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Summary 
 
In the last ten years, we have witnessed a revolution in technology. The achievement of the physical 
limits of silicon lithography has required several architectural innovations, both in the development 
and integration of dedicated accelerators and in biomimetic systems that seek to change the 
traditional computational model radically. 
 
Nowadays, heterogeneous architectures in a single silicon slice integrate radically different 
computational models such as MIMD and SIMD, but also programmable logic (FPGA). 
In the same period Machine learning has developed enormously, and with the advent of Deep 
Learning the demand for dedicated hardware has led to an explosion of Cambrian accelerators and 
specialised architectures. In the field of biomimetic systems, the scientific community and 
companies, like IBM and Intel, have shown interest in neuromorphic systems. A neuromorphic 
system can emulate at hardware or software level the electrical behaviour of neural networks.  
 
In this context of heterogeneity and new paradigms in computing devices, my research has focused 
on the programming models of these architectures and the optimisation of their resources. My work 
has focused on neuromorphic architectures based on manycore architectures and heterogeneous 
embedded architectures. Neuromorphic architectures offer a new computational paradigm that 
requires the careful use of communication resources and the development of the entire software 
stack to provide an appropriate programming model capable of masking the internal architecture 
complexity to the user. Heterogeneous architectures also require masking their complexity to the 
user. In this case, I worked on the strengthening of the current compilation chains through the use 
of deep learning to perform code analysis and to extract information useful to make complex 
decisions now delegated to the programmer, for example choosing the most suitable calculation 
unit for code execution. 
 
In the first case, I worked on SpiNNaker within the European Human Brain Project (HBP). SpiNNaker 
is a manycore neuromorphic architecture for which I developed a network resource optimisation 
system and a new programming model based on message passing. Specifically, I developed a 
toolchain for the mapping of Spiking Neural Network (SNN) within SpiNNaker measuring its 
performance based on the reduction of communication on the architecture and developed a whole 
software stack to implement MPI. In the second case, I worked on source code classification via 
deep neural networks. In particular, I built a source code classifier in the intermediate 
representation of LLVM able to discriminate the most suitable calculation unit for quick execution 
of the analyzed code. 
 



Programming tools and middleware for manycore neuromorphic platforms 
My achievements obtained in research on programming tools and middleware for manycore 
neuromorphic platforms are divided in two categories: optimization of communication resources 
during SNN simulations and development of a software stack for the implementation of a parallel 
programming model based on message exchange. I proposed a methodology for profiling densely 
interconnected neuromorphic multi-chip many-core platforms for real-time SNN simulations. The 
methodology has been used to characterise reliability issues in the SpiNNaker platform, impossible 
to investigate using a biological network. I designed custom SNN configurations to unveil both local 
and external network traffic issues. I prove that one of the causes of unreliability was due to packet 
conflicts in the internal router tree related to traffic congestion. This unreliability can be due to 
simultaneous usage of communication links of a router. Results show that, with a good neuron 
population placement, it is possible to improve simulation reliability by decreasing the total number 
of packets exchanged. We have modelled the mapping problem of complex directed graph (SNN) 
into the SpiNNaker processors-mesh. We have identified and tested 4 methodologies to solve the 
problem. The Naïve method (a simple heuristics), the Spectral method (uses the graph 
eigendecomposition to obtain a planar representation of the SNN graph and performs the node 
association with the chip mesh through an ILP formulation), the Scotch method (uses the Dual 
Recursive Bipartitioning heuristic), the Simulated Annealing method (well-known procedure to 
minimise a cost function). We have defined the cost function of the placement problem using the 
synaptic elongation. We have chosen the cortical microcircuit as our benchmark network, and after 
performing several tests we highlight the performance of each method. The Spectral method was 
implemented in GHOST, a Python module compliant with the sPyNNaker toolchain in order to 
demonstrate the effectiveness of the developed mapping approach with respect to random neuron 
placement. Finally, comparisons were made between configurations produced by PACMAN and 
GHOST. From these simulations was evident that GHOST is capable to reduce the number of used 
cores, results in lower R2R traffic, 96X when GHOST is adopted. 
 
The architecture provides an inefficient unicast communication protocol, unsuitable for the 
development of a communication library such as MPI. For these reasons, we developed a 
communication middleware (MCM) based on the Multicast protocol. We reduce the complexity of 
the internal transmissions, by implementing unicast communications avoiding the supervision of 
the monitor processor. On top of MCM we designed the Application Command Framework (ACF), 
and Application Command Protocol (ACP) a new method to be adopted at the application level for 
spreading commands and manage the private memory of the chip processors. It provides a 
abstraction level of the memory (Memory entities). Users can easily access to all application 
Memory entities.  To prove the advantages of our ACF we modify two SpiNNaker application 
enabling them to use our library. The first application is used during the configuration phase of 
SpiNNaker board, and the second application is a neuron model used during the SNN simulation 
phase. In the first application, we demonstrated the advantages introduced by ACF in the run-time 
feeding of configuration applications. The use of ACF can speed-up host-to-boards data transmission 
during the configuration of SpiNNaker platforms. Exploiting the concurrency of the system we have 
been able to get an improvement of 3 times on the data forwarding inside the board. In the second 
application, we demonstrated the run-time flexibility introduced by the ACF embedded in the 
neuron model application, implementing two different real simulation scenarios: 
i) a two-phases SNN-Classifier designed for discriminating the handwritten number and  
ii) a chain of neurons with run-time re-configuration parameters. Both the implemented 
applications were demonstrated to be flexible, scalable and expandable. Lastly, I described an 
implementation of the MPI paradigm on the SpiNNaker neuromorphic platform exposing a 



programming model for the development of parallel applications without knowledge of the 
interconnections between the computing units of the underlying architecture. In the case of 
SpiNNaker, the implementation of MPI take advantage of the technology offered by on-chip routers, 
obtaining efficient communication by using the ACF and memory entities. This software stack 
creates a simple working framework offering a universally known programming model capable of 
making the SpiNNaker architecture available for a wide range of applications. We benchmarking our 
MPI implementation, showing its linear scaling performances executing two MPI programs. The first 
application was an N-Body simulation where 2k particles were simulated on 240 processors with a 
speed-up of 194x and an efficiency of 80% when compared to the serial version running on a single 
SpiNNaker core. We also presented an MPI implementation of a DNA sequence matching algorithm. 
Results show that the scalability of the SpiNNaker board reaches an ideal profile, 98% of efficiency, 
when using more than 100 processors, a 90% efficiency using 600 processors, reaching 88% 
efficiency when all 767 application processors are used. 
 
Programming tools for heterogeneous platforms 
My achievements obtained in research on programming tools for heterogeneous platforms was the 
implementation of a source code classifier, analysing a LLVM-IR code with deep neural networks. 
The objective of this research is to provide the current compilation chains of a more complex code 
analysis mode capable of making complex decisions that would otherwise be difficult to codify in a 
set of rules. We have therefore trained deep learning models capable of automatically learning 
features from source code. In particular we wanted to show that it is possible to analyze code in 
intermediate representation. I developed a LLVM-IR code classifier using two neural network 
models (CNN and LSTM) and make some comparisons between them. The code sequences before 
to be passed to the neural network classifier need to be transformed for condensing language 
elements in a restricted set of keywords (tokens), filtered for removing less informative tokens, 
and then transformed in numbers. We evaluated the performances of our LLVM-based classifier 
using a dataset of OpenCL kernels labeled with the best compute units in terms of runtime (CPU o 
GPU).  Then, we explored the hyperparameters of a CNN model in order to obtain a reference 
model. 
We explored 368 different hyperparameters configurations, reporting a statistical analysis of the 
results obtained. We compared the best configuration of hyperparameters for the CNN with the 
RNN-based network for different source code preprocessing and token filtering strategies, 
evaluating classification accuracy, MCC and Speed-up. Results confirm that features extraction 
from LLVM-IR is a valuable strategy for analysing sources without dealing with complex high-level 
constructs, and it can be done keeping all the information required for performing classification 
tasks in the context kernel-device mapping. 
 
Overall this work has allowed exploring the potential of these new generation architectures and 
will be useful technologies for future developments. 
 
 


