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Abstract: 

The INRiM 1 MN deadweight force standard 

machine (DFSM) was installed in 1995. It adopts a 

binary sequence of ten weights whose combinations 

generate forces up to 1 MN. The advantage of this 

system lies in the self-calibration of its weights. The 

procedure is based on the comparison between two 

forces generated by a single weight and by a group 

of smaller weights, nominally equal. After 25 years, 

a verification of the DFSM was performed. Results 

are within the declared CMC limits, i.e. a relative 

expanded uncertainty of 2 × 10-5. 

Keywords: deadweight force standard machine; 

self-calibration; uncertainty 

1. INTRODUCTION 

Back in 1995, the advancement of technology 

and available resources allowed to design and install 

the 1 MN DFSM at INRiM [1, 2]. The machine is 

able to generate known forces and is generally used 

as a reference for the calibration or verification of 

force transducers and load cells. The DFSM has a 

declared CMC with a relative expanded uncertainty 

of 2 × 10-5 [3]. Twenty-five years after the 

installation, despite several positive international 

comparisons, it was necessary to carry out a 

verification of the machine. For this purpose, a 

self-calibration method was developed. 

Measurements were performed between 

November 2018 and April 2019. This paper deals 

with the description of the self-calibration method 

and the analysis of experimental results. 

2. DESCRIPTION OF THE 1 MN 

DEADWEIGHT FORCE MACHINE  

The 1 MN DFSM was designed to obtain a 

reference standard capable of keeping its 

metrological characteristics unchanged. It consists 

of three macro-components: a main frame that 

supports the entire structure, a loading frame, and a 

series of weights acting in the local gravitational 

field. The main frame consists of three columns 

anchored to the load-bearing structure arranged at 

120° on a diameter of about 6 m (Figure 1).  

 

Figure 1: The 1 MN deadweight force standard machine 

The 1 MN DFSM adopts a binary sequence of 

ten weights (two 10 kN weights, three weights of 

20 kN, 40 kN, and 80 kN, four weights of 160 kN, 

and one weight of 200 kN), consisting of stainless 

steel discs. Each of them can be applied to the 

loading frame independently to the others. In this 

way, it is possible to generate a large number of 

force values from 10 kN up to a maximum capacity 

of 1 MN with steps of 10 kN, and to perform a 

self-calibration of the weights to check the stability 

of the standard without dismantling the whole 

system [4]. The selection of the weights is 

performed by an electro-pneumatic system, 

software controlled, and supported by an electric 

motor able to generate a constant load on the force 

transducer during weights replacement operations. 

The load is kept constant by a feedback system 

exploiting the deformation elasticity of the loading 

frame. 

3. SELF-CALIBRATION PROCEDURE 

The self-calibration method is based on the 

comparison between two nominally equal forces 

alternatively generated by a single weight and by an 

equivalent group of smaller weights [5]. The 

reference force transducers adopted for the self-

calibration were a TOP-Transfer HBM (Z30A and 

Z4A), with HBM DMP40 amplifier. The initial 

reference force was provided by the smallest weight, 

associated with a force of 10 kN (M10/1), which 

was previously calibrated against a reference mass 
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standard before the installation of the machine. 

Another advantage of this method is that it can 

consider any influences due to the behaviour of the 

whole structure under load since it directly 

compares the force vectors applied on the force 

transducer and not the force generated in centre of 

mass as in the standard method for calibrated force 

standard machines. For each force value (10 kN, 

20 kN, 40 kN, 80 kN, 160 kN, 200 kN), two 

identical forces were alternately generated: one 

generated by the single nominal weight 

(Measure B), the other by the sum of smaller 

weights of equivalent total force (Measure A). The 

forces generated for each weight comparison are 

shown in Table 1. 

Table 1: Weights used for the comparison 

Weight Single weight 

force / kN 

(Measure B) 

Combination of 

smaller weights with 

equivalent force 

(Measure A) 

M10/1 10 - 

M10/2 10 M10/1 

M20 20 M10/1 + M10/2 

M40 40 M10/1 + M10/2 + M20 

M80 80 M10/1 + M10/2 + M20 

+ M40 

M160/1 160 M160/4 

M160/2 160 M160/4 

M160/3 160 M160/4 

M160/4 160 M10/1 + M10/2 + M20 

+ M40 + M80 

M200 200 M160/4 + M40 

 

A comparison scheme was then adopted to 

identify an ABAB…BA type sequence. This 

sequence was chosen since the most significant 

causes of disturbance are due to weights 

replacement operations and to creep effects of the 

force transducers. For each pair of equal forces, 

j = 10 measurement runs were performed. During 

each j-th run, i = 20 force values were acquired in a 

time interval of 20 s. 

4. ANALYSIS OF RELATIVE DEVIATIONS   

Once measurements were performed, data 

analysis was carried out for each force value. First, 

the average, corrected by subtracting the zero value, 

of the 𝑖-th temporal acquisition values of the 𝑗-th 

run, 𝐹𝑎,𝑖𝑗  and 𝐹𝑏,𝑖𝑗 , related to the two forces 

alternately generated and nominally equal (𝐹𝑎,𝑖𝑗 

corresponds to the force generated by the reference 

10 kN weight, M10/1, or by the sum of the smaller 

weights for forces greater than or equal to 20 kN, 

and 𝐹𝑏,𝑖𝑗 corresponds to the force generated by the 

single weight), was performed according to 

equation (1). 

The average of the temporal mean values 𝐹𝑎,𝑗̅̅ ̅̅  

and 𝐹𝑏,𝑗̅̅ ̅̅ ̅ of the 10 runs is given by equation (2). 

 

𝐹𝑎,𝑗̅̅ ̅̅ = ∑
𝐹𝑎,𝑖𝑗

20

20

𝑖=1

          

𝐹𝑏,𝑗̅̅ ̅̅ ̅ =∑
𝐹𝑏,𝑖𝑗

20

20

𝑖=1

 

(1) 

�̅� =∑

(
𝐹𝑎,𝑗̅̅ ̅̅ + 𝐹𝑏,𝑗̅̅ ̅̅ ̅

2 )

10

10

𝑗=1

=∑
𝐹𝑎,𝑗̅̅ ̅̅ + 𝐹𝑏,𝑗̅̅ ̅̅ ̅

20

10

𝑗=1

 
(2) 

To minimize creep effect, although the short 

time elapsed between two replacements (about 

100 s), a processing scheme, based on the 

differences between a single value and the mean 

value between the previous and next measurement, 

was used. According to this scheme, the absolute 

deviations 𝑑𝑗 , equation (3) and relative deviations 

𝛿𝑗 , equation (4), were calculated for each force 

value 𝐹. 

𝑑𝑎,𝑗 =
𝐹𝑎,𝑗̅̅ ̅̅ + 𝐹𝑎,𝑗+1̅̅ ̅̅ ̅̅ ̅̅

2
− 𝐹𝑏,𝑗̅̅ ̅̅ ̅        

𝑑𝑏,𝑗 = 𝐹𝑎,𝑗̅̅ ̅̅ −
𝐹𝑏,𝑗̅̅ ̅̅ ̅ + 𝐹𝑏,𝑗+1̅̅ ̅̅ ̅̅ ̅̅

2
 

(3) 

𝛿𝑎,𝑗 =
𝑑𝑎,𝑗

�̅�
     

𝛿𝑏,𝑗 =
𝑑𝑏,𝑗

�̅�
 

(4) 

In this way, it was possible to calculate the mean 

relative deviation 𝛿̅ according to equation (5). 

𝛿̅ =
∑

𝑑𝑎,𝑗 + 𝑑𝑏,𝑗
20 

10
𝑗=1

�̅�
=∑

𝛿𝑎,𝑗 + 𝛿𝑏,𝑗

20 

10

𝑗=1

 (5) 

To check the actual force values generated by the 

individual weights, it was necessary to add the mean 

relative deviations 𝛿̅ of the smaller weights used. In 

this way, the total mean relative deviations �̅� can be 

obtained. Assuming that the force 𝐹M10/1 generated 

by the reference M10/1 weight is exactly 10 kN 

with relative expanded uncertainty of 

2.82 × 10-6 [6], the mean relative deviation of the 

reference 10 kN weight (M10/1), 𝛿M̅10/1, is equal to 

zero, with an associated uncertainty equal to the 

uncertainty of the reference force 

𝑈(𝛿M̅10/1) = 𝑈(𝐹M10/1) 𝐹M10/1⁄ =2.82 × 10-6. In 

this way, equations (6) and (7) are obtained. 
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𝛿M̅10/1 = �̅�M10/1 =
𝐹M10/1 − 10

10
= 0 (6) 

𝐹M10/1

10 
= 1 + 𝛿M̅10/1 (7) 

As a consequence, the mean relative deviation of 

M10/2 weight, 𝛿M̅10/2, can be written as 

𝛿M̅10/2 =
𝐹M10/1 − 𝐹M10/2

10
= 

= 1 + 𝛿M̅10/1 −
𝐹M10/2

10
 

(8) 

from which, the total relative deviation of weight 

M10/2, �̅�M10/2, is obtained: 

�̅�M10/2 =
𝐹M10/2 − 10

10
= 𝛿M̅10/1 − 𝛿M̅10/2 (9) 

By operating in the same way for weight M20, 

the following relations are obtained: 

𝛿M̅20 =
𝐹M10/1 + 𝐹M10/2 − 𝐹M20

20
= 

=
1

2

𝐹M10/1

10
+
1

2

𝐹M10/2

10
−
𝐹M20
20

= 

= 1 + 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

𝐹M20
20

 

(10) 

�̅�M20 =
𝐹M20 − 20

20
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 − 𝛿M̅20 

(11) 

Iterating the same procedure for all other 

weights, the following equations are obtained: 

𝛿M̅40 =
𝐹M10/1 + 𝐹M10/2 + 𝐹M20 − 𝐹M40

40
 (12) 

�̅�M40 =
𝐹M40 − 40

40
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

1

2
𝛿M̅20 − 𝛿M̅40 

(13) 

𝛿M̅80 = 

=
𝐹M10/1 + 𝐹M10/2 + 𝐹M20 + 𝐹M40 − 𝐹M80

80
 

(14) 

�̅�M80 =
𝐹M80 − 80

80
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10

2
−
1

2
𝛿M̅20 −

1

2
𝛿M̅40 − 

−𝛿M̅80 

(15) 

𝛿M̅160/4 =
𝐹M10/1 + 𝐹M10/2 + 𝐹M20

160
+ 

+
𝐹M40 + 𝐹M80 − 𝐹M160/4

160
 

(16) 

�̅�M160/4 =
𝐹M160/4 − 160

160
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

1

2
𝛿M̅20 −

1

2
𝛿M̅40 

−
1

2
𝛿M̅80 − 𝛿M̅160/4 

(17) 

𝛿M̅160/1 =
𝐹M160/1 − 𝐹M160/4

160
 (18) 

�̅�M160/1 =
𝐹M160/1 − 160

160
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

1

2
𝛿M̅20 −

1

2
𝛿M̅40 − 

−
1

2
𝛿M̅80 − 𝛿M̅160/4 + 𝛿M̅160/1 

(19) 

𝛿M̅160/2 =
𝐹M160/2 − 𝐹M160/4

160
 (20) 

�̅�M160/2 =
𝐹M160/2 − 160

160
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

1

2
𝛿M̅20 −

1

2
𝛿M̅40 − 

−
1

2
𝛿M̅80 − 𝛿M̅160/4 + 𝛿M̅160/2 

(21) 

𝛿M̅160/3 =
𝐹M160/3 − 𝐹M160/4

160
 (22) 

�̅�M160/3 =
𝐹M160/3 − 160

160
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

1

2
𝛿M̅20 −

1

2
𝛿M̅40 − 

−
1

2
𝛿M̅80 − 𝛿M̅160/4 + 𝛿M̅160/3 

(23) 

𝛿M̅200 =
𝐹M160/4 + 𝐹M40 − 𝐹M200

200
 (24) 

�̅�M200 =
𝐹M200 − 200

200
= 

= 𝛿M̅10/1 −
1

2
𝛿M̅10/2 −

1

2
𝛿M̅20 −

3

5
𝛿M̅40 − 

−
2

5
𝛿M̅80 −

4

5
𝛿M̅160/4 − 𝛿M̅200 

(25) 
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5. UNCERTAINTY ASSESSMENT   

The uncertainty analysis was carried out 

according to GUM-JCGM 100:2008 [7]. For each 

force value, the uncertainty analysis of the total 

mean relative deviation �̅� was carried out in two 

consecutive steps. In the first, the uncertainty 

associated to the mean relative deviations 𝛿̅ of the 

single weight comparisons was assessed, taking into 

account the maximum uncertainty among the time 

series of twenty measurements, corresponding to 

the different weights substitutions used for the 

evaluation of the relative deviations 𝛿𝑗 , and the 

reproducibility uncertainty contribution due to the 

ten measurement runs. In the second, by applying 

the law of propagation of errors, the expanded 

uncertainty, at a confidence level of 95 %, of the 

total mean relative deviations �̅� was evaluated. 

5.1. Uncertainty of Mean Relative Deviations 

First, among the 𝑗-th relative deviations 𝛿𝑗 , the 

one with maximum uncertainty due to repeatability 

of each force measurement of the three successive 

time series (𝐹𝑎,𝑗̅̅ ̅̅ ,  𝐹𝑏,𝑗̅̅ ̅̅ ̅,  𝐹𝑎,𝑗+1̅̅ ̅̅ ̅̅ ̅̅  or 𝐹𝑏,𝑗̅̅ ̅̅ ̅, 𝐹𝑎,𝑗̅̅ ̅̅ , 𝐹𝑏,𝑗+1̅̅ ̅̅ ̅̅ ̅̅ ) 

was evaluated. Once the 𝑗 -th relative deviation 

𝛿𝑗with the maximum dispersione was identified, the 

uncertainty contribution due to the resolution of the 

HBM control unit was added for each force value. 

No uncertainty was associated to the value �̅�, since 

it was used only to calculate the relative difference 

from absolute measurements. By way of example, 

the detailed uncertainty budget for 𝛿𝑗  from the 

comparison between the 10 kN weights (M10/1 and 

M10/2) is shown in Table 2. Force values are 

expressed in mV/V. 

Table 2: Uncertainty budget of the j-th relative deviation  
𝛿𝑗  with maximum dispersion from the comparison 

between the 10 kN weights (𝛿M̅10/2) 

Variable xk 
u²(xk) ck uk²(ax) 

Symbol Value Note 

𝐹𝑎,𝑗̅̅ ̅̅  0.999 494 Res. 1.7E-14 0.5 4.2E-15 
 

 Repeat. 4.9E-14 0.5 1.2E-14 

𝐹𝑏,𝑗̅̅ ̅̅̅ 0.999 500 Res. 1.7E-14 1.0 1.7E-14 

  Repeat. 1.2E-12 1.0 1.2E-12 

𝐹𝑎,𝑗+1̅̅ ̅̅ ̅̅ ̅ 0.999 499 Res. 1.7E-14 0.5 4.2E-15 

  Repeat. 1.6E-13 0.5 3.9E-14 

�̅� 0.999 490 - - - - 

𝛿𝑎,𝑗 -3.33E-06 Variance, u²(𝛿𝑎,𝑗) 1.3E-12 

 Standard uncertainty, u(𝛿𝑎,𝑗) 1.1E-06 

 

Subsequently, the evaluation of the expanded 

uncertainty associated with the mean relative 

deviation U(𝛿̅) was performed, as shown in Table 3. 

The variance of the relative deviation, u2( 𝛿𝑗 ), 

obtained from Table 2 (in bold), was used as 

variance associated with the maximum standard 

deviation. As uncertainty contribution due to 

reproducibility, the standard deviation of the ten 

measurement runs 𝛿𝑎𝑗and 𝛿𝑏𝑗 was considered. The 

expanded uncertainty 𝑈(𝛿̅)  of the mean relative 

deviations was calculated at a confidence level of 

95 %, i.e. k = 2. For each force value, the same 

procedure was repeated by assessing reproducibility 

and maximum standard deviation of the temporal 

series. Results of each weight comparison are 

shown in Section 6. 

Table 3: Uncertainty budget of the mean relative 

deviation 𝛿̅  from the comparison between the 10 kN 

weights 

Variable xk 
u²(xk) ck uk²(ax) 

Symbol Value Note 

𝛿̅ -2.49E-06 Reprod. 2.0E-13 1.0 2.0E-13 
 

 Max. 1.3E-12 1.0 1.3E-12  
 st. dev.    

𝛿̅ -2.49E-06 Variance, u²(𝛿̅) 1.5E-12 

 Standard uncertainty, u(𝛿̅) 1.2E-06 

 

5.2. Uncertainty of Total Mean Relative 

Deviations  

By applying the law of propagation of errors to 

Eqs. (6), (9), (11), (13), (15), (17), (19), (21), (23), 

and (25), using as input the expanded uncertainties 

associated with the mean relative deviations 𝑈(𝛿̅) 

evaluated according to Section 5.1, the expanded 

uncertainties of the total relative deviations 𝑈(�̅�) 
are obtained. By way of example, the uncertainties 

for the M10/2, M20, and M40 are reported in 

equations (26) - (28). 

𝑈(�̅�M10/2) = 

= 2√(
𝑈(𝛿M̅10/1)

2
)

2

+ (
𝑈(𝛿M̅10/2)

2
)

2

 

(26) 

𝑈(�̅�M20) = 

= 2

√
 
  
  
  
  
 

(
𝑈(𝛿M̅10/1)

2
)

2

+ (
1

2
)
2

(
𝑈(𝛿M̅10/2)

2
)

2

+

+(
𝑈(𝛿M̅20)

2
)

2  

(27) 

𝑈(�̅�M40) = 

= 2

√
 
  
  
  
  
 

(
𝑈(𝛿M̅10/1)

2
)

2

+ (
1

2
)
2

(
𝑈(𝛿M̅10/2)

2
)

2

+

+(
1

2
)
2

(
𝑈(𝛿M̅20)

2
)

2

+ (
𝑈(𝛿M̅40)

2
)

2  

(28) 
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6. EXPERIMENTAL RESULTS 

6.1. Mean Relative Deviations �̅�  

Overall, nine mean relative deviations 𝛿̅, were 

calculated, each referred to a particular force value 

(or weight comparison), according to Table 1. 

Summary of experimental results is shown in 

Table 4. 

Table 4: Mean relative deviations 

Weight F / kN �̅� / - U(�̅�) / - 

M10/1 10 0.00E+00 2.82E-06 

M10/2 10 -2.49E-06 2.55E-06 

M20 20 -1.23E-05 5.38E-06 

M40 40 -4.46E-06 6.54E-07 

M80 80 8.02E-06 3.92E-06 

M160/1 160 -2.13E-06 8.09E-07 

M160/2 160 -3.31E-07 3.86E-07 

M160/3 160 -3.51E-06 6.15E-07 

M160/4 160 -3.19E-06 6.36E-07 

M200 200 2.03E-06 2.57E-07 

6.2. Total Mean Relative Deviations �̅�  
Using data of Table 4 and equations (6) - (28), 

the total mean relative deviations �̅� of all weights 

are obtained with the associated expanded 

uncertainties. Results show values lower than the 

limits declared in CMC, i.e. within an expanded 

uncertainty of 2 × 10-5, as reported in Table 5 and in 

Figure 2. 

Table 5: Total mean relative deviations of the weights 

Weight F / kN �̅�  / - U(�̅�) / - 

M10/1 10 0.00E+00 2.82E-06 

M10/2 10 2.49E-06 3.80E-06 

M20 20 1.35E-05 6.21E-06 

M40 40 1.18E-05 4.15E-06 

M80 80 1.59E-06 5.68E-06 

M160/1 160 6.65E-06 4.67E-06 

M160/2 160 8.45E-06 4.62E-06 

M160/3 160 5.27E-06 4.64E-06 

M160/4 160 8.78E-06 4.60E-06 

M200 200 7.36E-06 4.44E-06 

6.3. Total Relative Deviations �̅�  of Typical 

Weight Combinations Used for the 

Calibration of Force Transducers 

Finally, the total mean relative deviations of 

different force combinations were assessed. In fact, 

during ordinary calibration procedures of force 

transducers, according to UNI EN ISO 376:2011 [8], 

the 1 MN DFSM adopts predefined series of 

weights able to generate the required different force 

values. 

For this purpose, the total absolute deviations 

�̅� of each weight, previously shown, were combined 

in order to obtain the total relative deviations for 

each force generated by any combination of weights, 

with the associated expanded uncertainty calculated 

using the law of propagation of errors as in 

equations (26) - (28). Also in this case, results fall 

within the limits of the declared CMCs [3] as shown 

in the graph of Figure 3. Furthermore, 500 kN and 

1 MN total relative deviations, which are around 

7 ppm – 8 ppm, confirm results of Force Key 

Comparison CCM.F-K3 [9]. 

 

 
Figure 2: Total mean relative deviations of the 1 MN DFSM weights 
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Figure 3: Total mean relative deviations of typical forces generated during ordinary calibration procedures 

 

7. SUMMARY   

The verification of the INRiM 1 MN deadweight 

force standard machine was performed with a self-

calibration procedure. The self-calibration method is 

based on the comparison between two nominally 

equal forces alternatively generated by a single 

weight and by an equivalent group of smaller weights. 

Experimental measurements and the uncertainty 

budget assessment were performed. Results are 

within a relative expanded uncertainty of 2 × 10-5, i.e. 

within the limits declared in the CMCs. In the future, 

the possibility to correct these deviations during 

ordinary calibration procedures will be investigated. 
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