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A hidden integral structure endows Absolute Concentration Robust

systems with resilience to dynamical concentration disturbances

Daniele Cappelletti∗, Ankit Gupta∗and Mustafa Khammash∗

Abstract

Biochemical systems that express certain chemical species of interest at the same level at any positive steady
state are called “absolute concentration robust” (ACR). These species behave in a stable, predictable way, in the
sense that their expression is robust with respect to sudden changes in the species concentration, provided that the
system reaches a (potentially new) positive steady state. Such a property has been proven to be of importance
in certain gene regulatory networks and signaling systems. In the present paper, we mathematically prove that
a well-known class of ACR systems studied by Shinar and Feinberg in 2010 hides an internal integral structure.
This structure confers these systems with a higher degree of robustness than was previously known. In particular,
disturbances much more general than sudden changes in the species concentrations can be rejected, and robust
perfect adaptation is achieved. Significantly, we show that these properties are maintained when the system is
interconnected with other chemical reaction networks. This key feature enables design of insulator devices that
are able to buffer the loading effect from downstream systems - a crucial requirement for modular circuit design
in synthetic biology. We further note that while the best performance of the insulators are achieved when these
act at a faster time scale than the upstream module (as typically required), it is not necessary for them to act on
a faster time scale than the downstream module in our construction.

1 Introduction

The network of chemical interactions of a biochemical system of interest can be complex and involve unknown reaction
propensities. One of the main goals of reaction network theory consists of deriving dynamical properties from simpler
graphical properties of the model, and independently of the specific value of kinetic parameters [22, 46]. The results
presented in this paper follow this approach.

A qualitative property of great interest is the capability of a certain chemical species to be expressed with the
same concentration at any positive steady state, independently of the initial conditions and of how many steady
states are present. Namely, assume that the dynamics of the biochemical system are expressed by the following
d−dimensional ordinary differential equation, which may have an infinite number of steady states

d

dt
x(t) = f(x(t)).

We say that the ith species is absolute concentration robust (ACR), if there exists an ACR value q independent of
the initial condition x(0) such that, whenever x(t) tends to a positive vector x, we have xi = q. In the typical cases
of interest, the positive steady state x that is reached will depend on the initial condition x(0), while the entry xi = q
does not. As noted in [5], the property of absolute concentration robustness alone does not imply stability of the
positive steady states: it only ensures that if a positive steady state x exists, then the value of the ACR species at x
is the ACR value. Under the assumption of stability, absolute concentration robustness provides a reliable, predictive
response to environmental changes, since the species of interest reaches the steady-state level corresponding to the
new environmental setting, regardless of the previous conditions. The existence and importance of this robustness
property for various gene regulatory networks and signal transduction cascades is explored in many papers, including
[1, 10–12, 36, 38, 40, 43, 44].

To achieve robustness with respect to some disturbance (in this case changes of initial conditions), the deviations
from the ACR value caused by the disturbance needs to be measured first. To this aim, a quantity of interest in the
Control Theory setting is the integrator, which is a function φ of the system variables whose derivative is exactly
the difference between the concentration of the ACR species and its ACR value. At steady state, the derivative of
φ is zero and so needs to be the distance from the ACR value. Unfortunately, in general such an integrator cannot
be found, as shown in Section 4.1 and as discussed in [47]. However, we will show that a more relaxed concept of
integrators can be fruitfully used in this setting.

In the present paper, we systematically study for the first time the connection between ACR systems and integra-
tors. Specifically, our first contribution is related to the existence of a linear combination of chemical species whose
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derivative is the difference between the ACR species and its ACR value, multiplied by a monomial. Such a linear
combination of species is called constrained integrator (CI), because it behaves similarly to an integrator given that
the monomial does not vanish [47]. We rigorously prove that such a linear CI always exists for a class of models that
strictly includes the ACR systems introduced in [41]. This result has some important consequences: first of all, under
the assumption of stability, it implies that the expression of ACR species is not only robust to changes in the initial
conditions, but also to disturbances that are applied over time.

An important application in Synthetic Biology concerns the design of insulators. A number of biochemical systems
are known to express a specific output if given a certain input. The systems can therefore be considered as modules
with different functions. In cells, different modules are combined so that more complex responses to external stimuli
become possible [30]. In Synthetic Biology, it is desirable to combine different modules to achieve the same level of
complexity [39]. However, when connected, the different modules can affect the dynamics of each other and they
can lose the desired dynamical properties they had when considered in isolation [17]. In a simplified framework, an
upstream module processes an input, and its output is fed to a second, downstream module to be further processed.
Since the information is passed in form of molecules, which are then consumed or temporarily sequestrated by the
downstream module, the equations governing the upstream module dynamics are perturbed and its functionality can
be affected. Such effect is commonly called loading effect [35] or retroactivity [17, 37], and needs to be minimized. In
other words, the upstream module needs to be insulated from the loading effect caused by the downstream module.
We propose two ways in which the robustness of the systems studied in this paper can be used to this aim. The
first solution is to simply design an upstream module which is robust to loading effects, modelled as a persistent
disturbance over time. The second solution is to design an extra component, called insulator, which transfers the
signal from the upstream module to the downstream module while at the same time shielding the dynamics of the
upstream module from retroactivity effects.

We will also show how more theoretical results on reaction network models can be obtained as a consequence
of our work. In Reaction Network Theory, the study of steady state invariants constitute an interesting topic of
research[18, 22, 33, 41]. In [41], it has been proven that certain graphical properties of the network imply the
existence of an ACR species, regardless of the choice of kinetic parameters. Such sufficient conditions are generalized
in the present work while they remain simple to check. Moreover, no way to explicitly determine the ACR value
was given in [41], and we fill the gap by proposing a fast linear method to calculate it. Furthermore, a substantial
effort in the Reaction Network community is devoted to understanding the conditions under which the dynamical
properties of single systems can be lifted to larger systems [9, 24, 25, 29, 32]. Notably, extensions of ACR systems
are addressed in [34]. Our contribution in this sense consists in proving that, under certain conditions, if an ACR
system of the class studied in this paper is part of a larger model, the ACR species is still ACR in the larger
system and its ACR value is maintained. Finally, it is worth mentioning that in the present work we consider the
possibility of time-dependent rates for the occurrence of chemical transformations. This is more general than what
is usually studied in Reaction Network Theory, with the exception of few works explicitly allowing for this scenario
[2, 13, 14, 16, 28, 31].

2 Examples of ACR systems

2.1 An illustrative example

Consider two proteins A and B, whose interaction is described by

A+B
κ1

2B

B
κ2

A

(1)

where the positive constants κ1 and κ2 describe the propensity of a reaction to occur. If enough proteins are present
and they are homogeneously spread in space, then a good model for the time evolution of the concentrations of
proteins A and B is given by mass-action kinetics. Specifically, the concentrations of A and B at time t, denoted by
xA(t) and xB(t) respectively, are assumed to solve

d

dt

(
xA(t)
xB(t)

)
= κ1xA(t)xB(t)

(
−1
1

)
+ κ2xB(t)

(
1
−1

)
. (2)

It is easy to check that the steady states of (2) are given by states (xA, xB) such that either xB = 0 or xA = κ2/κ1.
Hence, A is an ACR species because its expression at any positive steady state is the same. It is common during
biochemical experiments to be able to control the inflow rate of some species (say B). Some additional chemical
species may also be introduced, with the purpose of degrading some of the present components (in this case, species
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C is introduced to faster degrade species B). After these modifications, (1) becomes

A+B
κ1

2B

0
u1(t)

B
κ2

A

0
u2(t)

κ3
C

C +B
κ4

0

(3)

Since we still have
d

dt
xA(t) = −κ1xB(t)

(
xA(t)− κ2

κ1

)
,

it is still true that the value of xA(t) will converge to κ2/κ1, as long as the functions u1, u2 and the rates κ3, κ4 are
such that the concentration of the species B is not driven to 0. In this paper we will prove a general result describing
when such kind of robustness to persistent perturbations is present for ACR systems.

2.2 EnvZ-OmpR osmoregulatory system

Consider the mass-action system described in Figure 1. The model is proposed and studied in [41, 42] as osmoreg-
ulatory system in Escherichia Coli. It is in accordance with experimental observations discussed in [11, 38, 44].
According to the model, whose schematics is described in Figure 1, the activation rate of the sensor-transmitter
protein EnvZ depends on the medium osmolarity. Then, an active form of EnvZ transfers its phosphoryl group to
the sensory response protein OmpR, which becomes OmpR-P and promotes the production of the outer membrane
porins OmpF and OmpC. Hence, it is important that the concentration of OmpR-P responds in a reliable, predictive
way to changes in the medium osmolarity (which the rate constants κi in the reaction network of Figure 1 depend
upon), but not on the initial concentration of the different chemical species involved. As a matter of fact, it is shown
in [41] that OmpR-P is an ACR species, as a consequence of the theory developed in the paper.

EnvZ-D
κ1

κ2[ADP]
EnvZ

κ3[ATP]

κ4
EnvZ-T

κ5
EnvZ-P

EnvZ-P + OmpR
κ6
κ7

EnvZ-OmpR-P
κ8

EnvZ + OmpR-P

EnvZ-D + OmpR-P
κ9
κ10

EnvZ-OmpR-D-P
κ11

EnvZ-D + OmpR

Figure 1: Proposed model for the EnvZ-OmpR signal transduction system in Escherichia Coli, which is able to explain
the experimentally observed robustness in the expression of phosphorylated OmpR. In the first line of reactions, EnvZ
can bind to ADP and ATP, but only when bound to ATP it can gain a phosphoryl group, and the resulting species
is denoted by EnvZ-P. In the second line of reactions, EnvZ-P transfers the phosphoryl group to OmpR, through the
formation of an intermediate complex. In the last line of reactions, the phosphoryl group is removed from OmpR-P
through the action of EnvZ-D. The concentration of ATP and ADP is assumed to be maintained constant in time.

3 Necessary terminology and known results

In order to present the theory we develop, we first need to introduce some terminology. The linear combinations of
chemical species appearing on either side of the chemical reactions of interest are called complexes, in accordance
with the Reaction Network Theory literature. Be aware that the word “complex” has usually a different meaning in
the Biology literature. We denote by m the number of complexes present in the network, and by d the number of
chemical species. As an example, the complexes of (1) are A+B, 2B, B, and A. Here, d = 2 and m = 4. In (3) the
complexes are A+B, 2B, 0, B, A, C, and C+B, hence d = 3 and m = 7. Finally, in the system depicted in Figure 1
d = 8 and m = 10. Since a complex is a linear combination of species, each complex can be regarded as a vector of
length d. For example, for the model (1) we can consider A + B as (1, 1), 2B as (0, 2), B as (0, 1), and finally A as
(1, 0). With this in mind, we can define the stoichiometric subspace as

S = spanR{yj − yi : there is a reaction from yi to yj},
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where yn denotes the nth complex, for all 1 ≤ n ≤ m. For example, for (1) we have

S = spanR

{(
−1
1

)
,

(
1
−1

)}
= spanR

{(
−1
1

)}
.

For (3), we have S = R3.
In the most general formulation of reaction systems, a (time-dependent) rate function λij is associated with the

reaction from the ith to the jth complex of the network, and the concentration vector of the different chemical species
is assumed to solve the differential equation

d

dt
x(t) =

∑
1≤i,j≤m

(yj − yi)λij(x(t), t), (4)

where if a reaction from the ith to the jth complex does not exist, then λij is the zero function. Note that (4) simply
sums the contributions to the dynamics given by the different chemical reactions. Since the derivative in (4) is an
element of S at all times, every solution to (4) is necessarily confined within a translation of S. If for all non-zero
propensities λij there exists a positive constant κij such that

λij(x(t), t) = κij

d∏
l=1

xl(t)
yil ,

then the model is a mass-action system. In this case, (4) can be written as

d

dt
x(t) = Y A(κ)Λ(x(t)), (5)

where Y is a d×m matrix whose ith column is yi, A(κ) is a m×m matrix given by

A(κ)ij =

{
κji if i 6= j

−
∑m
l=1 κil if i = j

and Λ(x(t)) is a vector of length m whose ith entry is
∏d
l=1 xl(t)

yil . Examples of mass-action systems are (1) and
the model in Figure 1.

A directed graph can be associated with a reaction network, where the nodes are given by the complexes and the
directed edges are given by the reactions. Such a graph is called reaction graph. As an example, (1) is a reaction
graph, while (3) is not because the complex 0 is repeated. The reaction graph corresponding to (3) is

A+B
κ1

2B

C +B
κ4

0
u1(t)

B
κ2

A

u2(t)κ3

C

(6)

We denote by ` the number of connected components of the reaction graph associated with the network. For both
networks (1) and (3) ` = 2, as for the EnvZ-OmpR osmoregulatory system of Figure 1 we have ` = 3. Then, we
define the deficiency of a network as

δ = m− `− dimS.

The deficiency of a network has important geometric interpretation, and a collection of classical deficiency theory
results can be found in [21]. The deficiency of (1) is δ = 4− 2− 1 = 1, and the deficiency of (3) is δ = 7− 2− 3 = 2.
Similarly, it can be checked that the deficiency of the EnvZ-OmpR osmoregulatory system in Figure 1 is 1.

Finally, we say that a complex y is terminal if for all paths in the reaction graph leading from y to another
complex y′, there is a path leading from y′ to y. If a complex is not terminal, then it is called non-terminal. As an
example, the only terminal complexes for (1) and (3) are 2B and A.

We recall that a species is said to be absolute concentration robust (ACR) if its concentration at any positive
steady state of (4) is the same. We are ready to state the following result, as presented in [41].

Theorem 3.1. Consider a mass-action system, and assume the following holds:

1. there are two non-terminal complexes yi and yj such that only one entry of yj − yi is non-zero;
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2. the deficiency is 1.

3. a positive steady state exists.

Then, the species corresponding to the non-zero entry of yj − yi is ACR.

Note that a stronger version of Theorem 3.1 is proven in [41], which detects more general steady state invariants
than the steady state concentration of a single species. The stronger version is stated in the Supplementary Material
as Theorem B.3, and an extension of it is proven in the present work.

The model (1) has deficiency 1, as already observed, has at least one positive steady state and the non-terminal
complexes A + B and B differ only for the species A. Hence, Theorem 3.1 applies and A is ACR. It is shown in
[41] that the EnvZ-OmpR osmoregulatory system in Figure 1 also fulfils the hypothesis of Theorem 3.1, with the
non-terminal complexes EnvZ-D and EnvZ-D+OmpR-P only differing for the species OmpR-P. As a consequence,
OmpR-P is ACR. In Section 4.2 we will develop a method to explicitly calculate the ACR value through symbolic
linear algebra. We note that Theorem 3.1 cannot be applied to (3) for two reasons: the model is not a mass-action
system unless u1(t) and u2(t) are constant, and its deficiency is 2.

As noted in [5], the positive steady states of a system with an ACR species are not necessarily stable. However, as
a consequence of the present work (more precisely, as a consequence of Theorem 5.1 with u being the zero function),
we know the following: if a mass-action system as in Theorem 3.1 has an unstable positive steady state, then either the
system oscillates around it, or some chemical species is completely consumed, or some chemical species is indefinitely
produced. We give here the formal definition of “oscillation”, as intended in this paper.

Definition 3.1. We say that a function g : R≥0 → R oscillates around a value q ∈ R if for each t ∈ R≥0 there exist
t+ > t and t− > t such that

g(t+) > q and g(t−) < q.

4 A linear constrained integrator

4.1 Control Theory background

In Control Theory, the focus is usually on systems of differential equations of the form

d

dt
x(t) = f(x(t), u(t)), (7)

where x : R≥0 → Rnx and u : R≥0 → Rnu for some nx, nu ∈ Z>0, and f is a continuous function , such that (7) has
a unique global solution for a set of initial conditions and a family of functions u of interest. The function u is called
the input of the system. Furthermore, a quantity of the form z(t) = a(x(t)) is of interest, where a is a differentiable
function with a : Rnx → Rnz , for some nz ∈ Z>0. The function z is called the output of the system. In the usual
setting, one needs to find an appropriate function u such that z is close to a desired level z ∈ Rnz , either on average or
for t→∞. To this aim, the existence of a differentiable function φ : Rnx → R such that for all considered solutions
x

d

dt
φ(x(t)) = z(t)− z

is of high importance, and is called an integrator. The name derives from φ(x(t)) being the integral of the error that
needs to be controlled:

φ(x(t)) = φ(x(0)) +

∫ t

0

(z(s)− z)ds.

If the function is fed back to the system and is used to tune the input, then an integral action or integral feedback
is in place [8, 19]. One of the main features of an integrator is that the derivative of φ(x(t)) is zero if and only if
z(t) = z. If a function φ̃ : Rnx → R satisfies

d

dt
φ̃(x(t)) = r(x(t))

(
z(t)− z

)
(8)

for some differentiable function r : Rnx → R, then φ̃ is called a constrained integrator (CI) [47]. The name derives
from the fact that the derivative of φ̃(x(t)) is zero if and only if z(t) = z, provided that r(x(t)) 6= 0. In biology, it is
common to find CIs, and the condition r(x(t)) 6= 0 is usually implied by x(t) 6= 0 [47]. Note that in [47] an explicit
distinction between integrators and integral feedbacks is not made.

In the setting of systems with ACR species, the output z can be considered to be (a power of) the concentration
of the ACR species over time, and z can be their ACR values. In (1), z(t) = xA(t) and z = κ2/κ1. A CI (as noted
in [47]) is given by φ̃(x(t)) = xB(t), since

d

dt
xB(t) = κ1xB(t)

(
xA(t)− κ2

κ1

)
.
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The question of whether an integrator exists can be quickly answered in negative, because any point of the form
(xA, 0) is a steady state. If an integrator φ existed, then by choosing x(0) = (xA, 0) we would have

0 =
d

dt
φ(x(t)) = xA −

κ2
κ1
,

which cannot hold except for a specific value of xA. An integrator may still exist in a weaker sense, if we restrict its
domain. For example, in this case the function φ̂(x(t)) = 1

κ1
log xB(t) would be an integrator, in the sense that if

xB(t) > 0 then
d

dt
φ̂(x(t)) =

1

κ1xB(t)

(
κ1xB(t)

(
xA(t)− κ2

κ1

))
= xA(t)− κ2

κ1
.

However, the domain of φ̂ is not the entire R2. Finally, since linear functions could always be extended continuously
to the boundaries of R2

>0, a linear integrator cannot exist for (1) even if its domain is restricted.

4.2 Existence and characterization

We state here our result concerning linear CIs. A stronger version is proved in the Supplementary Material. The
result is inspired by the analysis carried on in [41], which is here expanded along lines similar to those of [33].

Our goal is to find a linear function φ̃ : Rd → R of the form φ̃(x) = 〈γ̂, x〉 satisfying (8) with z(t) being some
power of the ACR species, where 〈·, ·〉 is the standard scalar product. For any n × l real matrix M and real vector
v of length n, we denote by (M |v) the n× l + 1 matrix obtained by adding the column v at the right of the matrix
M . We further denote by ek the kth vector in the canonical basis of Rm, whose kth component is 1 and whose other
components are 0. If the complexes yi and yj only differ in the nth component, and γ ∈ Rd+1 satisfies(

A(κ)>Y > | ei
)
γ = ej ,

then if we denote by γ̂ the projection onto the first d components of γ and if the system is mass-action, it follows
from (5) that

d

dt
〈γ̂, x(t)〉 = γ̂>Y A(κ)Λ(x(t)) = Λj(x(t))− γd+1Λi(x(t)) = x(t)yi

(
xn(t)(yj−yi)n − γd+1

)
.

Hence, at any positive steady state xn = γ
1/(yj−yi)n
d+1 , implying that the nth species is ACR. Moreover, the function

φ̃(x) = 〈γ̂, x〉 is the CI we were looking for.
Inspired by the above analysis we focus on the study of the set

Γij(κ) =
{
γ ∈ Rd+1 :

(
A(κ)>Y > | ei

)
γ = ej

}
, (9)

for 1 ≤ i, j ≤ m. The projection of Γij(κ) onto the first d coordinates, denoted by Γ̂ij(κ), will also be of interest as
its elements are linear CIs. We state this in the following result, a more general version of which is proven in the
Supplementary Material:

Theorem 4.1. Consider a mass-action system. Assume that there are two complexes yi and yj only differing in the
nth entry, and that Γij(κ) is non-empty. Let γ ∈ Γij(κ), and define

q = γ
1

(yj−yi)n

d+1 .

Then, either no positive steady state exists or the nth species is ACR with ACR value q. Moreover,

φ(x) =

d∑
i=1

βixi

is a linear CI with
d

dt
φ(x(t)) = Λi(x(t))

(
xn(t)(yj−yi)n − q(yj−yi)n

)
for any initial condition x(0) if and only if β ∈ Γ̂ij(κ).

Note that if γ ∈ Γij(κ), then the vector v = ej − γd+1ei is in the rowspan of Y A(κ), because A(κ)>Y >γ̂ = v. As
such, v is an example of “complex linear invariant on the complexes yi and yj”, as introduced in [33]. We follow a
slightly different approach than in [33], since we do not only care about the steady state invariants, but also aim to
calculate the CIs given by the set Γ̂ij(κ), which can be considered as the preimage of v via Y A(κ). However, methods
discussed in [33] can still be fruitfully used to quickly decide whether Γij(κ) is empty, and to efficiently calculate the
ACR value encoded in γd+1. As an example we state the following result, which is an immediate consequence of [33,
Proposition 1]:

6



Theorem 4.2. Let N be the matrix obtained by removing the ith and the jth column from Y A(κ). Then, Γij(κ) is
non-empty if and only if rankY A(κ) > rankN .

The set Γij(κ) can be calculated with symbolic linear algebra. Moreover, if ξ ∈ Γ̂ij(κ) then necessarily

{ξ + w : w ∈ S⊥} ⊆ Γ̂ij(κ). (10)

Hence, Γ̂ij(κ) is connected with S⊥, which is a set easily described by linear algebra and independent on the rate

functions. The reason for (10) is perhaps clearer if Γ̂ij(κ) is regarded to as a preimage via Y A(κ), as discussed above,
since the columns of Y A(κ) are in S. A formal proof of (10) is given in the Supplementary Material, where we will
also give sufficient conditions under which the inclusion is an equality.

As a concrete example, consider the model in Figure 1. Using Matlab, we quickly obtain that a vector ξ is in
Γ18(κ), with

ξ9 =
κ1κ3κ5(κ10 + κ11)[ATP]

κ2(κ4 + κ5)κ9κ11[ADP]
, (11)

and it is shown in the Supplementary Material that

Γ̂18(κ) =


ξ̂ +



w1

w1

w1

w1

0
w1

0
w1


+



0
0
0
0
w2

w2

w2

w2


: w1, w2 ∈ R


, (12)

where ξ̂ is the projection of ξ onto its first d = 8 coordinates.
The family of models we study in this paper concerns reaction systems with two complexes yi and yj differing

in just one entry, for which Γ̂ij(κ) is non-empty. The following result shows that such a family includes the models
studied in [41]. The result has been already discussed in [33, Section 2.4] with a different formulation, and its proof
is basically already present in the proof of the main result of [41]. However, for the sake of clarity we propose a proof
with the notations of the present paper in the Supplementary Material.

Theorem 4.3. Consider a mass-action system, and assume the following holds:

1. there are two non-terminal complexes yi and yj such that only one entry of yj − yi is non-zero;

2. the deficiency is 1.

3. a positive steady state exists.

Then, Γij(κ) is non-empty.

As an example of application, we know already from direct calculation that for the EnvZ-OmpR signaling system
the set Γ18(κ) is non-empty. However, we could have also derived this information from Theorem 4.3, without
explicitly calculating it.

We note here that the converse of Theorem 4.3 does not hold. We show this with an example of a multisite
phosphorylation signaling system in the Supplementary Material (see Fig. 6), which does not fall in the setting of
[41] but for which we are able to prove absolute concentration robustness regardless of the choice of rate constants,
as long as a positive steady state exists. Notably, we are also able to derive information on when this occurs without
working directly with the differential equation. As a consequence of this example, the family of models we analyze is
proven to be strictly larger than that studied in [41].

A first interesting consequence of Theorem 4.1 is that the ACR value of the mass-action systems satisfying the
assumption of the theorem can be calculated by finding at least one element of Γij(κ), and this can be done via a simple
symbolic linear algebra calculation. As an example, consider the EnvZ-OmpR osmoregulatory system in Figure 1.
Then, Theorem 4.1 implies that the ACR value of OmpR-P is the value given in (11). This value is in accordance
with the one found in the Supplementary Material of [41], however we found it by calculating a single element in the
preimage of a matrix, as opposed to working with the rather complicated differential equation associated with the
model. An even more involved examples is dealt with in the Supplementary Material.

The existence of a linear CI given by Theorem 4.1 is essential to develop the results presented in the next sections.
Before unveiling the consequences of Theorem 4.1 in terms of disturbance rejection, however, it is important to stress
that a CI does not necessarily constitute a feedback, as one may be tempted to think. Consider

A+B
κ1

A
κ2
κ3

0

B
κ4

2B
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with κ1κ3 = κ2κ4. It can be shown that the system satisfies the conditions of Theorems 3.1 and 4.3, with the non-
terminal complexes A+B and A differing only in species A. Hence, A is ACR and the assumptions of Theorem 4.1
hold. A linear CI as in Theorem 4.1 is given by φ(x) = −xB/κ1, since for this choice

d

dt
φ(x(t)) = xB(t)

(
xA(t)− κ4

κ1

)
.

However, the quantity φ(x(t)) does not regulate the dynamics of A, since

d

dt
xA(t) = κ2 − κ3xA(t)

does not depend on xB(t). Since in this case the CI is not acting on the system, it is not surprising that the existence
of positive steady states is lost as soon as κ1κ3 6= κ2κ4.

It is also worth mentioning that not all systems with ACR species have a linear CI: consider the mass-action
system

A+B
κ1

B + C
κ2
κ3

2B

B
κ4
κ5

2E
κ6

2D

C
κ7

A

D
κ8

E

The model is considered in [3], where it is proven that the species A is ACR. We show in the Supplementary Material
that there exists no linear function φ whose derivative at time t is of the form r(x(t))(xA(t)γ−q), for some polynomial
r and some real numbers γ, q. Note that in this case Theorem 4.3 does not apply because the deficiency of the network
is 2.

5 Rejection of persistent disturbances

5.1 The result

We state an important consequence of Theorem 4.1, a stronger version of which is proven in the Supplementary
Material:

Theorem 5.1. Consider a mass-action system with d species, with associated differential equation

d

dt
x(t) = f(x(t)).

Assume that there are two complexes yi and yj only differing in the nth entry, and that Γ̂ij(κ) is non-empty. Let q
be the ACR value of the nth species. Consider an arbitrary function u with image in Rd such that a solution to

d

dt
x̃(t) = f(x̃(t)) + u(x̃(t), t)

exists. Assume that there exists a γ̂ ∈ Γ̂ij(κ) which is orthogonal to the vector u(x, t) for any x, t. Then, for any
initial condition x̃(0), at least one of the following holds:

(a) the concentration of some species goes to 0 or infinity, along some sequence of time points;

(b) x̃n(t) oscillates around q and γ̂k 6= 0 for some k 6= n;

(c) the integral ∫ ∞
t

|x̃n(s)− q|ds

tends to 0, as t goes to infinity.

The result implies that if a disturbance orthogonal to a vector γ̂ ∈ Γ̂ij(κ) is applied over time, then, at most,
the ACR species can be forced to oscillate around its original ACR value, but it cannot be forced to attain another
steady-state level without causing extinction or overexpression of the chemical species present. We analyze the power
of Theorem 5.1 by showing some examples of applications.
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Example 5.1. Consider the mass-action system (1), which fulfills the assumptions of Theorem 5.1 as already observed.
Assume the complexes are ordered as A + B, 2B, B, and A, and the species are ordered alphabetically as A, B.
Hence, the two non-terminal complexes differing in the ACR species A are the 1st and the 3rd, and it is shown in
the Supplementary Material that

Γ̂13(κ) =

{(
0
1

)
+

(
w
w

)
: w ∈ R

}
. (13)

Hence, by choosing w = −1, we have that (
−1
0

)
∈ Γ̂13(κ). (14)

This vector is clearly orthogonal to any disturbance acting on the production and degradation rates of the species B.
Hence, it follows that the stability and the ACR value of the species A is maintained in (3), provided that no species
is completely removed or indefinitely expressed. Specifically, since the entry of (14) corresponding to B is zero, it
follows from Theorem 5.1 that if all the species concentrations are bounded from below and from above by positive
quantities, necessarily the concentration of the species A converges to its ACR value as t goes to infinity, despite the
disturbances.

Example 5.2 (EnvZ-OmpR osmoregulatory system). Consider the osmoregulatory system in Figure 1, whose features
have already been discussed in the paper. In particular, we know the species OmpR-P is ACR with ACR value (11).
Recall that we ordered the complexes such that the two non-terminal ones differing in OmpR-P are the 1st and the
8th. It follows from (12) that for any chemical species, there is a vector in Γ̂18(κ) with the corresponding entry
equal to 0. It follows that even if the production and degradation of any chemical species in the model is tampered
with, the stability and the ACR value of the species OmpR-P are maintained, in the sense described by Theorem 5.1.

We can push the disturbances further. By appropriately choosing w1 and w2 in (12), we can see that there is vector
in Γ̂18(κ) whose entries corresponding to the species OmpR and EnvZ are both 0. Hence, it follows by Theorem 5.1
that by tampering with the production and degradation rates of both these species over time, if no extinction and
no overexpression occurs, then the concentration of OmpR-P still converges to the value (11), or oscillates around it.

As a final remark, we note that (10) can be useful in determining whether a vector in Γij(κ) exists, with a specific
component equal to 0, say the nth one. In fact, the existence of such a vector can be deduced without calculations,
if there is a vector w ∈ S⊥ whose nth component is different from 0.

5.2 Insulating properties

Here we discuss how the theory we developed can be utilized to design ACR modules that serve as effective insulators
in mitigating the problem of retroactivity in Synthetic Biology. As explained in the Introduction, the loading effects
caused by a downstream biochemical module can disrupt the functionality of upstream modules (see Figure 4 for a
concrete example), which prevents the implementation of biochemical circuits by interconnecting biochemical mod-
ules with different functions [17]. Our results indicate that certain ACR systems are remarkably tolerant, and the
ACR species maintains its ACR value even in the presence of arbitrary time-varying disturbances. We exploit this
property to show that insulator ACR modules can be designed to provide inputs to the downstream modules while
robustly mirroring the key functional property of upstream modules. In other words, the loading effects generated by
downstream modules are rejected by the ACR insulator, facilitating modularity. We now explore this idea in greater
detail and present an illustrative example.

Assume that a mass-action system has two complexes yi and yj , that are only different in the nth component,

which corresponds to the species X. Assume further that Γ̂ij(κ) is non-empty and that a positive steady state exists.
Hence, the species X is ACR, with some ACR value q. It further follows from Theorem 5.1 that, if there exists
γ̂ ∈ Γ̂ij(κ) with γ̂n = 0, then the production and degradation rates of the species X can be arbitrarily perturbed over
time by an arbitrary function u, without compromising its robustness. Specifically, if the perturbed system is stable
and no chemical species is completely consumed, then the concentration of X will still converge to the same ACR value
q as in the original mass-action system. We can consider the perturbation u as the loading effect of a downstream
module whose input is the concentration of species X. In this case, the loading effect on the original system is
rejected and the concentration of X is maintained at a desired level q at steady state. Further, the concentration
of X is maintained approximately constant in the transient dynamics as well, if we assume as done in [17] that a
separation of dynamics time scale is in place. Specifically, assume

d

dt
x̃(t) =

1

ε
f(x̃(t)) + u(x̃(t), t)en,

for some small ε > 0, with f(x̃(t)) and u(x̃(t), t) being of the same order of magnitude. Under the assumption of
stability, if ε is very small then the perturbed system will quickly approach the slow manifold defined by

0 = f(x̃(t)),
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hence the concentration of X is constantly equal to its ACR value. Finally and perhaps more importantly, if part of
the disturbance acts on the same time scale as the system, that is if

d

dt
x̃(t) =

1

ε
(f(x̃(t)) + u(x̃(t), t)en) + u′(x̃(t), t)en,

with f(x̃(t)), u(x̃(t), t), and u(x̃(t), t) being of the same order of magnitude, then the slow manifold

0 = f(x̃(t)) + ut(x̃(t))en,

is quickly approached, where ut is a function from Rd to Rd defined by ut(x) = u(x, t). By Theorem 5.1 applied to
the disturbance ut, the species X assumes its ACR value at any positive point of the slow manifold, which is exactly
what we wanted.

As an illustrative example consider the EnvZ-OmpR osmoregulatory system in Figure 1. It follows from (12) that
there exists γ̂ ∈ Γ18(κ) with a zero in the entry corresponding to the ACR species OmpR-P. Hence, the production
and degradation rates of OmpR-P can be arbitrarily changed over time, without altering its robustness property, in
the sense described by Theorem 5.1. As observed, the statement still holds true if the perturbation is originated by a
downstream module that acts on OmpR-P. Hence, the EnvZ-OmpR osmoregulatory system can be used to maintain
the expression of OmpR-P at a desired level, which depends on the input rate constants, even if the species OmpR-P
is used by a downstream module. Moreover, if the osmoregulatory system acts on a fast enough time scale, the
concentration of the species OmpR-P is approximately maintained at the target level at any time point. Note that
this analysis holds true provided that the disturbed system converges to a positive steady state, which should be
checked separately. In Figure 2, a diagram describing this situation is proposed.

EnvZ-OmpR system

Downstream module

κ

OmpR-POmpR-P

g(OmpR-P)

Figure 2: Proposed use of the EnvZ-OmpR signal transduction system of Figure 1 as a controller of a downstream
module utilizing OmpR-P. The concentration of OmpR-P is regulated by the EnvZ-OmpR signaling system, with
steady state given by (11). The steady state can be adjusted by modifying the parameters κij of the EnvZ-OmpR
signaling system (which depend on the medium osmolarity) or the ratio between ADP and ATP present. The
output of the downstream module is a function g of the concentration of OmpR-P, which is received as an input.

Consider now the case were an upstream module is affected by loading effects. We show how the theory developed
in this paper can be used to design an insulator. Assume that the upstream module accepts u(t) as an input, and
modulates the concentration of the species A? accordingly. The species A? is then used by a downstream module,
which returns a function of the concentration of A? as output. The action of the downstream module on the species A?

causes a loading effect on the upstream module. To reduce the loading effects we propose to modify the downstream
module such that it acts on a species A rather than on the species A?, and to include in the system the following
module, where B is a species that is not used by neither the upstream nor the downstream module:

A+B
κ1

2B

A? +B
κ2

A? +A.

(15)

Assume the system is stable and that the species B is not completely consumed. Then, at steady state the concen-
tration level of A? is fixed, and the concentration of the ACR species A will converge to its ACR value κ2xA?/κ1
regardless of any disturbance applied to the production and degradation rate of A. In fact, a linear CI as in the
statement of Theorem 4.1 is given by φ(x) = xB/κ1, and at any time point

d

dt
φ(x(t)) = xB(t)

(
xA(t)− κ2

κ1
xA?(t)

)
. (16)
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Upstream module

Insulator

A+B
κ1

2B

A? +B
κ2

A? +A

Downstream module

u(t)

A? (not changed
by the insulator)

κ1, κ2, xB(0)

A ≈ κ2A
?

κ1

A (changed by down-
stream module)

g(A)

Figure 3: The upstream module expresses the chemical species A? as output. The insulator transfers a multiple
of the signal from the upstream module to the downstream module, which is modified to accept as an input the
concentration of A rather than the concentration of A?.

We further note that if the dynamics of (15) occurs on a faster time scale than the upstream module (not necessarily
of the downstream module), then a slow manifold is quickly approached were the concentration of the species A
is maintained at the level κ2xA?(t)/κ1 at any time point. In this case, the module (15) approximately outputs a
multiple of the concentration of A? over the whole time line. The multiplicative constant can be tuned through the
parameters κ1 and κ2, as well as the time scale that (15) operates in. The time scale can be further tuned via the
concentration of B, as it also follows from (16). In conclusion, the downstream module receives as an input a good
approximation of a multiple of the concentration of A?, and its activity does not affect the upstream module, nor
(15). Moreover, (15) does not affect the upstream module at all, since the species A appears in (15) as a catalyst and
is not changed in the catalysed reaction. The proposed insulating strategy is illustrated in Figure 3, and it is applied
to an example discussed in [17] in Figure 4.

5.3 Inclusion in larger systems

In the previous section, we have seen how the absolute concentration robustness and the related stability properties
can be transferred to a larger model that is not necessarily mass-action. The larger system may include further
chemical transformations and external inputs , whose dynamics may be partly unknown. If seen under a different
perspective, this result allows us to further extend the set of sufficient conditions of Theorem 3.1 that imply the
existence of an ACR species , in the sense of Theorem 5.2 below. Before stating the precise result, which is a
consequence of Theorem 4.1, we need a definition: Given a reaction system S , we say that S ′ is a sub-system of
S if it can be obtained from S by cancelling some reactions, and if the choice of rate functions for the remaining
reactions is maintained. Moreover, if S and S ′ have d and d′ species, respectively, we let π : Rd → Rd′ be the
projection onto the species of S ′. The following holds:

Corollary 5.2. Consider a reaction system S , and let S ′ be a sub-system. Assume that S ′ is a mass-action system
with two complexes π(yi) and π(yj) only differing in the entry corresponding to the species X, and for which Γ̂ij(κ)

is non-empty. Moreover, assume there exists γ̂ ∈ Γ̂ij(κ) such that π(yl − yk) is orthogonal to γ̂ for all yk → yl that
are reactions of S but not reactions of S ′. Then, the species X is ACR for both S and S ′, with the same ACR
value.

The proof of a stronger result is in the Supplementary Material. Here we illustrate how the corollary can be
applied in the case of EnvZ-OmpR signaling system , where we extend the model with reactions whose kinetics is
not completely known, and in particular is not required to be of mass-action type. Consider the reaction system S
described in Figure 5, which includes the EnvZ-OmpR osmoregulation system described in Figure 1 as a sub-system.
We assume that a protein can misfold when the phosphoryl group is transferred from EnvZ to OmpR. Such misfold
can be corrected by chaperones, which are proteins assisting the conformational folding of other proteins. We can
realistically assume chaperones are independently produced and degraded through an unknown mechanism that does
not involve EnvZ or OmpR proteins. We also allow for an arbitrary and persistent external control on the expression
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Isolated systems (with xA?(t) = xA?(t))

0
u(t)

0.01
A?

A
?

+ P
10
10

C

u(t) xA?(t)

xA?(t) xC(t)

Coupled systems

0
u(t)

0.01
A?

A? + P
10
10

C

u(t)

xA?(t)

xC(t)

Insulated system

0
u(t)

0.01
A?

A+B
0.1

2B

A? +B
0.1

A? +A

A+ P
10
10

C

u(t)

xA?(t)

xA(t)

xC(t)

Figure 4: In the example, we let u(t) = 0.04(1 + sin(0.005t)) and xA?(0) = 5. All the rates are in 1/min. The ODE
solution is calculated in Matlab with ode23s. In the first panel, the two systems are considered in isolation, with the
assumption that the concentration of the species A

?
is maintained at the same level as the concentration of species

A?, at any time point. In the second panel, the two systems are linked together, and the species A? is directly used
by the downstream system. The dynamics are completely disrupted by the loading effects, a plot of the absolute
value of the difference of the two solutions over time is proposed. In the third panel, the insulator of Figure 3 is
utilized, with xA(0) = 0 and xB(0) = 20. The loading effect are practically removed, despite the choice of low rate
constants 0.1. Notably, with this choice the insulator acts on a faster time scale than the upstream module, but on
the same time scale as the downstream module. The difference of the concentration of C between the solution of
insulated system and the solution of the isolated systems spikes quickly to 40, but it decreases to less than 0.5 within
10 minutes, after which is maintained low as illustrated in the second plot of the third panel.

level of EnvZ sensor-transmitter protein. Finally, we consider the utilization of OmpR-P as transcription regulatory
protein of the outer membrane porins OmpF and OmpC. For our purposes, we assume the details of the transcription
mechanism are not known, but that only the protein Ompr-P is involved in the process. As previously done, let the
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complexes of the EnvZ-OmpR osmoregulation system be ordered from left to right and from top to bottom, such
that EnvZ-D and EnvZ-D+OmpR-P are the 1st and the 8th complex, respectively. Also, let the species be ordered
according to their appearance from left to right and from top to bottom, as EnvZ-D, EnvZ, EnvZ-T, EnvZ-P, OmpR,
EnvZ-OmpR-P, OmpR-P, EnvZ-OmpR-D-P. In particular, EnvZ is the second species, EnvZ-OmpR-P is the sixth
species, and OmprR-P is the seventh species. It follows from (12) that, by choosing w1 = −ξ2 and w2 = −ξ7 = 0, a

vector ζ̂ is in Γ̂18(κ) with:

1. ζ̂2 = ξ̂2 + w1 = 0;

2. ζ̂6 − ζ̂2 = ξ̂6 + w1 + w2 − ξ̂2 − w1 = ξ̂6 − ξ̂2 = 0;

3. ζ̂7 = ξ̂7 + w2 = 0.

Denote by Ek the vector of Rd with the kth entry equal to 1 and the other entries equal to zero. The following holds.

Misfolding of OmpR-P. The projection of the difference between EnvZ + OmpR?-P and EnvZ-OmpR-P onto the
species of the EnvZ-OmpR signaling system is E2 − E6, which is orthogonal to ζ̂ by 2. The projection of the
difference between OmpR-P + C and OmpR?-P + C is E7, which is orthogonal to ζ̂ by 3.

Production and degradation of chaperones. By assumption, any chemical reaction y → y′ involved in the production
and degradation of chaperones does not consume or produce any chemical species of the EnvZ-OmpR signaling
system. Hence, π(y′ − y) = 0, which is orthogonal to ζ̂.

External regulation of EnvZ. The difference between EnvZ and 0 is ±E2, which is orthogonal to ζ̂ by 1

Transcription of OmpC and OmpF. We assume that the transcription only involves the species OmpR-P, out of all
the species in the EnvZ-OmpR osmoregulation system. Hence, for all the reactions y → y′ involved in the
transcription, either π(y′ − y) = 0 or π(y′ − y) is a multiple of E7. In either case, π(y′ − y) is orthogonal to ζ̂.

It follows from Corollary 5.2 that the species OmpR-P is ACR in the reaction system of Figure 5. Moreover, its
ACR value is still given by (11), as long as a positive steady state exists. Note that Corollary 5.2 could be applied
even if not all chemical reactions are known, and even if the model is not mass-action. It is also worth noting that
the deficiency of the model is not known, due to the lack of information on the precise reactions constituting the
network, but is certainly greater than 1. Indeed, the deficiency of the sub-system constituted by the EnvZ-OmpR
osmoregulation system and by the misfolding of OmpR-P is 2, and the deficiency of a system is necessarily greater
than or equal to the deficiency of any sub-system [15, Lemma 5].

6 Discussion

Several biological systems of interest exhibit an absolute concentration robust (ACR) species, meaning that the
steady-state value of the species is invariant to the initial condition, under the assumption of stability. In this paper
we perform control theoretic analysis of biochemical systems that have an ACR species (ACR systems). Our main
contribution is to prove the existence of a linear constrained integrator (CI) for a family of ACR systems, which
strictly includes the models studied in [41] (see Theorem 4.1). As we elaborate in the paper, this technical result and
its generalization (see Supplementary Material) have three important biological consequences. Firstly, they provide
an easy algebraic way to calculate the steady-state value of ACR species, which is a cumbersome task for complex
networks. This method adds to those developed in [33]. Secondly, we show that in the studied systems, ACR
species are still ACR even if arbitrary time-varying disturbances are applied (see Theorem 5.1). This property can be
naturally exploited to design insulators to attenuate loading effects in Synthetic Biology applications. Lastly, under
certain conditions, a large system can inherit an ACR species from an ACR subsystem, and maintain its steady-state
value. (see Corollary 5.2).

Our results reveal previously unknown facts about ACR systems and they open the door to many interesting
problems for future research. Efficient algorithms can be designed in order to check for the existence of portions
of the systems that confer absolute concentration robustness to the whole system. To this aim, the connections of
Γ̂ij(κ) with structural properties of the network which we show in the Supplementary Material can be useful, and
theoretical results can be expanded in this direction. As the ACR property depends crucially on stability, further
detailed analysis on when stability can be ensured would be welcome. Currently, in the statement of Theorem 5.1
we cannot exclude the possibility that some species is completely consumed or indefinitely produced upon tampering
with the model , or that oscillations around the ACR value occur. Finding structural conditions able to eliminate
this possibility would be a nice and useful contribution.

As a final remark, we think the study of stochastically modeled systems that satisfy the assumptions of Theorem 4.1
would be interesting and fruitful. Stochastic models of reaction systems are typically used when few molecules of
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EnvZ-OmpR osmoregulation system, as described in Figure 1

Misfolding of sensory response protein OmpR-P, and recovery through the action of chaperones:

EnvZ-OmpR-P
κ12

EnvZ + OmpR?-P

OmpR?-P + C
κ13

OmpR-P + C

Production and degradation of chaperones:

Gene regulatory network C 0
uC(t)

External regulation of the sensor-transmitter protein EnvZ:

0
u1(t)

u2(t)
EnvZ

Transcription of OmpC and OmpF:

OmpR-P binds to DNA promoter

OmpCOmpF

Figure 5: Reaction system including the EnvZ-OmpR osmoregulation system depicted in Figure 1 as a sub-
system. Parts of the system depicted here are unknown, specifically no model is given for the production of
chaperones or for the transcription of the outer membrane porins OmpF and OmpC.

certain chemical species are available [6, 20]. It is proven in [5] that systems satisfying the assumptions of Theorem 3.1,
when stochastically modeled, undergo an extinction event almost surely. As a consequence, the desirable robustness
properties of the ACR systems studied in [41] are completely destroyed in a low molecule copy-number regime. As an
example, the model depicted in (1) undergoes an almost sure extinction of the chemical species B when stochastically
modeled, regardless of the initial conditions. This is caused by the fact that all the molecules of B can be consumed
by the reaction B → A, before the occurrence of a reaction A+B → 2B. Robustness at finite time intervals of some
stochastically modeled ACR systems is recovered, but only in a multiscale limit sense [4]. Moreover, it is shown in
[3] that absolute concentration robustness of the deterministic model does not necessarily imply an extinction event
in the corresponding stochastic model, but the connection is still largely unexplored. The results developed in the
present paper can help in this direction: consider again (1). The extinction of species B cannot occur if production
of B is included in the model as in (3), or as in

A+B
κ1

2B

B
κ2

A

0
κ3
κ4

B

(17)

At the same time, it follows from Theorem 5.1 that the stability properties of the species A are maintained both in
(3) and in (17), when deterministically modelled. In particular, the concentration of the species A still converges to
the value κ2/κ1. It would be interesting to study if in this and in similar cases some form of absolute concentration
robustness arise in the long-term dynamics of the stochastic models as well.
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[26] S Feng, M Sáez, C Wiuf, E Feliu, and OS Soyer. Core signalling motif displaying multistability through multi-
state enzymes. J R Soc Interface, 13(123):20160524, 2016.

[27] E Franco and F Blanchini. Structural properties of the MAPK pathway topologies in PC12 cells. J Math Biol,
67(6-7):1633–1668, 2013.

[28] M Gopalkrishnan, E Miller, and A Shiu. A geometric approach to the global attractor conjecture. SIAM J Appl
Dyn Syst, 13(2):758–797, 2014.

[29] E Gross, HA Harrington, N Meshkat, and A Shiu. Joining and decomposing reaction networks. arXiv preprint
arXiv:1810.05575, 2018.

[30] LH Hartwell, JJ Hopfield, S Leibler, and AW Murray. From molecular to modular cell biology. Nature,
402(6761supp):C47, 1999.

[31] T Jahnke and W Huisinga. Solving the chemical master equation for monomolecular reaction systems analytically.
J Math Biol, 54(1):1–26, 2007.

[32] B Joshi and A Shiu. Atoms of multistationarity in chemical reaction networks. J Math Chem, 51(1):153–178,
2013.

[33] RL Karp, MP Millán, T Dasgupta, A Dickenstein, and J Gunawardena. Complex-linear invariants of biochemical
networks. J Theor Biol, 311:130–138, 2012.

[34] J Kim and G Enciso. Absolutely robust controllers for chemical reaction networks. J R Soc Interface,
17(166):20200031, 2020.

[35] D Mishra, PM Rivera, A Lin, D Del Vecchio, and R Weiss. A load driver device for engineering modularity in
biological networks. Nat Biotechnol, 32(12):1268, 2014.

[36] T Miyashiro and M Goulian. High stimulus unmasks positive feedback in an autoregulated bacterial signaling
circuit. Proc Natl Acad Sci USA, 105(45):17457–17462, 2008.
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Supplementary Material

A Notation

A.1 General notation

We will denote by R, R>0, and R≥0 the real, positive real, and non-negative real numbers, respectively. Similarly, we
will denote by Z, Z>0, and Z≥0 the integer, positive integer, and non-negative integer numbers, respectively. Given
a real number a, we will denote its absolute value by |a|.

We denote by ei the vector that has 1 in its ith entry and 0 in all other entries. The dimension of such vector will
be clear from the context, and if not it will be made explicit. Given two real vectors v, w of the same length n, we
denote their scalar product by 〈v, w〉, and we use the shorthand notation

vw =

n∏
i=1

vwi
i ,

where 00 is considered to be 1. We will denote the euclidean norm of v by ‖v‖.
Given two subsets V,W ⊆ Rn, we denote their direct sum by

V ⊕W = {v + w : v ∈ V,w ∈W}.

Moreover, given a vector v ∈ Rn, we define

v +W = {v + w : w ∈W}.

A.2 Reaction network terminology

A.2.1 Standard notation

A reaction network G is a triple {X , C,R}, where

• X is a finite ordered set of d different symbols, called species;

• C is a finite ordered set of m linear combinations of species with non-negative integer coefficients, referred to as
complexes and identified with vectors in Zd≥0;

• R is a finite ordered set of elements of C × C, referred to as reactions.

We will denote by Xi the ith species of X , and by yj the jth complex of C, for 1 ≤ i ≤ d and 1 ≤ j ≤ m. A reaction
(yi, yj) will be denoted by yi → yj , and for any yi ∈ C we assume there is no reaction of the form yi → yi.

As mentioned, a complex yi can be regarded as a vector of Zd≥0. Specifically, this is done by considering the jth

entry yij as the coefficient of yi corresponding to the jth species. In this regards, for any vector v ∈ Rd we will
denote by supp v the subset of species such that

Xi ∈ supp v if and only if vi 6= 0.

Similarly, for any vector w ∈ Rm we will denote by suppw the subset of complexes such that

yi ∈ supp v if and only if vi 6= 0.

We denote by

S = spanR{yj − yi : yi → yj ∈ R}, S⊥ = {h ∈ Rd : 〈h, yj − yi〉 = 0 for all yi → yj ∈ R}.

The subspace S is called stoichiometric subspace, and the elements of S⊥ are called conservation laws.
A choice of kinetics for a reaction network is a set of (time-dependent) rate functions λij : Rd≥0 ×R≥0 → R≥0 for

all 1 ≤ i, j ≤ m, such that λij is a zero function if and only if yi → yj /∈ R. A reaction network with a choice of
kinetics S = (X , C,R, {λij}1≤i,j≤m) is termed reaction system. A reaction system is associated with the system of
differential equations

d

dt
x(t) =

∑
1≤i,j≤m

(yj − yi)λij(x(t), t) for all t ∈ R≥0.

We note that rate functions are commonly intended to not depend on time, but we consider this more general setting
in this paper.
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A reaction system is called mass-action system, and denoted by S = (X , C,R, κ), if there is a matrix κ ∈ Rm×m≥0
such that

λij(x, t) = κijx
yi for all 1 ≤ i, j ≤ m,x ∈ Rd≥0.

In this case, the constants κij are termed rate constants. Define Λ(x) ∈ Rd≥0 by

Λi(x) = xyi for all 1 ≤ i ≤ m,x ∈ Rd≥0,

and define the m×m matrix A(κ) by

A(κ)ij =

{
κji if i 6= j

−
∑m
l=1 κil if i = j

Finally, let Y be the d×m matrix Y with entries Yij = yji. Then, for mass-action sytems we have

d

dt
x(t) =

∑
1≤i,j≤m

(yj − yi)κijx(t)yi = Y A(κ)Λ(x(t)) for all t ∈ R≥0.

The directed graph {C,R} is called reaction graph. Reaction systems are often presented through the reaction
graph, where indication on the reaction rates are written on top of the arrows that correspond to the related reaction.
Specifically, the arrow corresponding to yi → yj is labeled with

λij(x, t)

xy
,

which corresponds to the rate constants for reaction rates of mass-action type. As an example, see (1) and (6) in the
main text, or Figure 1. We denote by ` the number of connected components of the reaction graph. We define the
deficiency as the number

δ = m− `− dimS.

A terminal component of the reaction graph is a set of complexes T ⊆ C, such that

• if y ∈ T and there is a directed path in the reaction graph from y to another complex y′, then y′ ∈ T ;

• for any two complexes y, y′ ∈ T with y 6= y′, there is a directed path from y to y′, and a directed path from y′

to y.

Let τ be the number of terminal components, and denote by T 1, T 2, . . . , T τ the different terminal components of
the network. Since each connected component contains at least one terminal component, we have τ ≥ `. We say a
complex is terminal if it is contained in a terminal component, and we say that a complex is non-terminal otherwise.
As an example, the terminal components in (1) are {2B} and {A}, hence the terminal complexes are 2B and A.

A.3 Absolute concentration robustness

Definition A.1. Consider a reaction system S = (X , C,R, {λij}1≤i,j≤m). A species Xn ∈ X is said to be absolutely
concentration robust (ACR) if there exists q ∈ R>0 such that cn = q for all positive steady state c of S . In this case,
q is referred to as the ACR value of Xn. Finally, if an ACR species exists, then the reaction system S is said to be
ACR.

Remark A.1. By definition, if a reaction system has no positive steady states, or a unique one, then all the species are
ACR. We can call this a degenerate case, since, especially if no positive steady states exist, the concept of robustness
is lost.

A.4 Control Theory terminology

Consider a differential equation of the form

d

dt
x(t) = f(x(t)) + g(x(t), u(t)) for all t ∈ R≥0,

where x : R≥0 → Rd and u : R≥0 → Rnu for some nu ∈ Z>0, and f and g are differentiable functions. The function
u is called the input of the system. Further, we define output of the system the quantity z(t) = a(x(t)), for some
differentiable function a, with a : Rd → Rnz and nz ∈ Z>0. Usually, one needs to find an appropriate function u such
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that z is close to a desired level z ∈ Rnz , either on average or for t → ∞. To this aim, the existence of a function
φ : Rnx → R such that

d

dt
φ(x(t)) = z(t)− z

is of high importance, an is called an integral feedback (IF) [8, 19]. If a function φ̃ : Rnx → R satisfies

d

dt
φ̃(x(t)) = r(x(t))

(
z(t)− z

)
for some differentiable function r : Rnx → R, then φ̃ is called a constrained integrator (CI) [47].

In the setting of ACR species, z(t) is usually the concentration of the ACR species at time t, and z is its ACR
value.

B Known results

The following result appears in the Appendix of [23].

Theorem B.1. All the vectors in kerA(κ) have support in the terminal complexes. Specifically, there exists a basis
{χ1(κ), χ2(κ), . . . , χτ (κ)} of kerA(κ) such that suppχi(κ) = T i for all 1 ≤ i ≤ m.

The following result can be deduced from Section 6 in [23].

Theorem B.2. We have

δ ≥ dim
(

kerY ∩ ImA(κ)
)

= dim kerY A(κ)− dim kerA(κ).

Finally, the following result is proven in the Supplementary Material of [41], where it is stated as Theorem S3.15.

Theorem B.3. Consider a mass-action system (X , C,R, κ). Assume the following conditions hold:

1. yi and yj are non-terminal complexes;

2. the deficiency is 1;

Then, there exists q ∈ R>0 such that cyj−yi = q for all positive steady states c.

For convenience, we restate here the weaker version given in the main text:

Theorem 3.1. Consider a mass-action system, and assume the following holds:

1. there are two non-terminal complexes yi and yj such that only one entry of yj − yi is non-zero;

2. the deficiency is 1.

3. a positive steady state exists.

Then, the species corresponding to the non-zero entry of yj − yi is ACR.

Note how Theorem 3.1 is a straightforward consequence of Theorem B.3: if the two complexes only differ in the
nth entry, then

cyj−yi = c(yj−yi)nn = q

for all positive steady states c, hence Xn is ACR.

Remark B.1. In the original statement of Theorem B.3, the additional hypothesis that a positive steady state exists is
made. In fact, under the condition of Theorem B.3, the existence of positive steady states is not guaranteed. However,
if no positive steady state exists then the conclusion of the theorem holds trivially. Hence, our reformulation holds
correct. See Remark A.1 for the formal relationship between ACR species and the lack of positive steady states.
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C Calculation and structural properties of Γij(κ)

Consider a mass-action system S = (X , C,R, κ). For any 1 ≤ i, j ≤ m with i 6= j define the set

Γij(κ) =
{
γ ∈ Rd+1 :

(
A(κ)>Y > | ei

)
γ = ej

}
, (C.1)

and for any real vector v of length larger than d, let πd(v) be its projection onto the first d components. We define

Γ̂ij(κ) =
{
γ̂ ∈ Rd : γ̂ = πd(γ) for some γ ∈ Γij(κ)

}
. (C.2)

The set Γij(κ) can be computed by first calculating a basis for

Ψij(κ) = ker
(
A(κ)>Y > | ei | ej

)
. (C.3)

Note that this can be easily and quickly done by using a programming language which is able to deal with symbolic
linear algebra, such as Matlab. The following holds

Proposition C.1. Consider a mass-action system S = (X , C,R, κ), and 1 ≤ i, j ≤ m with i 6= j. Let {ψ1, ψ2, . . . , ψk}
be a basis for Ψij(κ), as defined in (C.3). Then, Γij(κ) (and consequently Γ̂ij(κ)) is non-empty if and only if ψnd+2 6= 0
for some 1 ≤ n ≤ k. If this is the case, then

Γij(κ) =

{
− 1∑k

n=1 anψ
n
d+2

k∑
n=1

anπd+1(ψn) : a1, a2, . . . , ak ∈ R and

k∑
n=1

anψ
n
d+2 6= 0

}
,

where πd+1 : Rd+2 → Rd+1 is the projection onto the first d+ 1 components, and

Γ̂ij(κ) =

{
− 1∑k

n=1 anψ
n
d+2

k∑
n=1

anπd(ψ
n) : a1, a2, . . . , ak ∈ R and

k∑
n=1

anψ
n
d+2 6= 0

}
.

Proof. First, note that γ ∈ Γij(κ) if and only (γ,−1) ∈ Ψij(κ). This can be easily deduced by the definitions (C.1)

and (C.3). The proof simply follows from this equivalence, and from the definition of Γ̂ij(κ) given in (C.2).

In Section F we will use Proposition C.1 to calculate Γ̂ij(κ) for the main examples discussed in the main text.
We will see that some vectors in the basis of Ψij(κ) do not depend on the particular choice of rate constants. As
a consequence, some dynamical properties implied by the theory developed in this paper will only depend on the
structure of the model rather than on a fine tuning of the parameters, which is desirable. In the following result, we
explicitly derive structural properties of Γ̂ij(κ).

Proposition C.2. Consider a mass-action system S = (X , C,R, κ), and 1 ≤ i, j ≤ m with i 6= j. Assume that
Γij(κ) is non-empty, let γ ∈ Γij(κ) and γ̂ = πd(γ) ∈ Γ̂ij(κ). Then,

γ̂ + S⊥ ⊆ γ̂ + kerA(κ)>Y > ⊆ Γ̂ij(κ). (C.4)

Moreover, if the mass-action system has a steady state c with cyi > 0, then

γd+1 = cyj−yi (C.5)

and
Γ̂ij(κ) = γ̂ + kerA(κ)>Y >. (C.6)

Finally, if each connected component of the reaction graph contains exactly one terminal component, then

kerA(κ)>Y > = S⊥. (C.7)

Proof. First, we have that
γ̂ + kerA(κ)>Y > ⊆ Γ̂ij(κ). (C.8)

Indeed, for any v ∈ kerA(κ)>Y > we have

(
A(κ)>Y > | ei

)(
γ +

(
v
0

))
=
(
A(κ)>Y > | ei

)
γ +

(
A(κ)>Y >v

0

)
= ej .

Hence,

γ +

(
v
0

)
∈ Γij(κ)
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which implies that γ̂ + v ∈ Γ̂ij(κ) and proves (C.8). Since for any h ∈ S⊥ and any 1 ≤ n ≤ m(
A(κ)>Y >h

)
n

=

m∑
l=1

〈h, yl − yn〉κnl = 0,

it follows
S⊥ ⊆ kerA(κ)>Y >. (C.9)

(C.4) follows from (C.8) and (C.9).
Now assume that the mass-action system has a steady state c, with cyi > 0. Then,

0 =
d

dt
〈γ̂, x(t)〉|x(t)=c = γ̂>Y A(κ)Λ(c) = (ej − γd+1ei)Λ(c) = cyj − γd+1c

yi .

Since cyi > 0, then necessarily γd+1 = cyj−yi . Hence, (C.5) holds. It follows that any γ′ ∈ Γij(κ) is of the form

γ′ = γ +

(
v
0

)
for some v ∈ Rd. Moreover, since γ′ ∈ Γij(κ)

ej =
(
A(κ)>Y > | ei

)
γ′ =

(
A(κ)>Y > | ei

)
γ +

(
A(κ)>Y >v

0

)
= ej +

(
A(κ)>Y >v

0

)
.

Hence, necessarily v ∈ kerA(κ)>Y >, which implies

Γ̂ij(κ) ⊆ γ̂ + kerA(κ)>Y >.

The latter, together with (C.8), implies (C.6). The proof is then concluded, as (C.7) is proven in [23].

As a consequence, we have the following.

Corollary C.3. Consider a mass-action system, and assume that yi and yj are two complexes for which Γij(κ) is
non-empty. Let {vp}Hp=1 be a basis for S⊥, where H = d− dimS. Moreover, let Xl1 , Xl2 , . . . , Xln ∈ X such that the

rank H × n matrix V has rank n, where Vpq = vplq for all 1 ≤ p ≤ H and 1 ≤ q ≤ n. Then, there exists γ̂ ∈ Γ̂ij(κ)
such that 〈γ̂, ep〉 = 0 for all 1 ≤ p ≤ n.

Proof. Let γ? ∈ Γij(κ). It follows from Proposition C.2 that for all w ∈ RH

πd(γ
?) +

H∑
p=1

wpvp ∈ Γ̂ij(κ).

Hence, the proof is concluded by choosing w such that

w>V = −(γ?l1 , γ
?
l2 , . . . , γ

?
ln),

which is possible because the H × n matrix V has rank n.

The following structural property of Γ̂ij(κ) are useful to check whether the results of this paper can be applied,
and can be used by an algorithm designed to this aim. Before stating the structural results, it is convenient to
prove the following lemma , which formally links Γij(κ) with specific “complex linear invariants” (that is, elements
of (kerY A(κ))>) introduced in [33].

Lemma C.4. Consider a mass-action system S = (X , C,R, κ), and 1 ≤ i, j ≤ m with i 6= j. Then, Γij(κ) is
non-empty if and only if ej − γd+1ei ∈ (kerY A(κ))> for some γd+1 ∈ R. Moreover, if that is the case and if the
mass-action system has a steady state c with cyi > 0 and cyj > 0, then necessarily γd+1 > 0.

Proof. By (C.1), Γij(κ) is non-empty if and only if there exists γd+1 ∈ R such that ej − γd+1ei is in ImA(κ)>Y >.
By the fundamental theorem of linear algebra, the latter holds if and only if ej − γd+1ei is orthogonal to kerY A(κ).

To conclude the proof, we note that if the mass-action system has a steady state c with cyi > 0 and Γij(κ) is
non-empty, then it follows by (C.5) in Proposition C.2 that the quantity γd+1 discussed in the first part of the proof
is necessarily equal to cyj−yi > 0.

Proposition C.5. Consider a mass-action system S = (X , C,R, κ), and 1 ≤ i, j ≤ m. Assume that one of the
following holds:
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• yi is non-terminal and yj is terminal;

• yi and yj are in two different terminal components.

Then, Γij(κ) is empty.

Proof. By assumption, yj is terminal. By Theorem B.1, there exists a vector

χ ∈ kerA(κ) ⊆ kerY A(κ)

such that suppχ is the terminal component containing yj . Hence, if yi is non-terminal or if yi is in a different terminal
component than yj , we have that for all γd+1 ∈ R

〈χ, ej − γd+1ei〉 = χj 6= 0.

It follows from Lemma C.4 that Γij(κ) is empty, which concludes the proof.

Proposition C.6. Consider a mass-action system S = (X , C,R, κ), and 1 ≤ i, j ≤ m with i 6= j. Assume that a
steady state c with cyi > 0 and cyj > 0 exists. Then, Γij(κ) is empty if and only if Γji(κ) is empty.

Proof. By the symmetric role of i and j, it suffices to prove that if Γij(κ) is non-empty, then necessarily Γij(κ) is
non-empty.

By Lemma C.4, if Γij(κ) is non-empty then there exists γd+1 ∈ R with ej−γd+1ei ∈ (kerY A(κ))>, and γd+1 > 0.
Hence,

ei −
1

γd+1
ej ∈ (kerY A(κ))>,

hence by Lemma C.4 Γji(κ) is non-empty, which is what we wanted to show.

D Proofs of the results stated in the main text

In this section, we state and prove more general versions of the theorems presented in the main text.

D.1 Existence and characterization of a CI

The following result is stated in the main text.

Theorem 4.3. Consider a mass-action system, and assume the following holds:

1. there are two non-terminal complexes yi and yj such that only one entry of yj − yi is non-zero;

2. the deficiency is 1.

3. a positive steady state exists.

Then, Γij(κ) is non-empty.

The following more general result holds, from which Theorem 4.3 can be immediately deduced.

Theorem D.1. Consider a mass-action system, and assume the following holds:

1. yi and yj are two distinct non-terminal complex;

2. the deficiency is 1;

3. a steady state c with cyi 6= 0 exists.

Then, Γij(κ) is non-empty.

Proof. By condition 3, c is a steady state, hence the vector Λ(c) is in kerY A(κ). Moreover, Λi(c) = cyi 6= 0. By
condition 1, yi is a non-terminal complex. Hence, by combining Λi(c) 6= 0 with Theorem B.1, it follows that Λ(c) is
not in kerA(κ). Since by assumption δ = 1, it follows from Theorem B.2 that

kerY A(κ) = spanR{Λ(c)} ⊕ kerA(κ). (D.1)

Define

v = ej − cyj−yiei = ej −
Λj(c)

Λi(c)
ei.

Clearly, v is orthogonal to Λ(c). Moreover, by condition 1, both yi and yj are non-terminal complexes. Hence, the
vector v is orthogonal to kerA(κ) by Theorem B.1. It follows from (D.1) that v is orthogonal to kerY A(κ), which
implies that Γij(κ) is non-empty by Lemma C.4.
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We now proceed to prove the following result, stated in the main text.

Theorem 4.1. Consider a mass-action system. Assume that there are two complexes yi and yj only differing in the
nth entry, and that Γij(κ) is non-empty. Let γ ∈ Γij(κ), and define

q = γ
1

(yj−yi)n

d+1 .

Then, either no positive steady state exists or the nth species is ACR with ACR value q. Moreover,

φ(x) =

d∑
i=1

βixi

is a linear CI with
d

dt
φ(x(t)) = Λi(x(t))

(
xn(t)(yj−yi)n − q(yj−yi)n

)
for any initial condition x(0) if and only if β ∈ Γ̂ij(κ).

In order to prove the result, we will show that a more general version holds, which we state here.

Theorem D.2. Consider a mass-action system, and assume that yi and yj are two complexes for which Γij(κ) is
non-empty. Let γ ∈ Γij(κ). Then,

cyj−yi = γd+1 (D.2)

for all steady states c satisfying cyi 6= 0. Moreover,

φ(x) =

d∑
i=1

βixi

is a linear CI with
d

dt
φ(x(t)) = Λi(x(t))

(
x(t)yj−yi − γd+1

)
(D.3)

for any initial condition x(0) if and only if β ∈ Γ̂ij(κ).

Proof. (D.2) follows from (C.5) in Proposition C.2.
Let β ∈ Γ̂ij(κ). Then, by Proposition C.2 we have that β−πd(γ) ∈ kerA(κ)>Y >. Hence, for any initial condition

x(0) ∈ Rd≥0 and any t ∈ R≥0,

d

dt
〈β, x(t)〉 = β>Y A(κ)Λ(x(t)) = πd(γ)>Y A(κ)Λ(x(t)) = (ej − γd+1ei)

>Λ(x(t)) = x(t)yi
(
x(t)yj−yi − γd+1

)
,

which is (D.3).
Conversely, assume that (D.3) holds. Then, for all x ∈ Rd≥0 we have

(β> − πd(γ))>Y A(κ)Λ(x) = 0.

Since the entries of Λ are linearly independent monomials on Rd, it must be (β> − πd(γ)) ∈ kerA(κ)>Y >, which
implies that β ∈ Γ̂ij(κ) by Proposition C.2.

D.2 Rejection of persistent disturbances

We recall here the formal definition of “oscillation”, as intended in this paper.

Definition D.1. We say that a function g : R≥0 → R oscillates around a value q ∈ R if for each t ∈ R≥0 there exist
t+ > t and t− > t such that

g(t+) > q and g(t−) < q.

The following result holds.

Theorem D.3. Consider a mass-action system, with associated differential equation

d

dt
x(t) = f(x(t)).
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Assume that yi and yj are two complexes for which Γ̂ij(κ) is non-empty. Then, there exists q ∈ R≥0 such that
cyj−yi = q for all steady states c with cyi 6= 0. Consider an arbitrary function u : Rd≥0 × R≥0 → Rd such that a
solution to

d

dt
x̃(t) = f(x̃(t)) + u(x̃(t), t)

exists with x̃(t) ≥ 0 for all t ≥ 0. Assume that there exists a γ̂ ∈ Γ̂ij(κ) which is orthogonal to the vector u(x, t) for
any x ∈ Rd≥0, t ∈ R≥0. Then, for any initial condition x̃(0) ∈ Rd≥0, at least one of the following statements holds:

1. There is a species Xk ∈ supp γ̂ such that lim supt→∞ x̃k(t) =∞;

2. There is a species Xk ∈ supp yi such that lim inft→∞ x̃k(t) = 0;

3. x̃(t)yj−yi oscillates around q;

4. lim
t→∞

∫ ∞
t

∣∣∣x̃(s)yj−yi − q
∣∣∣ds = 0.

Proof. It follows from Theorem D.2 that there exists q ∈ R≥0 such that cyj−yi = q for all steady states c with cyi 6= 0.
Note that in this setting cyi 6= 0 is equivalent to cyi > 0, since the state space is limited to vectors of non-negative
concentrations.

Fix an initial condition x̃(0) ∈ Rd≥0. Assume that 1 does not occur. Hence, there exists M ∈ R>0 such that

|〈γ̂, x̃(t)〉| < M for all t ∈ R≥0.

By the fact that γ̂ is orthogonal to u(x, t) for all x ∈ Rd≥0 and all t ≥ 0, and by Theorem D.2, we have

d

dt
〈γ̂, x̃(t)〉 = 〈γ̂, f(x̃(t))〉 = x̃(t)yi

(
x̃(t)yj−yi − q

)
.

It follows that ∣∣∣∣∫ t

0

x̃(s)yi
(
x̃(s)yj−yi − q

)
ds

∣∣∣∣ < M − |〈γ̂, x̃(0)〉| for all t ∈ R≥0. (D.4)

If 2 does not hold, then there exists m ∈ R>0 such that x(t)yi > m for all t ∈ R>0. Together with (D.4), this would
imply that there exists M? ∈ R>0 such that∣∣∣∣∫ t

0

(
x̃(s)yj−yi − q

)
ds

∣∣∣∣ < M? for all t ∈ R≥0. (D.5)

If 3 does not hold, then there exists t? ∈ R>0 such that x̃(t)yj−yi − q maintains the same sign for all t > t?, which
together with (D.5) implies 4. The proof is then concluded.

Now we prove Theorem 5.1, which is stated in the main text and which we state here again for convenience.
Theorem 5.1 follows almost entirely from Theorem D.3.

Theorem 5.1. Consider a mass-action system with d species, with associated differential equation

d

dt
x(t) = f(x(t)).

Assume that there are two complexes yi and yj only differing in the nth entry, and that Γ̂ij(κ) is non-empty. Let q
be the ACR value of the nth species. Consider an arbitrary function u with image in Rd such that a solution to

d

dt
x̃(t) = f(x̃(t)) + u(x̃(t), t)

exists. Assume that there exists a γ̂ ∈ Γ̂ij(κ) which is orthogonal to the vector u(x, t) for any x, t. Then, for any
initial condition x̃(0), at least one of the following holds:

(a) the concentration of some species goes to 0 or infinity, along some sequence of time points;

(b) x̃n(t) oscillates around q and γ̂k 6= 0 for some k 6= n;

(c) the integral ∫ ∞
t

|x̃n(s)− q|ds

tends to 0, as t goes to infinity.
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Proof. Assume (a) does not hold. Then, there exists ε ∈ R>0 such that

ε ≤ ‖x̃(t)‖ ≤ 1

ε
for all t ∈ R≥0. (D.6)

Moreover, it follows from Theorem D.3 that at least one of the following holds:

1. x̃n(t)(yj−yi)n oscillates around q(yj−yi)n , implying that x̃n(t) oscillates around q;

2. lim
t→∞

∫ ∞
t

∣∣∣x̃n(s)(yj−yi)n − q(yj−yi)n
∣∣∣ds = 0.

Since 2 clearly implies (c), to complete the proof it suffices to show that 1 implies γ̂ 6= γ̂nen.
Assume 1 holds. If it were γ̂ = γ̂nen, then by Theorem D.2 and by the fact that u(x, t) is orthogonal to γ̂ for all

x ∈ Rd≥0 we would have

γ̂n
d

dt
x̃n(t) =

d

dt
〈γ̂, x̃(t)〉 = 〈γ̂, f(x̃(t))〉 = x̃(t)yi

(
x̃n(t)− q

)
for all t ∈ R≥0.

By (D.6), there would be m,M ∈ R>0 such that

m
(
x̃n(t)− q

)
≤ γ̂n

d

dt

(
x̃n(t)− q

)
≤M

(
x̃n(t)− q

)
for all t ∈ R≥0,

which would in turn imply that x̃n(t)− q maintains the same sign for all t ∈ R≥0. Hence, 1 could not hold and the
proof is concluded.

D.3 Inclusion in larger systems

Loosely speaking, a subsystem S ′ of a reaction system S is simply the reaction system generated by a subset of
the reactions of S , with the same choice of rate functions. In order to give a formal definition, some more care is
needed as the number of species involved in the subsystem may be smaller (hence the dimensions of S and S ′ may
be different).

Definition D.2. Let S = (X , C,R, {λij}1≤i,j≤m) be a reaction system with d species and m complexes. A subsystem
of S is a reaction system S ′ = (X ′, C′,R′, {λ′ij}1≤i,j≤m′) with d′ species and m′ complexes such that, up to reordering
of X and C,

• X ′ = {Xi ∈ X : 1 ≤ i ≤ d′};

• yin = 0 for all yi ∈ C with 1 ≤ i ≤ m′ and for all d′ < n ≤ d;

• C′ = {y′i : y′i = π(yi), yi ∈ C, 1 ≤ i ≤ m′}, where π : Rd → Rd′ is the projection onto the first d′ components;

• R′ ⊆ {y′i → y′j : yi → yj ∈ R};

• for all 1 ≤ i, j ≤ m′ and all x ∈ Rd≥0

λ′ij(π(x)) =

{
λij(x) if y′i → y′j ∈ R′

0 otherwise.

With a slight abuse of notation due to the potential different length of the complexes of S and S ′, we further say
that yk → yl is a reaction of S but is not a reaction of S ′ if yk → yj ∈ R and either max k, l > m′ or y′k → y′l /∈ R′.
In this case, we write yk → yl ∈ R \ R′.

The following result is stated in the main text.

Corollary 5.2. Consider a reaction system S , and let S ′ be a sub-system. Assume that S ′ is a mass-action system
with two complexes π(yi) and π(yj) only differing in the entry corresponding to the species X, and for which Γ̂ij(κ)

is non-empty. Moreover, assume there exists γ̂ ∈ Γ̂ij(κ) such that π(yl − yk) is orthogonal to γ̂ for all yk → yl that
are reactions of S but not reactions of S ′. Then, the species X is ACR for both S and S ′, with the same ACR
value.

Here, we prove the following, stronger version.

ix



Corollary D.4. Consider a reaction system S = (X , C,R, {λij}1≤i,j≤m), and let S ′ = (X ′, C′,R′, {λ′ij}1≤i,j≤m′)
be a sub-system. Assume that S ′ is a mass-action system with two complexes π(yi) and π(yj) for which Γ̂ij(κ) is

non-empty. Moreover, assume there exists γ̂ ∈ Γ̂ij(κ) such that π(yl−yk) is orthogonal to γ̂ for all yk → yl ∈ R\R′.
Then, there exists a value q ∈ R≥0 such that

(c′)π(yj−yi) = q

for all steady states c′ of S ′ such that (c′)π(yi) > 0, and

cyj−yi = q

for all steady states c of S such that cyi > 0.

Proof. The existence of q ∈ R≥0 such that

(c′)π(yj−yi) = q

for all steady states c′ of S ′ with (c′)π(yi) > 0 follows from Theorem D.2.
In order to prove the second part of the statement, we can write

d

dt
π(x(t)) = f(π(x(t))) + u(x(t), t),

where

f(π(x(t))) =
∑

y′k→y
′
l∈R′

(y′l − y′k)κijπ(x(t))yi

u(x(t), t) =
∑

yk→yl∈R\R′
π(yl − yk)λij(x(t), t).

Note that γ̂ is orthogonal to u(x, t), for all x ∈ Rd≥0 and t ∈ R≥0. Hence, if c is a steady state of S , it follows from
Theorem D.2 that

0 =
d

dt
〈γ̂, π(c)〉 = 〈γ̂, f(π(c))〉

= π(c)π(yi)
(
π(c)π(yj−yi) − q

)
= cyi

(
cyj−yi − q

)
,

which concludes the proof.

E Example of an ACR system with no linear CI

Assume that Xi is an ACR species, with ACR value q. It is not always possible to find a linear combination of
species whose derivative at time t is of the form r(t)(xi(t)

α − q), for some polynomial r(t) and some real number α.
As an example, consider the following mass-action system:

A+B
κ1

B+C
κ2
κ3

2B

B
κ4
κ5

2E
κ6

2D

C
κ7

A

D
κ8

E

Let us order the species alphabetically, and the complexes as (A+B,B +C, 2B,B, 2E, 2D,C,A,D,E). It is proven
in [3] that the species A is ACR, with ACR value

q =
κ3κ7
κ1κ2

.

In this case there is no linear combination of species whose derivative is of the form

r(t) (x1(t)α − qα) , (E.1)

for some polynomial function r(t) and some real number α. Indeed, for any β ∈ Rd, the derivative of 〈β, x(t)〉 is
given by β>Y A(κ)Λ(x(t)), which in this case is a polynomial of the form

w1x1(t)x2(t) + w2x3(t) + w3x2(t)x3(t) + w4x2(t)2 + w5x2(t) + w6x5(t)2 + w7x4(t),
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for some real coefficients wi. The only monomial containing x1(t) is the first one, so if we want the derivative of
〈β, x(t)〉 to be of the form (E.1), necessarily w1 6= 0, α = 1, and r(t) = w1x2(t). We can further deduce that
necessarily w2 = w3 = w4 = w6 = w7 = 0, and w5 = −w1q. In matrix form, this is equivalent to

β>Y A(κ) = w1(1, 0, 0,−q, 0, 0, 0, 0, 0, 0),

but this is not possible because in this case the vector on the right-hand side does not belong to the left image of
Y A(κ).

F Applications to the systems introduced in the main text.

Here we use the theory developed in this work to analyze the reaction systems introduced in the main text.

F.1 Toy example

Consider the mass-action system

A+B
κ1

2B

B
κ2

A

Order the species alphabetically, and the complexes in the appearance order from left to right and from top to bottom,
as A+B, 2B, B, and A. In this case, we have

Y =

(
1 0 0 1
1 2 1 0

)
and A(κ) =


−κ1 0 0 0
κ1 0 0 0
0 0 −κ2 0
0 0 κ2 0

 (F.1)

The two non-terminal complexes differing for the entry corresponding to A are the first and the third ones. Since
the model has deficiency 1, it follows from Theorem 4.3 that Γ̂13(κ) is non-empty. We can use Matlab to explicitly
calculate it. First, in order to define Y and A(κ) in Matlab, we define the symbolic variables κ1 and κ2 and require
they are positive real numbers via

k1=sym('k1','positive ');
k2=sym('k2','positive ');

We then define the matrices Y and Ak as in (F.1). We can calculate Ψ13(κ) via

e=eye(4);

simplify(null([Ak '*Y' e(:,1) e(:,3)]))

which returns the following matrix, whose columns are a basis for Ψ13(κ):
1 − 1

κ2

1 0

0 −κ1

κ2

0 1

 .

It then follows from Proposition C.1 that

Γ13(κ) =




1
κ2

0

κ1

κ2

+ a


1

1

0

 : a ∈ R

 ,

which in turn implies that

Γ̂13(κ) =


 1
κ2

0

+ a

1

1

 : a ∈ R

 (F.2)
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and together with Theorem 4.1 that the ACR value of A is κ1/κ2. Note that in this case

S = spanR

 1

−1

 and S⊥ = spanR

1

1

 . (F.3)

Moreover, each connected component contains exactly one terminal component. Hence, Proposition C.2 applies, and
as a matter of fact

Γ̂13(κ) =

 1
κ2

0

+ S⊥.

Finally, while it is clear from (F.2) that a vector with zero first component and a vector with zero second component
are in Γ̂13(κ), this could be derived from Corollary C.3 and from (F.3) without explicitly calculating Γ̂13(κ). As a
consequence, due to Theorem 5.1, disturbances could be applied to the production and degradation rates of A (or B)
while maintaining the absolute concentration robustness of the species A, its ACR value, and the linear CI described
in Theorem 4.1.

F.2 EnvZ-OmpR osmoregulatory system

Consider the mass-action system

EnvZ-D
κ1

κ2[ADP]
EnvZ

κ3[ATP]

κ4
EnvZ-T

κ5
EnvZ-P

EnvZ-P + OmpR
κ6
κ7

EnvZ-OmpR-P
κ8

EnvZ + OmpR-P

EnvZ-D + OmpR-P
κ9
κ10

EnvZ-OmpR-D-P
κ11

EnvZ-D + OmpR

Order both the species and the complexes according to their appearance order, from left to right and from top to
bottom. Hence, the 8 species are ordered as EnvZ-D, EnvZ, EnvZ-T, EnvZ-P, OmpR, EnvZ-OmpR-P, OmpR-P, and
EnvZ-OmpR-D-P. The 10 complexes are ordered as EnvZ-D, EnvZ, EnvZ-T, EnvZ-P, EnvZ-P+OmpR, EnvZ-OmpR-
P, EnvZ+OmpR-P, EnvZ-D+OmpR-P, EnvZ-OmpR-D-P, and EnvZ-D+OmpR.

It can be checked that dimS = 6 and

S⊥ = spanR





1
1
1
1
0
1
0
1


,



0
0
0
0
1
1
1
1




. (F.4)

The above conservation laws correspond to the fact that the total mass of the chemical species containing some form
of EnvZ is conserved, as well as the total mass of the chemical species containing some form of OmpR. We can
calculate the deficiency as

δ = m− `− dimS = 10− 3− 6 = 1.

The non-terminal complexes that only differ for the entry corresponding to OmpR-P are the first and the eighth
ones. Therefore, we are interested in the study of Γ̂18(κ), which by Theorem 4.3 is not empty. We have

Y =



1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0


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and

A(κ) =



−κ1 κ2[ADP] 0 0 0 0 0 0 0 0
κ1 −κ2[ADP]− κ3[ATP] κ4 0 0 0 0 0 0 0
0 κ3[ATP] −κ4 − κ5 0 0 0 0 0 0 0
0 0 κ5 0 0 0 0 0 0 0
0 0 0 0 −κ6 κ7 0 0 0 0
0 0 0 0 κ6 −κ7 − κ8 0 0 0 0
0 0 0 0 0 κ8 0 0 0 0
0 0 0 0 0 0 0 −κ9 κ10 0
0 0 0 0 0 0 0 κ9 −κ10 − κ11 0
0 0 0 0 0 0 0 0 κ11 0


.

In order to define the corresponding symbolic matrices Y and Ak in Matlab, we can first define the symbolic positive
real variables

k=sym('k', [1,11], 'positive ');
k(2)=k(2)*sym('ADP', 'positive ');
k(3)=k(3)*sym('ATP', 'positive ');

Then we calculate Ψ18(κ), as defined in (C.3), via

e=eye (10);

simplify(null([Ak '*Y' e(:,8) e(:,1)]))

The output of the last command is the following matrix, whose columns are a basis of Ψ18(κ).

−1 1 − [ADP]κ2 κ11 (κ4+κ5)
[ATP]κ1 κ3 κ5 (κ10+κ11)

−1 1 − [ADP]κ2 κ4 κ11+[ADP]κ2 κ5 κ11+[ATP]κ3 κ5 κ10+[ATP]κ3 κ5 κ11

[ATP]κ1 κ3 κ5 (κ10+κ11)

−1 1 − [ADP]κ2 κ4 κ11+[ADP]κ2 κ5 κ10+2 [ADP]κ2 κ5 κ11+[ATP]κ3 κ5 κ10+[ATP]κ3 κ5 κ11

[ATP]κ1 κ3 κ5 (κ10+κ11)

−1 1 − [ADP]κ2 κ4 κ10+2 [ADP]κ2 κ4 κ11+[ADP]κ2 κ5 κ10+2 [ADP]κ2 κ5 κ11+[ATP]κ3 κ5 κ10+[ATP]κ3 κ5 κ11

[ATP]κ1 κ3 κ5 (κ10+κ11)

1 0 [ADP]κ2 (κ4+κ5)
[ATP]κ1 κ3 κ5

0 1 − [ADP]κ2 κ4 κ11+[ADP]κ2 κ5 κ11+[ATP]κ3 κ5 κ10+[ATP]κ3 κ5 κ11

[ATP]κ1 κ3 κ5 (κ10+κ11)

1 0 0

0 1 0

0 0 − [ADP]κ2 κ9 κ11 (κ4+κ5)
[ATP]κ1 κ3 κ5 (κ10+κ11)

0 0 1


For convenience, denote the last vector by ζ(κ). It follows from Proposition C.1 that

Γ18(κ) =


−π9(ζ(κ)) + a1



−1
−1
−1
−1
1
0
1
0
0


+ a2



1
1
1
1
0
1
0
1
0


: a1, a2 ∈ R


.
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It follows that

Γ̂18(κ) =


−π8(ζ(κ)) + a1



−1
−1
−1
−1
1
0
1
0


+ a2



1
1
1
1
0
1
0
1


: a1, a2 ∈ R


, (F.5)

which corresponds to (12) in the main text. Moreover, it follows from Theorem 4.1 that the ACR value of the species
OmpR-P is

−ζ9(κ) =
[ADP]κ2 κ9 κ11 (κ4 + κ5)

[ATP]κ1 κ3 κ5 (κ10 + κ11)

as reported in (11) in the main text.
Further things can be noted about this model. First, it follows from (F.4) and (F.5) that

Γ̂18(κ) = −π8(ζ(κ)) + S⊥,

which is in accordance with Proposition C.2 because all connected components contain exactly one terminal compo-
nent. Secondly, due to Corollary C.3, we can deduce without explicitly calculating Γ18(κ) that there is a vector γ̂ in
Γ̂18(κ) whose entries corresponding to species EnvZ and OmpR-P are zero (which are the second and the seventh
complexes, respectively). Specifically, if we consider the basis of S⊥ given in (F.4) and we let Xl1 = X2 =EnvZ and
Xl2 = X7 =OmpR-P, we have

V =

(
1 0
0 1

)
,

which has rank 2. The existence of such vector γ̂ is used in Section 5.3 and it implies by Theorem 5.1 that the system
is robust to persistent disturbances affecting the production and degradation rates of both EnvZ and OmpR-P.

G An ACR signaling system covered by our theory and not by [41]

Consider the double-phosphorylation mass-action system in Figure 6. We will show that the theory developed in [41]
stays silent on whether it is ACR. However, our theory covers this case and implies the double-phosphorylated form
of the transcriptional regulatory protein is ACR, for any choice of kinetic parameters κ such that a positive steady
state exists. Note that this form of response robustness may seem a bit surprising for a multisite phosphorylation
mechanism, since these are often known for their multi-stability properties, notably shown in the case of the MAPK
pathway [7, 26, 27, 45].

Order the species and the complexes according to their appearance order, from left to right and from top to
bottom. The 11 species are then ordered as A, A?, A-P, B, A-B-P, B-P, A-B-PP, B-PP, A?-B-P, A?-B-PP, and
B-PP-A. The 13 complexes are ordered as A, A?, A-P, A-P + B, A-B-P, A + B-P, A-P + B-P, A-B-PP, A + B-PP,
A?-B-P, A?-B-PP, A-P + B-PP, and B-PP-A. It can be checked that dimS = 9 and

S⊥ = spanR





1
1
1
0
1
0
1
0
1
1
1


,



0
0
0
1
1
1
1
1
1
1
1





. (G.1)

Similarly as for the EnvZ-OmpR osmoregulatory system, the above conservation laws correspond express that the
total mass of the chemical species containing some form of the protein A is conserved, as well as the total mass of
the chemical species containing some form of the protein B. The reaction graph is given in Figure 7. In particular,
` = 2 and the deficiency is

δ = m− `− dimS = 13− 2− 9 = 2.

So, this model is not included in the class of models studied in [41], and Theorems 3.1 and B.3 do not apply.
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Activation and phosphorylation of the sensor-transmitter protein:

A
κ1[I]

κ2
A?

κ3
A-P

Phosphorylation of the sensory response protein:

A-P + B
κ4
κ5

A-B-P
κ6

A + B-P

A-P + B-P
κ7
κ8

A-B-PP
κ9

A + B-PP

Activation and phosphorylation of the protein aggregate:

A-B-P
κ10[I]

κ11
A?-B-P

A-B-PP
κ12[I]

κ13
A?-B-PP

A?-B-P
κ14

A?-B-PP
κ15

A-P + B-PP

Dephosphorylation of the sensory response protein:

A + B-PP
κ16
κ17

B-PP-A
κ18

A-P + B

Figure 6: A model of signal transduction. Here, the sensory response protein B is active if two phosphoryl
groups are attached. In the first line, the protein A is phosphorylated in response to a stimulus [I]. In the second
and third line, the phosphoryl groups are transferred to the sensory response protein B. In the forth and fifth
line, the protein A responds by the stimulus [I] while it is bound to B. The resulting protein aggregate is able
to gain phosphoryl groups until the three phosphoryl sites are occupied (as described in the sixth line). Finally,
in the last two lines, the inactive form of the sensor-transmitter protein A acts as a phosphatase on B.

The first and the ninth complexes are non-terminal, and they only differ for the entry corresponding to B-PP.
Hence, in order to apply Theorems 4.1 and 5.1, we are interested in studying Γ̂19(κ). Since the deficiency of the
model is 2, Theorem 4.3 does not apply, so to understand whether Γ̂19(κ) is non-empty we need to explicitly calculate
it. To this aim, we define in Matlab the following positive symbolic variables, which correspond to the rate constants
of the model:

k=sym('k', [1,18], 'positive ');
k(1)=k(1)*sym('I', 'positive ');
k(10)=k(10)*sym('I', 'positive ');
k(12)=k(12)*sym('I', 'positive ');
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A
κ1[I]

κ2
A?

κ3
A-P

A-P + B
κ4
κ5

A-B-P
κ6

A + B-P

κ10[I]κ11

A?-B-P

κ14

A?-B-PP

κ13κ12[I]

A-B-PP

κ15
A-P + B-PP

A + B-PPB-PP-A
κ8
κ7

A-P + B-P
κ9κ17

κ16

κ18

Figure 7: Reaction graph for the signaling transduction system proposed in Figure 6.

We then define the symbolic matrices Y and Ak corresponding to

Y =



1 0 0 0 0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1


and to A(κ) as described in Figure 8, respectively.

In order to calculate a basis for Ψ19(κ) as defined in (C.3), we type

e=eye (13);

simplify(null([Ak '*Y' e(:,1) e(:,9)]))

The output of the last command is shown in Figure 9. While the output is rather complicated, we did not need to
put much effort in its calculation, which was completed in Matlab in a matter of seconds. For convenience we denote
by ζ(κ) the last column of the output matrix.
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It follows from Proposition C.1 that Γ19(κ) is non-empty, and is given by

Γ19(κ) =



−π12(ζ(κ)) + a1



−1
−1
−1
1
0
1
0
1
0
0
0
0



+ a2



1
1
1
0
1
0
1
0
1
1
1
0



: a1, a2 ∈ R



. (G.2)

It follows from (G.2) and (G.1) that

Γ̂19(κ) =



−π11(ζ(κ)) + a1



−1
−1
−1
1
0
1
0
1
0
0
0


+ a2



1
1
1
0
1
0
1
0
1
1
1


: a1, a2 ∈ R



= −π11(ζ(κ)) + S⊥,

which is in accordance with Proposition C.2 because every connected component of the reaction graph in Figure 7
contains exactly one terminal component. Moreover, from (G.2) and Theorem 4.1 it follows that the ACR value of
the ACR species B-PP is

−ζ12(κ) =
κ1κ3[I](κ17 + κ18)(κ6κ11 + κ6κ14 + κ10κ14[I])(κ9κ13 + κ9κ15 + κ12κ15[I])

κ16κ18(κ2 + κ3)g(κ, [I])
,

where

g(κ, [I]) = −κ10κ12κ14κ15[I]2 − κ9κ10κ14κ15[I] + κ6κ9κ11κ13 + κ6κ9κ11κ15 + κ6κ9κ13κ14 + κ6κ9κ14κ15.

This means that if a positive steady state c exists, necessarily it entry corresponding to B-PP (which is the eighth
species) satisfies c8 = −ζ12(κ). Of course, this cannot occur if −ζ12(κ) is non-positive, i.e. if g(κ, [I]) is non-positive,
in which case no positive steady state exists. Note that we did not need to work directly with the differential equation
to derive this information. We will further show that in fact a positive steady state exists if and only if g(κ, [I]) is
positive. To this aim, note that c is a steady state if and only if Λ(c) ∈ kerY A(κ). Then, we calculate a basis for
kerY A(κ) by typing

simplify(null(Y*Ak))

which returns a matrix of the form 

0 0 0 b1(κ, [I])g(κ, [I])
0 0 0 b2(κ, [I])g(κ, [I])
1 0 0 0
0 0 0 b4(κ, [I])
0 0 0 b5(κ, [I])
0 1 0 0
0 0 0 b7(κ, [I])
0 0 0 b8(κ, [I])
0 0 0 b9(κ, [I])
0 0 0 b10(κ, [I])
0 0 0 b11(κ, [I])
0 0 1 0
0 0 0 1


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for some functions bi(κ, [I]) which map positive arguments to positive real numbers. Hence, a positive steady state
exists if and only if there exists a positive vector c such that

c1 = a4b1(κ, [I])g(κ, [I]) c1c6 = a2 c9 = a4b10(κ, [I])

c2 = a4b2(κ, [I])g(κ, [I]) c3c6 = a4b7(κ, [I]) c10 = a4b11(κ, [I])

c3 = a1 c7 = a4b8(κ, [I]) c3c8 = a3

c3c4 = a4b4(κ, [I]) c1c8 = a4b9(κ, [I]) c11 = a4

c5 = a4b5(κ, [I])

for some a1, a2, a3, a4 ∈ R>0. If g(κ, [I]) is positive, it is easy to see that such a positive vector c exists. Specifically,
the positive steady states are parameterized by

c1 = a4b1(κ, [I])g(κ, [I]) c5 = a4b5(κ, [I]) c9 = a4b10(κ, [I])

c2 = a4b2(κ, [I])g(κ, [I]) c6 =
a4
a1
b7(κ, [I]) c10 = a4b11(κ, [I])

c3 = a1 c7 = a4b8(κ, [I]) c11 = a4

c4 =
a4
a1
b4(κ, [I]) c8 =

b9(κ, [I])

b1(κ, [I])g(κ, [I])

where a1 and a4 vary in R>0. Note that the entry c8 is corresponding to the ACR species B-PP and is fixed.
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