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Diversity-Multiplexing Tradeoff of Multi-Layer

Scattering MIMO Channels

Giorgio Taricco

Abstract

Multi-layer (or multi-cluster) scattering Multiple-Input Multiple-Output (MIMO) channels are con-

sidered in the framework of the diversity-multiplexing tradeoff (DMT). This MIMO channel model

finds application for indoor networks, typical of 5G architectures, in which the signal propagates from

the transmitter to the receiver through the walls and floors of a building (represented by scattering

layers). These results extend the seminal work by Zheng and Tse from the independent identically

distributed (iid) Rayleigh fading MIMO channel to a channel matrix which is the product of iid Rayleigh

fading matrix components. It is worth noting that the resulting product channel matrix elements are not

independent. It is shown that the presence of multiple scattering layers eventually degrades the DMT

performance of a MIMO system by an amount depending only on the three minimum dimensions of

the matrices characterizing the product channel matrix.

I. INTRODUCTION

Multi-layer (or multi-cluster) scattering Multiple-Input Multiple-Output (MIMO) channels with

a channel matrix that is the product of several independent identically distributed (iid) Rayleigh

matrix components received considerable attention in recent years. This model has been applied to

5G architectures where the signal propagates through a sequence of scattering layers representing

the different walls or floors in a building (see, e.g., [1]–[6]). Many results have been published

in this framework. In particular, the joint singular value distribution of the matrix product has

been derived in [7,8] when the matrix components are rectangular iid Rayleigh matrices of

compatible sizes. The joint probability density function (pdf) is expressed by a determinant of

Meijer G-functions. This expression has been applied to derive the outage capacity of orthogonal

space–time block codes in [3]. Other applications have been presented in [4]–[6] to determine

the ergodic and outage capacities with one-sided spatial correlation under constraints on the

component matrix sizes.
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On the other hand, there is a wide literature concerning the diversity-multiplexing tradeoff

(DMT). The concept was brought to the general attention in the case of iid Rayleigh fading

MIMO channels by [9]. Subsequently, the results were extended to other types of iid fading

MIMO channels [10]. The DMT has been investigated in many areas of wireless communications,

such as cooperative communications, relaying, and ARQ MIMO channels [11]–[14]. A non-

asymptotic framework was developed in [15], encompassing one-sided spatial correlation and

Rayleigh fading. Recent results dealt with the DMT of wireless energy harvesting channels [16].

In this work we investigate the DMT of the multi-layer scattering MIMO channel in the

asymptotic Signal-to-Noise power Ratio (SNR) regime. Our results extend the ones in the

literature from the basic iid Rayleigh case to the multi-layer scattering scenario with iid Rayleigh

components determining the channel matrix.

II. SYSTEM MODEL

We consider a MIMO channel characterized by the linear equation

y = Hx+ z (1)

Here, x ∈ CnT×1 is the transmitted signal vector, y ∈ CnR×1 is the received signal vector,

z ∈ CnR×1 is the received noise vector, and H ∈ CnR×nT is the channel matrix, which is

characterized as a product form:

H = G1 · · ·GM . (2)

Here, the matrices Gm ∈ Cnm−1×nm , for m = 1, . . . ,M , with n0 = nR, nM = nT, are

independent with iid entries distributed as CN (0, 1), and are referred to as Ginibre matrices1.

If x ∼ CN (0, γInT ) and z ∼ CN (0, InR), then the mutual information, conditionally on the

channel matrix H , is given by

IH(x;y) , log2

(
InR +

ρ

n1 · · ·nM
HHH

)
, (3)

where ρ is the channel SNR:

ρ =
γ E[‖H‖2]

nR
= γ

M∏
m=1

nm. (4)

1It is interesting to notice that the entries of the matrix H are identically distributed but not independent.
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A. Joint pdf of the eigenvalues of HHH

The joint pdf of the increasingly ordered eigenvalues of HHH is given by [7,8]:

pλ(λ) =
∆(λ) det

[
GM,0

0,M

(
λj

∣∣∣−νi)]nmin

i,j=1∏nmin−1
n=0

∏M
i=0(n+ νi)!

(5)

over the domain

R+ , {λ : 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λnmin
}, (6)

where we defined the Vandermonde determinant function

∆(λ) ,
∏
i>j

(λi − λj) (7)

and the ordered matrix dimension offsets νi , nπ(i)−nmin for i = 0, . . . ,M , with the permutation

π satisfying the inequalities nπ(i−1) ≥ nπ(i) for i = 1, . . . ,M ,

νi , (ν0, . . . , νM−1 + i− 1), (8)

and the Meijer’s G-Function is defined in [17,18].

The following series expansions of the Meijer G-function will be used in the sequel. According

to [17, p. 212], we have

GM,0
0,M

(
z

∣∣∣∣ −bM
)

= O(|z|min(bM )) (9)

for z → 0. According to [18, 5.9.1,Th.5], we have

GM,0
0,M

(
z

∣∣∣∣ −bM
)
∼ (2π)(M−1)/2√

M
exp(−M z1/M)

× z(2σ(bM )−M+1)/(2M)

∞∑
k=0

βkz
−k/M (10)

for |z| → ∞, where σ(bM) is the sum of the elements of the vector bM , β0 = 1 and the other

βk are suitable finite coefficients.

III. DIVERSITY-MULTIPLEXING TRADEOFF

Following the approach of [9], we define a scheme {C(ρ)} as a family of codes with length

l and rate R(ρ). The scheme achieves spatial multiplexing gain

r = lim
ρ→∞

R(ρ)

log2 ρ
(11)
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and, if Pe(ρ) is the average error probability, diversity gain

d(r) = lim
ρ→∞

− log2 Pe(ρ)

log2 ρ
. (12)

Following [9], we shall use the exponential equality

f(ρ)
.
= g(ρ) ⇔ lim

ρ→∞

ln |f(ρ)|
ln |g(ρ)|

= 1. (13)

Now, we consider the asymptotic outage probability

Pout(ρ) = P{IH(x;y) < r log2 ρ}
.
= P{log2 det(I + ρHHH) < r log2 ρ}

= P

{ nmin∏
i=1

(1 + ρ1−αi) < ρr
}

.
= P

{ nmin∑
i=1

(1− αi)+ < r

}
(14)

where (x)+ , max(0, x) and λi , ρ−αi . The last probability can be calculated by integrating

the joint pdf of the vector α , (α1, . . . , αnmin
), which is given by pλ(ρ−α)(ln ρ)nminρ−σ(α), over

the domain

A(r) ,

{
α : α1 ≥ · · · ≥ αnmin

,

nmin∑
i=1

(1− αi)+ < r

}
. (15)

Above, we set ρ−α , (ρ−α1 , . . . , ρ−αnmin ). The integration domain can be restricted to the

positive orthant Rnmin
+ :

A+(r) , A(r) ∩ Rnmin
+ (16)

when ρ→∞. In fact, from the asymptotic expansion (10), we can see that the joint pdf in (5)

satisfies

pλ(λ) ∼ poly(λ)

nmin∏
i=1

exp(−Mλ
1/M
i ) (17)

for some multivariate polynomial function poly(λ). Therefore, the contribution of the part of the

integration domain corresponding to A(r)\A+(r) vanishes, as ρ→∞, because of the presence

of the vanishing negative exponential function. The outage probability can be calculated as

follows:

Pout(ρ)
.
=

∫
A+(r)

det
[
GM,0

0,M

(
ρ−αj

∣∣∣−
νi

)]nmin

i,j=1

×∆(ρ−α)ρ−σ(α)dα, (18)
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where we neglected the factor (ln ρ)nmin
.
= 1. Then, since αi ≥ αi+1, i = 1, . . . , nmin − 1,

∆(ρ−α)ρ−σ(α) =

nmin∏
i=1

ρ−αi
i−1∏
j=1

(ρ−αi − ρ−αj)

.
=

nmin∏
i=1

ρ−iαi . (19)

As far as concerns the determinant factor, we have from (9):

det
[
GM,0

0,M

(
ρ−αj

∣∣∣−
νi

)]nmin

i,j=1

=
∑
π

sign(π)

nmin∏
i=1

GM,0
0,M

(
ρ−αi

∣∣∣ −
νπ(i)

)
.
=
∑
π

sign(π)

nmin∏
i=1

ρ−αimin(νπ(i))

.
= exp

{
−
[

min
π

nmin∑
i=1

αi min(νπ(i))

]
ln ρ

}

= exp

{
−
[ nmin∑
i=1

αi min(νi)

]
ln ρ

}
, (20)

where we applied the Sequence Product Lemma (Lemma 1 from Appendix A) in the last step.

Thus,

Pout(ρ)
.
=

∫
A+(r)

nmin∏
i=1

ρ−µiαidα, (21)

where

µi , i+ min(νi), i = 1, . . . , nmin. (22)

The asymptotic evaluation of this integral can be carried out as in [9] and we get

Pout(ρ)
.
= ρ−dout(r), (23)

where

dout(r) , inf
α∈A+(r)

nmin∑
i=1

µiαi. (24)

Remark 1 This outage formulation is equivalent to the definition in (12), as implied by the

arguments of [9, III-B] applied to the present context. Likewise, the use of arbitrary input

covariance is equivalent to the iid power assumption. Therefore, we have d(r) = dout(r). �
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Remark 2 Since νi is a nonincreasing sequence, we have, for i = 0, . . . ,M ,

min(ν) = min(νM−2, νM−1 + i− 1) (25)

since νi ≥ νM−2 for every i ≤M − 2. Therefore,

µi = i+ min(νM−2, νM−1 + i− 1). (26)

It is worth noting that the least three dimensions in the matrix product characterize the multi-layer

scattering MIMO channel DMT completely. �

The derivation of (24) requires the solution of an optimization problem depending on the

channel parameters through the integer coefficients µi and on the multiplexing gain r. The

solution is summarized in the following

Theorem 1 The outage diversity dout(r) specified in (24) is given as follows. If r ≥ nmin, then

dout(r) = 0. Otherwise,

dout(r) =

nmin−1−brc∑
i=1

µi + µnmin−brc(1− {r}) (27)

where {r} , r − brc is the fractional part of r.

Proof: See Appendix B.

A. Single layer: M = 1

In the particular case, we have ν0 = |nR−nT | and µi = |nR−nT |+2i−1 for i = 1, . . . , nmin.

Then, applying Theorem 1, we can see that, if r < nmin,

dout(r) =

nmin−1−brc∑
i=1

(|nR − nT |+ 2i− 1)

+ [|nR − nT |+ 2(nmin − brc)− 1](brc+ 1− r)

= (nmax − r)(nmin − r) + {r}(1− {r}) (28)

where nmax = max(nR, nT ). This result agrees with [9] when r is an integer ≤ nmin and is

plainly linear in r when r ∈ [r0, r0 + 1) with integer r0.
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Fig. 1. DMT of a multi-layer scattering MIMO channel with ordered dimensions 2 × 2 × m × · · · with m = 2, 3, . . . (the

DMT doesn’t change for m ≥ 3).

IV. NUMERICAL RESULTS

The DMT of the multi-layer scattering MIMO channel derived from Theorem 1 is illustrated

in Figs. 1 and 2 for the 2× 2×m×· · · ,m ≥ 2 and 4× 4×m×· · · ,m ≥ 4 cases, respectively.

We can see that the optimum tradeoff is achieved only if the third lowest number of channel

dimensions, m, is sufficiently large (more precisely, only if νM−2 ≥ νM−1 + nmin − 1). In that

case, the tradeoff coincides with that of the iid Rayleigh fading MIMO channel with a number

of antennas equal to the two lowest dimensions of the multi-layer scattering MIMO channel.

Otherwise, there is a penalty depending on νM−2 − νM−1.

In the worst case, corresponding to νM−2 = νM−1, we have µi = i+ νM−1 and then

dout(r) ≤ dout(0) =
nmin(2νM−1 + nmin + 1)

2
. (29)

V. CONCLUSIONS

In this letter we obtained the DMT of the multi-layer scattering MIMO channel with iid

Rayleigh matrix components, which extends the seminal result developed in [9] for the basic iid

Rayleigh fading MIMO channel.

We showed that the DMT depends on the least three dimensions in the channel matrix product

and characterizes the degradation with respect to the basic iid Rayleigh MIMO channel with the

two least matrix dimensions from the matrix product.
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Fig. 2. DMT of a multi-layer scattering MIMO channel with ordered dimensions 4× 4×m× · · · with m = 4, 5, 6, 7, . . . (the

DMT doesn’t change for m ≥ 7).

The degradation vanishes when the third least matrix dimension is greater than the second

least dimension plus the minimum dimension minus one, i.e.,

νM−2 ≥ νM−1 + nmin − 1. (30)

APPENDIX A

SEQUENCE PRODUCT LEMMA

Lemma 1 Given any two real nonnegative sequences αi, βi, i = 1, . . . , n such that αi ≥ αi+1

and βi ≤ βi+1, for i = 1, . . . , n− 1, we have, for every permutation π, the following inequality:
n∑
i=1

αiβi ≤
n∑
i=1

αiβπ(i). (31)

Proof: Since every permutation π ∈ Sn can be expressed as a product of disjoint cycles [19,

Sec. III.70], we have to prove the result only when π is a cycle and then apply it to any π ∈ Sn
after proper relabeling of the indexes. Let us assume, w.l.o.g., that π = (1, . . . , n), i.e., the

permutation 1 7→ 2 7→ 3 7→ · · · 7→ n 7→ 1. Then, we have to show that

α1(β1 − β2) + α2(β2 − β3) + · · ·+ αn(βn − β1) ≤ 0. (32)
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The inequality stems from the fact that

α1(β1 − β2) + α2(β2 − β3) + · · ·+ αn(βn − β1)

= (α1 − αn)(β1 − β2) + · · ·+ (αn−1 − αn)(βn−1 − βn)

≤ 0, (33)

since αi − αn ≥ 0 and βi − βi+1 ≤ 0 for every i = 1, . . . , n− 1.

APPENDIX B

PROOF OF THEOREM 1

Proof: First, we notice that the coefficients µi defined in (22) form a strictly increasing

sequence because the minimum entry of each vector νi defined in (8) is nondecreasing with i

for i = 1, . . . ,M . On the other hand, the elements of the vector α ∈ A+(r) are nondecreasing

by assumption, i.e., αi ≥ αi+1. Moreover, they satisfy the inequalities αi ≥ 0 for i = 1, . . . , nmin,

and
nmin∑
i=1

(1− αi)+ < r, (34)

the multiplexing gain constraint. Since we are looking for the infimum of
∑nmin

i=1 µiαi, increasing

any αi leads away from the solution so that αi > 1 is impossible at the solution since we have

the coefficients (1 − αi)+ which are identically equal to 0 for every αi ≥ 1. Then, we can

restrict the solution space to encompass only the vectors α ∈ [0, 1]nmin . If r ≥ nmin, the point

α = (0, . . . , 0) satisfies the multiplexing gain constraint so that dout(r) = 0. If r < nmin, we

can adopt a greedy approach and increase the coordinate of α corresponding to the smallest

multiplier µi in order to limit the corresponding increase of the outage diversity. Then, we start

by increasing α1. If nmin − 1 ≤ r < nmin, we can set α1 = nmin − r ≤ 1, α2 = · · · = αnmin
= 0

and obtain

dout(r) = µ1(nmin − r). (35)

If nmin − 2 ≤ r < nmin − 1, we can set α1 = 1, α2 = nmin − 1 − r ≤ 1, α3 = · · · = αnmin
= 0

and obtain

dout(r) = µ1 + µ2(nmin − 1− r). (36)

By generalizing this procedure, we can see that, if the integer floor of r satisfies brc < nmin,

we obtain the solution to the minimization problem reported in eq. (24).
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