
07 October 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A comparative study of RTC applications / Nistico, Antonio; Markudova, Dena; Trevisan, Martino; Meo, Michela;
Carofiglio, Giovanna. - ELETTRONICO. - (2020), pp. 1-8. (Intervento presentato al  convegno 2020 IEEE International
Symposium on Multimedia (ISM) tenutosi a Napoli (IT) nel 2-4 Dicembre 2020) [10.1109/ISM.2020.00007].

Original

A comparative study of RTC applications

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISM.2020.00007

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2867792 since: 2021-01-26T17:48:41Z

IEEE



A comparative study of RTC applications
Antonio Nisticò†, Dena Markudova†, Martino Trevisan†, Michela Meo†, Giovanna Carofiglio ‡,

†Politecnico di Torino, ‡Cisco Systems Inc.
first.last@polito.it, gcarofig@cisco.com

Abstract—Real-Time Communication (RTC) applications have
become ubiquitous and are nowadays fundamental for people to
communicate with friends and relatives, as well as for enter-
prises to allow remote working and save travel costs. Countless
competing platforms differ in the ease of use, features they
implement, supported user equipment and targeted audience
(consumer of business). However, there is no standard protocol or
interoperability mechanism. This picture complicates the traffic
management, making it hard to isolate RTC traffic for prioriti-
zation or obstruction. Moreover, undocumented operation could
result in the traffic being blocked at firewalls or middleboxes.

In this paper, we analyze 13 popular RTC applications,
from widespread consumer apps, like Skype and Whatsapp, to
business platforms dedicated to enterprises – Microsoft Teams
and Webex Teams. We collect packet traces under different
conditions and illustrate similarities and differences in their use
of the network. We find that most applications employ the well-
known RTP protocol, but we observe a few cases of different (and
even undocumented) approaches. The majority of applications
allow peer-to-peer communication during calls with only two
participants. Six of them send redundant data for Forward Error
Correction or encode the user video at different bitrates. In
addition, we notice that many of them are easy to identify by
looking at the destination servers or the domain names resolved
via DNS. The packet traces we collected, along with the metadata
we extract, are made available to the community.

Index Terms—Real Time Communication, Network, Protocols,
RTP, VoIP

I. INTRODUCTION

In recent years, the spread of broadband Internet access and
mobile networks fostered the adoption of Real-Time Commu-
nication applications, which allow individuals and groups of
people to communicate via voice and video. They are now
fundamental for leisure and business, supporting people to
reach friends and relatives and allowing for remote working.
The importance of RTC became especially evident during the
COVID-19 pandemic, when the social distancing and lock-
down measures adopted to curb the outbreak forced billions
of people to communicate solely by using RTC platforms.
Indeed, nowadays there are countless competing applications
for RTC, which differ in terms of ease of use, pricing strategy
and targeted audience.

Historically, the first proposals for real-time communication
over IP networks were based on the Session Initiation Proto-
col (SIP) [1] for session setup and the Real Time Protocol
(RTP) [2] for media stream transmission. Indeed, in the
late 1990s and early 2000s, Voice-over-IP (VoIP) solutions

This work has been supported by the SmartData@PoliTO center on Big
Data and Data Science and Cisco Systems Inc.

created a market for corporate-level telephony, replacing the
old public circuit-switched telephone network. Then, Skype
brought the VoIP technology to individuals, allowing people
to make calls via the Internet for free. Differently from
previous VoIP proposals, it was based on a Peer-to-Peer (P2P)
architecture and made use of encrypted and undocumented
protocols [3]. Recently, dozens of new RTC applications have
appeared, competing in a world where audio and video calls
are part of the normal business and leisure routine. They are
nowadays massively adopted and companies pay subscriptions
for premium and customized access plans. However, there is
still no standard for interoperability between different applica-
tions, and even when they employ well-known protocols, the
resulting mix of them is diverse in each application. Moreover,
the vast majority of applications are closed-source and provide
none or very little documentation. If this is somehow required
to protect the intellectual property behind them, it complicates
the network management for Internet Service Providers (ISPs)
and corporate network administrators. Prioritizing RTC traffic
or blocking unauthorized applications is therefore hard, while
unknown protocols might cause issues in middleboxes that rely
on Deep Packet Inspection (DPI) – e.g., firewalls or NATs.

In this paper, we study and compare different RTC applica-
tions and enlighten similarities and differences in the way they
use the network. We collect packet traces from 13 applications,
choosing them from top popular consumer solutions (Skype
and Google Meet above all), and from products for business
communication, where Microsoft Teams and Webex Teams are
notable examples. We run an extensive experimental campaign
in which we capture the traffic generated by the applications
using different devices and types of calls. This allows us to
provide an overview of the common practices and peculiarities
currently adopted by the competitors on the RTC market. The
notable findings we obtain are:

• Most of the applications still rely on the RTP protocol
for media streaming.

• They use various mixes of protocols. The most frequent
ones are STUN and TURN for session setup and TLS
and DTLS for control data exchange.

• We find examples of undocumented protocols used in
Telegram and GoTo Meeting. Zoom uses an unknown en-
capsulation mechanism for RTP, while Microsoft Teams
uses a non-standard, yet documented encapsulation pro-
tocol.

• Peer-to-peer communication is often exploited in calls
with only two participants, when the network allows it.



• Six applications send redundant data for Forward Error
Correction (FEC) or send the user’s video at different
qualities at the same time (Simulcast).

The collected data also allows us to characterize the traffic
generated during the calls and to provide guidelines for
its identification. We show that the media traffic of some
applications can be easily recognized by simply looking at the
Autonomous System (AS) of the server, while others rely on
large infrastructures and/or content delivery networks (CDNs).
We also find that almost all of them can be identified (and
blocked) using the domains the client resolves during the
application execution.1 Only for Google this is complicated,
since it uses very generic domains that cannot be associated
to the specific RTC service. We make the dataset we used
for the experiments public: a list of contacted ASes, domains,
ports and Payload Types (PTs) per application, as well as all
the collected traffic traces.2 We believe that our data may help
researchers to reproduce our results or extend them to different
contexts, while also providing useful indications to network
practitioners and administrators.

The remainder of the paper is organized as follows. In
Section II, we provide a background on the most popular
protocols used in RTC applications. Section III describes the
applications under test as well as the packet traces we collect.
We present our findings starting with Section IV, which
illustrates the network protocols we find. Section V discusses
the different design choices, while Section VI provides useful
guidelines for traffic identification. Section VII discusses the
related work and finally Section VIII concludes the paper.

II. BACKGROUND

To guide the reader through the paper, in this section we
provide an overview of the most common protocols that are
used in RTC applications. Although this list is not meant to
be exhaustive, it includes all protocols that we observe in
the 13 applications under test (neglecting the undocumented
solutions).

Media streaming. The most popular protocol for real-time
media streaming is RTP [2]. Proposed in the faraway 1996, it
defines a simple encapsulation mechanism in which different
streams are multiplexed using a unique Synchronization source
identifier (SSRC). The timestamp field reports the instant
at which the content is generated and Payload Type (PT)
indicates the employed video or audio codec. RTP defines a set
of predefined or static PTs, while leaving also the possibility
of defining them dynamically during a session. Then, the
data are carried over UDP or (very rarely) over TCP as a
transport protocol. The support protocol RTCP is typically
used beside RTP for exchange of various streaming statistics,
like packet loss ratio. SRTP [4] is a variant of RTP that
achieves confidentiality by encrypting the media payload while
leaving all the original headers in clear.

1We use the term domain throughout the paper, meaning Fully Qualified
Domain Name.

2Our dataset is available at: https://smartdata.polito.it/
a-comparative-study-of-rtc-applications-the-dataset/

TABLE I: Overview of the tested applications (consumer apps
are on the first block, while business on the second). On the
Media column, A=Audio, V=Video and S=Screen Sharing.

Application Multiparty Desktop
App

Mobile
App

Browser
version Media

Skype X X X X AVS
Google Meet X X X AVS

Jitsi Meet X X X X AVS
WhatsApp X X AV

Telegram X X AV
Facebook

Messenger X X X X AV

Instagram
Messenger X X AV

Facetime X X X AV
HouseParty X X X X AV

Microsoft
Teams X X X X AVS

Webex
Teams X X X X AVS

Zoom X X X X AVS
GoTo

Meeting X X X X AVS

Session Setup. To establish a media session, it is necessary to
ensure that the endpoints can communicate with each other,
especially in the case of peer-to-peer communication among
participants. This is complicated by the presence of NATs,
firewalls and middleboxes in general. To ensure connectivity,
the applications often use the STUN protocol [5] for NAT
detection and TURN [6] to relay the traffic through a server
that resides on the public Internet. ICE [7] combines STUN
and TURN into a single technique. The RFC 7983 [8] defines
a simple mechanism for multiplexing RTP, STUN and other
protocols on the same UDP flow. Finally, the Session De-
scription Protocol (SDP) [9] defines a format for negotiating
the network and media characteristics of the session – e.g.,
the audio and video codecs. Nowadays it is (almost) always
sent over encrypted channels (e.g., TLS or DTLS, see next
paragraph), and as such, completely invisible to the network.

Additional protocols. RTC applications use a wide range of
protocols for exchanging control data, e.g., for login or chat.
This typically requires confidentiality, and we observe a large
prevalence of the TLS [10] and DTLS [11] protocols.

WebRTC. The above protocols need to be carefully coor-
dinated to have a working RTC application. To ease the
development, WebRTC [12] is a set of high level and standard
APIs that can be used in browsers and mobile applications for
video and audio communication. Released in 2011, currently
most browsers support WebRTC and it represents the only way
for RTC applications to run via web, if we exclude application-
specific plugins. WebRTC provides programming interfaces to
establish media sessions, coordinating the use of the SRTP,
RTCP, STUN, TURN and DTLS protocols.

III. DATA COLLECTION

We target 13 popular RTC applications, that we can roughly
group into two categories. We first consider 9 consumer
applications, used by people for communicating with relatives



and friends and for leisure in general. The set includes Skype,
historically the pioneer of VoIP, now owned by Microsoft.
We also involve two competitors: Meet by Google, and Jitsi
Meet, the public instance of the open-source Jitsi tool. We
then consider chat and social applications that also provide
the possibility of making calls: We test Whatsapp, Telegram,
Facebook and Instagram. Finally, we consider FaceTime,
included in all Apple products, as well as HouseParty, that
suddenly became popular during 2020. In the second category
we include business platforms for RTC, which typically pro-
vide commercial plans for enterprises. We consider Microsoft
Teams and Webex Teams, that are very popular solutions used
for remote working and teaching. We also place Zoom and
GoTo Meeting in the business category, since they offer both
a free version and premium plans for businesses. We show an
overview of the tested applications in Table I. All applications
except Telegram allow for multiparty calls – i.e., with more
than two participants. Screen sharing is available in seven of
the tested applications, including all business platforms, that
we report in the bottom part of the table. Most applications
have a desktop/PC version. Google Meet on a PC can be used
only via browser, while FaceTime only works on Mac PCs and
phones. Whatsapp has a desktop app which does not support
calls. All applications have a mobile client and 9 out of 13
can be used directly via browsers supporting WebRTC.

We perform several experiments to collect representative
packet traces for the chosen applications. Those which pro-
vide a desktop client are installed on three Windows testing
machines. For the applications that support mobile clients, we
perform additional experiments using an iPhone and for a few
an Android phone. We also perform some experiments with
Google Chrome to check the application behavior when used
via browser. However, browser versions must use the WebRTC
APIs, to limit the variability in terms of protocol usage and
operation. Note that all the tested applications provide either
a mobile or a desktop client, and none of them can be used
uniquely via browser. We also perform a few tests on the
operating systems Linux and MacOS.

For each application, we make several experiments under
different setups. We make calls with 2 and 3 participants
(when allowed). We run individual experiments with only
audio enabled, with both audio and video, and, finally, using
also the screen sharing functionality, when available in the
application. During each experiment, a participant collects all
the traffic their machine exchanges with the Internet and stores
it in pcap format. Each call lasts no less than 5 minutes. For
each setup, we make a minimum of 5 calls. As such, we collect
20-30 packet traces for each application, summing to 334
in total. From the collected traces we identify the employed
protocols and study the operation mechanisms. To achieve this,
we first use Tstat [13], a passive meter which extracts rich
flow-level records. It provides us entries for all the observed
TCP and UDP flows, and, more importantly, it shows general
statistics for each RTP stream, such as the number of packets,
bitrate, etc. We also manually inspect the pcap files (when
no known protocol is found and for further analysis).

IV. NETWORK PROTOCOLS

We start our analysis studying the protocols employed in
the tested applications. Looking at the Tstat log files, we find
the network flows carrying the media content. This operation
is simple since our test machines do not run any concurrent
task when making the calls. We notice that, in all cases,
the applications opt for UDP as a transport protocol. We
then analyze the payload of the media flows to identify the
employed protocols. Indeed, a single UDP media flow may
carry different protocols multiplexed together. This is always
true in WebRTC, where RTP, RTCP, STUN and DTLS are sent
over the same UDP flow.

In the left-most part of Table II, called “Protocols”, we
report the protocols we find in the captures made with
desktop/mobile clients. We intentionally neglect web clients,
as they solely use the standard WebRTC APIs, resulting in
the protocols mentioned above. We first notice that RTP is
adopted in 11 out of 13 applications. We believe that all
applications encrypt the payload using SRTP, but this does
not alter the network behavior. STUN is commonly used to
establish the session in the applications which use RTP. We
notice that applications using STUN make use of TURN to
communicate in case direct connection is not possible. This is
no surprise as STUN and TURN are complementary protocols,
orchestrated together in the ICE mechanism (see Section II).
We also find four applications using DTLS, interleaved among
RTP packets. Finally, we notice five applications that employ
peculiar approaches, as described in the next paragraphs.

Skype and Microsoft Teams: the two services from Microsoft
typically employ normal RTP to stream media and STUN
to establish sessions. However, we find that in some cases
they use a modified version of TURN called Multiplexed
TURN3, which is an encapsulation mechanism as simple as
TURN, in which the ordinary RTP header follows a few header
bytes. It can be easily identified looking at the first two bytes,
always assuming a value of 0xFF10. We publish online a
simple command-line tool to strip this header so that RTP
is contained directly in UDP, allowing analysis with classical
packet inspectors [14].

Telegram: we do not identify any known protocol within the
UDP flow used to transport media data, only STUN and TURN
for session setup. Indeed, the official Telegram documentation
reports that the media track is encrypted and sent on the
network via the proprietary MTProto protocol.4 Note that
Telegram calls are not available from the web client, where a
custom protocol could not work.

Zoom: we find that the RTP header is not directly contained
in the UDP payload, but a custom encapsulation mechanism
accounts for 4 Bytes. Looking at the packet size and timing
we conclude that in video streams the encapsulation Bytes
assume the value 0x05100100, while in audio streams, the

3https://docs.microsoft.com/en-us/openspecs/office protocols/ms-turn/
65f6ef76-a79d-42a4-a43f-dac56d4a19ac

4https://core.telegram.org/mtproto/description



TABLE II: Comparison of the RTC applications under test. Under Redundant data, “F” stands for FEC and “S” for Simulcast.
Under DNS domains, “B” stands for easy to block, “C” for company-specific and “S” for social networks. Under Other, “N”
means it uses less than four server-side ports and “T” means that PTs are used in a static fashion.

Protocols Operation Identification
Application RTP STUN/TURN DTLS Other P2P Redundant

Data Other Own
AS

DNS
Domains Other

Skype X X X X F,S X B N,T
Google Meet X X X S X X C N,T

Jitsi Meet X X X X B
WhatsApp X X X F X B N,T

Telegram X X X X B
Facebook

Messenger X X X X X S T

Instagram
Messenger X X X S N,T

Facetime X X X X X C N,T
HouseParty X X X B T

Microsoft
Teams X X X X F,S X B N,T

Webex
Teams X X F,S X X B N

Zoom X X X F B N,T
GoTo

Meeting X B N

value 0x050f0100. We cannot find any explanation of this
mechanism on the online documentation of Zoom, but in the
command-line tool we created [14], we include a feature that
strips the custom header of Zoom. Notice that these consider-
ations hold only for the desktop and mobile clients of Zoom.
The web client uses the standard WebRTC APIs, although very
peculiarly. Indeed, it does not open any WebRTC media stream
but only creates a data channel (WebRTC Data Channel),
through which the media is transferred.

GoTo Meeting: as declared on the official website, it employs
the Audio Video Transport Protocol (AVTP) for streaming
multimedia content.5 AVTP is a protocol alternative to RTP,
which is part of the IEEE standard 1722-2011 [15]. Since
AVTP is designed to run directly over Ethernet, GoTo Meeting
uses an undocumented 4-Bytes encapsulation mechanism, for
which we observe that the third and fourth Bytes are reserved
to a 16-bit increasing sequence number. As reported on the
documentation, the traffic is encrypted using the Advanced
Encryption Standard (AES). Again, this happens only with
the desktop and mobile clients, while the web client relies on
WebRTC.

V. OPERATION AND DESIGN CHOICES

We now draw our attention on the operation of the tested
RTC applications. We aim at understanding their design
choices for streaming the multimedia content as well as
peculiar uses of protocols, RTP above all. We summarize
our main findings in the middle columns of Table II, called
“Operation”.

A. Peer-to-peer

When a call involves only two participants, RTC appli-
cations often try to make them communicate directly, to

5https://blog.gotomeeting.com/gotomeeting-transports-protects-data/

avoid relaying the media traffic through a server. This has
immediate advantages. First, the communication latency is
always lower since the packets have a shorter distance to
travel. Second, the application servers do not need to take the
load of forwarding the media traffic. However, peer-to-peer is
not always possible, since NATs, firewalls and middleboxes
may prevent internal clients from receiving incoming traffic.
Moreover, it works only with two-participant calls, since,
otherwise, it would result in a full mesh of media streams
among all participant pairs. In our experiments, we want to
spot the use of peer-to-peer communication, and, as such, we
make calls with two participants using devices on the same
LAN, where direct communication is always possible. Then,
looking at the IP addresses of the RTP streams, we find peer-
to-peer communication. Out of the 13 RTC applications, only
5 never use peer-to-peer, as we report in the fifth column of
Table II, called “P2P”. This is somehow expected for business
applications. Indeed, Webex Teams and GoTo Meeting offer
to customers to install dedicated appliances on their premises,
as advertised on their respective websites. Interestingly, three
consumer services also never make use of peer-to-peer, loading
their servers with the traffic of all calls. These are Google
Meet, Instagram Messenger and HouseParty.

B. Redundant streams

To tackle the network unreliability, in some applications the
participants’ equipment sends redundant data, which can hope-
fully be used at the receiver in case of packet losses or errors.
This approach is called Forward Error Correction (FEC) and is
typically achieved exploiting simple mathematical properties
– e.g., sending parity bits for the protected packets. Some
codecs are designed to support FEC natively, and the current
packet embeds redundant data of the previous packet. This
mechanism is called in-band FEC and is implemented, e.g., in
the Opus audio codec [16]. In other cases, the sender transmits



0 s 10 s 20 s 30 s 40 s 50 s 60 s

Time

0

500

1000

1500

2000
kb

p
s

Video

FEC video

Fig. 1: Example of FEC in Webex Teams: a video stream and
its corresponding FEC stream.

FEC data on a separate channel, resulting in an additional and
independent RTP stream. This is called out-of-band FEC, and
it is used to achieve strong error correction capability and
flexibility. In our experiments, we aim at finding the latter
cases, which result in a client sending a higher number of
RTP streams than expected – e.g., two output streams when
only audio is enabled – or using multiple PTs within the same
session. We find 5 services that make an evident use of out-
of-band FEC, which we mark with F in the ”Redundant data”
column of Table II. Skype and Microsoft Teams use video
FEC with the H.264 codec, sending the data with different PT
within the same RTP stream. Indeed, we observe PT 122 and
123, which indicate video and FEC video according to the
online documentation.6 Webex Teams sends audio and video
FEC on separate RTP streams, in which the RTP Timestamp
field is always set to 0. This can be confirmed by looking
at the application logs stored on the user equipment for each
call. We sketch an example video call with FEC in Figure 1.
The figure only reports the video streams sent by a client
to the relay server, and it is possible to observe how the
FEC stream exhibits approximately half of the bitrate of the
video stream. Similarly, WhatsApp sends two concurrent RTP
streams containing video, both with low bitrate, in the order
of 20 − 40 kbps. They have a similar bitrate profile – i.e,
they increase or decrease in bitrate simultaneously. One of
the two has a lower bitrate, suggesting that it is used for
FEC.7 Finally, Zoom sends redundant audio data using the
mechanism defined in the RFC 2198 [17]. For video, we
observe that each stream carries a small but constant fraction
of packets with a different PT, suggesting the use of a similar
mechanism.

A second use of redundant streams is the so called Simul-
cast technique that we indicate with S in the “Redundant
data” column of Table II. With Simulcast, the client encodes
the video in different resolutions (and bitrates) and sends
them as separate streams to a Selective Forwarding Unit
that decides who receives which streams. This is useful in

6https://docs.microsoft.com/en-us/openspecs/office protocols/ms-rtp/
3b8dc3c6-34b8-4827-9b38-3b00154f471c

7The two streams contain video since they have PT 102 and 103, respec-
tively, and appear only in calls where video is enabled.

0 s 25 s 50 s 75 s 100 s 125 s 150 s 175 s 200 s

Time

0

1000

2000

3000

kb
p

s

Video quality 1

Video quality 2

Video quality 3

Fig. 2: Example of Simulcast in Google Meet: three video
streams at different quality levels generated from one source.

case some participants experience poor network conditions
and can receive only low-bandwidth videos. We find that
Google Meet uses Simulcast, and, when using the dedicated
mobile application, the client (often) sends their video on three
different bitrates, resulting in three separate RTP streams. This
is exemplified in Figure 2, where we observe three video
streams with different (yet constant) bitrates, that the client
sends to the relay server. Then, each participant receives only
one quality level, according to the server choice. We can
confirm that these streams do not carry FEC but the same video
at different definitions using the WebRTC debugging console
of Google Chrome (at the receiver). Webex Teams also sends
several streams in different qualities, mostly to account for the
thumbnail videos of participants not speaking at the moment.
We verify this using the logs generated by the application for
every call. Microsoft Teams and Skype make use of Simulcast
too, and we observe the user’s video sent with up to three
qualities at the same time. We exclude the possibility that that
these streams contain FEC by looking at their PT.8

C. Particular uses of RTP

Here we report two cases of particular uses of RTP. First,
we notice that FaceTime uses regular RTP traffic, but employs
PT numbers which are forbidden by the protocol standard [2].
In particular, we often observe PT = 20 which falls in the
reserved range 20 − 24. This peculiarity must be taken into
account when using DPI to identify RTP traffic, if the filtering
is done using allowed PTs. Indeed, a middlebox relying on the
PT to make decisions on traffic would fall short for FaceTime.

We also observe that a few applications use the Contributing
source (CSRC) optional header of RTP. Those are Webex
Teams, Google Meet, Microsoft Teams and Skype. The objec-
tive of the CSRC is to enumerate the source(s) of a stream in
case more than one are combined by a mixer. In Webex Teams,
we notice that the CSRC uniquely identifies a participant of
a call and, as such, can be used to isolate the streams of a
particular user at network level.

Finally, Google Meet uses dedicated RTP streams for re-
transmitting lost data. We observe they are active in short

8See footnote 6 (Page 5).



Microsoft
Teams

Microsoft

Webex
Teams

Cisco

Webex

Houseparty DigitalOcean

Google
Meet

Google

FaceTime Apple

Whatsapp

Facebook

GoTo
Meeting

Amazon

Citrix

Facebook

Telegram Telegram

Jitsi
Meet

Oracle

Zoom

Skype

Instagram
Messenger

Fig. 3: Graph representation of the ASes (green) that RTC
applications (yellow) use to relay RTC traffic.

spikes and we confirm their nature using the WebRTC de-
bugging console of Google Chrome (at the receiver), which
reveals the MIME type to be video/rtx.

VI. IDENTIFICATION OF RTC APPLICATIONS

We now focus on the destination of the traffic generated
by the RTC applications under test. We first investigate which
ASes they use to relay the media traffic (audio and video).
Second, we discuss the domain names applications resolve via
DNS during the normal execution. Third, we explore the UDP
ports used during calls and provide other RTP-specific details
like the usage of Payload Types. The goal of the first analysis is
to show to what extent it is possible to use traffic management
rules to prioritize RTC traffic. The goal of the second and third
is to provide useful guidelines for a network administrator
willing to block specific RTC applications, because, e.g., not
authorized within the enterprise.

A. Destination ASes

We first analyze the traffic of RTC applications in terms of
destination AS. We focus solely on the media traffic, restricting
our analysis to those UDP network flows carrying audio or
video streams. We easily identify them for the majority of
applications using RTP for media streaming. For Telegram
and GoTo Meetings, which do not rely on RTP, we use a
simple heuristic to find the correct flow. We then map an IP
address to its corresponding AS using an updated Routing
Information Base (RIB) from http://www.routeviews.org/. We
run the analysis only for calls with three participants, to ensure
that peer-to-peer communication is not in place between two
participants, which would warp our analysis. We report the
results in Figure 3 in the form of a graph. Yellow nodes
represent the 13 RTC applications, while green nodes are the

ASes we find. There is an edge between an application and
an AS if we observe at least one media flow between them.

The first thing we notice is that the majority of applications
use ASes of their respective organizations for relaying media
streams. For example, Google Meet uses the Google AS
(numbered 15169), while FaceTime the Apple AS (numbered
714). Both Skype and Microsoft teams rely on the Microsoft
8075 AS. On the other hand, we find three applications that
rely only on cloud providers for deploying their infrastructure.
Indeed, Jitsi Meet and Zoom use both Amazon and Oracle
cloud services, while HouseParty relies on the DigitalOcean
cloud provider. Finally, there is Goto Meeting, which employs
a hybrid approach and uses the Amazon infrastructure as well
as servers located on the 16815 AS belonging to Citrix, the
owner company. The applications which use ASes of their own
organizations are marked with a tick in the “Own AS” column
of Table II.

Notice that this analysis is not exhaustive as it includes
measurements collected from a single location in Italy. How-
ever, it gives useful indications for traffic management. Indeed,
for many applications, it is easy to identify (and possibly
prioritize) the media traffic. In other cases, they use large and
shared infrastructures, requiring finer-grained identification
mechanisms.

B. Contacted domains

In this section we discuss the use of domains that client
applications contact during or before starting a call. The
servers identified by such domains are used for signaling and
accessory traffic – e.g., login or presence information. We
provide this analysis with the goal of studying to what extent
an ISP or a network administrator can block particular RTC
applications (without compromising other allowed services).

Here, we divide the RTC applications into roughly three
categories, that we report in the column “DNS Domains”
of Table II. First, there are the applications which can be
reasonably blocked without impairing other services. We indi-
cate them with “B”. Second, we find applications that can be
blocked but also include non-RTC functionalities. This is the
case of social networks, that we indicate by “S”. Finally, there
are a few services whose block would prevent the operation
of different services from the same company, that we indicate
with “C”.

In the first category we have the majority of RTC applica-
tions. This includes Skype, Jitsi Meet, Whatsapp, Telegram,
HouseParty and the four business oriented services. They
contact meaningful domains – e.g., skype.com in case of
Skype, zoom.us for Zoom, teams.microsoft.com for
Microsoft Teams and wbx2.com for Webex Teams – these
can be used to totally block the application. Notice that in such
a case, no functionality would work, but we observe this set
of applications only offer RTC or RTC-related features (e.g.,
chat). We find that applications mostly used by mobile devices
have domains resolved long before the call, since they run
continuously in background. Notable examples are WhatsApp
and Telegram. We notice they contact only trivial domains



like whatsapp.com or telegram.org which are easy to
block, but would prevent also the chat functionalities of the
products.

In the second category, we place the applications for
which the RTC functionality is only a secondary feature of
a rich service. This is the case of social networks. Instagram
uses *.instagram.com sub-domains and Facebook uses
*.facebook.com. This means that they are easy to iden-
tify in general, but blocking these domains would block all
functionalities of the social network. Indeed, we cannot find
domains related uniquely to the RTC features.

Finally, we find two applications which are particularly hard
to block, as they are part of a large ecosystem of services.
Google Meet, when accessed via browser, is contacted at
meet.google.com, while via application only resolves
generic Google domains. Particularly hard is the case of
FaceTime, which only uses generic Apple domains, which,
if blocked, would reasonably compromise the use of the iOS
operating system for, e.g., software updates.

C. Ports Numbers and Payload Types

We now discuss to what extent other features of the RTP
protocol can be used to further understand the traffic. We
investigate whether server-side port numbers can be of use
to identify an application and how Payload Types can help a
finer-grained classification.

Even though traffic classification using port numbers is
becoming obsolete, we observe that in the case of RTC traffic,
static UDP port numbers are still heavily used and they could
be leveraged for effective traffic management mechanisms.
Indeed, six of the tested applications always use a single UDP
port, and three make use of 2, 3 or 4 unique port numbers. This
makes them easily distinguishable among other UDP traffic.
These applications are marked with “N” in the last column
of Table II. For the remaining applications, we observe more
than 4 ports in use. An interesting case is HouseParty, which
uses a wide range of ports (we observed a different port for
each traffic trace). Finally, we note that all applications use
the allowed unprivileged UDP ports (greater than 1024).

If a network device, like a router, can identify RTP streams,
then it can use the Payload Type values to distinguish dif-
ferent types of media, in general audio and video. The RTP
protocol [2] defines a set of PTs to be allocated dynamically
during the call setup phase, in addition to a set of static PTs
whose usage is mandated by the RFC itself (see Section II).
In the RTC applications we study, we observe only usage of
dynamic PTs, except for Skype, which sometimes uses static
PTs for audio.9 However, some applications use dynamic PTs
in a static fashion and allow for easy distinction of audio,
video, FEC or other types of streams, by assigning PTs to
media types. Knowing the media type in real-time could pave
the way for network management policies that favor Quality of
Experience (QoE) of users, by letting more significant flows
be prioritized. For example, if a participant is experiencing

9FaceTime uses the reserved PT 20 as we discuss in Section IV.

poor network conditions, this could allow for enhancing their
audio over their video, as a more important stream. From our
analysis, although all applications use PTs from the dynamic
range, 9 out of 13 always use the same values. Some of them
are officially published, like those of Microsoft Teams10, while
others can be easily found by making calls with only audio
or video enabled and observing the PTs. Applications that we
find use constant PTs are marked with “T” in the last column
of Table II.

In conclusion, an algorithm that relies on a carefully-
engineered combination of ASes, domain names, ports and
payload types could lead to simple, yet very effective RTC
traffic management.

VII. RELATED WORK

The operation of RTC applications has been studied since
their introduction. Several works target Skype traffic, since
it was the pioneer in the world of RTC in the early 2000s.
Bonfiglio et al. [3] show how Skype was using aggressive
obfuscation of traffic at its early stage, mainly to avoid ISP-
level throttling and propose a heuristic algorithm to identify
it. They again provide a detailed analysis of Skype traffic
in [18] and [19], based on traffic measurements, which leads
to the same conclusions of Guha et al. [20]. Moreover,
Baset et al. [21] analyze its key functions: login, NAT/Firewall
traversal, and media transfer, while Hoßfeld et al. [22] provide
an analysis of Skype VoIP traffic in mobile networks, focusing
on Quality of Service (QoS) and QoE. With this work, we
provide an updated view of Skype traffic, after the acquisition
by Microsoft. We show that it has converged to use a more
standard approach based on RTP and shares its behavior with
Microsoft Teams.

Telegram, known for its security features, has been object
of several studies too. In particular, many works provide a
forensic analysis of Telegram on different customer devices
like MacOS [23], Android smartphones [24] and Android
devices in general [25]. These works try to describe the
artifacts generated by the Telegram application on each type
of device. Studying the security features of RTC applications
is out of the scope of this paper. We however testify that
Telegram is peculiar among RTC applications also for the
employed network protocols.

There are fewer works that compare different RTC ap-
plications. In our previous work [26], we deploy a classi-
fier to distinguish 5 meeting applications in real-time. Az-
far et al. [27] study ten Android VoIP applications, mainly
from the security point of view. Karya et al. [28] compare
RTP traffic in Whatsapp and Skype, under mobile networks.
Wuttidittachotti et al. [29] provide a study on the perceived
QoE of three well-known VoIP applications, using Perceptual
Evaluation of Speech Quality (PESQ). Xu et al. [30] report a
measurement study of Google+, iChat, and Skype, unveiling
important information about their key design choices and
performance. They extend their analysis in [31], this time

10See footnote 6 (Page 5).



focusing on FaceTime, Google Plus Hangout, and Skype.
Sutkino et al. [32] compare the instant messaging services
of WhatsApp, Viber and Telegram in terms of security, speed
and ease-of-use. Patel et al. [33] evaluate the performance
of WhatsApp and Skype in terms of their data consumption,
as well as quality of the VoIP calls. Their results show that
WhatsApp uses less data and also provides better call quality
under poor network conditions.

With respect to these works, we target a wider range of RTC
applications, comparing 13 leading services in the consumer
and business market segments, while past papers focus on up
to four. We provide an updated overview of the technologies
used at the network level, showing a large set of peculiar
protocols and behaviors. Indeed, popular applications change
very often over time – see the Skype case. We believe our
work provides a rich but concise summary of the solutions
currently adopted, unifying and updating what previous works
have discovered.

VIII. CONCLUSION

In this paper, we presented a comparative study of 13
popular RTC applications. Our goal is to study similarities
and differences in the use of the network and protocols,
as well as providing useful insights for the identification of
their traffic. We collected a large amount of packet traces
for each application, under different conditions. We found
that most of them use the RTP protocol in combination with
STUN/TURN, but each has its own peculiarities. From the
operation perspective, we observed that most of them use peer-
to-peer communication between participants when the network
allows it, and some of them use redundant streams for better
QoE or for mitigating losses (FEC). We discovered that most
of them are simple to identify, by looking at the destination
AS of the traffic, domains resolved via DNS, port numbers
and PTs. We believe this paper is useful in providing an
updated overview of the scene of RTC applications and can
help network administrators in improving traffic management.

REFERENCES

[1] H. Schulzrinne, E. Schooler, J. Rosenberg, and M. J. Handley, “SIP:
Session Initiation Protocol.” RFC 2543, Mar. 1999.

[2] R. Frederick, S. L. Casner, V. Jacobson, and H. Schulzrinne, “RTP: A
Transport Protocol for Real-Time Applications.” RFC 1889, Jan. 1996.

[3] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, and P. Tofanelli, “Revealing
skype traffic: when randomness plays with you,” in Proceedings of
the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, pp. 37–48, 2007.

[4] K. Norrman, D. McGrew, M. Naslund, E. Carrara, and M. Baugher,
“The Secure Real-time Transport Protocol (SRTP).” RFC 3711, Mar.
2004.

[5] J. Rosenberg, C. Huitema, R. Mahy, and J. Weinberger, “STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address
Translators (NATs).” RFC 3489, Mar. 2003.

[6] P. Matthews, J. Rosenberg, and R. Mahy, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal Utilities
for NAT (STUN).” RFC 5766, Apr. 2010.

[7] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols.” RFC 5245, Apr. 2010.

[8] M. Petit-Huguenin and G. Salgueiro, “Multiplexing Scheme Updates for
Secure Real-time Transport Protocol (SRTP) Extension for Datagram
Transport Layer Security (DTLS).” RFC 7983, Sept. 2016.

[9] M. J. Handley and V. Jacobson, “SDP: Session Description Protocol.”
RFC 2327, Apr. 1998.

[10] C. Allen and T. Dierks, “The TLS Protocol Version 1.0.” RFC 2246,
Jan. 1999.

[11] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security.”
RFC 4347, Apr. 2006.

[12] C. Holmberg, S. Hakansson, and G. Eriksson, “Web Real-Time Com-
munication Use Cases and Requirements.” RFC 7478, Mar. 2015.

[13] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi,
“Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons
Learned,” IEEE Commun. Mag., vol. 55, no. 3, pp. 163–169, 2017.

[14] D. Markudova, M. Trevisan, and M. Munafo, “RTC Pcap Cleaners.”
https://github.com/marty90/rtc pcap cleaners.

[15] “Ieee standard for layer 2 transport protocol for time sensitive applica-
tions in a bridged local area network,” IEEE Std 1722-2011, pp. 1–65,
2011.

[16] J.-M. Valin, K. Vos, and T. Terriberry, “Definition of the Opus Audio
Codec.” RFC 6716, Sept. 2012.

[17] J.-C. Bolot, M. J. Handley, V. Hardman, I. Kouvelas, and C. Perkins,
“RTP Payload for Redundant Audio Data.” RFC 2198, Sept. 1997.

[18] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi, “Detailed analysis of
skype traffic,” IEEE Transactions on Multimedia, vol. 11, no. 1, pp. 117–
127, 2008.

[19] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi, “Tracking
down skype traffic,” in IEEE INFOCOM 2008-The 27th Conference on
Computer Communications, pp. 261–265, IEEE, 2008.

[20] S. Guha and N. Daswani, “An experimental study of the skype peer-to-
peer voip system,” tech. rep., Cornell University, 2005.

[21] S. A. Baset and H. Schulzrinne, “An analysis of the skype peer-to-peer
internet telephony protocol,” arXiv preprint cs/0412017, 2004.

[22] T. Hoßfeld and A. Binzenhöfer, “Analysis of skype voip traffic in umts:
End-to-end qos and qoe measurements,” Computer Networks, vol. 52,
no. 3, pp. 650–666, 2008.

[23] J. Gregorio, B. Alarcos, and A. Gardel, “Forensic analysis of telegram
messenger desktop on macos,”

[24] C. Anglano, M. Canonico, and M. Guazzone, “Forensic analysis of
telegram messenger on android smartphones,” Digital Investigation,
vol. 23, pp. 31–49, 2017.

[25] G. B. Satrya, P. T. Daely, and M. A. Nugroho, “Digital forensic analysis
of telegram messenger on android devices,” in 2016 International
Conference on Information & Communication Technology and Systems
(ICTS), pp. 1–7, IEEE, 2016.

[26] D. Markudova, M. Trevisan, P. Garza, M. Meo, M. Munafò, and
G. Carofiglio, “What’s my app? ml-based classification of rtc appli-
cations,” To appear in ACM SIGMETRICS Performance Evaluation
Review, 2020.

[27] A. Azfar, K.-K. R. Choo, and L. Liu, “Android mobile voip apps:
a survey and examination of their security and privacy,” Electronic
Commerce Research, vol. 16, no. 1, pp. 73–111, 2016.

[28] O. Karya, S. Saesaria, and S. Budiyanto, “Rtp analysis for the video
transmission process on whatsapp and skype against signal strength
variations in 802.11 network environments,” in IOP Conference Series:
Materials Science and Engineering, vol. 453, p. 012062, 2018.

[29] P. Wuttidittachotti, W. Akapan, and T. Daengsi, “Comparison of voip-
qoe from skype, line, tango and viber over 3g networks in thailand,”
in 2015 Seventh International Conference on Ubiquitous and Future
Networks, pp. 456–461, IEEE, 2015.

[30] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers:
measurement study of google+, ichat, and skype,” in Proceedings of the
2012 Internet Measurement Conference, pp. 371–384, 2012.

[31] C. Yu, Y. Xu, B. Liu, and Y. Liu, ““can you see me now?” a measurement
study of mobile video calls,” in IEEE INFOCOM 2014-IEEE Conference
on Computer Communications, pp. 1456–1464, IEEE, 2014.

[32] T. Sutikno, L. Handayani, D. Stiawan, M. A. Riyadi, and I. M. I.
Subroto, “Whatsapp, viber and telegram: Which is the best for instant
messaging?,” International Journal of Electrical & Computer Engineer-
ing (2088-8708), vol. 6, no. 3, 2016.

[33] N. Patel, S. Patel, and W. L. Tan, “Performance comparison of whatsapp
versus skype on smart phones,” in 2018 28th International Telecommu-
nication Networks and Applications Conference (ITNAC), pp. 1–3, 2018.


