detection and sharing

The second step in our edge scheme is detecting the major
changes in the patient’s state. Hence, based on the detected
changes, the edge node (i.e., a hospital) can optimize what to
share on the blochchain, as follows:
• in case of detecting major changes (i.e., of an emergency),

it will share through blockchain an emergency notifica-
tion, along with the raw data that may require further
investigation;

• in case of detecting minor/no changes, it will share only
the obtained features;

• in case of detecting major changes in one or two channels
only, it means that the measurements may be inaccurate
due to some errors in the experiment. Thus, it is recom-
mended to notify the responsible physician to repeat the
measurements.

We exploit the extracted features to perform an initial
detection to the major changes in the acquired data at the
edge. The advantages of our scheme is two-fold. First, by
detecting the changes in the acquired data, at the edge, we can



significantly decrease the amount of information to be shared
on the blockchain. Second, in case of emergency, a quick alert
and notification can be initiated based on our scheme, hence
facilitating effective analysis without wasting the physician’s
time.

The fundamental question now is: How can we obtain a
simple yet accurate classification rule using the generated
features to reveal the major changes in the acquired data? First,
we define a statistical indicator δij , for an EEG channel i and
patient j, that integrates generated features as follows:

δij =Mij + σ2
ij +Rij + νij + yminij + ymaxij . (5)

Using (5), we define a change indicator vector Kj =
[κ1j · · ·κCj ] for a patient j, where κij is defined as

κij =

[∣∣δbij − δdij∣∣
δ̄

+

∣∣δdij − δaij∣∣
δ̄

]
× 100, (6)

where

δ̄ =

∑P
j=1

∑C
i=1 δ

b
ij + δdij + δaij

3CP
. (7)

In (6), δ̄ is the statistical mean of δ, acquired during offline
training, for all channels i ∈ {1, · · · , C} over all patients j ∈
{1, · · · , P}.

Second, we define a classification rule using the obtained Kj
to detect the major changes/errors of the acquired EEG data,
where Kj will represent the condition part of the rule, while
the status of the patient ωj will represent its consequent part.
Accordingly, we obtain through our experiments the following
classification rule

ωj =


Major, if ||[Kj − ζ]+||0 > 2

Minor, if ||[Kj − ζ]+||0 = 0

Repeat, if 0 < ||[Kj − ζ]+||0 ≤ 2,

(8)

where [a]+ = max(0,a) provides a vector of either positive
or 0 elements in a vector a, ||.||0 is the zeroth norm operator,
and ζ is a threshold that assesses the major changes in the
EEG signal (e.g., we consider ζ = 30%).

We remark that this scheme will be exploited to obtain the
status of the patient at the edge, hence optimizing what to share
through blockchain. Moreover, it provides a quick detection
for the major changes in the patient’s state, while keeping the
complexity low, hence it is amenable for implementation at
any mobile edge.

V. BLOCKCHAIN OPTIMIZATION: PRIORITY ASSIGNMENT
AND SOLUTION

The second stage in our framework is developing an op-
timized blockchain configuration model that enables sharing
of different health-related events and information among di-
verse healthcare entities. We envision that for designing an
efficient health system, the acquired data from various entities
should be treated in different ways, based on their urgency
and security levels. For example, urgent data (i.e., require
minimum latency) should be given highest priority and dealt
with a less-restricted blockchain, i.e., with minimum number

of validators. On the contrary, for low priority types of data
but requiring a high security level, fully-restricted blockchain
should be used (see Figure 4). In case of normal data, i.e., that
has requirements on both latency and security, an optimized
blockchain configuration is used. We remark that data types
and emergency levels are defined at the edge by applying
different data classification, event detection, and summariza-
tion techniques, as shown in Section III-C. In general, the
more validators participate in the block verification stage, the
higher the security level is, but also the larger the latency
(due to the verification delay) and the higher the cost (due
to verification fees) that are experienced [34], [35]. Instead,
as the number of transactions per block grows, the latency
increases, while the cost per transaction decreases [35], [36].
Accordingly, the proposed blockchain optimization addresses
the aforementioned challenges by designing an event-driven
secure data exchange scheme, as detailed below.

The proposed scheme draws on the BM concept [34], which
acts as a validators’ manager, that is responsible for:

1) gathering the transactions from different entities,
2) assigning different priorities to the gathered transactions

based on their urgency level,
3) updating the blockchain configuration considering ur-

gency and security level of the gathered transactions,
4) preparing and distributing unverified blocks to the se-

lected validators (e.g., hospitals, NIH, and MOPH,
which have sufficient computation and storage re-
sources),

5) interacting with the validators to complete block verifi-
cation tasks.

Thus, the BM is a critical component in our scheme, which
dynamically updates the blockchain configuration’s param-
eters, based on the diverse applications’ requirements and
data types, such that the optimal trade-off among security,
latency, and cost is obtained. Also, we remark that, in line with
the traditional consensus scheme, the validators take turns in
working as BM for a given time period [34].

A. Priority assignment

Before optimizing the blockchain configuration’s parame-
ters, we highlight the role of priority assignment task at the
BM. This task aims to minimize the sojourn time of the
received transactions from different entities based on their
urgency level. Herein, the sojourn time refers to the total
amount of time a transaction is expected to wait before being
added to the blockchain. This sojourn time will be controlled
by identifying different urgency levels, namely urgent, normal
and non-urgent. Then, we adopt the use of queuing models
to calculate the sojourn time based on the urgency levels of
different received transactions. In particular, we define the
sojourn time based on the preemptive-resume priority concept
[37], i.e., the transactions with a higher priority interrupts the
processing of transactions with lower priorities.

It is assumed that N entities (e.g., hospitals) are sending
their transactions to the BM, each with an arrival rate λi,
for i ∈ {1, · · · , N}. All received transactions from different
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entities are temporarily stored in the BM’s buffers. In this
paper, buffer overflows are negligible since it is assumed that∑N
i=1 λi < µ, where µ is the service rate at the BM. By

adopting the well-established M/M/1 queuing model [38] (and
the references therein) for the received transactions with equal
priorities, the average sojourn time of entity i is defined as

Sei =
1

µ−
∑N
i=1 λi

. (9)

However, to handle the received transactions efficiently, the
BM assigns different priorities for them based on their urgency
levels and corresponding entity weight3. Hence, transactions
with high urgency and coming from high impact entities will
be assigned the highest priority. To derive the average sojourn
time for transactions with different priorities, we start from
the general expression of the sojourn time which we denote
by Sgi , that can be calculated by applying [37, Sec. 9.2]

Sgi =

∑i
n=1 λiRi

(1− (λ1

µ + . . .+ λi

µ ))(1− (λ1

µ + . . .+ λi−1

µ ))

+
Bi

1− (λ1

µ + . . .+ λi−1

µ )
, (10)

where Ri and Bi are the mean service and mean residual ser-
vice times of the ith entity, respectively. The adopted M/M/1
queuing model implies that we have exponential service times
with mean Bi = 1/µ and Ri = 1/µ [37]. Hence, substituting
the aforementioned results in (10) yields the following average

3Entity weight can represent the degree of influence that an entity has on
the national health system

sojourn time expression

Si =

1
µ

∑i
n=1 λi

(1− (λ1

µ + . . .+ λi

µ ))(1− (λ1

µ + . . .+ λi−1

µ ))

+

1
µ

1− (λ1

µ + . . .+ λi−1

µ )
. (11)

To assess the benefits of the proposed urgency priority
assignment compared to conventional techniques that utilize
equal priority assignment, we present Figure 5. This figure
depicts the average sojourn time versus the entity index. In
this figure, we simulate the arrival rate of 21 different entities,
where each entity is assigned a different priority based on
the urgency level of its data. In particular, it is assumed that
entities 1 through 8 have urgent data, entities 9 through 12
have normal data, and entities 13 through 21 have non-urgent
data. Moreover, the packet arrival rate per entity is assumed
to be constant and is equal to 2 transactions/s. The obtained
results show that unlike the equal priority assignment, which
obtains the same sojourn time for all entities, the proposed
urgency priority assignment yields a significant reduction in
sojourn time, especially for entities with an “urgent” status. We
also observe that for the transactions belonging to low priority
entities, the sojourn time is increased, when compared to that
of the equal priority, which makes sense since it is tagged with
low urgency (non-urgent). The figure also shows the effect of
varying the average service rate on the obtained sojourn time.
It is clear that the sojourn time increases when the service
rate decreases, however, using our urgency priority assignment
allows for decreasing the sojourn time of most of the entities
(only three entities will have higher sojourn times than that of
the equal priority assignment).

We remark that service rate µ = n/L, where n is the
number of transaction per block, and L is the block verification
latency inside the blockchain. Thus, optimizing blockchain
configuration will have direct impact on the obtained sojourn
time, as will be shown later.

B. Optimal blockchain configuration
Given the received transactions with different priorities,

the BM aims at mapping these transactions into different
configurations of the blockchain. The proposed blockchain
optimization model considers permissioned blockchain with
Delegated Proof-of Stake (DPoS) consensus algorithm4, which
performs the consensus process using pre-selected validators
[34]. Our model focuses on three main metrics at the BM,
namely, latency (L), security (η), and cost (C). However, these
metrics have different values and units, which must be first
normalized with respect to their maximum values (denoted by
lm, ηm, and cm, respectively) to make them comparable. Then,
to deal with such conflicting metrics, we define an aggregate
utility U , which combines them into a single function:

U = α · L
lm

+ β · ηm
η

+ γ · C
cm

, (12)

4Consensus algorithm is a process of ensuring the integrity and consistency
of the blockchain across all participating entities [14].
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Fig. 5. The obtained average sojourn time for different entities using equal
priority and urgency priority assignments, while varying service rate µ.

where α, β, and γ are weighting parameters representing
the relative importance of the considered metrics, such that
α+ β + γ = 1. Also, m is the number of selected validators,
with maximum and minimum values equal to M and v,
respectively, and n is the number of transactions per block,
with maximum and minimum values equal to χ and t, respec-
tively. Accordingly, the BM can obtain the best blockchain
configuration, by solving the following optimization problem:

P: min
m,n

(U) (13)

s.t. ci ≥ ρi · xi, ∀i ∈ {1, · · · ,m} (14)
v ≤ m ≤M, (15)
t ≤ n ≤ χ. (16)

In (13), the cost function is defined as C =
∑m

i=1 ci
n , where ci

is the computational cost of validator i to finish the verification
task, while the security level is defined as η = θ ·mq , where
θ is a coefficient given by the system, and q ≥ 2 is an
indicator factor representing the network scale. L refers to
the latency of the block verification process, which includes:
(i) unverified block transmission from the BM to validators,
(ii) block verification time, (iii) verification result broadcast-
ing and comparison between validators, and (iv) verification
feedback transmission from the validators to BM [34]. Hence,
the latency is defined as

L =
n ·B
rd

+ max
i∈{v,··· ,M}

(
K

xi

)
+ ψ(n ·B)m+

O

ru
, (17)

where B is the transaction size, K is the required computa-
tional resources for block verification task, xi is the available
computational resources at validator i, O is the verification
feedback size, rd and ru are, respectively, the downlink and
uplink transmission rates from the BM to the validators and
vice versa. In (17), ψ is a predefined parameter that can
be obtained using the statistics belonging to the previous

processes of block verification (as detailed in [34]). Finally, in
our architecture, it is assumed that the validators are offloading
their computational load of the verification process to the
cloud/fog providers (CFPs). Hence, validator i should buy
the required computing resources xi from a CFP in order to
access these resources from the remote cloud or the nearby
fog computing unit [39]. Thus, for validator i to participate in
the verification process, it should receive a cost ci that at least
covers its payment to the CFP. This condition is represented in
constraint (14), where ρi represents the payment from validator
i to the CFP, in order to acquire the needed resources for the
verification process.

According to the acquired data types and application’s re-
quirements, the weighting coefficients α, β, and γ are defined.
Hence, the optimal number of validators m∗ and transactions
per block n∗ can be obtained by solving the proposed opti-
mization problem. However, the above optimization problem
is an integer programming optimization, which is an NP-
complete problem [40]. In light of the problem complexity, we
propose below a light-weight iterative approach for obtaining
an efficient solution of the formulated problem.

In order to efficiently solve the formulated problem in (13),
we look at the problem as a block size optimization, as a
function of n, and a block verification optimization, as a func-
tion of m. The block verification variable can be considered
as a global variable that is relevant to the overall blockchain
process, while the block size variable is a local variable at the
block preparation phase. We therefore decompose the problem
into the block size and block verification sub-problems, such
that each of them is a function of one decision variable only
and, hence, can be solved independently of the other. Then,
an efficient-iterative algorithm is proposed for obtaining the
optimal solution of (13) by leveraging the proposed problem
decomposition.

Starting by the block size problem, a closed-form expression
for the solution can be obtained by imposing that the derivative
with respect to n of the objective function is equal to 0, while
considering m as a constant. I.e.,

∂/∂n
[
α · L+ β · η−1 + γ · C

]
= 0

α

(
B

rd
+ ψ ·B ·m

)
− γ

∑m
i=1 ρi · xi
n2

= 0

γ
∑m
i=1 ρi · xi

α( Brd + ψ ·B ·m)
= n2. (18)

Thus, the optimal n is given by:

n =

√
γ
∑m
i=1 ρi · xi

α( Brd + ψ ·B ·m)
. (19)

Considering block verification optimization, an efficient
Blockchain Configuration Optimization (BCO) algorithm is
proposed (see Algorithm 1). BCO algorithm leverages the idea
of problem decomposition to find the optimal solution of (13)
in practical scenarios, where different validators have different
verification response time. The main steps of BCO algorithm
can be summarized as follows:



1) BM distributes unverified blocks to the validators.
2) Validators that finish block verification faster are se-

lected one by one.
3) Given the selected validators (m), n is calculated, using

(19), and approximated to the nearest integer. Then, n∗

is obtained, such that the constraint in (16) is satisfied.
4) After adding a new validator, we check the “gain”

condition, i.e., the obtained reduction in the security
term (i.e., β · η−1) is greater than the obtained increase
in the latency and cost terms (resulting from adding the
new validator). If the “gain” condition is satisfied, this
validator is added to the selected validators, otherwise
it is discarded and m∗ is obtained.

We remark that the maximum number of iterations for the
BCO algorithm to converge to the optimal solution is M ,
thanks to the derived closed-form solution for n∗.

Algorithm 1 Blockchain Configuration Optimization (BCO)
algorithm

1: Input: xi, ρi, v, M , t, χ.
2: for m = v + 1 : M do
3: Calculate n using (19).
4: if bne < t. then
5: n∗ = t.
6: else if bne > χ. then
7: n∗ = χ.
8: else
9: n∗ = bne.

10: end if
11: if β ·η−1(m−1)−β ·η−1(m) < (α·L(m)+γ ·C(m))−

(α · L(m− 1) + γ · C(m− 1)) then
12: m∗ = m− 1.
13: Break % m∗ is obtained
14: end if
15: end for
16: Output: m∗, n∗.

VI. SIMULATION RESULTS

For our performance evaluation, we use the data in [41] that
has been collected from patients undergoing routine planned
treatment. The data collection process has been carried out
by our collaborators in the patient recovery center of Hamad
Medical Corporation. The acquired data has been collected
using EMOTIV EPOC+, which comprises 14 EEG channels
(i.e., electrodes)5 for whole brain sensing [42], in addition
to the routine observational data such as temperature and
blood pressure. This data has been collected from 30 patients
receiving intravenous antibiotic medication. Each patient has
been monitored for 30 minutes: before, during, and after
taking the medication. Moreover, our results were generated

5EEG monitoring are conducted using EEG electrodes, which gather and
record the electrical activity of the brain. The acquired EEG signals are
amplified, digitized, and then sent to a computer for processing and storage
[42].

considering 21 entities, where the packet arrival rate per entity
is assumed to be uniformly distributed with mean equals to 1
transactions/s. Other simulation parameters are set as follows:
q = 4, O = 0.5 Mb, θ = 1, rd = 1.2 Mbps, ru = 1.3 Mbps,
K = 100, and B = 0.5 Kilobits.

The first aspect we are interested in is identifying the
changes in the acquired patients’ records at the edge using the
proposed patients monitoring scheme. To this end, Figure 6
demonstrates the variations in the defined change indicator
δ over different EEG channels for six patients. This figure
highlights that using the defined change indicator, a physician
can easily interpret the EEG behavior of a patient before,
during, and after taking a certain medication. For instance,
patients 1, 4, and 5 have a clear increase in their EEG records
after taking the medications, while patients 2 and 3 having
almost the same behavior before, during, and after taking the
medication. Interestingly, our scheme can also detect the errors
in collecting the data. For instance, patient 6 has a very large
value of δ for channel 14 only, which indicates that there is
a problem in this channel during data collection. Hence, the
physician should repeat this experiment for this patient before
conducting further data analysis.

The second aspect we are interested in is the impact of
blockchain configuration optimization on the different perfor-
mance metrics. First, Figure 7 depicts the effect of chang-
ing the blockchain configuration parameters (i.e., number of
validators m and number of transactions per block n) on
the obtained utility function in (12), for applications with
similar requirements in terms of security, latency, and cost
(α = β = γ). It is clear how changing the configuration
parameters always corresponds to a significant change in the
utility. Thus, it is important to optimize these parameters
considering diverse applications’ requirements and system
performance.

As far as the blockchain configuration optimization is
concerned, Figure 8 shows the convergence behavior of the
proposed BCO algorithm to the optimal solution obtained by
exhaustive search, given M = 21 and N = 20. We observe
that our algorithm requires only 7 iterations to reach the
optimal solution compared to exhaustive search that still does
not converge after 420 iterations.

We now study, in Figure 9 and Figure 10, how changing
blockchain configuration on different channels influences the
performance. The plots in Figure 9 represent the main per-
formance metrics considered in our framework (i.e., latency,
security, and cost) as a function of the number of iterations
until reaching to the convergence. Each curve therein corre-
sponds to a channel configuration, and each plot corresponds
to a performance metric. The configuration of the channels
from 1 to 3 has been optimized using the proposed BCO
scheme, while the configuration of channels 4 is assumed
to be fixed, considering a fixed number of validators (i.e.,
m = 8) and a fixed number of transactions per block (i.e.,
n = 80). Herein, it is assumed that channel 1 is used for urgent
data, channel 2 for normal data, and channel 3 for non-urgent
data. Comparing the individual curves within each plot, we
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Fig. 6. The variations of change indicator δ, over different channels, for six patients: before, during, and after taking a medication.

Fig. 7. The proposed objective function as the number of validators (m) and
the number of transactions per block (n) vary, for a one blockchain channel.

can observe how our BCO algorithm efficiently adjusts dif-
ferent channels configurations according to the acquired data
characteristics, such that the urgent data are sent by the lowest
latency and computational cost, while the non-urgent data (i.e.,
require high security without latency constraint) are sent with
the highest security level. Moreover, it clearly illustrates the
tradeoff between increasing the security level and decreasing
the latency. Thus, this result shows that it is important to
have multiple channels with different configurations within
the same blockchain to be able to adapt to diverse types of
applications/data with different characteristics.

Finally, we assess how much, and for whom, our priority
assignment scheme is beneficial. Figure 10 depicts how, for
different channels configurations, priority assignment influ-
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Fig. 8. Convergence behavior of the proposed algorithm compared to the
solution obtained through exhaustive search.

ences the obtained sojourn time. In this figure, different curves
correspond to different channels with and without considering
our priority assignment scheme. This figure highlights that
assigning different priorities for different entities in the system
(based on the urgency levels or the entity weight) yields a
substantial decrease in sojourn time for high-priority entities,
hence they can share their transactions with a substantially
smaller delay.

VII. CONCLUSION

Next-generation healthcare systems are being shaped by
incorporating emerging technologies to provide radical im-
provements in healthcare services. Thus, this paper proposes
a novel, collaborative health system for enabling effective
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and large-scale medical data exchange. The proposed MEdge-
Chain system leverages edge computing and blockchain to
provide secure transfer of large amount of medical data
generated by various health entities. In particular, we propose
an effective scheme for monitoring the patients, at the edge,
to ensure early detection, scalability, and fast response for
urgent events. Based on this scheme, we also develop an
optimized blockchain configuration model with a queuing-
based priority assignment method to optimally manage the
received transactions from diverse entities. Our results show
that mapping the characteristics of the gathered data into
adequate configurations of the blockchain can significantly
improve the performance of the overall MEdge-Chain system,
while fulfilling different health entities’ requirements.
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