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Abstract: Methods for real-time reconstruction of structural displacements using measured strain

data is an area of active research due to its potential application for Structural Health Monitoring

(SHM) and morphing structure control. The inverse Finite Element Method (iFEM) has been shown

to be well suited for the full-field reconstruction of displacements, strains, and stresses of structures

instrumented with discrete or continuous strain sensors. In practical applications, where the available

number of sensors may be limited, the number and sensor positions constitute the key parameters.

Understanding changes in the reconstruction quality with respect to sensor position is generally

difficult and is the aim of the present work. This paper attempts to supplement the current iFEM

modeling knowledge through a rigorous evaluation of several strain–sensor patterns for shape sensing

of a rectangular plate. Line plots along various sections of the plate are used to assess the reconstruction

quality near and far away from strain sensors, and the nodal displacements are studied as the sensor

density increases. The numerical results clearly demonstrate the effectiveness of the strain sensors

distributed along the plate boundary for reconstructing relatively simple displacement patterns,

and highlight the potential of cross-diagonal strain–sensor patterns to improve the displacement

reconstruction of more complex deformation patterns.

Keywords: shape sensing; inverse Finite Element Method; structural health monitoring; plate

structures; strain sensors

1. Introduction

In the past several decades, Structural Health Monitoring (SHM) has been the subject of intense

research for application to civil, aerospace, and naval structures. SHM promises the possibility of

evaluating the structural integrity under real-time operational conditions. The SHM data can lead

to improvements in design, failure predictions, safety, and more effective maintenance strategies [1].

In the framework of SHM, shape sensing, i.e., the reconstruction of the displacement field of a structure

from discrete surface strains, represents an enabling technology. Shape sensing can not only provide an

effective shape control strategy for those structures that carry antennas [2] but is also an important tool

to provide feedback to smart structures with morphing capabilities [3]. Moreover, the reconstruction

of the displacement field can be the first step towards the evaluation of strains and stresses across the

entire or partial structural regions [4,5].
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The interest in shape-sensing methodologies has also grown along with the introduction of new

strain measurement systems. Traditional strain gages are now accompanied by strain sensors based on

fiber optics that are more robust with respect to electromagnetic interferences can be attached and/or

embedded, and provide a much higher spatial density of measurement points [6–8].

The current shape sensing methodologies can be divided into four main categories [9]: integration

of experimental strains; use of basis functions to approximate the displacement field; use of Neural

Network (NN); and use of a FEM-discretized variational principle.

Approaches that obtain the displacement field by integrating strains measured at discrete locations

have been mainly applied to beam-like structures [6,10], and only a few papers presented an extension

to two-dimensional cases [11]. In [6], Ko et al. proposed a one-dimensional scheme based on classical

beam theory to evaluate the deflection and bending rotation of a beam at the same locations where

strains have been measured. Using a two-line strain-sensing strategy, the cross-sectional twist angle

can be also reconstructed, as demonstrated on an aircraft wing [6].

There are a number of shape-sensing approaches that make use of an a priori choice of basis

functions and of a set of corresponding unknown weights to approximate the strain field [12–18]. Then,

the displacement field is obtained by means of strain–displacement relationships, where typically the

classical Bernoulli–Euler beam or the Kirchhoff plate assumptions are used. Basis functions can be

global or piece-wise polynomials [12,13] or the structural mode shapes [14–18]. The latter approaches

are grouped under the name of Modal Methods and can be based on experimental mode shapes [14,15],

analytical mode shapes [16], or mode shapes evaluated through a FE model [17,18]. The experimental

evaluation of the mode shapes can be onerous; on the other hand, it does not require any knowledge of

the material properties. Another key aspect of these methodologies is the choice of the mode shapes to

be included in the analysis and the related risk of inaccuracies when high-frequency excitations are

present and only low-order modes are available [18].

A few efforts have focused on the use of neural networks to the displacement–field

reconstruction [19,20]. The main drawback of this methodology is that its accuracy is strongly

dependent on the choice of the load cases used for the training.

The inverse Finite Element Method (iFEM) is a variationally based approach to shape sensing,

where an error functional is discretized using the finite element framework. Pioneering works in this field

have been authored by Tessler and Spangler [21,22]. The key idea is to employ a weighted-least-square

functional that is discretized by means of finite elements. The functional represents the least-square

error between the experimentally measured strains and those corresponding to the finite element

approximations. Minimization of the error functional leads to a system of algebraic equations whose

unknowns are the nodal degrees of freedom of the finite element mesh. Once the nodal unknowns are

obtained, the displacement field can be fully reconstructed using the corresponding shape functions.

The initial efforts in this field dealt with thin-walled structures [21,22], where a three-node inverse shell

element (iMIN3) was developed on the basis of Mindlin (first-order Shear Deformation) theory [23].

A four-node inverse shell element was derived by Kefal et al. [24], who also developed an inverse curved

shell-element [25], and used an iso-geometric approach to iFEM [26]. Gherlone et al. [27,28] applied

three-dimensional (3D) beam approximations within iFEM to study shape sensing in truss, beam,

and frame structures instrumented with strain gauges. Moreover, two-dimensional inverse elements

for the shape-sensing of multilayered composite and sandwich plates have been recently proposed

in [4,5,29]. Several iFEM applications have been presented, ranging from marine structures [25,30,31] to

composite wing boxes [32], using numerically generated strain data [4,5,24–27,32] and experimentally

measured strains [9,28]. Since iFEM employs only strain–displacement relations, structures under

either static or dynamic loadings can be analyzed without any a priori knowledge of the material,

inertial, loading, or damping properties of the structure [22,27]. The iFEM solution method is very

efficient. Even under dynamic loading, when strains are time dependent, the coefficients matrix of the

method is inverted only once [22], whereas the right-hand side vector is updated according to changes

in the strain values. Key features of iFEM are represented by the availability of strain sensors and by
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sensor locations. The first topic has been addressed (in [33] and subsequently in most of the iFEM

papers) by using penalization strategies for the inverse elements without strain data. The effect of

sensor locations has also been investigated in [24] for a thin-walled cylinder, in [30] for a chemical

tanker, in [31] for a Panamax container ship, in [29] for a wing-shaped sandwich plate, and in [32]

for a composite wing-box. In [29], both the strain rosettes and FBG sensors are considered for the

strain measurement. In [32], genetic algorithms are used to obtain the optimal sensor locations for an

accurate displacement field reconstruction of a wing box under bending and torsional loading.

Although previous research efforts [29,32] proposed sensor configurations that offered relatively

high reconstruction accuracy, the problems considered were structures undergoing relatively simple

bending or torsion deformations, where the displacement field was not complex. Additionally, the

investigation of the reconstructed displacements was restricted to certain points or sections at the tip

or edge of the structure. These studies have not adequately examined the reconstruction quality at

locations far from the strain sensors. The use of simple iterative or optimization procedures for sensor

placement leads to the choice of sensor configurations, which appear random at first inspection, and

it is difficult to offer any physical reasoning to justify their selection. This leads to difficulties when

extending the method to more complex structures. Overcoming some of these deficiencies is the focus

of the current work.

This paper aims to establish certain elementary sensor configurations that can produce accurate

iFEM shape sensing predictions in a systematic manner. Herein, we focus on a simple rectangular

plate and develop a greater understanding of how the choice of sensor locations affects the accuracy of

each reconstructed displacement component. The sensor configurations chosen are based on simple

patterns, commonly observed in load-bearing frame structures, and can easily be reproduced in a

laboratory setting. Both simple and complex displacement fields are explored, and the reconstructed

displacement field is subject to a rigorous investigation at locations near and far from a sensor array.

This helps quantify the reconstruction accuracy over the entire structure. Additionally, the effect of

the inverse element used is also explored by comparing the reconstruction results using two different

inverse elements. This helps to avoid any bias in sensor placement related to the selection of any

specific element. The understanding garnered from such a rigorous investigation on a simple structural

domain will inspire and offer a pathway for sensor placement strategies in more complex structures.

The paper is organized as follows. The iFEM theoretical formulation is presented in Section 2,

along with a description of the two inverse finite elements. The proposed sensor configurations are

described in Section 3. The shape-sensing performance of each sensor configuration is explored on a

cantilevered rectangular plate subject to low and moderately high vibrational modes. Displacement

reconstruction results for various mode shapes are discussed, and the accuracy of the two inverse

elements is compared. Finally, conclusions and future work opportunities are presented in Section 4.

2. Theoretical Foundation of the Inverse Finite Element Method

The iFEM formulation for plate and shell structures is based on the displacement assumptions

of the Mindlin plate theory [34]. The theory employs five kinematic variables: u, v, w, θx, and θy,

associated with the mid-plane of the plate/shell. The Cartesian components of the displacement vector

can be expressed as

ux(x, y, z) = u + zθy, uy(x, y, z) = v− zθx, uz(x, y, z) = w, (1)

where u and v denote the mid-plane displacements along the x and y axes, θx and θy are the bending

rotations about the x and y axes, and w represents the average transverse displacement of the shell

along the z-axis (see Figure 1).



Sensors 2020, 20, 7049 4 of 24

The strain field can be obtained by differentiating the displacement field of Equation (1), resulting

in the linear strain displacement relations
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The strain field is influenced by two major contributions: one pertaining to the in-plane stretching

of the mid-plane, referred to as the membrane strain measure e(u), and another related to the bending of

the mid-plane, referred to as the curvature vector or the bending strain measure k(u). These membrane

and bending strain measures are given in terms of the kinematic variables as
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Mindlin plate theory also accounts for transverse shear deformation, giving rise to uniform

transverse shear strains across the thickness, i.e.,
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For each inverse element, e, the element degrees-of-freedom (DOF) vector, ue, can be defined as

ue =
[

ue
1 ue

2 . . . ue
n

]T
, (5)

where ue
i

denotes the DOF of each node of the element. The element displacement vector can be used

to write the strain–displacement relations in terms of the nodal DOF of the element
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≡ e(ue) + zk(ue) = Bmue + zBbue,

{
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≡ g(ue) = Bsue, (6)

where Bm, Bb, and Bs are matrices of shape function derivatives corresponding to the membrane,

bending, and transverse shear strains.

Herein, three and four-node inverse elements are discussed. The three-node triangular element,

referred to as iMIN3 [23], is a constant strain element with five DOF at each node,

ue
i =
[

ui vi wi θxi θyi

]

. (7)

The four-node quadrilateral element, referred to as iQS4 [24], is a C0-continuous, anisoparametric

interpolation element with six DOF per node,

ue
i =
[

ui vi wi θxi θyi θzi

]

, (8)

where the third rotation variable, θz, is a drilling DOF that represents the rotation about the z-axis.

The details of the displacement interpolations and the corresponding shape functions for both iMIN3

and iQS4 are summarized in Appendices A and B, respectively.
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Figure 1. Sign conventions for the kinematic variables of the two inverse elements: (a) three-node

triangular element, iMIN3; and (b) four-node quadrilateral element, iQS4.

Using Equation (3), the membrane and curvature strain measures that correspond to the
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where
{

ε
+
xx ε

+
yy γ

+
xy

}T
and
{

ε
−
xx ε

−
yy γ

−
xy

}T
, denote the in-plane normal and shear strains measured on the

top (z = t) and bottom (z = −t) surfaces at (xi, yi) locations, respectively, 2t refers to the thickness of

the shell, and N refers to the total number of strain–sensor locations.

The iFEM methodology is based on an error functional that requires the differences between the

analytical and experimental strain measures to be minimized in a least-squares sense. For each inverse

finite element, e, this functional can be written as

Φe(u
e) = we||e(u

e) − eε||2 + wk||k(u
e) − kε||2 + wg||g(u

e) − gε||2, (11)

where we, wk, and wg are row vectors of weighting coefficients that control the degree of influence of

the experimental strain measures to those described analytically. Vectors we and wk are associated

with the three in-plane membrane strain components and three bending curvatures, respectively,

while wg corresponds to the two transverse shear strain components. Numerous potential scenarios

can be handled by choosing an appropriate value for these coefficients. Some of these cases are

discussed below.

In an element where the experimental strain measures are known, the weighting coefficients can

be set to unity (we = wk = {1, 1, 1}), and the corresponding squared norms for the element can be

calculated as
||e(ue) − eε||2 = 1

Ae

∫

Ae
[e(ue) − eε]2dA ,

||k(ue) − kε||2 =
(2t)2

Ae

∫

Ae
[k(ue) − kε]2dA ,

(12)

where Ae is the area of the inverse element.
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In cases where experimental data are not available and the experimental strain measures cannot

be calculated, the weighting coefficients are set to a suitable small value and the corresponding squared

norms are given as

||e(ue) − eε||2 = 1
Ae

∫

Ae
e(ue)2dA ,

||k(ue) − kε||2 =
(2t)2

Ae

∫

Ae
k(ue)2dA .

(13)

The use of a small value for the weighting coefficient reduces the contribution of the elements

that do not have the strain measurements to the global error functional. The inter-element kinematic

compatibility is ensured across the entire iFEM mesh regardless of whether or not the inverse elements

have measured strain data. Since the transverse shear strain measures, gε, cannot be obtained

directly from experimental strains, the corresponding weighting coefficient is always set to a small

value
(

wg =
{

10−4, 10−4
})

and the squared norms for all elements can be computed according to

the expression:

||g(ue) − gε||2 =
1

Ae

∫

Ae

g(ue)2dA . (14)

Alternatively, Equation (14) can be used with wg = {1, 1}, leading to a strong enforcement of

the Kirchhoff (zero transverse shear) constraints. This would be fully consistent for application to

thin plates, where the transverse shear deformations are much smaller than those due to the bending

deformations. For application to moderately thick plates, a post-processing procedure can be employed

to obtain the gε strains from the transverse shear equilibrium equations, using an a priori applied

smoothing technique [22]. If such an approach is undertaken, the gε contribution would be fully

included in Equation (14), as in Equation (12), while using large weighting coefficients, i.e., wg = {1, 1}.

Since the squared norms described above involve area integrals, a suitable numerical integration

scheme, e.g., Gauss quadrature, can be used. Depending on the Gauss scheme chosen, the experimental

strain measures must be evaluated at each Gauss point of the element. In cases where there is an

unavailability of strain measurements at certain Gauss points, a suitable weighting coefficient can also

be associated with each point and a suitable low value can be provided as described above [32].

A set of linear algebraic equations is obtained by minimizing the error functional in Equation (11)

with respect to the nodal degrees of freedom,

∂Φe(ue)

∂ue
= keue − fe = 0⇒ keue = fe, (15)

where the square matrix, ke, is a function of the strain–sensor positions and the vector, fe, is a function

of the measured strain data. These quantities are analogous to the element stiffness matrix and force

vector obtained in a direct FE analysis. Both ke and fe can be expanded and written in terms of the

derivatives of the element shape functions,

ke = 1
Ae

∫

Ae

[

we(B
m)TBm + wk(2t)2(Bb)

T
Bb + wg(B

s)TBs
]

dA,

fe = 1
Ae

∫

Ae

[

we(B
m)Teε + wk(2t)2(Bb)

T
kε + wg(B

s)Tgε

]

dA.
(16)

The local contributions from all the elements can be assembled using an appropriate element

transformation matrix, Te, to transform the local element coordinate system to the global coordinate

system of the structure (refer to Appendix C). The global matrices and vectors can be assembled as

K =

Ne
∑

(Te)TkeTe , F =

Ne
∑

(Te)Tfe , U =

Ne
∑

(Te)Tue , (17)
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where Ne denotes the total number of inverse Finite Elements. Finally, the following global set of linear

algebraic equations can be solved to obtain the nodal displacements, U, of the structure,

KU = F. (18)

The solution of Equation (18) involves the application of the requisite displacement boundary

conditions to restrain the structure against rigid-body motion. Subsequently, provided K is non-singular,

the DOF vector, U, can be uniquely determined. Note that, in addition to specifying the displacement

boundary conditions, the number of strain sensors and their distributions across the iFEM mesh are

key factors to achieving a non-singular K matrix.

It is emphasized herein that the present iFEM formulation is based on the strain–displacement

relations, and, thus, it is independent of the material properties and loading conditions of the structure.

This inverse formulation can also be used regardless of the initial state of the structure, e.g., in

pre-stressed structures. Although the presence of a membrane pre-stress affects the direct FE solution,

due to the stiffening of the structure, it does not alter the strain–displacement relations used in iFEM.

When such a structure is analyzed using iFEM, the initial structural geometry would include the

pre-stressed displacement field. Any additional strains and resulting displacements would be related

by the strain–displacement relations; hence, iFEM would reconstruct the latter using the former as

input. A flowchart describing the various steps involved in implementing the iFEM procedure is

shown in Figure 2.

ε ε ε

    

    





    



–

–

–

 

–

–
–

Figure 2. Flow chart of the iFEM procedure.

3. Numerical Results

A numerical study is performed to ascertain the effects of using a sparse set of strain–sensor

data on the iFEM accuracy. It is expected that reduction in the number of sensors would result in

lower reconstruction accuracy. Quantifying this change will help in a more objective assessment

of any given strain–sensor configuration. For practical iFEM applications, it is important to design

potentially suitable strain–sensor configurations that would yield stable and accurate reconstruction of

the deformed structural shape.

3.1. Problem Definition

The study is focused on the displacement reconstruction (shape sensing) of various vibration

modes of a cantilevered Aluminium rectangular plate. The plate is clamped at one of its short ends,

and has the following dimensions and material properties: length, a = 3 m, width, b = 1 m, thickness,

2t = 1 mm, Young’s modulus, E = 73 GPa, Poisson’s ratio, ν = 0.3 and material density, ρ = 2700 Kg/m3

(refer to Figure 3).
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The proposal of using low- and high-frequency vibration modes for the iFEM-based shape-sensing

analysis stems from the idea that the individual modes represent a varying degree of complexity of

structural response. Thus, low-frequency modes have relatively simple shapes, whereas high-frequency

modes generally involve more complicated deformed shapes and strain/stress distributions. Table 1

summarizes the select set of vibration modes considered in this study. Note that linear combinations of

such modes can also be used to represent more general loading conditions.

Table 1. Description of the various vibration modes of the cantilevered plate.

Mode Number Frequency Mode Type

1 0.094 Hz 1st bending mode
2 0.58 Hz 1st torsional mode
5 1.84 Hz 2nd torsional mode
6 3.27 Hz 4th bending mode

A high-fidelity FE model of the plate is developed in ABAQUS using the S4R element, which

is a four-node shell element based on Mindlin plate theory, with a bi-linear displacement field and

reduced integration (1-point Gauss quadrature) of the transverse shear strain energy. The FE model

used a high-density mesh of 4800 elements. The FE results serve as the reference displacement field

and provide the simulated experimental strain data required for iFEM. Two types of inverse elements

are used: a three-node element (iMIN3) and a four-node element (iQS4). Although the element

formulations are developed for general shell applications, the example problems considered in this

study address only linear bending and twisting of the plate according to Mindlin theory (transverse

shear deformation included). Hence, the in-plane kinematic variables are identically zero and do not

contribute to the bending and twisting deformations. As the in-plane strain distribution across the

plate thickness is anti-symmetric with respect to the mid-plane, only strain–sensors positioned either

on the plate’s top or bottom surface are required to compute the experimental strain measures. This

study used strain–sensors placed only on the top surface of the plate.

Throughout this study, several strain–sensor schemes will be examined, with the aim of achieving

relatively small number of strain sensors that guarantee accurate and stable iFEM reconstruction

solutions. For those inverse finite elements that are “instrumented” with strain sensors, only a single

strain sensor will be used, thus representing a uniform (constant) distribution of the measured strains

for these elements. Since iMIN3 has constant membrane and bending strain measures, it is sufficient to

integrate the corresponding error norms using a 1-point Gauss quadrature numerical integration. The

full integration of the error norms due to the transverse shear deformations requires a 3-point Gauss

quadrature since the transverse shear strains are linear across the element domain. For this element,

however, the 1-point Gauss-quadrature integration of the transverse shear terms is both sufficient and

accurate. The iQS4 element interpolates u, v, and w bi-quadratically, whereas the θx and θy rotations

are bi-linear, thus requiring a 3 × 3 Gauss to achieve exact numerical integration of the error norms.

From the perspective of computational efficiency, a 2 × 2 Gauss integration is sufficiently accurate.

Note that the FE reference models will be used to extract the simulated “experimental” strains at the

element centroids, simulating the strain sensor values.
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Figure 3. Geometrical dimensions and boundary conditions of the rectangular plate used for the

numerical study.

Three different sparse-sensor configurations are investigated (see Figure 4). Configuration A has

strain sensors placed only along the centroids of the boundary elements, Configuration B is designed

by placing additional interior sensors, diagonally, to form a zig-zag pattern and, finally, Configuration

C supplements the previous two configurations with sensors placed along both cross-diagonal paths.

Although the primary aim of Configuration A is to minimize the number of sensors required and

accurately capture the strains along the boundaries, Configurations B and C are inspired by the need for

more internal sensor data; these sensor patterns bear a resemblance to the designs used for industrial

load bearing frame structures.

–
–

–
–

–

–

 

Figure 4. Sensor configurations for the iQS4 mesh; Configuration: (A) with strain sensors along the

boundaries; (B) with strain sensor along diagonal paths arranged in a zig-zag pattern; (C) with sensors

along cross-diagonal paths; and (D) with sensors placed at the centroids of all elements.

It is important to remark that the proposed strain–sensor patterns have a common design feature.

All three patterns have continuous strain–sensor distributions, i.e., adjacent inverse elements in a

strain–sensor pattern have strain data. Numerical studies have determined that, when discontinuous

strain–sensor distributions are used, Equation (17) can result in a singular system matrix, K, hence

no iFEM solution is attainable. Similarly, the strain–sensor patterns with an insufficient number

of boundary elements populated with strain data can also result in a singular K matrix. This is

especially true for boundary elements that have nodes where the displacement boundary conditions

are prescribed. Hence, in the strain–sensor patterns examined herein, all boundary elements are

instrumented with strain sensors.
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The initial set of results are obtained using the iQS4 element. The iQS4 element mesh has a total

of 1200 elements, with 60 elements along the length and 20 along the width of the plate. The iMIN3

element is also used, based on the quadrilateral element mesh, so that comparisons between the iMIN3

and iQS4 reconstructions can be made.

3.2. Reconstruction of the First Two Mode Shapes

The first two vibrational modes of the plate correspond to the frequencies, 0.094 and 0.58 Hz,

and represent the first bending and torsional modes, respectively. The first mode represents a simple

case of plate bending, where the displacement components w and θy are dominant. The second mode

represents a case of plate twist, where the θx rotation is dominant. Taken together, these two cases

explore all relevant deformation avenues of the plate and will help establish a baseline performance

of iFEM when using sparse sensor data. For the initial reconstruction, a full-field set of sensor data

is used, i.e., experimental strain data is measured at the centroids of all iQS4 elements (referred to

as Configuration D). The contour plot of the iFEM reconstructed deflection, w, is shown in Figure 5.

Comparison of the reconstructed results with reference FE results indicate high accuracy, with the

maximum percent error in the deflection of less than 0.02%. A similar level of accuracy is observed for

the θx and θy rotations. Due to the high density of sensor data, the results of the present case represent

the highest accuracy that the iFEM model can offer, and it serves as the iFEM reference solution for

the reconstructions based on sparse sensor data. Although the contour plot of the results, as seen in

Figure 5, is instructive and shows a spatial variation of the deflection field, it is difficult to assess any

specific details in the reconstructed shape. Henceforth, line plots are presented, taken along various

sections of the plate that capture the maximum in the various deformation components for each mode.

Each line plot is normalized using a normalization factor equal to the maximum of the reference FE

results along that section.

 

θθ

θ θ

 

θ

θ

Figure 5. Contour plots of deflection for Mode 1: (a) FE results; and (b) iFEM results using full-field

strain data (Configuration D).

The reconstruction results using Configurations A, B, and C, are plotted for Mode 1 and compared

with the reference FE results. The line plots of the deflection, w, and rotation, θy, along sections A-A′

and B-B′ (see Figure 5b for the section definition), for Mode 1 are shown in Figures 6 and 7. The

plots indicate that the iFEM results for Mode 1 show remarkable similarity with the FE results, with a
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maximum error of less than 0.2% for w, and less than 0.53% for θy among the configurations. These

reconstruction results are extremely accurate as they show an error of less than 1% across all the

sparse configurations.

 

’ ’

𝜃𝑦 ’ ’

θ

Figure 6. Line plots of deflection (w) for Mode 1 along: (a) section A-A′; and (b) section B-B′.’ ’

 𝜃𝑦 ’ ’

θ

Figure 7. Line plots of rotation (θy) for Mode 1 along: (a) section A-A′; and (b) section B-B′.

Since Mode 1 is the first bending mode, the effect of rotation, θx, is minimal. Hence, Mode 2

(the first torsional mode) is also explored. The contour plot of the deflection, w, using a full-field

set of sensors is shown in Figure 8. As in the previous case, these results are highly accurate, with a

maximum error of less than 0.03%.

 

θ

 

Figure 8. Contour plots of deflection for Mode 2: (a) FE results; and (b) iFEM results using full-field

strain data (Configuration D).
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As seen for the case of Mode 1, these reconstruction results are focused on the deflection, w, and

rotation, θx, as they are the dominant kinematic variables for this mode. iFEM reconstruction is again

performed using the sparse Configurations A, B, and C, and the results are shown as line plots along

sections C-C′ and B-B′ (see Figures 5b and 8b for the section definitions). The results shown in Figures 9

and 10 indicate high reconstruction accuracy with a maximum error of less than 0.25% for w and 0.76%

for θx. The level of accuracy is again similar to what was observed for Mode 1.

These results indicate that all three sparse sensor configurations are equally suited to be used for

the reconstruction of the first two vibrational modes. The first two modes are examples of relatively

simple transverse deflection and rotation fields, and these results are also highly accurate for all three

deformation components. As the purpose of the present effort is to quantify the performance limits of

these strain–sensor configurations, the results for the first two modes can be used to define the lower

limits of performance.

To define the upper limits of performance, more complex displacement fields need to be examined.

For this purpose, iFEM is used to reconstruct several higher mode shapes of the plate.

θ

C’ and B B’ (see 

θ

–

 

’ ’

𝜃𝑥 ’ ’

Figure 9. Line plots of deflection (w) for Mode 2 along: (a) section C-C′; and (b) section B-B′.

θ

C’ and B B’ (see 

θ

–

’ ’

 𝜃𝑥 ’ ’Figure 10. Line plots for rotation (θx) for Mode 2 along; (a) section C-C′; and (b) section B-B′.

3.3. Reconstruction of Higher Mode Shapes

For demonstration purposes, Mode 6 is now considered, which is the fourth bending mode of

the plate, corresponding to a frequency of 3.27 Hz. The deflection shape has a total of four nodes

and anti-nodes and presents a relatively more complex displacement field suitable for establishing an

upper limit of reconstruction performance. The contour plot of the deflection, w, using a full-field set

of sensors, is shown in Figure 11. The results again are highly accurate, with a maximum error in w

of 1.3%, measured at the tip of the plate. The reconstruction of the rotation components is of similar

accuracy. Hence, the iFEM results of Mode 6 for Configuration D indicate a level of accuracy similar to

the lower modes.
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θ

θ

θ

Figure 11. Contour plots of deflection for Mode 6: (a) FE results; and (b) iFEM results using full-field

strain data (Configuration-D).

Next, the strain data corresponding to the sparse Configurations A, B and C are used for iFEM

reconstruction. Figure 12 depicts the deflection distributions along sections A-A′ and B-B′. These results

clearly show significant variations in performance among the three configurations. The Configuration

A results show a maximum error of 10.54%, with the location of the errors occurring at the internal local

deflection peaks of the mode shape. The deflection is more accurate at the two outer boundaries of the

plate, with a maximum error of 0.75%. The results of Configurations B and C offer greater accuracy

with errors less than 1.5% throughout the plate.

A similar level of accuracy was observed for rotation, θy (see Figure 13), with a maximum error of

8.37% for Configuration A, whereas the other two configurations are more accurate with errors less

than 1.5%. Figure 14 shows the reconstruction results for rotation, θx, with results of Configurations

A, B, and C showing maximum errors of 18.14%, 4.95% and 3.43%, respectively. Here, Section D-D′

(see Figure 8b for the section definition) is used for the plot, as it intersects a node with the global

maximum in θx for Mode 6.

A’ and B B’. These 

θ

θ

D’ (see Figure 8
θ

 

’ ’Figure 12. Line plots of deflection (w) for Mode 6 along: (a) section A-A′; and (b) section B-B′; (see

Figure 5b for the section definitions).
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 𝜃𝑦 ’ ’

𝜃𝑥 ’ ’

C’ and B B’, both of which lie along elements with strain data. The line plots along these 

θ

’𝜃𝑥 ’

Figure 13. Line plots of rotation (θy) for Mode 6 along; (a) section A-A′; and (b) section B-B′; (see

Figure 5b for the section definition).

𝜃𝑦 ’ ’

 𝜃𝑥 ’ ’

C’ and B B’, both of which lie along elements with strain data. The line plots along these 

θ

’𝜃𝑥 ’

Figure 14. Line plots of rotation (θx) for Mode 6 along; (a) section C-C′; and (b) section D-D′; (see

Figure 8b for the section definition).

Mode 6 results of Configuration A show that the main inaccuracies are present at internal nodes

of the plate. This is attributed to the fact that, in Configuration A, sensors are present only along the

boundaries. Hence, there is a lack of strain information within the plate interior, leading to difficulties

in reconstructing internal displacements while the boundary displacements are accurate. This is further

corroborated by the results of Configurations B and C, where the presence of internal sensors leads to

greater accuracy within the plate. The effect of reconstruction accuracy along sections with a sparse

and dense set of sensor data is further explored. This can be understood by considering sections C-C′

and B-B′, both of which lie along elements with strain data. The line plots along these sections are

shown in Figure 15. These results clearly indicate that the displacement and rotation reconstruction

along these paths are highly accurate, with a maximum error of 1.24% for w and 0.70% for θx among the

configurations. These results are in direct contrast to those seen previously, as they show that, even for

Configuration A, highly accurate results are obtained along densely populated sensor paths for Mode 6.

𝜃𝑦 ’ ’

𝜃𝑥 ’ ’

C’ and B B’, both of which lie along elements with strain data. The line plots along these 

θ

 

’𝜃𝑥 ’
Figure 15. Reconstruction results for Mode 6; line plots of: (a) deflection w, along section C-C′;

and (b) rotation θx, along section B-B′; (see Figures 5b and 8b for the section definitions).
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A similar case is explored by considering the results along paths G-G′ and H-H′ (see Figure 11b

for the section definition), which correspond to the cross-diagonal sensor patterns of Configuration C.

These results will also help to discriminate between Configurations B and C, which until now offered

comparable reconstruction accuracies. These plots are shown in Figures 16 and 17. The results clearly

show that Configuration A is less accurate. However, further scrutiny reveals the differences between

Configurations B and C. They show that Configuration B has a maximum error of 2.52% for w and

9.47% for θx, whereas Configuration C has a maximum error of less than 1% for the two variables.

G’ and H H’ (see Figu



 

’ ’

𝜃𝑥 ’ ’

G’, 
H’ shows a maximum error 

Figure 16. Line plots of deflection (w) for Mode 6 along: (a) section G-G′; and (b) section H-H′.

G’ and H H’ (see Figu



’ ’

 𝜃𝑥 ’ ’

G’, 
H’ shows a maximum error 

Figure 17. Line plots of rotation (θx) for Mode 6 along: (a) section G-G′; and (b) section H-H′.

These plots also indicate asymmetries in the results of Configuration B. Along section G-G′, θx has

a maximum error of 9.47%, whereas path H-H′ shows a maximum error of 1.05%. This asymmetry is

attributed to the fact that the former path only has strain sensors in the boundary elements, whereas

the latter path has strain sensors all along the path. This again reinforces the conclusion that deflection

reconstruction is more accurate along a path with a dense set of sensors. It also demonstrates the

greater accuracy of using a symmetric cross-diagonal pattern similar to that used in Configuration C.

The current set of results help demonstrate that Configuration C is the most accurate sensor pattern

across all the explored cases. For practical applications, however, Configuration B could be a more

optimal choice, as it offers a great trade-off between reconstruction accuracy and the number of

required sensors.



Sensors 2020, 20, 7049 16 of 24

3.4. Comparing Results of iMIN3 and iQS4 Models

The results presented until now were obtained using the iQS4 element. In this section, these

results are compared with results obtained using the iMIN3 element for the same problem cases

explored above. Such a comparison would prove to be an interesting investigation into the effect of the

choice of inverse element on the reconstruction performance of a specific problem. For each sensor

configuration, the normalized displacement components are plotted as a function of the number of

sensors used to show the convergence of the results. The results from both the sparse and full-field

sensor configurations are used for this study.

For a parametrically equivalent comparison between the two sets of elements, it is necessary to

use an identical set of sensor data for both inverse element cases. To achieve this equivalence, the

iMIN3 mesh is derived from that used for the iQS4 element by dividing each quadrilateral element

cross diagonally to get four triangular elements, as shown in Figure 18. In addition, the strain data

measured at the centroid of each quadrilateral element are used equally for all four triangular elements

occupying that area. Using such a strategy, equivalent sparse sensor configurations are obtained using

both iMIN3 and iQS4 elements. The details on the number of strain rosettes used are summarized in

Table 2.

 

n ed ata 

  

,   

Figure 18. The iFEM mesh used for the iMIN3 element.

Table 2. Strain data information for each sparse sensor configuration and inverse element.

Configuration No. of Strain Rosettes Used No. of Elements with Strain Data

N iQS4 Mesh iMIN3 Mesh

A 156 156 624
B 214 214 856
C 336 336 1344
D 1200 1200 4800

iFEM reconstruction results using Configurations A, B, C, and D are plotted for Modes 5 and 6.

The contour plot of iFEM reconstructed deflection, w, for Mode 5 using a full-field set of sensors is shown

in Figure 19. For each mode, the results are plotted at specific locations of the plate corresponding to

locations of maximums in w, θx and θy. For Mode 5 (second torsional mode), these nodes are located

at coordinates: (2.95, 0.95), (2.95, 0.50), and (2.00, 0.95), respectively. Similarly, the points chosen for the

Mode 6 plots are: (2.35, 0.50), (2.50, 0.90), and (2.00, 0.50). The convergence results for Mode 5, plotted

using a logarithmic scale along the x-axis, are shown in Figure 20.
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,  ,

 

Figure 19. Contour plots of deflection for Mode 5: (a) FE results; and (b) iFEM results using full-field

strain data (Configuration-D).

 

 𝜃𝑥 𝜃𝑦Figure 20. iFEM results for Mode 5: convergence plots for (a) w, (b) θx, and (c) θy.

These results indicate that the kinematic variables w, θx, and θy converge to FE results with an

increasing number of sensors used. The plots also indicate similar predictive capability of the iMIN3

and iQS4 results. The convergence results for Mode 6 are shown in Figure 21, and similar conclusions

are drawn from these plots.
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 𝜃𝑥 𝜃𝑦

–

–

Figure 21. iFEM results for Mode 6: convergence plots for (a) w, (b) θx, and (c) θy.

The numerical study discussed above demonstrated the performance of three different sparse

sensor Configurations A, B, and C for reconstructing various simple and complex displacement

fields. The configurations were chosen to illustrate increasing levels of complexity in sensor patterns,

suitable for practical applications. The results clearly demonstrate that Configuration A, with its

fully defined boundary sensor data, is suitable for accurately reconstructing simple displacement

fields as seen for Modes 1 and 2. However, more complex displacement fields required the use

of internal strain data as was achieved by Configurations B and C. Reconstruction asymmetries

were observed for Configuration B, whereas Configuration C consistently produced accurate results.

Finally, Configuration B was identified as an ideal choice for practical applications, as it offered a

good compromise between the number of sensors used and reconstruction accuracy. In addition, an

investigation into the reconstruction using two different inverse elements revealed similar results. This

indicates that, irrespective of the inverse element used, similar performance can be expected when

using the same set of experimental strain data.

Although the present study was shown to be highly effective, the proposed sparse sensor

configurations involve relatively dense sensor patterns. A number of strain–sensor reduction strategies

can be used to reduce the number of strain sensors even further. For example, when fewer strain

sensors are available along a one-dimensional sensor pattern while a high-density inverse element

mesh is employed, the strain values in the elements without strain data can be obtained by way of

simple interpolation or smoothing methods. However, another strategy is to make use of fiber-optic

strain sensors, permitting the desired high-strain measurement density. Note that the proposed

configurations involve long one-dimensional sensor paths that can easily be instrumented using fiber

optic sensors. Moreover, the use of a relatively coarse iFEM mesh would necessarily allow for a much

smaller number of strain sensors, although less accurate reconstruction results would be expected as

a result.

4. Conclusions

This paper presented a detailed investigation into the effects of sparse strain–sensor data on the

displacement reconstruction using the inverse FEM (iFEM). The iFEM discretizes a structural domain
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by means of inverse finite elements that are formulated on the basis of a weighted-least-square error

functional being computed. The functional represents the least-square error between the experimentally

measured strains and those corresponding to the finite element approximations. Suitable values of

weighting coefficients are used to account for the presence or absence of strain data within each element.

In elements with strain data, the weighting coefficients are equated to unity, whereas, in elements

without strain data, the weighting coefficients are set to be several orders of magnitude smaller, thus

reducing the element contribution towards the global error functional. The use of these weighting

coefficients allows the use of iFEM for problems with sparse strain–sensor data.

Both three and four-node inverse elements were used in the study of a cantilevered rectangular

plate undergoing low and moderately high frequency vibrational motion. The elements were derived

from the displacement assumptions of Mindlin theory, using C0-continuous anisoparametric shape

functions adopted from plate formulations of the direct FEM. Inspired by the shape of load-bearing

frame structures, three sparse sensor configurations were explored in the computational study. These

sensor configurations were used for the shape sensing of low and higher bending and torsional

vibration modes. These modes encompass both simple and complex displacement fields, where all the

major kinematic variables were excited.

The iFEM performance using the sparse sensor configurations was assessed by comparing the

reconstruction results with the reference FE results. For the first bending and torsional mode, highly

accurate displacements and rotations were obtained using all three sparse sensor configurations.

However, for the fourth bending mode, sensors placed only along the boundaries were insufficient to

reconstruct the complex internal displacement distribution and required additional strain–sensor data,

specifically in the interior of the plate. These results highlighted the effectiveness of only using boundary

strain data for reconstructing relatively simple displacement fields, whereas superior reconstructions

can be achieved by using additional internal sensors along zig-zag or cross-diagonal paths. It was

also inferred that, for any sensor configuration, displacement reconstruction along a path with a

dense sensor array would be more accurate than along a path with very few sensors. This indicates

that reconstruction accuracy decreases with increasing distance from strain sensors. In addition, an

asymmetric sensor pattern could lead to asymmetries in the reconstruction results, as observed for

the zig-zag pattern. Although the cross-diagonal sensor patterns provided the most accurate results,

the zig-zag sensor pattern presents a reasonable practical compromise, offering high reconstruction

accuracy with low sensor data requirements. Both the three- and four-node inverse element models

were also used to study solution convergence of the kinematic variables, with increasing sensor density.

Excellent correlations with reference FE results were observed, and both element types produced

comparable high-accuracy results.

Although the sensor configurations explored in this work have been demonstrated to be effective

for a simple rectangular plate, they are intended to inspire further designs for applications involving

more complex structures. The concepts of using a continuous line of sensors along the boundary and

using cross-diagonal paths can be amalgamated to create novel configurations satisfying the application

requirements. Such an investigation involving more geometrically complex structures is identified as

a topic for future work. Additionally, while the current work focused on problems involving strain

rosettes, the relative simplicity of the proposed patterns offers the possibility of extending the present

work to strain measurements using fiber-optic sensors. The greater number of strain measurements

using fiber-optics could help supplement the level of accuracy already observed in the current set of

results and is also a topic for future investigations.
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Appendix A. iMIN3 Interpolations

The iMIN3 element is formulated with the kinematic variables interpolated using C0-continuous

anisoparametric shape functions [35],

u(x, y) =
3
∑

i=1
Piui , v(x, y) =

3
∑

i=1
Pivi

w(x, y) =
3
∑

i=1
Piwi+

3
∑

i=1
(Riθxi + Qiθyi)

θx(x, y) =
3
∑

i=1
Piθxi , θy(x, y) =

3
∑

i=1
Piθyi

(A1)

where Pi are the area-parametric shape functions. The deflection, w, is interpolated using a quadratic

polynomial and the other four variables are interpolated linearly,

Pi =
Ai

A
(A2)

Qi =
Pi

2

(

a jPk − akP j

)

, Ri =
Pi

2

(

bkP j − b jPk

)

(A3)

ai = (xk − x j) , bi = (y j − yk)

i = {1, 2, 3} , j = {2, 3, 1} , k = {3, 1, 2}
(A4)

Based on the strain–displacement relations, the derivatives of the shape functions can be used to

relate the strains to the nodal displacements. The derivatives can be written in matrix form as

Bm
i
=





















Pi,x 0 0 0 0

0 Pi,y 0 0 0

Pi,y Pi,x 0 0 0





















, Bb
i
=





















0 0 0 0 Pi,x

0 0 0 −Pi,y 0

0 0 0 −Pi,x Pi,y





















Bs
i
=

[

0 0 Pi,x Ri,x Qi,x + Pi

0 0 Pi,y Ri,y − Pi Qi,y

]

, i = {1, 2, 3}

(A5)

Assembling the contributions from each node, the element-level matrices of the shape function

derivatives can be written as
Bm =

[

Bm
1

Bm
2

Bm
3

]

Bb =
[

Bb
1

Bb
2

Bb
3

]

Bs =
[

Bs
1

Bs
2

Bs
3

]

(A6)

Appendix B. iQS4 Interpolations

The iQS4 element is formulated with the kinematic variables interpolated using C0-continuous

anisoparametric shape functions [24,36],

u(x, y) =
4
∑

i=1
Niui+

4
∑

i=1
Liθzi , v(x, y) =

4
∑

i=1
Nivi+

4
∑

i=1
Miθzi

w(x, y) =
4
∑

i=1
Niwi−

4
∑

i=1
Liθxi −

4
∑

i=1
Miθyi

θx(x, y) =
4
∑

i=1
Niθxi , θy(x, y) =

4
∑

i=1
Niθyi

(A7)
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where the shape functions have the form

N1 =
(1−s)(1−t)

4 , N2 =
(1+s)(1−t)

4

N3 =
(1+s)(1+t)

4 , N4 =
(1−s)(1+t)

4

N5 =
(1−s2)(1−t)

16 , N6 =
(1+s)(1−t2)

16

N7 =
(1−s2)(1+t)

16 , N8 =
(1−s)(1−t2)

16

s, t ∈ [−1, +1]

,

L1 = y14N8 − y21N5 , M1 = x41N8 − x12N5

L2 = y21N5 − y32N6 , M2 = x12N5 − x23N6

L3 = y32N6 − y43N7 , M3 = x23N6 − x34N7

L4 = y43N7 − y14N8 , M4 = x34N7 − x41N8

xi j = xi − x j , yi j = yi − y j

i = {1, 2, 3, 4} , j = {1, 2, 3, 4}

(A8)

The matrices containing the shape-function derivatives are given as

Bm
i
=





















Ni,x 0 0 0 0 Li,x

0 Ni,y 0 0 0 Mi,y

Ni,y Ni,x 0 0 0 Li,y + Mi,x





















, Bb
i
=





















0 0 0 0 Ni,x 0

0 0 0 −Ni,y 0 0

0 0 0 −Ni,x Ni,y 0





















Bs
i
=

[

0 0 Ni,x −Li,x −Mi,x + Ni 0

0 0 Ni,y −Li,y −Ni −Mi,y 0

]

, i = {1, 2, 3, 4}

(A9)

and their nodal contributions are assembled into the matrices

Bm =
[

Bm
1

Bm
2

Bm
3

Bm
4

]

Bb =
[

Bb
1

Bb
2

Bb
3

Bb
4

]

Bs =
[

Bs
1

Bs
2

Bs
3

Bs
4

]

(A10)

Appendix C. Transformation Matrices

This section provides the relations for the orthogonal transformation matrix that can be used

to relate the element local coordinate system to the global coordinate system of the plate. The 2D

transformation matrix for a rotation, θ, about the z-axis, is simply (see Figure A1).

TR =

[

cosθ sinθ

− sinθ cosθ

]

. (A11)

The transformation matrix, Te, for the iMIN3 element can be obtained by assembling the

transformations of the nodal degree-of-freedom (T3
R

),

T3
R =





















TR 0 0

0 1 0

0 0 TR





















5×5

, Te =





















T3
R

0 0

0 T3
R

0

0 0 T3
R





















15×15

. (A12)

The transformation matrix, Te, for an iQS4 element can be assembled in a similar manner,

T4
R =





























TR 0 0 0

0 1 0 0

0 0 TR 0

0 0 0 1





























6×6

, Te =





























T4
R

0 0 0

0 T4
R

0 0

0 0 T4
R

0

0 0 0 T4
R





























24×24

(A13)
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Figure A1. Orientation of the element local coordinate system (xe, ye), with respect to the global

coordinate system (xg, yg), of the plate.
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