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LOcAl DEcisions on Replicated States (LOADER) in programmable
dataplanes: programming abstraction and experimental evaluation

German Sviridov1, Marco Bonola2, Angelo Tulumello2, Paolo Giaccone1, Andrea Bianco1, Giuseppe Bianchi2

1 Politecnico di Torino, Torino, Italy, 2University of Rome Tor Vergata, Rome, Italy

Programmable data planes recently emerged as a prominent
innovation in Software Defined Networking (SDN). They provide
support for stateful per-packet/per-flow operations over hardware
network switches specifically designed for network processing.
Unlike early SDN solutions such as OpenFlow, modern stateful
data planes permit to keep (and dynamically update) per-
flow states local to each switch, thus dramatically improving
reactiveness of network applications to different state changes.
Still, in stateful data planes, the management of non-local states
is assumed to be completely delegated to a centralized controller,
thus requiring extra overhead to be accessed.

Our LOADER proposal aims at contrasting the apparent
dichotomy between local and non-local states. We do so by
introducing a new possibility: permit to take localized (in-switch)
decisions not only on local states but also on global replicated
states, thus providing support for network-wide applications
without incurring the drawbacks of classic approaches. To this
purpose, i) we provide high-level programming abstractions
devised to define the states and the update logic of a generic
network-wide application, and ii) we detail the underlying low
level state management and replication mechanisms. We then
show LOADER’s independence of the stateful data plane tech-
nology employed, by implementing it over two distinct stateful
data planes (P4 switches and OPP - Open Packet Processor -
switches), and by experimentally validating both implementations
in an emulated testbed using a simple distributed Deny-of-Service
(DoS) detection application.

Index Terms—Software Defined Networks, Programmable data
planes, State replication, Distributed applications

I. INTRODUCTION

Future networks are called to efficiently and flexibly support
an ever growing variety of heterogeneous network functions
such as network address translation, tunneling, load balancing,
traffic engineering, monitoring, intrusion detection, and so on.
Software-based programmability of such type of functions has
been first pioneered by early Software Defined Networking
(SDN) proposals, and then by the more recent trend of
Network Function Virtualization (NFV). However, both these
approaches have shown shortcomings. Indeed, original SDN
approaches (and, more specifically, the OpenFlow-based ones),
were relying on stateless switching architectures, and thus
suffered of the need to centralize any state update and main-
tenance to a centralized controller, thus paying a significant
toll in terms of latency and communication overhead. On
the other side, NFV has addressed the design of middle-
box functionalities in software, typically using commodity
CPUs. However, early NFV implementations appeared to be
performance-limited: it is a fact that there exists a substantial

gap (a 50× factor) between the speed attainable in software
opposed to dedicated HW devices, and such gap is not going
to decrease in the future, with HW switches capable to attain
many Terabit per seconds, opposed to the tens of Gigabit per
second attainable by their SW counterparts.

In order to overcome such limitations, starting from 2014
with OpenState [1] and P4 [2], a new innovation trend
emerged with the introduction of programmable / stateful
data planes. Stateful data planes offer an additional level
of programmability with respect to the traditional stateless
SDN paradigm, by introducing the possibility of keeping and
manipulating persistent states locally at the network device.
Opposed to stateless switches, persistent states can now be
directly deployed and managed inside network devices in the
form of simple user-defined memory elements. Furthermore,
arbitrary algorithms for packet/flow processing, e.g., described
in terms of simple Mealy Finite State Machines [1] or more
sophisticated Extended Finite State Machines [3], [4], can
be directly loaded and run inside the processing pipeline of
individual network devices, thus providing opportunities of
implementing network applications directly within the network
device at line rate.

The crucial advantage of stateful data plane technologies
consists in the possibility to significantly reduce the interaction
between switches and the controller. Opposed to a stateless
data plane, in which any change of the forwarding decision
requires the intervention of the controller, a stateful data plane
permits to take localized decisions, i.e., adapt the forwarding
behavior to network events and handle changing states locally
inside the switch. This approach significantly reduces the re-
liance upon a centralized controller, and mitigates the relevant
severe penalties in terms of latency and signaling overhead [5],
hence greatly improving the reactivity of network control
applications.

Unfortunately, the benefits of distributing network appli-
cations on stateful switches cannot be achieved in cases
where non-local states need to be considered. For example, an
application that identifies the occurrence of a particular event
based on multiple statistics gathered from different switches,
operates on a global state that is the combination of different
local statistics of different switches. Even in the case of stateful
data planes, the control and update of the global state is
still delegated to a centralized entity, either to a controller
or a single switch [6]. The traditional approach of employing
a centralized controller for global state management greatly
simplifies the implementation, but non-local states can be
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accessed and updated only at the price of extra delay, thus
affecting the overall reactivity. On the other hand, solutions
employing global states centralized in a stateful switch lead
to performance impairments. Indeed, all flows affected by/
affecting a global state should traverse the switches storing it.
This ultimately leads to an overall higher network utilization
and traffic concentration, thus affecting network congestion
and available capacity. Furthermore, any failure to the switch
can jeopardize the state integrity due to the presence of a single
replica of the global state.

In this work we propose a novel framework, namely
LOADER (LOcAl DEcisions on Replicated states), which
enables a new possibility for stateful data planes: the states
and the corresponding control logic are distributed across
the switches and the controller, while permitting multiple
replicas of the same state/control logic to be present in the
network. This permits to run network applications operating on
global states without a unique central entity. Switches can take
instantaneous decisions based on local replicas of non-local
states, without any controller intervention, thus re-establishing
the beneficial effects of stateful data planes also for non-local
states. LOADER provides:

• the programming abstractions to define generic (either
local or non-local) states and the control logic of any
network application;

• the engine to optimally embed the states and the control
logic into the network devices and the controller, to
optimize performance while taking into account the avail-
able resources in terms of processing and state storage
capabilities;

• the mechanism to transparently replicate non-local states
across multiple network devices.

The rest of the paper is organized as follows. In Sec. II we
discuss the related work. In Sec. III we discuss the issues and
possible solutions for offloading network applications to the
data plane. In Sec. IV we first provide a high level abstraction
of the LOADER framework by defining its core modules
and later delve into the details of each module and the way
LOADER abstraction is exposed to the network programmer.
In Sec. V we analyze consistency-related issues when dealing
with replicated states and how to overcome them. In Sec. VI
we describe how we implemented a lightweight version of the
LOADER framework in ONOS [7] with major emphasis on the
data plane implementation in P4 [2] and Open Packet Proces-
sor (OPP) [3]. The implementation on these two different ar-
chitectures is aimed at showing the generality of the proposed
programming model, which is agnostic of the adopted data
plane implementation. In Sec. VII we show how to program
a distributed Deny-of-Service (DoS) detection application in
LOADER and experimentally assess the performance for both
P4 and OPP based implementations. Furthermore, to highlight
the versatility of the proposed framework, we provide details
about the implementation of other network applications. The
corresponding LOADER code is reported in the appendix.
Finally, we draw our conclusions in Sec. VIII.

II. RELATED WORK

Data plane embedding of network applications is steadily
gaining attention from the industry and the research commu-
nity. Numerous frameworks and abstraction models have been
proposed which try to expose to the programmer data plane
resources allowing them to embed custom logic and persistent
states directly inside the data plane. Yet no significant effort
have been put into dealing with scalability issues which
inevitably arise when embedded network applications must
operate on a network-wide states.

Numerous studies considered employing replicated states
in the data plane [8], [9], [10], demonstrating the scalability
benefits of such approach and treating it as an enabler for new
network applications. Yet all of the above studies considered
specific applications with tailored implementation.

On the other hand there have been studies [11], [12], [13],
[14], [15] concerning the development of general purpose
programming abstractions for network applications, none of
which considered having replicated states in the data plane. In
particular, in [11], [12], [13] the authors tried to address the
issues of defining a general enough programming language for
network applications. Yet they considered that states are kept at
the controller in a centralized fashion, thus not only neglecting
the available data plane resources but also leading to scalability
issues due to the centralization of all policies at the same
controller. In [14] the authors addressed the former issue by
providing an abstraction model including replicated states and
distributed network applications among different controllers.
Although solving the issue with scalability, applications still
reside in the control plane, mitigating the benefits of having
stateful data planes.

On the contrary, works such as [6], [15] proposed novel
network programming abstractions, which permits to define
complex network applications for stateful data planes. In
particular, SNAP [6] addressed the problem of performing
optimal embedding of states across the network switches,
taking into account the dependency between states and the
traffic flows. Nevertheless, by design, SNAP is limited to
just one replica of each state within the network, thus still
precluding a wide variety of possible network applications.

LOADER, instead, enables multiple replicas of the state,
extending the single replica approach of SNAP. Furthermore,
LOADER closes the gaps of previously proposed program-
ming models by providing a programmer-level abstraction
for the definition of network applications while transparently
dealing with replication and embedding problem.

The optimal replication problem for multiple replicas has
been defined and investigated in [16]. Given a network applica-
tion and the corresponding states, the problem considers all the
traffic flows that are affected by/affect such states and, based
on a generic cost function, computes (i) the optimal number of
replicas, (ii) their placement within the network and (iii) the
corresponding optimal traffic routing. The work in [16] can be
used as a building block for LOADER (i.e., the optimization
engine), which provides the programming framework and the
implementation for replicated states.

In general, the problem of maintaining consistency across
replicated states has been deeply investigated in the past in
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the field of distributed systems [17] and many solutions have
been proposed, depending on the nature of the states, the
desired properties and the available resources. There have been
however, few works concerning replication in stateful data
planes. Although we do not treat the issue of developing a
sophisticated replication algorithm in this paper, we design
LOADER in an agnostic way to the actual consistency scheme
in view of the future research in the field.

A preliminary version of this work was presented in [18],
focusing on some implementation issues of LOADER and
providing some experimental results. Furthermore, [18] did
not consider the abstraction model required to develop network
applications based on replicated states.

III. OFFLOADING NETWORK APPLICATIONS

Classic SDN management schemes present a series of
limitations such as poor reactiveness, big communication
overhead and compromised fault-tolerance caused by the
excessive centralization of the control plane. Stateful data
planes introduce the possibility of embedding custom logic
inside network devices, thus offering a new way of mitigating
the aforementioned issues by providing means of offloading
control plane functionalities to the data plane.

A. Network application in stateless SDN

In traditional SDN networks a logically centralized entity,
namely the controller, is responsible for managing the whole
network operations by means of user-defined network appli-
cations.

Being centralized, to function correctly, network applica-
tions are required to operate on an accurate snapshot of the
network. The task of constructing such snapshot is delegated
to the controller which continuously gathers network statistics
in the form of network states, which provide a synthetic
description of the network in the form of generic data structure
holding a variable or a compound of variables. Given this
information at the controller, applications are able to detect
the presence of certain events (e.g., load unbalance, security
risks, misconfiguration, etc.) by performing a set of operations
over the states and, whenever possible, take actions to correct
the network operations.

B. Network applications offloading with stateful data planes

Although being suitable for coarse-grained network opera-
tions, due to the poor reactiveness, classic SDN approaches
come to their limits when it comes to supporting network
applications performing fine-grained operations. Such is the
case of, e.g., per-packet processing or fine-grained traffic
engineering [19]. Stateful data planes offer the possibility of
mitigating this limitation by offloading the related logic to the
data plane.

Offloading network applications implies the embedding of
some or all of the application elements into the network
devices. This involves application states being embedded un-
der the form of stateful primitives natively supported by the
network devices and action logic under the form of data plane
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Fig. 1: Example routing without replicated states (left) and
with replicated states (right), as enabled by LOADER.

packet processing modules. Although being feasible from
the theoretical point of view, application offloading creates
considerable challenges in practice.

C. Satisfying resource constraints

When it comes to offloading, the type and the corresponding
amount of available resources at each network device pose
hard constraints for the embedding of application elements.

Dedicated hardware devices, such as switches and routers,
lead to almost zero latency during the execution of local
processing, but typically have limited resources in terms
of processing capabilities and memory. On the other hand,
general purpose network devices such as SDN controllers
provide resource flexibility at the cost of large processing
latency. To minimize the application execution latency, during
the embedding phase, network applications exceeding the
resources constraint at a single network device may be be
split across multiple devices. If application splitting still does
not satisfy the resources constraint, the application may be
fully delegated to the controller, thus, reverting to a traditional
stateless SDN scheme.

D. Inter and intra application dependencies

In addition to the resource constraints, most of the appli-
cations involve a dependency among different elements of
a network application, i.e., states are accessed/modified and
actions are executed according to a well-defined order which
is tightly bound to the definition of the application. The
complexity is further increased when considering that a given
state of an application may be accessed by different network
applications such as in the case of two network applications
reading a common counter. This inter and intra application
dependency imposes a constraint on how the traffic must be
routed across individual elements of the split application to
ensure the correctness on the execution of the application [6],
[16].

E. Offloading shared states

Considering a general case of network applications embed-
ded in different network devices we can define two macro-
categories of states: i) given a generic state s stored in a
given network device n, s is said to be local if it can be
accessed (read/write) only by n itself. In such scenario, s
can be internally embedded in n (provided that n is capable
of supporting it). ii) On the contrary, when s is accessed
(read/write) by multiple network devices that share the state,
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s is said to be non-local. If all states related to a network
application are local, the offloading does not present any
considerable challenge as states can be embedded into a single
network device, assuming no violation of the capacity con-
straint. However, when a state is non-local, multiple network
applications or multiple parts of the same application must be
able to access the state.

In classic stateless SDN, non-local states are managed by
states polling and aggregation at the controller. Instead, in
stateful SDN, non-local states can be supported with one of
the two approaches:

• Single replica. As proposed in SNAP [6], a non-local
state can be embedded in a single network device, thus
a unique replica is made available in the entire network.
Consequently, to support inter/intra application dependency
all traffic affected by/affecting the state must be routed
through that device. In SNAP, the choice of the network
device to embed the state in is optimized according to
some optimization criteria, e.g., minimization of the distance
among dependent states, equal load-balancing across the
network devices, etc.
The approach proposed by SNAP may lead to major scal-
ability and performance impairments, specifically when a
state is affected by/affects a large amount of traffic.

• Multiple replicas: A single state is made available in differ-
ent parts of the network by providing copies (i.e., replicas)
of it inside different network devices. This approach permits
to distribute the traffic across multiple network devices while
also providing robustness to failures. However, although this
approach provides more embedding flexibility, it requires
the presence of a replication protocol between the replicas,
to keep all replicas consistent. In the absence of such
replication mechanism, the values of each replicated state
will start to diverge, thus leading to different distinct states
which will not be representative anymore of the global
network dynamics.

An example of the the two approaches is depicted in Fig. 1.
Assume a network application composed of two states, namely
s1 and s2, and two flows originating from H1 and H2 and di-
rected towards H3. For a single replica in SW1, the green flow
is forced to make a detour from its shortest path to traverse
SW1 storing s1. On the contrary, in the presence of multiple
replicas the green flow can reach its destination following
the shortest path thanks to the presence of two replicas of
s1, namely s

(1)
1 and s

(2)
1 , embedded respectively inside SW1

and SW2. Although being a simple example, it highlights the
importance of using replicated states. Detouring flows from
their shortest path adds a considerable data overhead in the
network which in turns leads to ineffective use of network re-
sources. Furthermore, in extreme cases, such as sudden traffic
spikes, this resource mismanagement may lead to scenarios of
excessive overload of network devices storing the state, thus
degradating the flow performance. State replication mitigates
these issues by providing multiple copies of the same state
which, in the best case scenario, are all located on the shortest
path for each flow. Furthermore, flow processing and updating
network states are delegated to multiple switches, thus the

overall workload is distributed across the switches.

F. Managing inconsistency of replicated states

The management of state inconsistencies is among the most
challenging aspect of the approach employing state replication.
Whenever a given replica of a state propagates its update to
other replicas a period of inconsistency is created. During
this time interval read operations on different replicas of the
same state may lead to different outcomes. When developing
the application, the programmer must be able to take into
account the presence of these errors and specify the maximum
amount of error that can be tolerated. Consequently, operating
on replicated states requires an additional abstraction layer
capable of translating user-defined consistency constraints into
embedding constrains.

In addition of defining a formal model for managing incon-
sistency errors, LOADER provides a general abstraction model
and a framework for developing network applications based
on replicated states. In the following, we identify a common
abstraction for network applications permitting LOADER to be
target independent and completely agnostic to the underlying
network hardware. The abstraction is made generic by: i)
supporting network applications operating only on local states,
as they fall into the special-case category of single-replica
states, ii) supporting the absence of stateful switches, iii) being
target-independent from the technologies employed in the data
plane.

IV. LOADER ABSTRACTION MODEL AND FRAMEWORK

LOADER naturally extends functionalities of previously
proposed frameworks based on single-replica states. As shown
in Fig. 2, the proposed framework is based on three main
blocks which define the lifecycle of deploying a LOADER
application: i) application are defined by means of a predefined
set of APIs which expose to the programmer LOADER-
specific functionalities; ii) once defined, the applications un-
dergo a compilation phase by means of a compiler capable of
translating them into basic primitives supported by network
devices; iii) finally, the compiled network applications undergo
an embedding phase during which the embedder will try to
place the basic primitives composing the network application
inside the available network devices.

In the following section we define an abstraction model
for LOADER that permits the decomposition of a network
application in basic elements that can be directly embedded
into network devices.

A. Application definition

At the top layer, users define network applications by em-
ploying a set of predefined building blocks, namely application
elements, in a completely agnostic way with respect to the
remaining components of the framework. The application
elements supported by LOADER are the only part of the
framework exposed to the programmer by means of APIs
and generic language libraries. While maintaining generality,
the use of these elements permit an efficient decomposition
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Fig. 2: Main building blocks of LOADER framework.

Fig. 3: DAG representation of a LOADER network application
and its mapping to primitive elements.

of user-defined applications during the compilation phase and
provide a comprehensive abstraction for the compiler during
their translation to device-specific primitives.

B. Building blocks of a network application

Fig. 3 depicts an example of a generic network appli-
cation employing LOADER abstraction. Each application is
composed of four main types of application elements which
have to be implemented by the programmer: states, reduction
functions, trigger functions and activity functions.

For ease of explanation, in the following we will present the
role of each application element by considering a reference
data center load-balancing application. This application works
as follows: (1) whenever the load on the data center servers
is medium-low, the application distributes the user’s request
among the available servers in a load-balancing fashion, i.e.,
an arriving request is forwarded to the least loaded server, in
terms of CPU utilization; (2) otherwise, when the data center
is highly loaded, users’ requests are sent to the controller for
further processing.

Each application element is defined as follows:
• States: Let ΩP = {si}i be the set of states associated

with a network application P , with s(k)i be the k-th replica
of state si, with k ∈ N. For the reference load-balancing
application, state si represents the current CPU load of a
generic server i, where i = 1, . . . , n, and n is the number
of available servers.

• Reduction function: The reduction function is a generic
multivariate function that maps states in ΩP to a reduced

from Controller import TopologyManager
from LOADER.PrimitiveActions import SetEgress, Rate
from LOADER.Scope import Pkt, ExtScopeHelper

THR = 0.8 # threshold CPU load percentage

# Get the average CPU load of servers in the form of a list
of states. We omit the details.

loads = ExtScopeHelper(scope="ServerLoad")

r1 = ReductionFunction(
states = [loads]
operation=argmin([i.Value() for i in loads]))

r2 = ReductionFunction(
states = [loads]
operation=mean([i.Value() for i in loads]))

a1 = ActivityFunction(
scope = Pkt(filter = (TCP.Flag.SYN == 1)),
action = SetEgress,
args = r1.Result())

a2 = ActivityFunction(
scope = Pkt(filter = (TCP.Flag.SYN == 1)),
action = SetEgress,
args = CONTROLLER_PORT)

tr1 = TriggerFunction(
s0=r2.Result(),
trigger=(r2.Result() <= THR),
inconsistencyLevel=UpdateError(15),
activity=a1)

tr2 = TriggerFunction(
s0=r2.Result(),
trigger=(r2.Result() > THR),
inconsistencyLevel=UpdateError(15),
activity=a2)

Listing 1: Resource-aware load balancing with LOADER.

version so1 of the input states. It is obtained by com-
bining a set R = {rj} of primitive reduction actions
natively available in the network device. In the reference
application, R = {r1, r2} with r1 = arg min() and
r2 = mean(), which compute the index correspond-
ing to the minimum and the average of an array of
values, respectively. Consequently, the reduced versions
are just two scalars: so1 = arg min(s1, . . . , sn) and
so2 = mean(s1, . . . , sn).

• Trigger function: Based on soi , the trigger function
evaluates the presence of a particular event and decides
whether a reaction is required or not. The reference
application operates concurrently on two trigger functions
leading to different activity functions. The first trigger
function checks if the average data center load so2 is below
a given threshold (corresponding to a low load scenario).
The second trigger function instead is activated whenever
so2 is above the predefined threshold.

• Activity function: The activity function is a sequence of
actions that are executed when the events associated with
a trigger function occur. In the reference application, two
action functions are defined. If the first trigger function
is satisfied (i.e., so2 is smaller than the threshold), then
Action 1 is executed and the user’s request is sent to the
least loaded server, otherwise Action 2 is triggered and
the request is forwarded to the controller. Both action
functions are executed at the same switch where the
request has been received.

The actual implementation of the reference load-balancing
application is shown in Listing 1. The listing highlights the
simplicity of defining the application, by depicting how each
of the previously discussed application elements can be defined
and manipulated by the programmer thanks to the APIs
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provided by the LOADER programming model.
Table I depicts other example applications which operate

on replicated states. Those applications have been proposed in
literature with either custom hardware implementation inside
switches or by employing ad-hoc P4 code. We show how those
applications can be easily mapped to the LOADER abstrac-
tion by employing the application element provided by our
abstraction model. Detailed description of those applications,
alongside with the evaluation of selected applications, will be
presented in Sec. VII.

For the sake of space we limit the discussion of the syntax
and the implementation details of the proposed programming
model, while focusing on its core functionalities. One core
functionality is the explicit management of inconsistencies,
which is specified as a parameter in both trigger functions (as
explained in Sec. V), and the semantic of the language which
is discussed in the following.

C. Semantics and order of execution

By default, in LOADER all operations on states are exe-
cuted in parallel. Such kind of dis-aggregation for the order
of execution significantly reduces the embedding complexity
as each element of the network application can be treated
independently and will not require order synchronization.

Nevertheless, some application may require a specific order
for the execution of the activity functions (e.g., appending new
packet headers in a given order). Such kind of constraints may
significantly increase the complexity of the overall approach
by requiring additional ordering mechanisms whenever the
activity functions are distributed across different switches.

LOADER provides means of specifying particular order for
the execution of operations by exposing to the programmer
the SequentialActivityFunction class. This class
imposes hard constrains on the compiler forcing it to treat
the enclosed activity functions as a single sequential activity
function. This in turns forces the embedder to perform co-
located embedding of those activity functions, forcing them
to be embedded in the same network devices, ultimately
permitting sequential execution.

D. Compilation phase

Although in our experimental evaluation we implemented a
minimal proof-of-concept compiler, implementing a network
application compiler compatible with a broad variety of differ-
ent network devices requires an immense effort and in-depth
knowledge about each device architecture. For this reason,
for the purpose of this work we discuss what the compiler
must perform and how the proposed framework facilitates its
operations.

Network applications are compiled through the LOADER
Compiler, as shown in Fig. 2. The compiler takes as input the
network capabilities in the form of available basic primitives,
and the user-defined application in the form of LOADER ap-
plication elements. The catalog of available primitives depends
on the specific network devices operating in the network and
is stored in the resource management module of the network
controller and it is updated through the network management

plane, e.g., at device installation time. The application is then
represented by the compiler in the form of a DAG (Directed
Acyclic Graph) composed of its basic elements, as shown in
Fig 3. The compiler then reconstructs the dependency among
each application element and maps them to basic primitives
supported by the network devices composing the network so
that, as depicted in Fig 3:
• states are mapped into primitive data structures, such as

counters, registers, hash tables, etc., to store application
states;

• reduction, trigger and activity functions are mapped into
primitive actions, i.e. basic processing/decision capabili-
ties offered by network devices.

E. Optimal embedding and application reaction latency

The embedding consists in mapping the primitive elements
provided by the compiler into a set of physical network
devices. This is performed by exploiting the target-specific
drivers and southbound APIs (e.g., P4Runtime, gRPC, Open-
Flow, etc.) offered by the embedding engine of the controller.

To perform the actual embedding, as depicted in Fig. 2,
the embedder takes as input: i) the set of primitive elements
provided by the compiler, ii) the resource availability inside the
network provided by the controller resource manager and iii)
the actual location of the resources inside the network provided
by the controller topology manager. Given this information,
it is possible to find a set of feasible embeddings of the
decomposed application inside the network devices supporting
the required primitives. Notably, each element of the network
application is not required to be embedded in a single network
device. Instead, individual primitives composing the network
application can be embedded in different network devices,
based on the types of supported primitives, their amount and
their location inside the network. The adopted algorithm to
optimize the embedding (i.e., computing the optimal number
of replicas and their placement within the network) has been
already investigated in our previous work [16], which serves
as a natural integration to LOADER. In the following we
give insights regarding the functionalities and restrains of the
embedding mechanism.

1) Constraints on primitives location
In the absence of co-location at the same network device of

primitive actions and primitive data structures directly operated
by those primitive actions, state replication is mandatory.
Indeed, to perform the reduction of a given set of states, the
states must be locally available at the network device operating
the reduction function. This requires either to provide co-
location of the states and reduction functions or to perform
state replication at the network device storing the correspond-
ing reduction primitive.

2) Inter-application state sharing
States may be shared among different network applications.

Fig. 4 shows an example of two network applications P1

and P2 sharing a common state s5. Using a single replica
approach, s5 is required to be embedded into a single network
device. As a consequence, the device storing s5 must serve
both P1 and P2, which, as previously discussed, may lead
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TABLE I: Example applications enabled by LOADER and their mapping the the LOADER programming model

Application States Reduction function Trigger function Action function

DDoS detection [18] Average rate of inbound
SYN packets traversing
each edge router

Sum of all states Comparison against a fixed
threshold

Controller notification

Distributed rate limiting [9] Average rate of inbound
traffic traversing each edge
router

Sum of all states Comparison against a ran-
dom threshold

Packet drop

Link-aware load balancing
[8]

Average load on uplink and
downlink ports connecting a
pair of two leaf switches

Argmin among the max-
imum of all uplink and
downlink pairs sharing a
common path

Change in the reduction
function output

Insertion of a per-flow for-
warding rule

Resource-aware load bal-
ancing [20]

Instantaneous CPU utiliza-
tion of servers

i) Argmin among all states,
ii) Mean among all states

Comparison of the aver-
age global CPU utilization
against a fixed threshold

Insertion of a per-flow for-
warding rule if the average
CPU utilization is below a
threshold, controller notifi-
cation otherwise.

to scalability issues whenever the number of applications
employing s5 grows large. Instead, with state replication, the
two applications can be made independent by replicating s5 in
s
(1)
5 and s(2)5 . Note that the concurrent access of two different

applications to two replicas of the same state is equivalent to
the concurrent access of two instances of the same application
on such replicated states, as in the DDoS detection scheme
discussed in Sec. VII.

3) Application reaction latency
Given an application embedding, it is possible to evaluate

the corresponding reaction latency, by considering the position
of the primitives in the network, the propagation delays
between the involved network devices and the replication
delay. For a single-replica state, the replication delay is by
construction null as no replication occurs whatsoever. On the
other hand, in the case of multiple replicas, the reaction latency
models the latency required to propagate a new value of the
state to all the replicas and will be explained in details in
Sec. V-A. Interestingly enough, as investigated in [16], an
optimal embedding might lead to multiple replicas. Although
multiple replicas imply non-null replication delays, this delay
can be compensated by a much smaller application execution
latency. The distributed DDoS detection application, consid-
ered later in Sec. VII, is an example of such a scenario, clearly
showing the advantage of keeping multiple replicas for some
network-wide applications.

4) Objective-based embeddings
The optimal embedding is chosen by minimizing a particu-

lar cost function. The definition of the cost function highly
influences the way the embedding is performed, as shown
by [16]. As an example, a cost function aiming at reducing the
network energy consumption or reducing the synchronization
traffic between replicas may lead to scenarios in which the
application is embedded into few network devices or even-
tually to a single network device (e.g., the SDN controller).
On the other hand, a cost function aiming at minimizing
the network congestion may lead to multiple replicated states
across different network devices to balance the traffic across

Fig. 4: Reduction function decomposition in case of two
network applications sharing a state s5 without replicated
states (left) and with replicated states (right).

the network. Thus, the definition of the cost function highly
affects the level of distribution of the application, ranging
from completely distributed implementations to completely
centralized and stateless ones.

F. LOADER in stateless SDN

In the case of stateless SDN networks, with network devices
able to perform only basic forwarding/routing operations, the
LOADER approach is still viable. Indeed, LOADER provides
only an abstraction layer between the actual application and its
mapping to the network devices. As previously discussed, the
controller is seen as part of the available embedding targets
during the embedding phase. Being typically a general purpose
machine the controller is seen as a network device with
unlimited computation resources, thus giving the embedder the
possibility of eventually placing the network application at the
controller. Nevertheless, as previously mentioned, the latency
between the controller and the network devices is typically
high as it includes both the network latency and the in-software
processing delays at the controller. As shown in the following,
this latency plays a fundamental role during the embedding as
it directly affects the state inconsistency level which is among
the main user-defined constraints in LOADER.
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V. BOUNDING INCONSISTENCY AMONG STATES

To provide correct functionality of the application, all
replicas of a state must be consistent. Consequently, a read
operation of any replica at any given time should eventually
return the same result. The CAP theorem [21] states that,
for a replication scheme, out of Consistency, Availability
and Partition tolerance, only two properties can be picked at
the same time. Considering that network failures may occur,
partition tolerance cannot be left out of the design of the
replication algorithm, leaving us with two main reference
models:
• Strong consistency. This model privileges consistency over

availability, meaning that a read operation on any non-
faulty replica will return the most recent committed value
(same for all replicas) or an error. This property is achieved
at the cost of reduced availability due to the requirement
of multiple interactions between replicas and is based on
complex consensus protocols [22].

• Eventual consistency. This model privileges availability and
results in instantaneous operations on all replicas with
a considerably reduced protocol complexity. Although it
introduces transient inconsistency, the latter can be seen as
an error in the value of a local replica.
The choice between the two models depends on the level

of tolerance of the considered network application in the
presence of temporary inconsistencies between replicas of the
same state. The majority of network applications require small
packet processing latencies. Indeed, excessive latencies may
lead to noticeable performance degradation in the case of real-
time traffic and applications performing per-packet processing.
This leads to the necessity of privileging high availability when
state changes occur.

For highly mutable states, replication schemes based on
strong consistency may lead to excessive latency due to the
complex protocol needed to reach the consensus, ultimately
leading to excessive commit delays which will preclude the
correct functionality of applications. However, the majority of
network applications operate on statistical network measure-
ments and remain robust even in the presence of small errors
for the value of the global state, making strong consistency
less essential.

A. Replication delays and state inconsistency

LOADER does not impose any constraint on the adopted
replication scheme, leaving to the programmer the freedom
of implementing any replication protocol alongside with the
suitable reconciliation scheme supported by network devices.
It is generally true that replication schemes based on strong
consistency are more complex and introduce larger latency
to commit a value than the schemes based on eventual con-
sistency. Thus, without loss of generality, in the following
discussion, we focus on supporting eventual consistency. More
in details we focus on the case of optimistic replication
realized with basic gossiping for which the precise sequence
of concurrent writes on the different replicas is not affecting
the application correctness.

In an eventual consistency scheme, each state is associated
with a certain replication delay di, i.e., the maximum amount
of time required to convey a state update to all of its replicas.
Note that di corresponds also to the worst case inconsistency
time. Assume now that a state is replicated with period dRi
(i.e., the inverse of the replication frequency). Let dPnm be the
communication latency between network devices n and m,
taking into account the propagation delay (we assume isolation
of replication traffic from data traffic, thus negligible queueing
delays). If Ni is defined as the set of nodes storing replicas
of si, we can claim:

di = dRi + max
n,m∈Ni

dPnm (1)

The programmer is required to develop network applications
by keeping in mind that different state replicas may suffer of
inconsistency intervals during which their values may differ.
To cope up with this, LOADER exposes to the programmer
the possibility of defining an explicit inconsistency level for
the replicated states. This is made possible by defining a level
of state inconsistency inside the trigger function. The output of
a network application is driven by the outcome of the trigger
function, and for this reason, specifying the inconsistency level
at the trigger function is sufficient to determine also the overall
state inconsistency of the application.

We foresee two main inconsistency metrics which can be
defined by the programmer: (1) time obsolescence εt and (2)
update error εr. The former metric provides means of defining
an upper bound on the time freshness of the state replicas and
guarantees that at any given time any replica will contain a
value not older than εt in time. The latter instead specifies the
maximum admissible inconsistency in terms of uncommitted
writes for any state variable, thus ensuring that the difference
between all the replicated states does not exceed a number εr
of state writes. The actual choice of the adopted inconsistency
metric and the corresponding value is left to the programmer
and it largely depends on the particular network application.

LOADER guarantees that the constraints specified by the
programmer in terms of inconsistency metrics are satisfied.
During the embedding phase LOADER first assigns replicas
positions in the network so to minimize the maximum com-
munication latency between any pair of replicas, i.e., minimize
the second term of (1). Following this operation, two scenarios
are possible. If a time obsolescence εt is specified, then the
replication periodicity dRi must be set such that:

dRi ≤ εt − max
n,m∈Ni

dPnm (2)

If instead an update error εr is specified, now dRi must be
related to rate of write operations on the state over the time.
To satisfy this constraint for a generic state x, it is sufficient
to evaluate δ∗τ as the maximum number of write operations
performed on x over a time interval τ . Note that δ∗τ depends
on the specific meaning of the considered state and should be
evaluated a priori. E.g., for a packet counter at an interface, it
is obtained by the data rate divided by the transmission time of
a minimum size packet. Let |x|t denote the number of writes
for state x up to time t. By construction, it holds:

|x|t+εt − |x|t ≤ δ∗εtεt (3)
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By definition, we can bound (3) with εr and obtain:

δ∗εtεt ≤ εr (4)

Based on (2), dRi is chosen such that:

dRi ≤
εr
δ∗εt
− max
n,m∈Ni

dPnm (5)

Note that in the case of states which permit a definition of
absolute state error based on some norm (e.g., scalars, arrays,
graphs), knowing the nature of write operations permits to
translate the update error into absolute value error. Assuming
that a write operation can alter the state by a maximum
amount, it is possible to rewrite δ∗τ in terms of absolute state
variation and derive the temporal constraints following the
same above formulation.

Listings 2, 3 and 4 provide an example of the definition of
a trigger function in LOADER for a simple scenario (i.e., sum
of two states). The listings show respectively a trigger function
with a given value of time obsolescence (εt), a trigger function
with update error (εr) and a trigger functions which does not
tolerate any state inconsistency.

r = ReductionFunction(states=[s1, s2], operation=stateSum)

tr = TriggerFunction(s0=r.Result(), trigger=(r.Result() > 0),
inconsistencyLevel=TimeObsolescence(2, "ms"))

Listing 2: Example of trigger function with time
obsolescence εt equal to 2ms.

r = ReductionFunction(states=[s1, s2], operation=stateSum)

tr = TriggerFunction(s0=r.Result(), trigger=(r.Result() > 0),
inconsistencyLevel= UpdateError(10))

Listing 3: Example of trigger function with update error
εr equal to 10 writes.

r = ReductionFunction(states=[s1, s2], operation=stateSum)

tr = TriggerFunction(s0=r.Result(),trigger=(r.Result() > 0))

Listing 4: Example of trigger function without
inconsistency (i.e. replication is not permitted).

B. Replication traffic generation

To replicate a state, network devices generate by themselves
update packets, based on the required replication periodicity
dRi . This generation is not currently supported in off-the-shelf
hardware for stateful switches as a fundamental primitive,
since, for performance reasons, packet generation events are
triggered only by packet arrivals. Depending on the actual
hardware, we foresee different solutions which provide a way
of generating new packets without any hardware modification
of current off-the-shelf chipsets, which are briefly discussed
in the following.

1) Controller-triggered updates
The generation is triggered by the controller. In the case

of periodic updates, the controller sends periodic trigger
messages to the network devices, where they are processed
and used to generate the update packets, by acting upon the
reception of the trigger messages. Despite its simplicity, this
approach has many limitations. First, the required control
bandwidth from the controller to each switch can become

relevant for small update periods. Second, the controller is
loaded with an additional task, impairing its scalability.

2) Traffic-triggered updates
The generation is triggered directly by the reception of

data packets received at any interface of the network device.
This permits to self-adapt the amount of replication traffic on
the dynamicity of the states, whenever these depends on the
arrived traffic. In terms of implementation, the update message
is generated by cloning a data packet and then modifying it
to carry the update value. For what concerns stateful SDN
switches, we consider two possible approaches to regulate the
replication traffic rate based on native internal primitives:

• packet period p. By keeping a packet counter, a new
update packet is generated every p received packets, i.e.,
dRi ≤ p/rmin where rmin is the minimum packet arrival rate
over the whole switch. This can be used in (1) to choose
p and satisfy the given inconsistency metrics. Intuitively,
the update rate is proportional to the arrival rate of data
packets which may suit well particular traffic-monitoring
applications. On the other hand, for other applications this
approach may lead to shortcomings, since in the absence of
transit traffic no updates will be generated.

• time period τR. An update packet is generated at the first
packet arrival after τR time and thus dRi ≤ τR + 1/rmin.
This can be used in (1) to choose τR and satisfy the
given inconsistency metrics. Intuitively, this case results in
periodic updates, i.e., a fixed replication rate approximately
independent from the traffic.

In terms of message format, the replication packet must
carry the state identifier, the state value and the identifier
of the switch originating the update. All identifiers can be
predetermined by the controller at the time of application
instantiation. This mechanism guarantees the state uniqueness
while providing flexibility in term of state format encoding.
Finally, to route properly the replication traffic, the position
of each application primitive in the network is considered.
LOADER exploits the network knowledge at the controller to
install updates forwarding rules through a Steiner tree, either
shared across all the states or one specific for each state.

VI. LOADER IMPLEMENTATION

To prove LOADER feasibility, we developed a lightweight
implementation of the framework. We integrated LOADER
into ONOS v1.14 while using P4 [2] and Open Packet Pro-
cessor (OPP) [3] switches for the data plane. The choice of
these two distinct data plane architectures aims at showing
the generality of the proposed approach, which results to be
independent of the specific type of devices adopted in the
network.

A. Control plane implementation

LOADER has been integrated inside the ONOS controller
in the form of an ONOS application with custom control logic
overriding the default controller behavior.
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1) Application definition
We consider a set of predefined application elements sup-

ported by the switches. This assumption permits to drastically
simplify the implementation of the application definition phase
inside ONOS. In particular, we specify each application ele-
ment by means of predefined ad-hoc classes for each type of
application element, based on the primitives supported by the
switches. Thus no interaction with the resource manager of
ONOS is performed.

2) Application elements embedding
For the purpose of this work, we consider a homogeneous

network with devices composed of programmable switches
having the same type and amount of resources. Since the
algorithm to solve the optimal embedding problem is out of
the scope of this work, we consider the following simple
embedding scheme, inspired to the one proposed in [16]. The
position of each replicated primitive inside the network is
determined by considering the betweenness centrality of each
network device, weighted by the amount of traffic flowing
through it. The main idea is to privilege the devices that are
traversed by most of the traffic. Furthermore, the number of
replicas of each primitive is fixed a-priori and not optimally
chosen. The replication traffic between the different replicas
is routed on a single Steiner tree shared across all the replicas.
This permits to reduce both the amount of replication traffic
and the amount of flow table entries.

3) State identification
LOADER requires a unique identifier for each state, to

guarantee correct processing of update packets. Similarly
to other network programming frameworks [14] LOADER
assigns a unique identifier to each state during the application
compilation phase. For replicated states an additional identifier
is assigned to distinguish between different replicas of the
same state.

B. P4 implementation

P4 [23] is a novel data plane programming language which
aims to achieve both target and protocol independence, in-
field reprogrammability while providing also stateful opera-
tions thanks to the presence of persistent memories. Simi-
larly to OpenFlow, P4-enabled switches exploit a reconfig-
urable match-action pipeline, thus permitting to define multiple
packet processing stages. P4 is protocol independent thanks to
the presence of a programmable parser and deparser placed at
the two extremes of the packet processing pipeline. Thanks
to the parser programmability, it is possible to define custom
protocol headers or even extend the parsing/deparsing actions
to the packet payload.

To provide connectivity between ONOS and P4 switches
(version 1.1), we exploited P4Runtime. At the time of this
work, P4Runtime implementation in ONOS v1.14 performs
only basic flow tables manipulations without providing support
for features such as runtime pipeline modification and manip-
ulation of extern objects such as registers and counters. Due
to these limitations, we implemented the required primitive
data structures and the replication control logic directly in
P4 instead of letting the controller push them to each switch

header LOADER_t {
bit<32> srcSwID;
bit<32> dstSwID;
bit<32> stateID;
bit<32> replicaID;
bit<STATE_MAX_WIDTH> stateValue;
bit<16> L3ProtocolType;

}

Listing 5: LOADER header definition in P4

state parse_LOADER {
packet.extract(hdr.LOADER);
transition select(hdr.LOADER.L3ProtocolType){

LOADER_ETHTYPE : parse_LOADER;
IP_ETHTYPE : parse_IP;
default : accept;

}
}

Listing 6: LOADER parser implementation in P4

at application creation time. However, the controller is left
with the possibility of activating or deactivating application
elements inside a switch, which is equivalent to pushing new
logic.

1) Replication traffic format
Replication traffic is transported through packets that are

formatted with a custom header carried by Ethernet packets,
identified by an unused protocol type (LOADER_ETHTYPE)
in the Ethernet header. We leverage P4 to define custom packet
formats and we implemented LOADER header format directly
inside the programmable parser.

Listing 5 shows the full header format of LOADER packets.
As previously mentioned, all identifiers are assigned by the
controller during application initialization. Being srcSwID,
stateID and replicaID, respectively, source switch,
state, and replica identifiers, which are required to correctly
interpret and process the update packets at the destination
switches. On the other hand, the inclusion of dstSwID
permits to implement more sophisticated replication schemes
instead of employing ours based on shared spanning trees.
In our experiments we implemented a broadcast transmission
among all switches holding the replicas and for this reason
dstSwID field remained not utilized. The stateValue
field carries the actual value of the replicated state and its
length is upper bounded by a constant number of bit, i.e.,
STATE_MAX_WIDTH. Finally, the L3ProtocolType field
permits to attach LOADER packets to transit packets, i.e., to
piggyback replication information on data traffic.

We generate nested LOADER headers to carry multiple state
updates in a single packet. This functionality is depicted in
Listing 6 which shows the implementation of the LOADER
protocol parser. Although in this work we opted to define
a custom LOADER header, replication traffic transport can
be also implemented by employing Inband Network Teleme-
try (INT) format [24] defined by the P4 Language consortium.

2) Generation of periodic update packets
Commercial implementations of stateful switches generally

do not support the generation of self-triggered events, preclud-
ing the possibility of employing periodic updates. However,
in conformity with their purpose, switches are able to execute
routines during packets reception and departure. Such routines
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if( meta.LOADER_meta.state == UPDATE_NEEDED ){
clone_pkt_to_egress(sm.egress_spec);
fillLOADERHeaderTable.apply(meta.LOADER_meta.state_id);
set_state_update_time(meta.LOADER_meta.state_id);

}

Listing 7: Generation of replication packet in P4

may be related to simple packet processing up to more
complicated user-defined routines in programmable switches.
This behavior can be exploited to provide a simple mechanism
to approximate a periodic traffic generation without hardware
modifications.

We exploit traffic-triggered updates, as described in
Sec. V-B, in which the temporal periodicity dRi is obtained
as follows. During the execution of a replication routine, the
current timestamp tclk is saved as t′. For each subsequent
incoming packet we check the value of the internal clock
tclk and compare it against the expected execution time of
the routine, i.e., against t′ + dRi . If tclk ≥ t′ + dRi a new
replication routine is executed generating an update packet
and t′ is updated. Consequently, the first packet arriving after
dRi time will trigger the generation of the update packet.

The replication routine generates and transmits a state-
update packet filled with the state related information. To
generate these packets we employ the packet-cloning extern
provided in P4 v1 model [25]. Once the update has been
triggered by an arriving packet, such packet is cloned to the
egress port that has been assigned to it by its prior processing.
Subsequently the original packet undergoes a transformation
which substitutes its original header with the LOADER header
filled with all the information related to the state which needs
to be updated. At the same time the payload of the packet
that triggered the update is dropped. Following this operation,
the newly created LOADER packet is transferred to the corre-
sponding output queue without undergoing further processing.
Since the triggering packet needs to be fully processed at
the time of cloning, this functionality, which is illustrated in
Listing 7, resides at the very end of the ingress processing
pipeline. In this way the replication traffic generation routine
does not impact in any way the transit packets.

3) Replication traffic routing
The generated replication packets are transmitted on one or

more egress ports following a Steiner tree shared among all
replicas. The distribution tree consists of a mapping (Switch,
PortList) which assigns to each switch of the Steiner tree the
set of ports connected to the corresponding links. All newly
generated or transit LOADER packets match against a specific
match-action table which sends a copy of the packets for each
port specified in PortList. To avoid loops for transit LOADER
packets, at the egress stage the original ingress port of each
packet is compared against the current egress port. If the two
ports are the same, the packet is dropped. This mechanism
permits to keep the amount of flow entries related to LOADER
routing as low as one entry per state per switch.

Both the P4 switch and the LOADER framework implemen-
tations are publicly available at the LOADER repository [26].

C. OPP implementation

Open Packet Processor (OPP) [3] is a programmable data
plane abstraction in which Extended Finite State Machines
(EFSM) are used to model stateful forwarding algorithms. The
OPP machine model extends the match-action tables pipeline
model assumed by OpenFlow. Such tables are substituted with
stages, which can be either stateless or stateful. A stateless
stage is in fact an OpenFlow-like match-action table. The
pipeline processes packet headers to define corresponding
forwarding behaviors. The packets are processed by the ingress
pipeline, which is composed by a parser stage and several
stateless and stateful blocks, after the processed packets go
into the internal switch memory that holds the packet queues.

An OPP application requires the definition of the following
components:
• Lookup/update extractors: these two blocks are config-

ured by defining a combination of packet fields that are
used to retrieve/update flow state information.

• Conditions: conditions are arithmetic comparison opera-
tions of global/local variables and packet header fields;
conditions are matched in the EFSM table along with the
flow state and packet fields.

• EFSM table: programming the EFSM table requires the
definitions of a set of EFSM entries formed by a match
section (as defined in the list item above) and an action
section, which defines the state transition and a set of
packet actions (drop, push header, forward, etc.) and
update functions over the local registers. The EFSM table
is configured as a standard OpenFlow table and is usually
realized in ASIC switches using TCAMs.

• Global data variables: OPP global variables are indepen-
dent of a particular flow and can be used in the condition
block.

The OPP protocol used between the OPP switches and
controllers is a modified version of OpenFlow 1.3 standard,
extended to support the configuration of an OPP pipeline. In
particular, the configuration of the lookup/update extractors
and the conditions are realized with two new experimental
OpenFlow messages that carry the list of packets fields to
be extracted from the packet headers and the arithmetic
operations whose results are matched from the EFSM tables.
Furthermore, the configuration of the EFSM table requires the
extension of the OpenFlow FLOW MOD message to support
new match fields (conditions, and flow states) and new actions
(state transition and data variables updates).

The OPP switch implementations is publicly available at the
OPP source repository [27].

1) Replication traffic format
In the OPP prototype, we decided to format the replication

packets by employing the 20 bit labels provided by the MPLS
protocol. This design choice was taken for mainly two reasons:
the MPLS header is a widely used protocol supported by most
of the Internet nodes, and in our OPP implementation it was
simple to handle such encapsulation header since adding a
custom protocol would have resulted in a static implementation
of the parser code to support a custom header. The Switch
ID is encoded in the source and destination fields of the
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overlay IP protocol, assigned to each node by the control
plane at configuration time. The State ID is inserted in the
Experimenter field of MPLS (3 bits) and as such, confined to
a maximum of 8 different states supported. Finally, the MPLS
label (20 bits) carries the State Value.

2) Generation of periodic update packets
OPP does not support a time-based generation of peri-

odic events so, as in the P4 implementation discussed in
Sec. VI-B2, the generation of time-related events is triggered
only by the reception of packets. To emulate a timer expiration
we use per-flow registers to store the time difference between
packet arrivals. This difference is then compared with the
replication period dR. The result of this comparison is then
matched by the EFSM table, resulting in the execution of the
corresponding action present in the table entry.

To generate the replication traffic, we implemented two
approaches. In the first approach, we clone the arrived packet
to generate an update packet. When the packet generation
event is triggered, the cloned packet is attached with an MPLS
header containing the correct state information, while the
original packet continues its normal processing. In the second
approach, the update packet is instead generated ex-novo by
using a predefined template that already contains the MPLS
header. The header fields are then modified according to the
state information to be written in the packet. Differently from
the first approach, this one has the advantage of reducing the
size of update packets since they do not carry any data above
the MPLS layer.

3) Replication traffic routing
As discussed in Sec. VI-B3 for the P4 implementation, the

mapping switch-to-output port to route the replication traffic
is statically assigned by the controller at configuration time.
In such a way, the forwarding decision is taken through the
normal OpenFlow stateless match-action strategy.

VII. IMPLEMENTATION AND EVALUATION OF NETWORK
APPLICATIONS WITH LOADER

As a proof of concept, we used the LOADER programming
model to developed a simple yet significant application for the
distributed detection of Distributed Denial of Service (DDoS)
attacks, denoted as DDoSD. The main idea of the distributed
detection is to exploit the typical temporal correlation between
the increase of traffic across all the network devices at the
border of the network, due to the distributed nature of the
attack. Clearly, the correlated traffic increase across the edge
routers is a much more reliable way to detect an attack with
respect to a monitoring the traffic on a single network device
only. Consequently a network application performing DDoSD
must be able to capture this sudden increase in the network
traffic.

With traditional SDN approaches, the controller is involved
in the detection process by being notified about the transit
packets by switches. This leads to large overhead in terms of
traffic and of detection latency. Instead, LOADER enables a
distributed detection process operating directly at the switches,
without any controller involvement. Furthermore, the actions
to counter the attack are executed in a distributed way, by each
network device involved in the detection.

As shown in Fig. 5, we consider a large network (e.g.,
an Autonomous System - AS) connected to other networks
(e.g., other ASs) through different edge routers and the attack
targets a set of internal servers. Since the definition of a
realistic DDoSD algorithm is a well-known problem in the
literature [28] and it is completely out of the scope of this
work, we employ a simple proof-of-concept threshold-based
detection scheme, which demonstrates the correct operation of
the replication mechanism and can be used as a foundation for
more sophisticated DDoSD algorithms.

A. Network application definition

The total traffic entering the whole network and directed
toward the targeted servers is defined as the sum of the inbound
traffic over each edge router (SW1-SW4 in our reference topol-
ogy). Based on the value of the inbound traffic the network
application must perform some retaliation to counteract the
DDoS attack. Consequently it is straightforward to map this
kind of application to a LOADER application as described in
the following.
• States: Given N edge routers, we define si as the average

rate of inbound traffic traversing the border router i, with
i = 1, . . . , N . As monitoring target, we employ the rate
of incoming SYN packets directed towards the internal
servers.

• Reduction function: The reduction function employed
by the application is composed of a single primitive ac-
tion, namely r1 = sum(). Consequently, the output of the
reduction function is defined as so = sum(s1, . . . , sN ).

• Trigger function: Following the previous discussion,
we define the threshold function simply as a simple
comparison of so against a predefined threshold. Thus,
a DDoS attack is detected locally at each switch if so is
larger than a given threshold, above which the attack is
considered as detected. The threshold is determined with
standard test-based statistical methods.

• Activity function: We employ a simple activity function
which notifies the controller once the application has been
triggered.

The implementation of the DDoS application with
LOADER programming model is available in A.

B. Benefit of replicated states

In a single replica approach (i.e., in the absence of
LOADER) the DDoSD application would require all the traffic
entering the network to traverse a single switch holding the
state monitoring the incoming traffic. Thus the network load
would grow, increasing the congestion, and could not be
compatible with some traffic management schemes (e.g., load
balancing) that require to control the routing arbitrary within
the network.

LOADER instead permits to replicate the entire DDoSD
application over multiple switches, thus minimizing the data
overhead over the whole network. At the same time, LOADER
introduces an overhead in terms of replication traffic, whose
amount depends on the allowed inconsistency level. The
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replication traffic will be evaluated experimentally for the
DDoSD application in Sec. VII-D.

Notably, DDoSD is robust to possible transient inconsisten-
cies between the values of total traffic estimated at each switch,
thus employing an eventual consistency replication scheme
will not create noticeable degradation due to replicated states
estimation errors.

C. Implementation
The considered DDoSD scheme has been implemented

on top of two different programmable data plane platforms:
(1) P414/P416; (2) OPP. Furthermore, the definition of
the DDoSD application was performed inside ONOS with
LOADER abstraction which permits to automatically offload
and configure the developed network application.

1) Control plane implementation
We implemented basic LOADER functionalities related to

this particular use case inside ONOS. We employ the routing
algorithms and the embedding mechanism based on between-
ness centrality discussed in Sec. VI-A2 with a maximum
amount of admissible replicated states equal to C. We assume
a sufficiently large amount of resources inside switches, thus
permitting function co-location with consequent replication of
all application elements.

2) Data plane implementation with P4
Our prototype is developed and tested in a virtual envi-

ronment using Mininet [29] and P4-enabled virtual switches
targeting using the v1 Model and using the Simple Switch
Architecture [25]. We estimate the rate of incoming TCP
SYN packets by employing a sampling window equal to
δ. Let rk(tn) be the estimated rate in the time interval
(tn − (k + 1)δ, tn − kδ] with tn = nδ, n ∈ N. The average
rate is estimated at each switch i as

si(tn) =
1

w

w−1∑
k=0

rk(tn) (6)

and represents the local state to be shared across all the other
border routers, coherently with the description of Sec. VII-A.
In particular, w is chosen as a power of 2 due to the hardware
limits in P4 switches imposed to the types of operations
that can be implemented, i.e., shift operations are supported,
divisions are not [30]. Notably, The w most recent samples of
the estimated rate are stored in a circular buffer. Replicated
states are instead saved in dedicated registers.

3) Data plane implementation with OPP
The OPP implementation requires a sequence of three

stages: stage 0 extracts the state from update messages; stage
1 stores the state from the metadata notified by the previous
table, performs monitoring and detection and generates update
messages; stage 2 performs simple L3-forwarding. Stage 0
represents the stateful processing core of replicated states.
The processed flows are identified by the IPv4 destination
addresses of the target servers. Stage 0 also considers one flow
data variable containing the switch-local state and the C − 1
variables storing the replicated states. Switch-local state si is
computed by employing a hardware-implemented Exponential
Weighted Moving Average (EWMA) counting the number of
TCP SYN packets in a given preconfigured time window.

server cluster 1

server cluster 3

server cluster 2server cluster 4

ASN1 ASN2

ASN3ASN4

R2R1

R3R4

SW1

SW2

SW3

SW4

Fig. 5: Reference topology for DDoS Detection use case.

Fig. 6: Temporal evolution of the local, remote and global
states for the stateful switches in case of 2 replicas for the
global state in P4 implementation.

D. Experimental evaluation and validation

We configure a Mininet-based emulation environment de-
ploying the topology shown in Fig. 5, where, for the sake
of simplicity, each cluster and each AS is represented by a
Mininet host. To simulate the DDoS attack, we use hping3
tool to send TCP SYN requests from all ASs to all internal
servers. In each experiment, during the first 20 seconds, we
send the request at a slow rate, and then we increase the rate
of all senders in a such a way to trigger the execution of the
activity function. We consider experiments with varying C:
(i) single replica embedded in SW1 (C = 1), (ii) 2 replicas
(C = 2) embedded in SW1 and SW3, and (iii) 4 replicas
(C = 4) embedded in SW1, SW2, SW3, SW4. We repeated
the experiments to achieve negligible 95% confidence intervals
if shown in the plots.

Fig. 6 shows the evolution of application states si alongside
with the evolution of so for the case of 2 replicas, implemented
in P4. Identical results are obtained with OPP and thus are
not reported for the sake of space. As expected, the values
of so evaluated at SW1 and SW3 are coherent, and permit
a contemporary detection of the DDoS attack in the two
switches, without any interaction with the controller. This
experimental result validates our proposed implementation for
both P4 and OPP.

In Figs. 7-8 we show the average utilization of the links
present in the ring topology connecting all switches, for
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Fig. 7: Average link utilization for data and for replication
traffic in case of 1, 2, 4 replicas for global state in P4 imple-
mentation.

different values of C, with both P4 and OPP implementations.
Clearly, for one replica (i.e, single replica approach) the load
on the link is greatly unbalanced and in general higher for
all the links. By increasing the number of replicas to 2, the
load of the data traffic decreases by a factor of 1.6 both in P4
and OPP and is much better balanced across the links. The
slightly different values depends on the different mechanisms
adopted for triggering the update event by the incoming traffic:
in P4 the update rate depends on the traffic, whereas in OPP
it is independent. Adding two other replicas reduces the data
traffic by around 20% in both implementations, but now the
replication traffic becomes more relevant due to the higher
number of replicas. Indeed, the fraction of update packets
increases from 14% (for 2 replicas) to 24% (for 4 replicas)
in P4 and from 11% (for 2 replicas) to 23% (for 4 replicas) in
OPP. Thus, the two implementations behave very similarly and
show the beneficial effect on the overall traffic in the network
due to multiple replicas.

E. LOADER-induced overhead

As previously discussed and shown in Fig. 7 and Fig. 8,
LOADER adds some network overhead in the form of added
synchronization traffic. The actual characterization of the
amount of synchronization traffic highly depends on the net-
work topology and the definition of the state. The impact of
those factors has been exhaustively analyzed in our previous
work [16].

From the point of view of device resource utilization, the
amount of memory required to manage replicated states scales
linearly with the degree of replication. Specifically, every
switch must store its own local state values and the remote
state values. Alongside those states, switches must also store
an aggregate value combining local and remote states into
a global state, which is then used as input to the reduction
function. This translates into a total requirement of A(C + 1)
bits of register memory per switch, being A the size in terms
of bits of a generic state to replicate (e.g., A = 32 bits in the
case of simple counters considered in the DDoS use case).

F. Other applications enabled by LOADER

Although being significant, the DDoS use-case does not
highlight the whole versatility of the proposed programming
models. For this reason, in the following we describe some
examples of network applications (previously described in
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Fig. 8: Average link utilization for data and replication traffic
in case of 1, 2, 4 replicas for global state in OPP implementa-
tion.

Table I) which are shown to benefit from state replication.
We show how those applications can be implemented with
LOADER by providing their elements mapping and a code
example for each of them. The actual implementation of
those applications with the LOADER programming model is
presented in A.

1) Distributed rate limiting
In [9] the authors propose a network-wide global token

bucket. Similarly to a local token bucket, a global one permits
to rate limit all the incoming traffic in a given network thanks
to a network application performing probabilistic dropping at
the edge routers of the network. However, differently from a
local one, a global token bucket involves an instance of the
same token bucket run independently at each border router and
using a single shared state accounting for the total inbound
traffic.

This kind of application can be easily mapped to LOADER
by considering the DDoSD scheme and by changing only the
trigger and the activity functions as follows:

• States: Given N edge routers, we define state si as the
average rate of inbound traffic traversing edge router i,
with i = 1, . . . , N .

• Reduction function: The reduction function performs
a sum operation among all local state si with so =
sum(s1, . . . , sN ).

• Trigger function: In order to perform probabilistic drop-
ping the trigger function must invoke the activity function
proportionally to the rate of the incoming traffic and the
desired rate.

• Activity function: Identically to the DDoSD case, the
activity function must perform dropping of incoming
packets whenever invoked as to guarantee that the total
incoming traffic is less than a given threshold.

In Fig. 9 we show an example of the distributed rate limiting
application in action. We create two flows: Flow 1 from AS
1 directed towards server cluster 1 and another flow from AS
3 directed towards server cluster 3. We consider shortest path
routing and place state replicas in SW1 and SW3. Flow 1 starts
at time 0 with a rate of 5 Mbps while flow 2 starts with an
offset of 20 s and with the same rate. Although the flows do
not cross each other at any point in the network, when the flow
2 starts both of them are rate limited to a predefined aggregate
8 Mbps threshold. Note that oscillations in throughput are due
to the adopted probabilistic dropping scheme.
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Fig. 9: Distributed rate limiter with two flows at different edges
of the network.

2) Link-aware load balancing
In [8] the authors propose a load balancing scheme for data

center networks, based on the congestion level of individual
links from the source leaf switch to the destination leaf switch.
Source leaf switches keep track of local uplink congestion
and of the downlink congestion from each spine switch to the
destination leaf. When a new flow starts, the source leaf switch
selects a path to the destination by considering the one that
minimizes the maximum congestion on the whole path, i.e.,
local uplink congestion and the downlink congestion on the
spine.

For the sake of simplicity, we present a reduced version of
the application with some omitted details and by assuming
that the application targets a single leaf switch with P spine
switches. The application can be easily extended to many leaf
switches by simply instantiating multiple instances of the same
application and the states related to downlink congestion must
be shared across multiple leaf switches.

This network application can be mapped to LOADER as
follows:

• States: Given a leaf switch, we define state si as the
average load on the P uplink ports, with i = 1, . . . , P .
Additionally, we define state sj as the average downlink
load on the port leading to the destination leaf switch of
spine switch j − P , with j = P + 1, . . . , 2P .

• Reduction function: The reduction function is com-
posed of two primitive actions, namely r1 =
max() and r2 = arg min(). Consequently, the re-
duced version of the states is obtained as: so =
arg min(max(s1, sP+1), . . . ,max(sP , s2P ))

• Trigger function: Differently from previous use cases,
the trigger function in this network application triggers
the activity function each time a new so is obtained and
does not require any additional checks.

• Activity function: The activity function involves simple
insertion of a new per-flow forwarding rule for each new
flow based on the outcome of the reduction function.

VIII. CONCLUSION

We propose a novel framework, namely LOADER, to ad-
dress the limitation of stateful data planes in the presence of

non-local states at the switches in the definition of the net-
work applications. LOADER enables stateful switches to take
decisions based on information which is not locally available.
This is achieved by introducing a state replication mechanism
among the switches. We discuss the main practical design
challenges to support state replication, whose implementation
is validated using both P4 and OPP stateful data planes.

Furthermore, we provide a high-level programming ab-
straction for the development of distributed network appli-
cations based on replicated states. Our programming model
combines the expressiveness of a high-level programming
model without ignoring the underlying hardware architecture
of programmable switches. Thus, it is both of easy understand-
ing for the programmer and can provide a comprehensible
abstraction for the compilation and the embedding of network
applications.

By combining the proposed abstraction model with the
implementation of the replication mechanism, LOADER effec-
tively permits to support distributed network-wide applications
without involving any central entity. As our results show,
distributed network applications can be beneficial for the
network performance and can be efficiently implemented in
high-performance programmable stateful switches.
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APPENDIX

A. DDoS detection with LOADER

The DDoS detection application operates on a series of
network states related to the transit SYN packets on the edge
routers of the network (line 20). To filter the corresponding
ports and the type of packets the scope attribute is used
during the definition of the state which is passed a helper
function, namely extPortFilter. The reduction function
is simply defined as the sum of the states (line 26) through
a predefined primitive. The trigger function (line 32) simply
compares the outcome of the reduction function against a pre-
defined threshold R and invokes the activity function whenever
the condition is satisfied. The inconsistency level is defined as
time obsolescence with εt = 0.2ms (line 24) forcing state
replication to occur every 0.2ms. The activity function targets
all edge routers and acts by performing the notification of the
controller about the presence of an attack.

1 from Controller import TopologyManager
2 from LOADER.PrimitiveActions import Drop, StateSum, Rate
3 from LOADER.Scope import Pkt
4
5 def extPortFilter(devices):
6 extPorts = []
7 for d in devices:
8 extPorts += [p for p in d.getPorts() if p.Type==EXTERNAL]
9 return (Pkt.ingressPort in extPorts) and (Pkt.TCP.Flag.SYN ==

1)
10
11 R = 1000 # DDoS threshold in SYN pkts / s
12
13 # List of all edge routers
14 devices = TopologyManager.getEdgeRouters()
15 applicationStates = []
16
17 # Iterate over all edge routers
18 for i in range(devices):
19 # Create a state for each edge router
20 s = State(target=d,
21 scope=Rate(filter=Pkt(filter = extPortFilter([d]))))
22 applicationStates.append(s)
23
24 # Define the reduction function as the sum of application states
25 r = ReductionFunction(states=applicationStates,
26 operation=StateSum)
27
28 # Define the activity function to drop all incoming packets
29 a = ActivityFunction(target=devices, scope=Pkt(filter=

extPortFilter(devices)), action=Controller.Notify("DDoS
detected"))

30
31 # Define trigger function to perform probabilistic dropping
32 tr = TriggerFunction(s0=r.Result(),
33 trigger=r.Result()>R,
34 inconsistencyLevel=TimeObsolescence(0.2, "ms")
35 activity = a)

Listing 8: DDoS detection with LOADER

B. Distributed rate limiting with LOADER

The distributed rate limiting application is a variation of
the DDoS application. Notably, while the reduction function
remains invariant to the DDoS case, the states are defined
as the total amount of traffic going through the edge routers
(line 20). To perform rate limiting, the activity function (line
29) is defined to drop any incoming packet following the
activation of the trigger function. The trigger function is ran-
domly activated, with the probability of activating increasing
whenever the total incoming traffic approaches the predefined
target threshold R. As in the previous case the inconsistency
level is defined as time obsolescence with εt = 0.2ms.

1 from Controller import TopologyManager
2 from LOADER.PrimitiveActions import Drop, StateSum, Rate
3 from LOADER.Scope import Pkt
4
5 def extPortFilter(devices):
6 extPorts = []
7 for d in devices:
8 extPorts += [p for p in d.getPorts() if p.Type==EXTERNAL]
9 return Pkt.ingressPort in extPorts

10
11 R = 100**6 # Desired rate in bps
12
13 # List of all edge routers
14 devices = TopologyManager.getEdgeRouters()
15 applicationStates = []
16
17 # Iterate over all edge routers
18 for d in devices:
19 # Create a state for each edge router
20 s = State(target=d,
21 scope=Rate(filter=Pkt(filter=extPortFilter([d]))))
22 applicationStates.append(s)
23
24 # Define the reduction function as the sum of application states
25 r = ReductionFunction(states=applicationStates,
26 operation=StateSum)
27
28 # Define the activity function to drop all incoming packets
29 a = ActivityFunction(target=devices,
30 scope=Pkt(filter=extPortFilter(devices)),
31 action=Drop)
32
33 # Define trigger function to perform probabilistic dropping
34 tr = TriggerFunction(s0=r.Result(),
35 trigger=(rand()<(r.Result()-R)/r.Result()),
36 inconsistencyLevel=UpdateError(10),
37 activity = a)

Listing 9: Distributed rate limiting with LOADER
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1 from Controller import TopologyManager
2 from LOADER.PrimitiveActions import SetEgress, Rate, min, max
3 from LOADER.Scope import Pkt
4
5 # Filter for downlink ports (i.e. from spine to leaf)
6 def dlPortFilter(device):
7 return Pkt.getEgressPort() in [p for p in device.getPorts

() if p.Type == DOWNLINK]
8
9 # Filter for uplink ports (i.e. from leaf to spine)
10 def ulPortFilter(device):
11 return Pkt.getEgressPort() in [p for p in device.getPorts

() if p.Type == UPLINK]
12
13 # Reduction function for minimum path congestion
14 def minMaxCong(ulCong, dlCong):
15 dstLeaf = TopologyManager.getSpineID(Pkt.getDst())
16 return argmin([max(ulCong[i], dlCong[i][dstLeaf]) for i in

range(len(TopologyManager.getSpines()))])
17
18 l = TopologyManager.getLeafSwitches()[0]
19 spines = TopologyManager.getSpineSwitches()
20
21 dlCong = []
22 ulCong = []
23
24 for p in l.getPorts(filter = ulPortFilter):
25 s = State(target=l, scope=Rate(filter = Port(p)))
26 ulCong.append(s)
27
28 for sp in spines:
29 spineLoad = []
30 for p in sp.getPorts(filter = dlPortFilter):
31 s = State(target=sp, scope=Rate(filter = p))
32 spineLoad.append(s)
33 dlCong.append(spineLoad)
34
35 r = ReductionFunction(states=[ulCong, dlCong],
36 operation=minMaxCong)
37
38 a = ActivityFunction(
39 target = l,
40 scope = Pkt(filter = (Pkt.TCP.Flag.SYN == 1)),
41 action = insertRule(
42 match = Pkt.getTuple(),
43 action = SetEgress,
44 args = r.Result()))
45
46 tr = TriggerFunction(
47 s0=r.Result(),
48 inconsistencyLevel=UpdateError(10),
49 activity = a)

Listing 10: Link-aware load balancing with LOADER

C. Link-aware load balancing with LOADER

In link-aware load balancing for data center networks, the
objective is to find the least congested path from a given
source server to a destination one. The states are defined as
the congestion level on all uplink paths (line 25) and on the
corresponding downlink paths (line 31). The uplink paths are
considered by taking into account the set of leaf switches (line
18), while the downlink paths are taken over the spine switches
(line 19). We assume that the topology manager exposes the
appropriate methods to access the set of those switches. The
reduction function performs a minmax operation over all the
possible paths, thus leading to a path that minimizes the
maximum congestion on the uplink-downlink segment (lines
14-16). This kind of application presents a trigger function
which always returns true (lines 46-49). Consequently, the
activity function is always triggered. Since the scope of the
activity function targets all SYN packets (line 40), the activity
is executed whenever a new flow arrives. Whenever this
condition occurs, the activity function sets a new flow entry
by assigning the least congested path for the new flow (lines
41-44). Notably, in the scenario of data center networks the
load dynamics may change rapidly due to the presence of a
big amount of flows. For this reason the inconsistency level
is specified in the form of update error with εr = 10 writes
(line 48), leading to a more updated information at the cost
of potentially bigger synchronization traffic.


