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Summary

The last two decades have produced an enormous change in technical systems
that revolutionized the way how people live their lives, organizations conduct busi-
ness and even the notion of society itself. This tendency is far from ending soon,
rather the future will be ubiquitously connected by computing environments that
pervade our whole life. These environments (not merely hardware/software sys-
tems, but they are inherently designed for the cyberspace, and perhaps in the fu-
ture will be integrated also in the human body) are now termed as Cyber-Physical
Systems (CPSs). CPSs are made up by a heterogeneous set of subsystems: em-
bedded computers, actuators, distributed sensors, physical processes are integrated
together over a communication network. It has been anticipated that CPSs are
likely to take over traditional computing systems thanks to adaptability, safety,
robustness, efficiency, and reliability. The level of predominant presence of such
systems will dictate the development of intuitive and intelligent user interfaces,
some of them manually operated and others autonomously controlled. The inter-
faces will provide service delivering and communication effectively and efficiently,
thus enabling sophisticated ambient intelligence systems. Today, CPSs are typi-
cally deployed in manufacturing, medical devices, civil infrastructure, smart grids,
transportation, industrial environments and so on. As society employs more and
more ubiquitous computing technologies, individuals, organisations and companies
are increasingly depending on them. It is already challenging and it will be even
more to orient oneself among the extensive amounts of services and information.
On one hand, this trend will lead to an increase of sensitive and critical operations.
On the other hand, its very ubiquity (almost imperative presence in every aspect
of society) will entice people to expect a comforting nature from it, making people
forget about security requirements yet especially crucial.
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Nowadays, the use of CPSs in some strategic areas of our society, where human
life is directly affected, is of vital importance: from medicine to traffic control to
stock exchange markets and international finance. We are progressively relying on
such systems, even depending in some cases, yet a question raises concerns: Do we
trust enough these systems to let them manage our lives?. This question hides the
growing need for new and more effective security approaches in embedded systems
and it is the motivation of this work.

Historically, security research and development were born in the IT area. Tra-
ditional IT security methods use the notions of confidentiality, integrity and avail-
ability. They, too, can be applied to CPSs security. However, they do not cover
the full spectrum of CPSs security, hence new challenges are open to be solved.

In particular, the effort has been devoted to verification techniques and method-
ologies. The main focus of this work is on formal verification of security properties
that guarantee confidentiality, integrity and availability. Starting from state-of-the-
art formal verification techniques (model checking, equivalence checking, etc.) we
developed new approaches for security-critical systems. We defined a portfolio of
Taint properties and provided experimental results for hardware systems that em-
ploy root of trust support and remote attestation. From the experience of applying
Taint properties on real architectures we realised that this class of properties is
able to capture some specific behaviors of a system, neglecting others. We there-
fore proposed a new class of properties called Path properties that are able to cap-
ture information flow behaviors. A portfolio of this properties has been presented
and experimental results have been provided to support our claim. Eventually we
thought that a combined approach would be useful, so we presented a verification
approach to verify both Taint properties and Path properties in a standard model
checker. Ground breaking attacks such as Spectre and Meltdown made us wonder
whether it would be possible to verify hardware designs against this kind of attacks.
We then proposed a novel verification approach towards out-of-order speculative
execution microprocessors that are prone to side channel attacks like Spectre and
Meltdown. Our verification methods rely on widely known abstraction and reduc-
tion techniques for large designs, but they have been paired with the application
of a information flow verification approach.
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Chapter 1

Introduction

The last two decades have produced an enormous change in technical systems
that revolutionized the way how people live their lives, organizations conduct busi-
ness and even the notion of society itself. The term cyberspace describes this trend:
the networked universe where part of our daily routines live. It is so extremely in-
terconnected that even a small ripple on this sea is propagated widely through
other parts of the cyberspace. This tendency is far from ending soon, rather the
future will be ubiquitously connected by computing environments that pervade our
whole life. The mutual dependency will be stronger than ever and data plays the
most important role in it. These environments are not merely hardware/software
systems, but they are inherently designed for the cyberspace. Indeed they are now
termed as Cyber-Physical Systems (CPSs) [1].

CPSs are made up by a heterogeneous set of subsystems: embedded computers,
actuators, distributed sensors, physical processes are integrated together over a
communication network. It has been anticipated that CPSs are likely to take over
traditional computing systems thanks to adaptability, safety, robustness, efficiency,
and reliability [2].

CPSs are and will be capable of providing several degrees of computational
power for different needs. CPSs are very helpful for our daily life but they all will
be bounded to the most crucial aspect: data and the transmission of huge quan-
tity of it. All this traffic is organized into different networking schemes, CPS tend
not to be operate alone but in structured organizations. The schemes vary from
dynamic ad-hoc peer-to-peer networks to the standard client-server architectures,
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1 – Introduction

including a diversified heap of hybrids in between. The level of predominant pres-
ence of such systems will dictate the development of intuitive and intelligent user
interfaces, some of them manually operated and others autonomously controlled.
The interfaces will provide service delivering and communication effectively and
efficiently, thus enabling sophisticated ambient intelligence systems.
Today, CPSs are typically deployed in manufacturing [3], medical devices, civil in-
frastructure [4], smart grids, transportation [5], industrial environments [6, 7] and
so on. As society employs more and more ubiquitous computing technologies, in-
dividuals, organisations and companies are increasingly depending on them. It is
already challenging and will be even more to orient oneself among the extensive
amounts of services and information. On the one hand, this trend will lead to an
increase of sensitive and critical operations. On the other hand, its very ubiquity
(almost imperative presence in every aspect of society) will entice people to expect
a comforting nature from it, making people forget about security requirements yet
especially crucial [8, 9].

Nowadays, the use of CPSs in some strategic areas of our society, where human
life is directly affected, is of vital importance: from medicine to traffic control to
stock exchange markets and international finance. We are progressively relying on
such systems, even depending in some cases, yet a question raises concerns:
“Do we have enough confidence in computer systems that we let them handle our
most valuable goods, namely our life and money?” [10].
The term confidence translates to the notion of dependability, of which a useful
definition has been provided by [11]:
“Dependability of a computing system is the ability to deliver service that can jus-
tifiably be trusted.”

This definition underlines two aspects that affect the design, the implementation
and our reasoning about system “correctness”:

• Dependability does not explicitly preclude systems faults. Rather, it requires
that the application service, i.e., the functionality required by the end user of
the system, is delivered as specified.

• Delivery of service is only required to the extent covered by the specification.
The term justifiably means that the delivery of service is correct up to the

2



1 – Introduction

specification. This point is crucial because otherwise the system develop-
er/designer could never prove the correctness. Moreover, the service is only
as good as the requirements: the specification document should reflect the
user understanding on how the system should behave. As a consequence, the
specification phase has become the most critical phase of the whole system
development life cycle.

Although the definition of Dependability is ambiguous, some contributions have
tried to formalize it. For instance, the authors in [11] identify four attributes to
characterize the dependability:

• safety: absence of catastrophic consequences on the user and the environment

• security: preservation of confidentiality and integrity of information

• availability: readiness for correct service

• reliability: continuity of correct service

The above attributes are directly related to vulnerabilities: the primary cause
of adversarial attacks or unexpected system behaviours. This demands an effort by
design engineers to satisfy security requirements while preserving functional ones.
As we will see these two needs are now generally enforced as a conjunct approach
during the design steps. The concept of cybersecurity has been changing through
time, reflecting the demands from the involved parties: users, companies, organi-
zations, scientific community, etc. Traditionally, cybersecurity has been viewed as
protection of resources:

• Confidentiality: prevention of unauthorized disclosure of information

• Integrity: modification or destruction of information

The concept now goes beyond that and embodies also the notion of availability:
the whole system as well as its parts (data, software, services, etc.) must be usable
whenever they are needed by the authorized users.

Moreover, cybersecurity carries also additional tasks: gather evidence of, pre-
vent or detect illegal activities in cyberspace, from acts of terrorism [12] to articu-
lated web-based investment frauds [13].
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1 – Introduction

Cybersecurity is a very complex task: it is expensive, both in terms of money
and time, it has to be comprehensive, it requires certain knowledge, it has to be
coordinated with other efforts. Therefore, it is often misinterpreted or incorrectly
implemented, making room for threats, vulnerabilities and attacks. For exam-
ple, industrial control systems are prone to cyberattacks with possible catastrophic
consequences, as showed by the Stuxnet worm [14]. In 2015 a group of researchers
demonstrated that an attack to control an entire vehicle is already viable [15], while
Meltdown and Spectre attacks [16, 17] showed that microarchitectural vulnerabil-
ities can be exploited to retrieve sensitive data from almost the entire user and
server computer market.

The literature is packed with surveys and assessments on cybersecurity or state
of cybercrime [18, 19].

Securing a computing system is a complex task, there are a plethora of different
approaches and methods, but they can be grouped in four general categories:

• the use of procedures to achieve a security requirement

• the integration of the system with additional functions or mechanisms

• the use of assurance techniques

• the use of intrusion detection systems.

Some security requirements prescribe that the user must follow a very specific
procedure, i.e., an appropriate behavior when using the system. “The password
must be at least 8 characters long” is an example of this approach. Enhancing the
system security can also be achieved by adding functions or mechanisms (either
hardware or software). Examples are hardware-accelerated security chips, access
control, authentication mechanisms, and inference control. This solution is expen-
sive though, it requires money for the hardware and time for software development.
Combining this approach with some assurance techniques is a possible trade off.
Assurance techniques are rigorous methods (either formal or non-formal) to increase
security confidence towards the system. For example, formal functional verification
is able to prove the system correctness under the system model and its specification.

Nonetheless, no matter how engineers implement security requirements in their
systems, it is now generally accepted that cybersecurity can be obtained only
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1 – Introduction

through systematic development, it can not be achieved through disorganized and
improvised methods [20].

Historically, security research and development was born in the IT area. Tra-
ditional IT security methods use the notions of confidentiality, integrity and avail-
ability. They, too, can be applied to CPSs security. However, they do not cover the
full spectrum of CPSs security, hence new challenges are open to be solved [21].

Although standard notions of security are quite effective on the software side,
they tend to provide little to nothing solutions in the hardware side of CPSs. As a
consequence, information security approaches fail to discover unwanted behaviors
under attacks that take advantage of hardware vulnerabilities.

Accountability

meter defense

Access control

(detect)

(defend)

(authorize)

Figure 1.1: Vulnerable components in traditional IT infrastructure and defense
strategies

In the IT world the security is mostly depicted as in Figure 1.1. The counter-
measures are: accountability, perimeter defense, access control mechanisms. They
serve to, respectively, authorise accesses, defend the secure area and detect un-
wanted behaviors. The scheme is well established and indeed works on most the
IT architectures, but emerging threats in the CPS world compromise the trustwor-
thiness of it. The biggest disadvantage of this approach is that, while it is efficient
against attack from the outside, is useless against inside attacks, i.e., attacks that
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exploit system faults or design flaws.
And this is the point where formal methods come into play. Recall the four

approaches to enhance the security of a system: one of them is to subject the
system to rigorous assurance techniques. Among these techniques there are formal
methods. None of these methods can provide a full assurance for secure systems,
but they increase the security confidence more than other approaches.

The literature offers contributions on formal approaches over these systems:
they range from the diverse family of formal languages called Process Calculi [22,
23], Timed Automata [24], Game Theory [25], Theorem proving [26]. Among other
formal methods, Model checking is a formal technique used in the verification steps
of the design lifecycle. To the best of our knowledge few results have been proposed
to model check hardware/software designs: either they target specific systems (e.g.,
stochastic systems [27]) or require great manual effort in order to translate the orig-
inal HDL-based model into a specialized algebra or calculus (e.g., Security Process
Algebra [28], PROMELA [29]).
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Chapter 2

Background

2.1 Security features

Security is a well established practice in Software Development Life Cycle. As
mentioned in the previous Chapter, hardware development life cycle approaches
often lack of support for security. As we intend to deal with security mainly with
both hardware and software, we must first provide a general scheme (or threat
model) to identify security features and threats. We will refer to this common
lexicon throughout this work. Among other methodologies, STRIDE [30] is one
of most common in the software area. STRIDE identifies six security features.
Following STRIDE we cover every aspect of security with each category.

2.1.1 Spoofing

Spoofing is declaring a false identity (e.g., process spoofing) or pretending to be
someone else (e.g., user spoofing).

Authenticity is what this category deals with.
Examples:

• In computer networks, man-in-the-middle attacks are often carried out with
IP spoofing.

• A phishing attack attempts to gain credentials from the users.

7



2 – Background

• Brute-forcing username/password credentials is one example of identity spoof-
ing.

Typical countermeasures are proper authentication schemes.

2.1.2 Tampering

Tampering is about the malicious modification of data/processes. The modifi-
cation may happen during the transmission of data, during the storage of data, or
on processes.

Integrity is what this category deals with.
Examples:

• Injection attacks on the system processes, e.g., SQL injection.

• An attacker modifies data on the main memory/on secondary memory.

• An attacker alters data in transit by bit-flipping attacks.

Typical countermeasures are:

• Data protection mechanisms

• Validation of inputs and encoding of outputs.

• Minimize dependence to 3rd party libraries/dependencies.

• Integration with static code analysis tools.

2.1.3 Repudiation

Repudiation is about denying that an event has occurred.
Non-repudiation is what this category deals with.
Examples:

• Attackers usually hide their track by erasing log files.

• A destructive action (e.g., deleting an entire database) cannot be associated
with a particular person.

Typical countermeasures are audit logging systems.

8
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2.1.4 Information Disclosure

Information Disclosure is about data leaks. The leak may happen during the
transmission of data, during the storage of data, or on processes.

Confidentiality is what this category deals with.
Examples:

• An attacker reads sensitive data in a database.

• An attacker retrieves the encryption key.

• An attacker manages to gain confidential information on the system.

• An attacker is able to sniff in transit data over a communication channel.

Typical countermeasures are proper encryption schemes.

2.1.5 Denial of Service

Denial of Service is about making a network resource or a service unavailable
to its intended users.

Availability is what this category deals with.
Examples:

• The storage (i.e., disk, drive) is maliciously filled with data.

• An attacker floods the network (e.g., SYN flood attack).

• The encryption routine is continuously called thus preventing normal users
to do so.

Prevention is generally not a feasible task for a plethora of reasons. Mitigation
is the best tradeoff, for example by monitoring systems with Intrusion Detection
Systems (IDS).

2.1.6 Elevation of Privileges

Elevation of Privileges, or Privilege escalation, is about exploiting a misconfig-
uration, a design flaw or a bug to gain access above one’s clearances.
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Authorization is what this category deals with.
Example:

• Attackers with limited permissions manage to elevate their clearances by
crafting a special request or running a particular sequence of code (e.g., Melt-
down [16] and Spectre [17] attacks).

• Elevation to root-level privileges by means of Buffer Overflow or Return Ori-
ented attacks.

Typical countermeasures are:

• Proper access control.

• Security code analysis.

• Security by design.

All the features above are briefly summarized with their corresponding threat
in Table 2.1.

Security property Security threat

Authentication Spoofing

Spoofing Tampering

Non-repudiation Repudiation

Confidentiality Information Disclosure

Availability Denial of Service

Authorization Elevation of Privilege

Table 2.1: Security concerns with corresponding security threats suggested by the
Security Development Lifecycle

2.2 Formal methods

Formal methods used in computing systems use mathematical techniques to
provide frameworks within which we can describe, develop and verify hardware and
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software systems. Unlike other approaches, formal methods adopt mathematical
proof and rigorous reasoning to ensure “correct” behavior. As systems are becoming
larger and more complex, safety and security turn up to be a critical issue, therefore
formal methods provide another level of assurance.

Traditionally the verification of “correct” behavior has been carried out by ex-
tensive testing and simulation, but these two techniques are limited to finite con-
clusions. It has been demonstrated that testing is able to provide guarantees only
under the conditions where the system does not fail, that is they cannot provide any
guarantee about situations outside the test scenario. In contrast, formal methods
offer the mathematical guarantee that a certain property is always true. More-
over, conventional simulation approaches yield only partial results quickly but they
hardly reach full coverage. Formal verification, on the other hand, is capable to
attain completeness, at least in principle [31, 32].

Generally, formal design is divided into a three step process:

Formal Specification In this phase, the designer, using a modeling language, me-
thodically describes the system. A modeling language is a predefined gram-
mar intended to model complex systems by means of primitive types and
constructs. This step is analogous to some software engineering techniques
developed to translate natural language-defined specifications into formal/-
functional requirements. Both approaches help designers to clarify and settle
their goals, problems, and solutions.

Verification As previously mentioned, formal methods are distinguished from
other specification techniques by their heavy emphasis on provability and
correctness. Since formal methods take advantage of rigorously defined log-
ics, the engineer is therefore building a set of properties or theorems about the
system. If the property is proven to be true, the corresponding requirement
becomes always true, no matter the conditions. The complexity of proving
a theorem has driven the verification community to developing automated
theorem proving tools.

Implementation The last step is the implementation: translating the formal
model into code. This should be the last step, but very often designers are
forced, by time constraints, to implement the system and only after that
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perform the verification.

2.2.1 Benefits Of Formal Models

As already mentioned, formal methods offer the great insurance of provability.

• Precision: In contrast to other design approaches, formal methods require
very rigorously defined goals and techniques. One of the greatest advantages
of formal methods is the elimination of ambiguity. This is particularly rele-
vant for safety critical and security critical systems, where ambiguity can be
extremely dangerous.

• Discipline: Formal methods require rigor, this forces formal engineers to
think thoroughly while designing the system. Specifically, a formal proof of
correctness demands a formal specification of requirements. This approach
has been demonstrated to be more effective in identifying faulty reasoning
than in traditional design [33].

2.2.2 Weaknesses Of Formal Methods

• Expense: Formal methods are usually more expensive than traditional ap-
proaches. Nonetheless, it is debatable how much this “more expensive” is for
formal methods. Generally speaking, formal approaches are very costly at
the beginning of the project, while becoming cheaper in time. This trend
is exactly the opposite for standard development techniques. The expense
varies from project to project, so the question arises: Is this large initial cost
worth the effort?. Or in other words: Are the benefits of this formal approach
greater than its disadvantages?.

• Usability: Modeling languages usually have the great strength to model
anything and formal methods are extremely descriptive. Unfortunately, the
same qualities require engineers to undergo through hard training and detailed
skill acquisition. Moreover, formal methods generally have a steep learning
curve.
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• Scalability: Although there have been great efforts to improve scalability in
formal methods, large designs are not quite feasible for most verification tools
out there. The bright side is that the research in this field is still very active.

2.3 Formal Specification

A specification is a description of a system and of its desired properties. It is
often used as higher level documentation alongside the implementation’s documen-
tation. Formal specification, in particular, describes the intended behavior of the
system using a formal language, i.e., with mathematically-defined semantics and
syntax. The great advantage of such language is that it provides an unambiguous
method of description. This process, as already mentioned, helps uncover ambigu-
ity and incompleteness.
The specification can be represented by two broad classes of formalisms:

• Logics: propositional, modal (temporal), first-order predicate, higher-order,
etc.

• Automata/language theory: omega automata, finite state, etc.

They tend to have different pros and cons, making each one of those most
suitable for a specific use case.

The desired behaviors are called properties. They can describe functional, safety
or security correctness. Properties are generally divided in two classes:

• Safety property: it asserts that nothing bad happens, e.g., an error condition,
or a deadlock state, or that A and B must not have simultaneous access to a
shared resource. If false, it can be detected by finite sequences. For instance,
confidentiality properties belong to this category.

• Liveness property: it asserts that something good eventually happens, e.g.,
a progress as in the opposite of starvation, if A is waiting to enter a critical
section, it will eventually be allowed to do so. It can only be proved false by
infinite sequences. For instance, availability properties belong to this category.
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2.3.1 Formal logic

A logic is an organization of a set of symbols (called alphabet), a language over
the alphabet to make statements, a set of rules that prescribe the construction of
sentences (grammar or syntax rules) and a semantics (interpretations of sentences).
Logics share some common characterizing properties:

• Consistency: all theorems can be true at the same time or that do not con-
tradict each other.

• Validity: if the premises are true, it is guaranteed that the conclusions are
also true.

• Completeness: every formula can be derived using the formal system, i.e., is
a theorem of the system.

• Soundness: if and only if every formula that can be proved in the system is
logically valid with respect to the semantics of the system, i.e., if any formula
is a theorem of the system, it is true.

• Expressivity: the ability to express concepts in the system.

There are four types of Logic:

• Propositional logic: a formula is expressed by combining atomic propositions
and logical connectives, e.g., traditional Boolean algebra

• Modal/temporal logics: modal logic affects the circumstances (the time in
temporal logics) in which we deem an assertion to be true

• First-order logic (Predicate logic): uses quantified variables, e.g., there exists
(∃) and for all (∀)

• Higher-order logic: an extension of the first-order logic, includes also quanti-
fiers over sets and functions (predicates)

The application of a logic to verification is as follows:

• The specification is expressed as a formula

• The implementation is expressed as a formula or as a semantic model
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There are two possible cases:

• Formula ⊢ Formula: Verification of relationships (implications or equiva-
lences) between the implementation and the specification. This is the case of
theorem proving.

• Model |= Formula: Verification of a semantic relation between a model and
a specification formula (property). In this case both model checking and
theorem proving can be used.

Finally we express the relations between the implementation (Imp) and the
specification (Spec) in the following manner:

• Imp ≡ Spec: the implementation is equivalent to the specification

• Imp =⇒ Spec: the implementation logically implies the specification

• Imp |= Spec: the implementation is a semantic model in which the specifica-
tion is true

2.4 Formal verification

We are now going to talk more specifically about Formal Verification (FV). Let
us remind some basic concepts.

“Formal Verification is the process of constructing a proof that a target system
will behave in accordance with its specification.”

In addition, FV has the following features:

• Mathematical reasoning is used in order to prove that the implementation
satisfies the specification

• Correctness holds no matter the input values, i.e., the specification is always
satisfied

• Formal verification implicitly covers all cases

• Must provide:

– A formal specification (high-level behavior or properties)
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– A formal description of the implementation (a model, functionally and
observationally, equivalent to implementation or design at higher level
of abstraction)

Full coverage makes formal verification an excellent alternative able to track
down bugs that are not detected by standard verification techniques. Formal ver-
ification can even detect bugs earlier in the development process than other tech-
niques. Although reliable and exhaustive, this approach still needs improvements
and it is often used in conjunction with standard simulation-based systems. While
FV performs complete verification of correctness but requires partial (abstract)
models, simulation is able to run the complete model leading to partial verification.

Formal verification techniques can be divided in three main classes, as depicted
in Figure 2.1, and they are described in the following subsections.

Figure 2.1: Formal verification techniques

2.4.1 Theorem proving

Theorem proving is the process of constructing and verifying a proof using
mathematical reasoning. If the theorem is proven it means that the implementation
meets design requirements (or specifications). Logic is used for reasoning about the
system under consideration, it can express complete proofs of correctness or of
absence of failures.

Theorem proving can be split in the following steps:

1. Using a formal mathematical logic, define mathematical definitions to create
a model of the system.
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2. From the definitions derive the properties that express some system’s be-
haviours.

3. Properties and model are fed into a theorem prover to carry out the proof.

The same steps are depicted in Figure 2.2

Figure 2.2: The procedure of Theorem proving

2.4.2 Equivalence checking

Equivalence checking is the process of verifying that two designs are function-
ally the same, that is: Given two designs, prove that for all possible input stimuli
their corresponding outputs are equivalent. There are two variants of equivalence
checking, they both verify that two models are functionally identical:

• At different levels of abstraction.

• At the same level of abstraction but with different implementations.

The process is depicted in Figure 2.3: select a reference model to be a role model
and a target model to be the design under test, build the so-called product machine
composed of the two models and a comparison circuitry for the outputs, provide
the input stimuli and run the machine, eventually collect the binary output. If the
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output is true, the two models are functionally equivalent, otherwise they differ and
do not have the same behavior.

Reference model Target model

Equivalent

Not Equivalent 
 

Figure 2.3: The procedure of Equivalence checking

2.5 Model checking

Model checking, also known as Formal property verification, is a state-based
approach to formal verification. It is used to verify finite state concurrent systems.
A big advantage of model checking is that the verification process can be automated
through a proper model checking tool.

The essential idea behind model checking is depicted in Fig. 2.4:

1. Modeling: describe the system with a formal language. The design is usually
modelled as a set of states and a set of transitions that define how the system
evolves from a particular state to another in response to some stimuli. This
step produces a formal system model M.

2. Specification: define the desired properties using a proper specification lan-
guage (usually the same as in the previous step). This step produces a prop-
erty ϕ or a set of properties.

3. Verification: M and ϕ are fed to a model checking tool (or model checker) that
runs automatically. If the answer of the model checker is positive (true) then
the model is proven to satisfy the property. Otherwise, the model checker
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generates a counter-example, i.e., the stimuli that violate the property. The
counter-example is then used to simulate the model M and find the unwanted
behavior.

Yes

No

Figure 2.4: The procedure of Model Checking

Research over model checkers have brought significant enhancements in terms
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of efficiency, automatism, supported languages, features, etc. A standard model
checker nowadays is able to, given sufficient resources, terminate with a binary an-
swer in reasonable time. There are some caveat though. Since the model checking
tools usually perform an exhaustive search over the finite state space of the sys-
tem, large designs represent a serious problem for model checkers for a problem
called state space explosion which we are going to talk about below. The theory of
computation provides limitations on the decidability of an algorithm. Notably, an
important undecidable problem is the halting problem: it cannot exist an algorithm
that decides if an arbitrary program eventually terminates. As a consequence, there
are restrictions on what can be verified automatically.

2.5.1 Modeling

The first step is the conversion of the design into an abstract formal model
accepted by a model checker. As the state space could be very large, the model
should be as small as possible in order to minimize the size of the state space search.
This step is sometimes performed automatically, for example for hardware systems.
In the majority of cases, however, human effort and guidance is necessary. The input
design could vary for its form and its nature, it could be hardware or software, it
could represent a gate level description, a RTL description, a behavioral model,
or even high level specifications. The choice of the formal language to describe is
particularly relevant for efficiency, support, expressivity, etc. In some cases, even an
ad-hoc and fine-tailored logic is used. The property specification (described in the
next subsection) is usually performed with the same logic or language. Despite this
variety, a generic design is commonly seen as a set of concurrent (i.e., interacting)
systems. Each system is represented as a Finite State Machine (FSM) and has a
finite number of states. Certainly there are systems with infinite states and the
literature is plenty of contributions on this topic but they are out of scope for
this work. When given an input, the FSM can change from one state to another.
This is called transition. The set of states, the initial state and set of transitions
characterize the FSM. Following this approach, the whole system can be seen as a
FSM, which is the composition of the FSMs associated with each component. The
process of modelization therefore consists of creating a complete FSM description
of the system. Automata theory provides a plethora of methods to describe finite
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state automata: Pushdown automata (PDA), Linear bounded automata (LBA),
Turing machines, Buchi automata, etc. Model checking methods generally model
the behavior of the system by means of Kripke structures. A Kripke structure is
a variation of a transition system and is essentially a node-labeled graph. System
states are represented by the nodes of the graph and each node is labeled with
binary information (i.e., atomic propositions described with the chosen logic) at
that state. State transitions, that is the evolution of the system, are represented
by the edges of the graph.

2.5.2 Specification

This process involves the following question: What properties must the system
design satisfy? This is the step where we define the key properties to be verified:
they could describe a particular system’s behavior or model a certain feature, e.g.,
the confidentiality of a secret key. Generally, the specification is expressed with
the same formalism as the previous step. The class of temporal logics has been
proven to be very useful because of their inherent capability to describe how the
system evolves over time. Although the meaning of a statement is constant in
time, its truth value may vary in time. Temporal logic always has the ability to
reason about a timeline. In particular, time is implicitly built within the logic,
without the need for an explicit definition. A common classification for temporal
logics is between linear time logics (e.g., LTL) and branching time logics (e.g.,
CTL and CTL*). The difference is whether time is assumed to have a linear or
branching structure. In the last years, though, new types of temporal logics have
been proposed to respond to specific problems. Key examples are HyperLTL and
HyperCTL* [34]: they have been proposed to provide support for a new class of
properties, namely hyperproperties [35]. Overall, this process is particularly time
consuming because of some crucial issues: for example, consistency (i.e., whether
the given specification is consistent with higher level requirements) or completeness
(i.e., whether the given specification cover all the behaviors of the system).
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2.5.3 Verification

In theory, the verification step is completely automatic. In practice, however,
human effort is often needed. For instance, the analysis of the verification re-
sults can provide useful insights on the system specification and implementation.
If the model does not satisfy the given property, the model checker generates a
counter-example, i.e., an error trace that can be used to simulate the system. The
simulation helps the engineer to track down where the error occurred. Once the
bug is found, the engineer modifies the model and repeats the verification process.
The verification process can also lead to false negatives and false positives, that can
be introduced by:

• inconsistent specification

• incorrect formalization of the specification

• incorrect modeling of the system

The verification step could fail to terminate normally or not terminate at all. This
is due to the size of the model, which leads to the state space explosion. The
major limitation of model checking is the state explosion problem. The problem
occurs when the whole model is computationally too big, that is composed of
too many components or few large components. The composition of two FSMs,
representing two concurrent components, is performed by taking the Cartesian
product of the corresponding state spaces. This leads to an exponential grow,
in the number of concurrent processes involved, of the overall state space of the
system. An exhaustive search over this large state space may be unfeasible even
for well-optimized linear-time algorithms. The verification community, in order to
cope with this problem, has offered two approaches:

• Symbolic algorithms

• Partial order reduction
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2.6 Modelling Concurrent systems

2.6.1 Transition systems

Transition systems are usually used to describe and model system behaviors.
A transition system are represented as directed graphs: edges represent transitions
(i.e., state changes), nodes model states. A state provide information on the system
at a certain moment of time. The state for a traffic light, for example, is the current
color of light. Likewise, the state for a sequential computer program is represented
by the set of variables, their current values and the value of program counter.
In the hardware field, a state is typically the set of registers and their current
values. Transitions describe the evolution from state to another. A transition for
the traffic light is the change of color. A transition for a program is the execution
of an instruction and the corresponding change of variable values as well as the
program counter. For hardware circuits, a transition is the change of registers and
signals.

Regardless of the actual formalism employed for their specification, the (oper-
ational) semantics of reactive systems is fully described by the general framework
provided by transition systems.

DEFINITION 1. A labeled transition system is a tuple T = (S, I, E, δ) composed
of:

– a set S of states

– a subset I ⊆ S of initial states

– a set E of (action) labels

– a transition relation δ ⊆ S × E × S

A run of T is an ω-sequence ρ = s0
e0=⇒ s1

e1=⇒ . . . of states si ∈ S and labels ei ∈ E

such that s0 ∈ I is an initial state and (si, ei, si+1) ∈ δ is a transition for all i ∈ N .
A state s ∈ S is called reachable in T if there exists some run s0

e0=⇒ s1
e1=⇒ . . . of T

such that sn = s for some n ∈ N .

The goal of verification algorithms is to decide whether a transition system
satisfies a given property. Properties represent system behaviors that verification
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engineers want to check. Some elementary binary (i.e., true or false) propositions
form a property. This idea is behind Kripke structures, a variation of the transition
system. Kripke structures extend a transition system by adding an interpretation
of atomic propositions over states.

DEFINITION 2. Let AP be a set of atomic propositions. A Kripke structure
K = (S, I, E, δ, λ) extends a transition system by a mapping λ : S → 2AP that
associates with every state s ∈ S the set of propositions true at state s. The runs
of a Kripke structure are just the runs of its underlying transition system.

The labeling function λ maps any state s to a set λ(s) ∈ 2AP of atomic propo-
sitions, this mean we can evaluate formulae of propositional logic built from the
propositions in AP .

λ(s) intuitively stands for exactly those atomic propositions a ∈ AP which are
satisfied by state s. Given that Φ is a propositional logic formula, then s satisfies
the formula Φ if the evaluation induced by λ(s) makes the formula Φ true; that is:
s |= Φ iff λ(s) |= Φ.

2.6.2 System invariants

Safety properties usually describe that “something bad should never happen”.
For example, a computer program should never go in deadlock. Or at most one
process is in its critical section at any time. This particular type of properties states
that a condition must always be true, that is s |= P holds for all reachable system
states s. We call this a system invariant or simply invariant. Invariants are, as we
showed, a special case of safety properties.

DEFINITION 3. A property Pinv over AP is an invariant if there is a proposi-
tional logic formula Φ over AP such that

Pinv =
{

A0A1A2 · · · ∈ (2AP )ω | ∀j ≥ 0. Aj |= Φ
}

.

Φ is called an invariant condition of Pinv.

Model checking algorithms that decide whether a finite Kripke structure K
satisfies an invariant property P are conceptually easy: they can simply enumerate
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the reachable system states and check that P holds true in every one of them.
Termination is guaranteed by the finiteness of K.

2.7 Linear Time Temporal Logic

Given a Kripke structure K, we are sometimes interested in some properties,
such as:

• Is it always possible to reach an initial state? In other words, can the system
be re-initialized?

• Does K contain states that do not satisfy an invariant?

• Does K have “bad” states, such as deadlock states where only the τ action is
enabled?

• Does the system have livelocks (i.e., when the system is not in deadlock but
some process is)? In other words, are there traces of K such that, after some
time, a certain action is never executed or a “good” state is never reached?

Temporal logic provides a language in which such properties can be formulated.

Temporal logics can be categorized for their syntactic features, or for their se-
mantic structures. In particular, the underlying nature of time in temporal logics
can be either linear or branching. If at each moment of time there is only one
possible successor we are talking about linear time logic. On the contrary, if we
have a tree-like time structure we say it is a branching time logic. This section
describes Linear Temporal Logic (LTL).

Linear temporal logic has been introduced by Pnueli [36] as a tool for the spec-
ification and verification of reactive systems.

The syntax of LTL-formulae is made up by the following basic ingredients:

• atomic propositions a ∈ AP ( that corresponds to state label a in a transition
system)

• Boolean connectives such as conjunction ∧ and negation ¬
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• basic temporal modalities⃝ (pronounced “next”) and U (pronounced “until”)

Usually, the atomic propositions are assertions over control variables (e.g., the
program counter or program variables such as “x ≥ y” or “x > 5”). The ⃝-
modality is a unary prefix operator and takes a LTL formula as argument. Formula
⃝φ holds at the current moment, if φ holds in the next “step”. The U-modality is
a binary infix operator and takes two LTL formulae as arguments. Formula φ1Uφ2

holds at the current moment, if there is some future moment for which φ2 holds
and φ1 holds at all moments until that future moment. LTL formulae over the set
AP of atomic proposition are formed according to the following grammar:

φ ::= true
⏐⏐⏐⏐ a

⏐⏐⏐⏐ φ1 ∧ φ2

⏐⏐⏐⏐ ¬φ
⏐⏐⏐⏐ ⃝ φ

⏐⏐⏐⏐ φ1Uφ2

where a ∈ AP .
The U-modality lets us derive the temporal modalities □ (“always”, from now

on forever) and ♢ (“eventually”, sometimes in the future) as follows:

□φ
def= ¬♢¬φ ♢φ

def= true U φ

□φ is satisfied if and only if it is not the case that eventually ¬φ holds. This
is equivalent to the fact that φ holds from now on forever. ♢φ ensures that φ will
be true eventually in the future. By combining the temporal modalities ♢ and □,
new temporal modalities are obtained as follows:

□♢φ “infinitely often φ”

♢□φ “eventually forever φ”

2.8 Branching Time Temporal Logic

Instead of relying on a linear notion of time (i.e., an infinite sequence of states),
branching time temporal logic uses a branching notion of time (i.e., an infinite
tree of states). Branching time is generally represented as an infinite tree of states
because at each moment there may be several different possible futures. Branching
time logic allows us to express properties of some or all computations starting
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from a particular state. The support is provided by new path quantifiers, such as
an universal path quantifier (denoted ∀) and an existential path quantifier (denoted
∃). For example, the property ∃♢Φ indicates that there exists a computation along
which ♢Φ holds. That is, it states that there is at least one possible computation
in which a state that satisfies Φ is eventually reached.

A notable branching time logic used in formal verification is Computation Tree
Logic (CTL) and it has been introduced by Clarke and Emerson [37]. CTL formulae
are classified into state and path formulae. The former are assertions about the
atomic propositions in the states and their branching structure, while path formulae
express temporal properties of paths. Given a set AP of atomic propositions, CTL
state formulae are generated by the following grammar:

Φ ::= true
⏐⏐⏐⏐ a

⏐⏐⏐⏐ Φ1 ∧ Φ2

⏐⏐⏐⏐ ¬Φ
⏐⏐⏐⏐ ∃φ ⏐⏐⏐⏐ ∀φ

where a ∈ AP and φ is a path formula. CTL path formulae are generated by
the following grammar:

φ ::= ⃝Φ
⏐⏐⏐⏐ Φ1 U Φ2

where Φ, Φ1, Φ2 are state formulae.

2.9 CTL*

CTL∗ is an extension of CTL and it is a superset of both CTL and LTL. It allows
path quantifiers ∃ and ∀ to be arbitrarily nested with linear temporal operators such
as □ and U. As for CTL, CTL∗ formulae are classified into state and path formulae.
Given a set AP of atomic propositions, CTL∗ state formulae are generated by the
following grammar:

Φ ::= true

⏐⏐⏐⏐ a

⏐⏐⏐⏐ Φ1 ∧ Φ2

⏐⏐⏐⏐ ¬Φ
⏐⏐⏐⏐ ∃φ
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where a ∈ AP and φ is a path formula.
CTL∗ path formulae are generated by the following grammar:

φ ::= Φ
⏐⏐⏐⏐ φ1 ∧ φ2

⏐⏐⏐⏐ ¬φ
⏐⏐⏐⏐ ⃝ φ

⏐⏐⏐⏐ φ1 U φ2

where Φ is a state formula, and φ, φ1, and φ2 are path formulae.

2.10 ω-automata

Transition systems, even if they are finite, usually generate an infinite set of
runs, each of which is an infinite sequence of states. ω-automata are usually used
to specify behavior of systems that are not expected to terminate, such as control
systems, operating systems, hardware systems. For example, we would like to
verify, for such systems, a property that states “for every action, there eventually
be a counter-action”. A finite sequence of states cannot prove that the property is
satisfied. This theory has been given notable contributions over the years (Büchi
[38], Muller [39], Rabin [40], etc.) but we limit the discussion to Büchi automata.

DEFINITION 4. A Büchi automaton B = (Q, Q0, Σ, δ, F ) is given by:

• a finite set Q of states

• a set Q0 ⊆ Q of initial states

• Σ is an alphabet

• a transition function δ : Q× Σ→ 2Q

• a set F ⊆ Q of accepting (or final) states.

A run of B over a sequence σ = a0a1 . . . where ai ∈ Σ is a sequence ρ = q0q1 . . .

of states qi ∈ Q such that q0 ∈ Q0 is an initial location and (qi, ai, qi+1) ∈ δ holds
for all i ∈ N . The run ρ is accepting if it contains an infinite number of states
qk ∈ F .

Büchi automata, as we have defined them, operate on ω-sequences of subsets
of Σ, and this is in close correspondence with the interpretation of (linear time)
temporal logic over Kripke structures. Indeed, any run s0

e0=⇒ s1
e1=⇒ . . . of a Kripke

28



2.11 – Symbolic Model Checking

structure K can be identified with the corresponding sequence λ(q0)λ(q1) . . . where
λ is the propositional valuation of states of K. In this sense, propositional temporal
logic formulae and Büchi automata operate over the same class of structures.

2.11 Symbolic Model Checking

The notions we have seen so far (transitions systems, Kripke structures, Büchi
automata, etc.) are intrinsically based on states, thus model checking algorithms
operate on states too. Efficient implementations of data structures manipulating
states are therefore needed. Explicit enumeration (i.e., brute force) is not a viable
approach since it only allows few millions of states. An efficient alternative that
has been proposed is the symbolic representation of states, since this method would
allow compact data structures and therefore more efficient algorithms that operate
on them. The most prominent algorithms depend on a binary encoding of the
states. Also switching functions have been targeted for performance optimization:
ordered binary decision diagrams (BDD) are special structures designed to make
them compact and efficient.

Originally proposed by Bryant [41], ordered BDDs perform a compactification of
binary decision trees. The basic idea is to prune redundant fragments of a binary
decision tree. For example, subtrees with all leaf nodes having the same value
(i.e., constant subtrees) can be collapsed into a single node. Same for isomorphic
subtrees.

BDDs are extensively used in the context of SAT-based model checking where
the model-checking problem is reduced to the satisfiability problem for proposi-
tional formulae (SAT). BDDs have represented a technological breakthrough for
the implementation of model checking algorithms. A major benefit of BDDs is
that they provide canonical representation of sets, and therefore set equality can
be decided by simple pointer comparison. Moreover, Boolean operations can be
performed in polynomial time.
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2.12 Bounded Model Checking

Even though BDDs are a powerful data structure used for the representation of
Boolean functions, other techniques can be quite useful, especially when a complete
verification is not feasible. SAT algorithms, for example, decide the satisfiability
of formulae of (non-temporal) propositional logic. This approach is not based on
canonical representations of Boolean functions, ruling out the calculation of fixed
points. Bounded Model Checking (BMC) [42] algorithms attempt to find an exe-
cution of finite length that violates the property of interest. The maximum size of
a potential counter-example can (at least in theory) be determined from the size
of the model and the formula to be verified. For example, an invariant holds for a
Kripke structure if it is true for all prefixes of runs whose length is at most that of
the longest loop in the graph of K (called the diameter of K).

Bounded Model Checking (BMC) [42] is an iterative search for counterexamples
to prove false a desired property p up to a given bound k . The bound k greatly
limits the state space size so that it can be used in some cases where other model
checking techniques fail. On the contrary, the bound k has the disadvantage to make
this approach not complete, that is BMC cannot prove the absence of errors. After
a run with a certain k, if no counterexample is given then the user increases the
bound until either some pre-known upper bound is reached, the problem becomes
intractable or a bug is found.

The basic idea of BMC is to express all state paths of length k by unrolling k

times a system transition relation T .

T k(X0...k) =
k−1
∧

i=0
T (X i, X i+1) (2.1)

Although BMC has become an effective approach in the verification process,
even with large models, it can only guarantee the correctness of a property until a
given bound, i.e., the verification method is not complete. This is where Unbounded
Model Checking (UMC) comes into play. The main difference between BMC and
UMC is scalability. Support for UMC has been improved over the years, with a
number of techniques proposed. BDDs are now an established major approach for
UMC and BDD-based tools are very efficient, often with large designs, but there
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are other contributions. For instance, the ability to check reachability fix-points is
crucial for UMC. Property Directed Reachability (PDR) aims to prove completeness
for the circuit unrolling or backward, forward or mixed reachability analysis.

The industry nowadays typically uses both BMC and UMC as complementary
methods. A typical approach is to use BMC first to find shallow bugs very quickly,
the bound is incremented until the problem becomes intractable, then UMC is
applied to prove that the property is correct. In other cases BMC and UMC run
in parallel, as the first technique finds a solution, the other is aborted.
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Chapter 3

Secure Embedded Architectures:
Taint Properties Verification

The following chapter has been published as peer-reviewed article in [43].

3.1 Introduction

A large number of assorted embedded systems nowadays constitute a rising
trend in industry, forming the so-called Internet of Things (IoT). This direction will
lead, analysts say, to billions of connected devices that enable new functionalities
and services. The applications are everywhere: self-organizing devices connected
in a common network (e.g., robot swarms), connected smart environments, indus-
trial control systems. Most of these devices do not operate alone, their work is
coordinated and parallel, so that the key feature is the interconnection between
them. Whenever they send or receive sensitive or critical information using public
networks or communications channels accessible to potential attackers, they should
ideally provide basic security functions such as data confidentiality, data integrity,
and user authentication. These basic security functions are the assumptions that
underlie the paradigm of secure communications. Nowadays, most of the embed-
ded systems use this paradigm in automotive, sensing, medical, financial, military
and many other applications [44]. As a consequence, providing a proper security
verification is a crucial task in this kind of environments, not only at the device
level but also from the networking point of view, thus protecting them from a wide
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range of attacks [45, 46, 47, 48]. However, the major research focus is on verifying
only the correctness of encryption algorithms and their implementation in software
and hardware, neglecting the stream of data (i.e., information flow). Admittedly,
our research has been guided by the following questions:

• Is there a way to read sensitive data from a specific location?

• Is there a way to modify sensitive data?

• Are there failure states that would compromise the security of the system?

Taking these questions as a starting base, we chose to address them with a specific
information flow approach in security.

In [49] Taint properties are taken as a role model for expressing many security
requirements that involve information flow and access control. A taint is a malicious
seed that is injected into source, flows through the system until it reaches its sink.
It is easy to notice that this is a natural way to capture confidentiality requirements
as we will in Section 3.7. For instance, confidentiality can be verified by setting
a hardware secret as the source and an untrusted identity, e.g., a user program
location, as the destination. In a similar way if we set an untrusted identity as the
source and a security-sensitive signal as the destination we are verifying integrity
[50].

This chapter introduces a formal methodology to express generic security re-
quirements as information flow properties in terms of Taint Properties. In details,
our contributions are the following:

• we perform abstraction and refinement steps on two secure embedded archi-
tectures: SMART [51] and SANCUS [52]. They are two prominent represen-
tatives of Remote Attestation: a procedure to attest (i.e., check) the current
internal state of an untrusted remote embedded device (Prover) by a trusted
entity (Verifier) [53, 54]. SMART is a simple architecture that provides sup-
port for dynamic root of trust in a remote embedded device. It requires
small changes and little cost as it is based on hardware/software co-design.
SANCUS is a comprehensive framework for Remote Attestation and message
authentication. It is module-based and it provides also a networking scheme
for communications. It works with clusters (i.e., sets of microprocessor-based
systems).
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• we show how to express security requirements, such as confidentiality, in-
tegrity, key secrecy, isolation, etc., as Taint properties.

• we define a portfolio of Taint properties for the selected abstract models.

• we perform formal verification on the set of Taint properties and we present
experimental results supporting our claim

Section 3.2 provides some background knowledge on the topics we use in this
work. Section 3.3 recalls related works and compares them with our approach.
Section 3.6 introduces a methodology to perform abstraction to extract an abstract
model of the two selected architectures. Section 3.7 presents a set of Taint Proper-
ties and we provide a formal analysis for security requirements. We also show how
to use them with a standard model checker. In Section 3.8 we offer experimental
results that support our claim. Finally, Section 3.9 concludes the chapter with
summarizing conclusions along with some remarks on future work.

3.2 Background

3.2.1 Trusted Computing Base and root of trust

There is plenty of empirical experimental evidence that conventional embedded
systems are not secure. This simple assertion has become evident in the past and is
nowadays an universally accepted truth. The ubiquity of flaws and secure-related
issues makes this a pressing matter. Furthermore, reconciling after discovery of
the issue or even after the public disclosure of an attack has been shown an inade-
quate approach to providing truly secure systems. Though there have been plenty
of improvements over the years in terms of efficiency for verification methods, both
formal and non-formal, to date there is no technique which is proved to be com-
plete and sound for every CPS. Most of them, indeed, are not able to give the
upmost assurance that all security vulnerabilities have been removed from the sys-
tem. Therefore, the only sound approach to this end is deemed to be the so called
security by design: security must be embedded into the system in the design phase.
In other words, the fundamental proof that a system is secure must be focused,
first, on the security analysis of its design and, eventually, on its implementa-
tion. Hence, a secure computer system must involve mechanisms that are sufficient
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to guarantee its security in all circumstances, and it must be possible to provide
compelling evidence that those mechanisms are entirely adequate to their task.
Such trustworthy computing or, as it widely known, Trusted Computing requires a
Trusted Computing Base (TCB), the core set of functionality that is assumed to be
secure, to provide secure primitives to the system. The TCB typically comprises
hardware and software components, e.g., hardware accelerated cryptographic en-
gines, software libraries, secure OS services, etc. During an execution of the system,
the chain of TCB involved in the computation forms the root of trust, a way to
establish trust in the execution environment. So only an execution environment
equipped with a root of trust is really “real” trusted. Efforts have been made to
regulate this approach and led the Trusted Computing Group (TCG) to produce
a standard, later accepted by ISO, In particular, TCG defines a Trusted Platform
Module (TPM) as a specialized hardware with security enforced capabilities (e.g.,
encryption/decryption) and provides the foundation for the host root of trust. For
further details, refer to the corresponding ISO standard [55].

3.2.2 Remote attestation

Connected to the TCB and root of trust concepts, is remote attestation: a
procedure to attest (i.e., check) the current internal state of an untrusted remote
embedded device (Prover) by a trusted entity (Verifier) [53, 54]. In general, remote
attestation is used to establish a root of trust between Prover and Verifier and can
help to build other security services such as secure update [56], secure boot [57]
and secure erasure [58]. Many existing attestation proposals are aimed at specific
use cases. Indeed, many definitions of attestation primarily focus on defining a set
of particular properties [59, 60]. For example, attestation might be understood as
the process of transmitting a sequence of hashes and the corresponding signature
[61]. In Microsoft NGSCB [62], it refers to identification and authentication of
known code via digital signatures. Copilot [63] makes use of direct hashes of kernel
memory. Authors in [64] propose a composable architecture based on predefined
attestation principles. They also provide a quite extensive survey on existing attes-
tation approaches. Recently, a fully verified RA architecture has been proposed by
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Nunes et al. [65]. It is, to the best of our knowledge, the first formal verification-
oriented approach targeting a remote attestation architecture and the first one to
be implemented as a HW/SW co-design.

Historically attestation schemes belong to two opposite classes: hardware- and
software-based techniques. The former can provide strong guarantees in terms of se-
curity because they involve specialized hardware such as cryptographic accelerators
or security co-processors. This approach, because of its high cost, is often not viable
for low-end devices though. On the other hand, software-based techniques tend not
to be complete, i.e., they are unable to cover all possible cases, or involve restric-
tive assumptions on adversarial capabilities. As a consequence, low-end embedded
devices tend to resort to a particularly promising hybrid approach, implemented
with HW/SW co-design. Software and hardware are designed together to meet not
only the functional and performance requirements but also security goals [66]. In
the following we present two remote attestation architectures specifically designed
for cost-effective embedded devices: SMART and SANCUS.

3.2.3 SMART

SMART [51] introduces a light-weight architecture, designed for low-end em-
bedded systems, for establishing dynamic root of trust. SMART is based on a
hardware-software co-design approach: two major advantages are that it requires
minimal hardware changes and it assumes few limitations on attacker’s capabilities.
The attestation model is the following: before, during and after the execution of
the attestation routine, SMART assumes that the attacker has complete control
over the system. In particular, the attacker can modify any part of the software
inside the Prover that is not explicitly protected by the hardware. In addition,
the attacker has also the chance to manipulate all connections coming from and
to other devices. Prover and Verifier share a secret K which is memory protected.
The only assumption is that the hardware components must not be tampered and
the attestation routine cannot be interrupted.

At the beginning of SMART (3.1), Verifier sends a set of parameters to Prover:
attestation boundaries a and b, address x where control returns if control flag xflag

is set, a nonce n to prevent replay attacks. A cryptographic checksum C of Prover’s
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Verifier Prover

Generate nonce n

Send parameters to the Prover n,a,b,X

token = attestation_routine(n,a,b,X,K)

Verification of token

Figure 3.1: An example of Remote Attestation protocol

region [a,b] is computed by a ROM-resident protected code segment. The checksum
is an HMAC keyed with the secret K. The control passes to x. After execution
of code starting at x, Prover sends the checksum C to Verifier. The latter verifies
the correctness of C using the same parameters and the key K. Secrecy of K is
achieved by means of secure hardware storage. The MCU restricts access to K so
that only (trusted and immutable) ROM code is allowed to use it. Secure access
to K is implemented by modifying the memory bus controller as follows:

1. Only the instructions stored in a trusted memory region (e.g., ROM code)
are allowed to access the secret K

2. An instruction is allowed to access the trusted region only from its initial
address and it can leave only from its last address.

This translates to: if the current and the previous Program Counter (PC) values
both point to the trusted region then access to K is granted. If the memory access
control detects an invalid memory access, the processor is promptly reset. The
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attestation code enforces a memory cleanup whenever there is a memory violation.
However, if the cleanup is interrupted by a hardware reset, this might lead to
sensitive data leakage. Therefore, a full memory cleanup is enforced upon each
boot.

In addition, when SMART (i.e., the attestation code) is invoked, interrupts
are disabled. After the execution of SMART, if the control passes to the attested
code (i.e., xflag is set), interrupts remain disabled. This is to ensure that the
code to attest is actually executed, thus preventing Time-of-check-to-time-of-use
(TOCTTOU) attacks.

The authors state that this scheme guarantees that, even though the whole
Prover system is tampered (except SMART ROM code), the attested code is even-
tually executed. Summarizing, SMART has three security objectives based upon
successful completion of the attestation protocol:

• Prover Authentication: Verifier attains entity authentication from Prover

• External Verification: Verifier verifies that memory segment [a; b] on Prover
contains the expected content

• Guaranteed Execution: Verifier obtains the guarantee that code at location
x has been indeed executed by Prover.

3.2.4 SANCUS

SANCUS [52] is a module-based remote attestation architecture. The architec-
ture, as for SMART, has been designed to target small low-end embedded devices,
that usually are being deployed in clusters. A cluster is a set of microprocessor-
based systems referred to as nodes Ni. An Infrastructure Provider (IP ) controls
and supervises these nodes. IP and Ni share a fixed and hardware-etched secret
KN . Service Providers (SPi) can deploy software modules (SMi) into nodes. A
unique public identifier, which is used to derive a key KN,SP = kdf(KN , SP ), is
assigned to each SP . Communications between SP and nodes are secured with
this key. kdf is a generic key derivation function, whose details depend on the im-
plementation. These functions are usually realised in hardware, in order to achieve
a zero-software TCB for security and performance reasons. Modules are just binary
files with two required parts: a protected code section and a protected data section,
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respectively text section and data section. Besides these two mandatory sections,
a module is not limited to a certain number of unprotected sections. The limita-
tions of two protected memory regions is enforced to limit the amount of protected
memory, that is to keep the trusted regions as small as possible. Each module is
uniquely identified by the content of protected sections and their layout (i.e., entry
and exit points). This identity, referred to as SM , is then used to compute another
key KN,SP,SM = kdf(KN,SP , SM). This symmetric key is specific to the module
SM loaded on node N by provider SP . Software module’s identity SM and its
derived key are stored in a protected area storage, as shown in Figure 3.2. Sancus
ensures the keys can never leave the protected storage area by only making them
available to software in indirect ways through new processor instructions.

Figure 3.2: Schematic of a SANCUS node with a software module loaded.

A software provider SP would perform Remote Attestation, using module key
KN,SP,SM , to check that the correct software module SM is running on an ex-
pected node N . For example, the authentication proof might be very useful when
an SM provides functionalities for another protected module: remote attestation
can be used by the user module to check whether the provider module has been
manipulated.
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Sancus architecture introduces additional CPU instructions that can be used
to setup trusted software modules at runtime. For this purpose, multiple memory
protection regions are implemented, each containing a code and data section. An
extended processor instruction set enables dynamic measurement and loading of
code into protected regions in order to query the protection status of modules
and request tokens for authenticated communication between processes. These
mechanisms ensure that:

1. The text section code is executed only by jumping to a predefined entry point.

2. The software module’s protected data section is accessed only during the
execution of the text section code of that module

These tasks are implemented and performed in hardware. The memory access
control mechanism is in charge of granting access rights. The control is carried out
on a program counter-basis, i.e., it depends on the current value of the Program
Counter (PC). In particular, reading from the protected text section is always
allowed, because it must be included in Message Authentication Code (MAC),
attached to the authentication response. On the other hand, execution of the text
section is allowed only when needed, i.e., when PC value is within the module’s
text section. The entry point, which is always executable, is the only exception.
In SANCUS, these protection mechanisms are implemented with a special CPU
instruction. Such an instruction takes in as parameters SP identity and layout
information, then computes the node key KN,SP,SM and stores it in a protected
storage area, jointly with the layout. As in SMART, when a memory violation is
detected the CPU is reset. Availability, in this case, has been excluded from the
attacker model.

3.3 Related work

Among many others within the field of hardware security verification, we refer
to a couple of related works which are closely related to ours.

Subramanyan et al. [50] gave a first definition of a Taint property and used
it to create a methodology for hardware security requirements verification. They
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applied their Taint propagation approach for automatic formal analysis of a com-
mercial SoC design. The experimental results were carried out with a standard
verification tool and showed some security vulnerabilities in the target architecture.
The most important aspect of a Taint property is that it can capture information
flow-related behaviors. The authors express this key concept as follows: "Many
security requirements can be formulated as taint propagation properties that verify
information flow between a set of signals in the design.". We take this concept as
a starting base upon which we build our extended approach of taint propagation.

Francillon et al. [67] proposed an organized analysis of Remote Attestation:
definition of security within remote attestation protocols, desired services, decon-
struction of necessary and sufficient set of properties needed for remote attestation
support. The set of properties is expressed in natural language, then they are
converted into hardware and security components of a secure architecture.

In this work we provide a formalization of generic security requirements and the
definition of related Taint Properties for a secure embedded architecture. Exper-
imental results are being conducted on remote attestation architectures SMART
and SANCUS whose abstract models we present hereby. We also present verifica-
tion results of a set of properties for both architectures. Compared to the ones of
[50], the abstract models we employ in this chapter are more detailed, that means
we are able to capture finer-grained behaviors. We also define security properties
that take into account the temporal correlation among critical operations.

3.4 Adversarial Model

As per [67], we also assume that the attacker or adversary can compromise (i.e.,
obtain partial or full control over) the system, at any time, with any method. There
must exist, though, a secret (i.e., a key) that the attacker cannot access, even if
the system is fully compromised. Once the control is gained, the adversary can
manipulate executing code on the CPU at will. The control spread further to inter-
rupt scheduling, accessing readable memory (e.g., ROM) and modifying writable
memory (e.g., RAM). The only limitations are those provided by the hardware,
i.e., the attacker can not write to ROM. These restrictions could be lifted by hard-
ware tampering, but that is not the scope of this work. The hardware is therefore
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deemed to be unmodifiable. Side channel attacks and software vulnerabilities can
also pose a serious threat over the system and the literature is full of papers on
these topics (we will discuss about side channel attacks in Chapter 6), but they too
are out of scope. We assume that there is a mechanism to protect the system under
verification from software side-channel attacks, e.g., a software-only time channel
attack. Other types of attack such as fault-based attacks (e.g., glitches on power
or signals) that could lead the processor to execute instructions incorrectly, or skip
some instructions, are also out of the scope of this work. Finally, we assume that
the system is not prone to software vulnerabilities, implementation flaws and side
channel attacks.

3.5 Security Requirements

The security notions and features we refer to in this chapter are as follows:

• Key secrecy: even though it could be any secret that must remain inac-
cessible to the attacker, in this Chapter we make use of an encryption (and
decryption if we deal with symmetric protocols) key k, used as the foundation
of a TCB to build support for higher level security feature, e.g., secure com-
munications. The presence of a secret key, in conjunction with other related
mechanisms, can be used to implement a remote attestation algorithm. We
therefore assume that a secure algorithm is able to deterministically compute
an attestation token α from a given key k and the device state s. Since k

is the only secret, if the adversary gains access to it they could simulate the
attestation protocol and forge a seemingly legitimate token α.

• Exclusive Access: the attestation procedure has exclusive access to k. This
feature does not imply that the attacker cannot acquire bits of information
that leak from intermediate algorithm steps. We then need to express another
property that expands this one.

• No leakage: intermediate results must not be accessible from outside the
cryptographic routine when they are no longer needed, i.e., after the com-
pletion of the routine. This could be rephrased as: the system’s state is
statistically independent from k.
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• Isolation (Immutability and Mode separation): in addition to the key
secrecy we need another guarantee to preserve attestation token’s validity.
Let us suppose that key secrecy is indeed assured by hardware mechanisms,
the attacker could invariably modify the attestation code itself to tamper the
result or leak the key. From this discussion the need for the immutability of
the code. This feature can be achieved by, for example, executing the critical
code in place. If not the case (performance or cost constraints), the critical
software should be, at least, isolated, i.e., reading and writing the code or
its internal state must be prevented. Hardware or software, this is matter of
implementation choice. For example, SMART decides to place the attestation
routing in ROM, which is available in many platforms and is considered an
inexpensive solution. Immutability and mode separation, paired together,
prevent a well known class of attacks known as time-of-check-to-time-to-use
(TOCTTOU), e.g., the adversary tampers the attestation routine after it is
loaded into RAM, but before it is executed.

As properly underlined by [67], the above conditions are not sufficient to guaran-
tee the validity of the attestation protocol. In their work, the authors show a num-
ber of scenarios in which attackers can exploit existing vulnerabilities to influence
control flow or alter the behavior of the attestation procedure, thus compromising
the entire system. For this reason, we need two more security requirements:

• Uninterruptibility: execution of the attestation routine must be uninter-
ruptible. A simple way to do this is to disable all interrupts. Hardware mod-
ifications or special instructions are two among several solutions, depending
on the architecture constraints. There is only caveat: disabling the interrupts
must be itself uninterruptible.

• Invocation from start: the attestation procedure must be invoked from
its very first instruction. This could be enforced by OS-dependent features
or protected CPU mode. If these solutions are not viable on the selected
architecture, custom hardware is needed.

The last two requirements guarantee that the execution of the attestation rou-
tine is atomic. The above five requirements form the minimal set of properties to
support secure remote attestation on a generic device.

44



3.6 – Security Model Abstraction

3.6 Security Model Abstraction

Along the years, several proposal of languages to describe finite state machines
have been discussed and analysed: from very early temporal logic model checking
to symbolic model checking, until binary decision diagrams (BDDs) led to greater
increase in design size. Despite of great advancements in the field of formal verifi-
cation, large designs are still computationally too intensive for common verification
approaches. To handle such designs, model abstraction is necessary. This approach
[68] takes in the original design, described in some hardware description language
(HDL), abstracts away the details and reduces components’ size. The output is a
higher-level abstract description of a non-deterministic automaton that encapsu-
lates the behavior of the original model. This new abstract representation replaces
the original one, it is proven to be functionally equivalent and it has the great
advantage of being computationally feasible, i.e., the number of states is smaller.

We now present a methodology to carry out model abstraction on a generic re-
mote attestation architecture, starting from the specifications we described above.
Figure 3.3 shows the building blocks of a generic secure embedded architecture
that supports remote attestation. Since implementation details are the scope of
this chapter, security components (dashed boxes) that enforce the above require-
ments are either embedded in regular hardware (e.g., CPU, RAM, ROM, etc.) or
they are implemented as custom modules (as previously discussed). The selected
components are:

• Attestation Entity (AE): the component that implements the attestation pro-
tocol, as in Figure 3.1. It runs the attestation routine with its arguments (see
3.2), and outputs the attestation token α. The target code, here the Code
to Attest (CA), is verified against a predetermined (expected) state. This
component may be split into several hardware pieces if needed, but here it
is represented as a whole. As described in Section 3.2, the Attestation En-
tity is the root of trust for remote attestation, enforcing confidentiality and
authentication.

• Loader: its primary purpose is loading the AE code in memory. This com-
ponent is considered to be untrusted, i.e., an adversary can seize control over
it. The implementation vastly depends on the architecture: a standalone
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hardware component or an OS kernel module.

• Memory Access Control (MAC): imposes that

1. protected memory (PD) can be accessed only from inside the AE routine
(i.e., when the routine is running)

2. the AE routine starts only from its predefined entry point

3. interrupts are disabled when AE code starts

This is the implementation of the requirements discussed in Section 3.5.

We just composed our abstract model starting from real architectures, indeed
the above blocks can always be mapped back to actual hardware modules. For
example, if we take a look at the secure architectures we picked, the AE role can
be played by the ROM for SMART or by the RAM for SANCUS. Instead, for
both cases, the CPU itself realizes the Loader and the MAC. Table 3.1 shows the
exhaustive mapping between our abstract model and SMART and SANCUS.

The detailed descriptions of SMART and SANCUS are reported in Section
3.2. The Attestation Entity (AE) provides support and is part of the attestation
protocol. The corresponding attestation routine (i.e., the attestation code) is stored
in ROM. The main memory (in the figure is represented by the RAM) includes
the Code to Attest (CA) and the Protected Data (PD). The code to attest is
identified by its boundaries: entry point A and exit point B (Code(A,B)). CA
and PD are, in SMART terminology, a software module SM (consisting of a text
section and a protected section). The Memory Access Control enforces the access
control checks providing a secure support for the attestation entity. We also need
a component which is responsible of loading software modules: the Loader. The
last two components could integrated inside the CPU, but we decide to leave them
outside for sake of simplicity. From now on, we will refer to Table 3.1 as our naming
convention for our model components.

3.7 Taint Properties Verification

We now derive a set of security properties from the high level requirements
discussed in Section 3.5. Then, the properties are formally verified with a standard
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Figure 3.3: Secure Abstraction Model

Abstract Model SMART SANCUS
Attestation Entity (AE) Attestation Routine (ROM) Text Section of SMs (RAM)

Code to Attest (CA) Code (A,B) SM
Memory Access Control (MAC) Bus Controller Memory Access Logic (MAL)

Loader - Modified CPU

Table 3.1: SMART and SANCUS: Abstract Model mapping

model checker and the verification results are shown in Section 3.8. As already
asserted in the Introduction (Introduction), a Taint Propagation Property is a
means to express information flow-related behaviors of a system. We adopt the
same notations of [50], that is we describe the system as an RTL representation,
hence a taint property expresses an information flow between a set of signals:

• src: a source signal where the taint is injected (i.e., introduced)

• dst: a destination signal where the taint is detected (i.e., the sink or target)

• conditions: a set of statements (expressed by a chosen description logic) that

47



3 – Secure Embedded Architectures: Taint Properties Verification

must be satisfied by the property (they can be viewed as constraints for the
model checker).

In this scenario a taint is a malicious seed that is injected into the source, flows
through the system until it reaches its sink. If the conditions are satisfied and the
taint is detected at the sink, the property is considered as having failed. Following
the abstract model we introduced in Section 3.6, Figure 3.4 is an exemplification of
how a taint property works in practice. In particular, the Figure depicts a property
that captures the key secrecy requirement introduced in Section 3.5. The legal
path, depicted as dashed line, represents the legitimate flow between the CPU, the
AE routine in RAM, and the secret key. On the other hand, in the illegal path
(solid line) the attacker replaces the AE routine with its malicious code and it is
able to access the key (i.e., the taint is inserted between the AE routine and the
CPU).

We choose to express our properties in Computation Tree Logic (CTL) [69], as
the behaviors we want to capture are inherently non linear in time, thus needing a
branching time logic.

Let us now define some variables we are going to use in the formalisation of our
taint properties.

1. AE_start_addr and AE_end_addr : represent respectively the first and
the last address of the AE code

2. is_in_AE_scope = PC ≥ AE_start_addr ∧ PC ≤ AE_end_addr : Pro-
gram Counter (PC) belongs to the AE address scope

3. was_in_AE_scope = PPC ≥ AE_start_addr ∧ PPC ≤ AE_end_addr :
PC for the previous instruction (PPC) pointed to the AE address scope

4. AE_started : RTL signal high if the Attestation Routine started

5. AE_done : RTL signal high if the Attestation Routine ended

3.7.1 Temporal Operators

Let us suppose p to be a boolean formula, we define the following operators [70]:
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Figure 3.4: Taint Property Example

• Quantifiers over paths

– A(p): p has to hold on all paths starting from the current state.

– E(p): there exists at least one path starting from the current state where
p holds.

• Path-specific quantifiers

– X(p): p has to hold at the next state.

– G(p): p has to hold on the entire subsequent path.

– F(p): p eventually has to hold somewhere on the subsequent path.

The following subsections show the analysis and then the formalisation of the
requirements as taint properties.
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3.7.2 Key secrecy

Attestation routines resort to encryption/decryption algorithms to guarantee
confidentiality. For the sake of simplicity, we focus on symmetric key algorithms
and call K the encryption/decryption key. K is used by the Prover and the Veri-
fier for the attestation routine. However, K is stored in a RAM memory location
protected by a hardware cryptoengine. This is a common practice for secure em-
bedded architectures. Only the Attestation Entity (AE) is allowed to access the
key. The Memory Access Control (MAC) logic implements the controls related to
key secrecy. In particular, if an instruction wants to access K, the MAC checks if
the address in the Program Counter (PC) belongs to the AE address space. Con-
sequently, only AE-resident code is allowed to access K. We now present two CTL
properties that capture key secrecy requirements.

Exclusive access to the key: prop ks1

All user programs (untrusted entities) are not allowed to load K into CPU
registers.

AG
(
¬is_in_AE_scope ∧ fetchedInstr = load(key_addr, CPU.registerX)

→ AX
(
¬isIn(K, CPU.registerX)

))
(3.1)

where isIn(arg1, arg2) is a function returning true if arg1 is included in the
subset arg2, false otherwise. The primitive load(arg1, arg2) loads the content of
the address arg1 in arg2 register key_addr is the address of encryption/decryption
key. As we are interested in the behavior verification we do not consider initial
value CPU.registerX equal to the key K.

Taint Untrusted entity accessing the key memory region. Entering the key mem-
ory region implies loading the content of the specific memory location in a
CPU register. In our scenario only the Attestation Entity can access the key.
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No key leakage: prop ks2

Once the cryptography routine is completed, K should not be present either
into RAM locations or into CPU registers used during the encryption/decryption
procedure.

AG
(

AE_done→

AX
(
¬isIn(K, RAM.AElocations) ∧ ¬isIn(K, CPU.AEregisters)

)) (3.2)

where RAM.AElocations and CPU.AEregisters are the RAM locations and
the CPU registers, respectively, used during the encryption/decryption stage. No-
tice that we do not verify the encryption/decryption algorithm correctness since it
is out of the scope of this paper.

Taint Interruption of the attestation procedure after the elaboration on the key
but before cleaning out the memory from temporary results. This could
allow an attacker to obtain information about the key using intermediate
elaboration of it.

3.7.3 Isolation

In a secure architecture some operations and resources should be accessible by
the supervisor only, guaranteeing key isolation, memory safety and atomic execution
of AE code. Any user software (untrusted entity) has the total control of RAM
memory, except for key location, after and before AE code. It can also modify
any writable code and learn any secret that is not explicitly protected by MAC.
User software can even invoke the AE code. An untrusted entity cannot interrupt
the AE code execution, which must be executed atomically and cannot be invoked
partially. In our scenario, the mode switching, from user to supervisor, occurs
anytime a user’s application calls AE code. We present a set of statements useful
to check correct behaviors w.r.t. mode separation requirements.
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Statement 1 (S1)

The current program counter PC points to the AE address space whereas the
previous program counter PPC does not:

is_in_AE_scope ∧ ¬was_in_AE_scope (3.3)

Statement 2 (S2)

The current program counter PC does not point to the AE address space whereas
the previous program counter PPC does:

¬is_in_AE_scope ∧ was_in_AE_scope (3.4)

Mode separation: prop_ms

We focus on correct usage of the encryption/decryption (attestation) routine
checking whether it starts by calling the entry point instruction and ends by calling
the last AE instruction. We define two sub-properties to check the correct use of
the encryption/decryption routine on entry (P_entry) and on exit (P_exit).

P_entry = AG(S1→ fetchedInstr! = middleInstr) (3.5)

P_exit = AG(S2→ PPC = AE_end_addr) (3.6)

where fetchedInstr is the instruction is going to be executed and middleInstr
is a generic AE instruction but the entry point.

Finally we combine the two above properties as follows:

P_entry ∧ P_exit (3.7)

Taint Starting from the hypothesis that the attestation code is immutable and
public, the proposed Taint tries to execute the attestation procedure skipping
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the entry point. This Taint is implemented by jumping from any memory
region (not involved in the attestation process) into the attestation code (with
the exception of the first attestation instruction).

3.7.4 Availability

In order to avoid Denial-of-Service Attacks, untrusted software shall not be able
to write to internal registers, to reset the CPU or to sweep all RAM memory. We
consider the scenario where the attacker can perform an infinite loop in two ways:

• manipulating the cryptographic routine (AE code) return address

• interrupting the cryptographic (attestation) routine.

Availability: prop_av

We assume that the Attestation Entity (AE) return address x is stored in RAM.
We deem that if the attestation routine started, it must end. We also verify whether
an adversary can run malware during the attestation routine. First, we check that
x does not belong to the AE address space (P_ret), then we verify that if the
attestation routine started it ends (P_completed).

P_ret = AG(AE_done→ AX(x /∈ AE_addr)) (3.8)

where ( x /∈ AE_addr ) means that the return address does not belong to the
AE address space.

P_completed = AG(AE_started→ AF (AE_done)) (3.9)

Finally we combine the two above properties as follows:

P_ret ∧ P_completed (3.10)

Taint The idea behind this Taint is to make attestation procedure endlessly con-
trolling the “return address after the attestation” x. The proposed Taint uses
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as x an address included in the scope of the attestation entity. Since the PC
always belongs to the attestation routine address space then the attestation
task never ends.

Notice that Attestation and Confidentiality requirements are achieved if Key
Secrecy and Isolation properties (defined above) hold. As described in [67], Attes-
tation strictly depends on

1. Exclusive Access to K

2. No key leakages

3. Uninterruptibility

4. Invocation from start

Properties 1 and 2 correspond to the CTL key secrecy properties, whereas prop-
erties 3 and 4 correspond to the availability and mode separation requirements,
respectively.

3.8 Experimental results

We applied our methodology, presented in Section 3.6, on real use cases. We
extended and enhanced two basic CPU models, provided by the VIS-model checker
[71]. New features have been added to support a remote attestation protocol.
Namely we implemented two simplified models of the two selected remote attesta-
tion architectures, namely SMART and SANCUS. The setup for our experiments is
an ordinary workstation with quad-core CPU 2.5 GHz and 16 GB of main memory.
We set time and memory limits as 900 seconds and 4 GB, respectively. The rest of
this Section reveals the experimental results in 3.8.1 for the formal verification of
security properties defined in 3.7. In all our experiments we employed our custom
PdTrav [72] model checker. We also provide a comparison in 3.8.2 between different
PdTrav verification strategies in terms of performance.
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3.8.1 Model Checking Results

We now present verification results for the security properties we defined in
Section 3.7. Two experimental prototypes based on the SMART and SANCUS
architectures have been implemented in Verilog. The properties have been then
adapted for the prototypes and both have been given to PdTrav model checker. In
Table 3.2 we list the properties (column “Property”), and for each of them: the
verification time (column “Time”) and whether the property has succeeded or not
(column “Result”). bounded vs unbounded model checking PASS and FAIL mean
that the model checker has proven the property to be true or false, respectively.
In case of FAIL, the model checker returns a counterexample which shows how the
property is failing. As already stated in its description in Section 3.2 SANCUS
does not use ROM, therefore its model complexity is smaller than SMART’s. The
implication is that SANCUS’s verification times are smaller than SMART’s, for all
properties. Every property but one is PASS : prop_ks1, prop_ks2 and prop_ms are
proven to hold up to the model description; for prop_av the model checker found
a security bug on both architectures. Namely, SMART and SANCUS are prone
to DoS attacks. As per adversarial model, the attacker controls all the parameters
given to SMART and SANCUS. Therefore, the attacker is able to manipulate the
return address after the attestation x, and then easily chooses the code to execute
after the termination of the attestation routine. By just setting x as the last
instruction of the attestation routine itself the routine will enter an infinite loop.
A very straightforward countermeasure is to check, at the beginning of attestation
routine, that x does not point to the AE code itself.

Property SMART SANCUS
Time[s] Result Time[s] Result

prop_ks1 648.22 PASS 518.82 PASS
prop_ks2 357.45 PASS 254.35 PASS
prop_ms 156.7 PASS 116.74 PASS
prop_av 378.24 FAIL 245.29 FAIL

Table 3.2: Unbounded Model Checking results SMART and SANCUS models
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3.8.2 Verification Strategies

Table 3.2 shows verification results for unbounded model checking carried out
using the Property Directed Reachability (PDR) verification strategy. PdTrav is
a state-of-the-art model checking framework that implements different verification
strategies. PdTrav is a set of model checking engines that support several model
checking methods and symbolic reachability analysis. We wanted to know which
strategy performs better on this particular kind of properties so we performed
unbounded model checking and for each set of properties we changed the verification
strategy. Here, we show and compare the results.

We selected the following verification strategies:

• Interpolant-based verification (ITP), with ad-hoc abstraction and tightening
techniques [73], [74], integrated SAT-based approaches [75], [76], Interpolant
reduction techniques [77] and Guided Refinement [78]

• Property Directed Reachability (PDR) verification strategies [79]

• BDD-based representations and traversals (BDD), including forward, back-
ward, combined (approximate) forward/ (exact) backward reachability algo-
rithms [80], [81] partitioned BDDs and/or image computation procedures [82],
[83]

Figure 3.5 presents verification times considering the selected verification strate-
gies. The most promising strategy for this type of properties is PDR. Since its
appearance, PDR is known to perform better than other techniques and has the
remarkable feature to finding deep counterexamples. Even though, on average,
Bounded Model Checking outperforms PDR, there are many cases where PDR is
able to find counterexamples that elude both BMC and BDD reachability. More-
over, as Bradley explained in his original work, PDR naturally tends to be suitable
for parallel implementation.

3.9 Conclusions

This chapter presents abstract models for two remote attestation architectures.
It also shows a new approach towards information flow-related security properties
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Figure 3.5: Pdtrav verification strategies results for SMART and SANCUS

on this type of architectures. From those models, we defined a set of properties
which capture confidentiality, integrity and availability behaviors. We performed
verification experiments with a standard model checker and then presented the re-
sults. They show that our approach is feasible and suitable for secure architectures
like SMART and SANCUS. Though experimental results prove the effectiveness of
this methodology, we still need an integrated framework that would comprise the
entire verification process (i.e., model description, model abstraction, property ex-
traction, property transformation and refinement, verification runs, etc.). Overall,
this work opens new scenarios on formal verification of embedded systems security
properties: new ad-hoc verification approaches shall be proposed both to reduce
verification times and enhance bug coverage.
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Chapter 4

Secure Path Verification

The following chapter has been published as peer-reviewed article in [84].

4.1 Introduction

Many modern embedded architectures and frameworks rely on two communi-
cation schemes: a centralized service that provides functionalities to client nodes
or a decentralized solution in which every node contributes with its own task to
the overall system. The two approaches are fueled by development costs reduction,
reducing nodes complexity, decreasing maintenance time, etc. For instance, a cen-
tralized service moves all the costs and efforts to a single node, while unburdening
the user nodes from their work load. Over time, the network growth might lead
to an excessive load for the central node, thus a decentralized solution is needed.
The choice must be made during the design phase to prevent such an unfortunate
scenario that could be very costly and time consuming. The convenience of the
two approaches has made embedded systems spread over a plethora of different ap-
plications: smart grids, robotic swarms, control systems, even smartphone-related
scenarios. Either cases, a key feature is that applications running on top of these
frameworks combine data coming from remote services with information provided
by local sensors such as accelerometer, GPS, camera, microphone, etc. Users appli-
cations often have genuine and legal reasons for accessing this sensitive data, but
providers on the other hand would also like assurances that their data is not dis-
closed or improperly used. We have seen attacks that exploited the trust developers
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and users put in remote services [14, 85, 86] or privacy threats posed by seemingly
innocent sensors [87]. Therefore, a critical challenge for embedded systems is about
resolving the tension between the industrial drive (e.g., cost reduction and time
preserving) and the security concerns. Most of the embedded, hardware and soft-
ware, security components (e.g., OS) currently provide only coarse-grained controls
for regulating whether an application can access sensitive information, but provide
little insight into how data is actually used. As most of the functionalities and
application in today’s embedded systems involve security aspects, the demand for
trustworthy and reliable security-driven design techniques increases dramatically.
At the same time, the integration effort increases as the impact of these techniques
on existing designs is very complex and hard to predict at the security level. There-
fore, only extensive verification can overcome this issue, leading to cost explosion.
For instance, a common measure to protect data confidentiality is through access
control: every request must be granted by a supervisory entity. Access control
introduces limitations on the release of information but it does not restrict data
propagation. After data leaves its source storage, it might be improperly transmit-
ted to unexpected destinations or might take incorrect/inadmissible paths. Real
computing systems are not trustworthy by definition and the developers should
not assume their reliability for granted. Security mechanisms such as remote at-
testation, identity verification and secure boot are vastly studied but up to date
they do not provide full assurance that security goals (i.e., confidentiality, integrity,
availability) are met in every scenario. Therefore, there is a need for guarantee-
ing that information is used exactly how policies and requirements specify. It is
crucial to analyse how information flows throughout the system or the application
and it can not be done manually considering the increasing complexity of current
embedded systems. Proof that a system meets its security requirements must then
proceed from a thorough formal analysis. It must be proved that sensitive data
cannot flow to locations where the confidentiality requirement is infringed. The
security requirements we want to guarantee are, in this case, confidentiality-driven
and they are expressed as information-flow policies. As a consequence, the ap-
proach we are going to apply is information-flow tracking. In an ideally secure
system, these information-flow properties could be accurately defined and trans-
lated into mechanisms that actually enforce them. However, despite great efforts
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towards that aim, practical methods for controlling information flow are not mature
yet. Recently, new encouraging approaches have been proposed about this matter.
Among many others, some authors (e.g., [88, 89]) focus on static analysis and use
specifically designed type systems for information flow. Notably, they introduce
a variety of security-typed languages: alongside their corresponding programming
language specifications, enhancements on data types and expression logic evalua-
tion have been put in place. These annotation-augmented languages are able to
specify information-flow schemes over typed variables. Then, a compile-time type
checking system, meaning that the overhead is little or even none, enforces the
security policies. Other authors propose reasoning techniques on how properties
can be described in a security-typed system using semantics-based security models
(e.g., [90, 91, 92, 93, 94]). As for dynamic techniques, researchers have proposed
different tools and models to monitor execution flow ([95, 96, 97, 98, 99, 100, 101]).
However, this approach requires runtime support, it is known to achieve poor cov-
erage and it might lead to false positives and missed vulnerabilities. On the line
between static and dynamic, some researches have focused on symbolic execution,
which uses dynamic information along with static support to detect individual spe-
cific paths ([102, 103, 101, 104]). Yet, this methodology requires significant runtime
support, it is still commonly OS-dependent, and it relies heavily on a great human
effort as it needs extensive decision procedures to produce targeted queries. An-
other similar, but very different from a certain point of view, is the formalization
of generic security requirements as propagation properties expressed in a formal
logic and then formally verified with a model checker. This is the case of taint
properties, which we extensively examined in the previous Chapter.
We present a new kind of properties, which are built on top of and are an extension
of taint properties: Path Properties. The name has been chosen to remind that
they are able to capture security vulnerabilities concerning the flow of data prop-
agating from an attacker-controlled input source to selected sink, i.e., they cover a
path from one entity source to an entity destination. For example, the source may
be a potentially malicious (i.e., untrusted) RTL (Register Transfer Level) register
or signal and the destination a sensitive RTL output signal that we do not want to
be reached by confidential data. This is the case of a confidentiality requirement.
In this Chapter we introduce a formal definition of Path properties, described above
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and expressed in CTL [105], and compare them with Taint properties. We provide
also a set of properties, making a distinction between advantages and drawbacks
of both approaches. We also deliver our experimental results of formally verified
properties on a selected secure architecture model. A comparison of two verification
techniques used in a standard model checker is carried out.

4.1.1 Contributions

In details, our major contributions are the following:

• given some reference security requirements, we define a set of Path properties
and we compare them with Taint properties.

• we introduce a methodology for the formal verification of Path properties.

• we perform experiments on the two selected architectures (SMART [51] and
SANCUS [52]) with a model checker and present the corresponding results

• we provide a thorough comparison between the current experimental results
and with those of [43]

Section 4.2 recalls related works and compares them with our approach. In Sec-
tion 4.3 we depict the attacker model we refer to in this work. Section 4.4 reports
the abstraction steps to build up a general abstract model of a secure architec-
ture. Section 4.5 presents an analysis of security requirements and shows how to
extract security properties out of them. A portfolio of Taint and Path properties
is given with a comparison on advantages and disadvantages. In Section 4.6 we
discuss security properties verification approaches in details. In Section 4.7 we of-
fer experimental results that support our claim. Eventually, Section 4.8 completes
the chapter with summarizing conclusions along with some remarks on future work.

4.2 Related work

As this is a direct follow-up of the previous Chapter, we refer to the same related
works.

62



4.2 – Related work

Among many others within the field of hardware security verification, we refer
to a couple of related works which are closely related to ours.

Subramanyan et al. [50] gave a first definition of a Taint property and used
it to create a methodology for hardware security requirements verification. They
applied their Taint propagation approach for automatic formal analysis of a com-
mercial SoC design. The experimental results were carried out with a standard
verification tool and showed some security vulnerabilities in the target architecture.
The most important aspect of a Taint property is that it can capture information
flow-related behaviors. The authors express this key concept as follows: "Many
security requirements can be formulated as taint propagation properties that verify
information flow between a set of signals in the design.". We take this concept as
a starting base upon which we build our extended approach of taint propagation.

Francillon et al. [67] proposed an organized analysis of Remote Attestation:
definition of security within remote attestation protocols, desired services, decon-
struction of necessary and sufficient set of properties needed for remote attestation
support. The set of properties is expressed in natural language, then are being
converted into hardware and security components of a secure architecture.

In this chapter we provide a new formalization of generic security requirements
and their related Taint Properties for a generic embedded architecture. We also
provide the abstract models of SMART and SANCUS, while presenting verification
results of a set of properties for both architectures. Compared to the ones of [50],
the abstract models we employ in this chapter are more detailed, that means we
are able to capture finer-grained behaviors. We also define security properties that
take into account the temporal correlation among critical operations.

The application of an abstraction approach to build up an abstract model of
secure architectures is given in [49] and [43]. The authors specifically target remote
attestation architectures and provide a portfolio of Taint properties related to secu-
rity requirements such as confidentiality and integrity. Another key contributions is
that they couple their approach with a standard model checker and apply Bounded
(BMC) and Unbounded (UMC) Model Checking techniques for their experiments.
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4.3 Attacker Model

The attacker model that we report here is the same as in the Section 3.4.
As per [67], we also assume that the attacker or adversary can compromise (i.e.,

obtain partial or full control over) the system, at any time, with any method. There
must exist, though, a secret (i.e., a key) that the attacker cannot access, even if
the system is fully compromised. Once the control is gained, the adversary can
manipulate executing code on the CPU at will. The control spread further to inter-
rupt scheduling, accessing readable memory (e.g., ROM) and modifying writable
memory (e.g., RAM). The only limitations are those provided by the hardware,
i.e., the attacker can not write to ROM. These restrictions could be lifted by hard-
ware tampering, but that is not the scope of this work. The hardware is therefore
deemed to be unmodifiable. Side channel attacks and software vulnerabilities can
also pose a serious threat over the system and the literature is full of papers on
these topics (we will discuss about side channel attacks in Chapter 6), but they too
are out of scope. We assume that there is a mechanism to protect the system under
verification from software side-channel attacks, e.g., a software-only time channel
attack. Other types of attack such as fault-based attacks (e.g., glitches on power
or signals) that could lead the processor to execute instructions incorrectly, or skip
some instructions, are also out of the scope of this work. Finally, we assume that
the system is not prone to software vulnerabilities, implementation flaws and side
channel attacks.

4.4 Model Abstraction

The abstract model that we describe here is the same as in the Section 3.6.
Along the years, several proposals of languages to describe finite state machines

have been discussed and analysed: from very early temporal logic model checking
to symbolic model checking, until binary decision diagrams (BDDs) led to greater
increase in design size. Despite of great advancements in the field of formal verifi-
cation, large designs are still computationally too intensive for common verification
approaches. To handle such designs, model abstraction is necessary. This approach
[68] takes in the original design, described in some hardware description language
(HDL), abstracts away the details and reduces components’ size. The output is a
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higher-level abstract description of a non-deterministic automaton that encapsu-
lates the behavior of the original model. This new abstract representation replaces
the original one, it is proven to be functionally equivalent and it has the great
advantage of being computationally feasible, i.e., the number of states is smaller.

We now present a methodology to carry out model abstraction on a generic re-
mote attestation architecture, starting from the specifications we described above.
Figure 4.1 shows the building blocks of a generic secure embedded architecture
that supports remote attestation. Since implementation details are the scope of
this chapter, security components (dashed boxes) that enforce the above require-
ments are either embedded in regular hardware (e.g., CPU, RAM, ROM, etc.) or
they are implemented as custom modules (as previously discussed). The selected
components are:

• Attestation Entity (AE): the component that implements the attestation pro-
tocol. It runs the attestation routine with its arguments, and outputs the
attestation token α. The target code, here the Code to Attest (CA), is veri-
fied against a predetermined (expected) state. This component may be split
into several hardware pieces if needed, but here it is represented as a whole.
The Attestation Entity is the root of trust for remote attestation, enforcing
confidentiality and authentication.

• Loader: its primary purpose is loading the AE code in memory. This com-
ponent is considered to be untrusted, i.e., an adversary can seize control over
it. The implementation vastly depends on the architecture: a standalone
hardware component or an OS kernel module.

• Memory Access Control (MAC): imposes that

1. protected memory (PD) can be accessed only from inside the AE routine
(i.e., when the routine is running)

2. the AE routine starts only from its predefined entry point

3. interrupts are disabled when AE code starts

We just composed our abstract model starting from real architectures, indeed
the above blocks can always be mapped back to actual hardware modules. For
example, if we take a look at the secure architectures we picked, the AE role can
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be played by the ROM for SMART or by the RAM for SANCUS. Instead, for
both cases, the CPU itself realizes the Loader and the MAC. Table 4.1 shows the
exhaustive mapping between our abstract model and SMART and SANCUS.

CPU

ROM

Loader

RAM

Memory 

Access 

Control

Attestation 

Entity (AE)

Code To Attest 

(CA)

Protected Data 

(PD)

Figure 4.1: Secure Abstraction Model

The Attestation Entity (AE) provides support and is part of the attestation
protocol. The corresponding attestation routine (i.e., the attestation code) is stored
in ROM. The main memory (in the figure is represented by the RAM) includes
the Code to Attest (CA) and the Protected Data (PD). The code to attest is
identified by its boundaries: entry point A and exit point B (Code(A,B)). CA and
PD are, in SMART terminology, is a software module SM (consisting of a text
section and a protected section). The Memory Access Control enforces the access
control checks providing a secure support for the attestation entity. We also need
a component which is responsible of loading software modules: the Loader. The
last two components could integrated inside the CPU, but we decide to leave them
outside for sake of simplicity. From now on, we will refer to Table 4.1 as our naming
convention for our model components.
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Abstract Model SMART SANCUS
Attestation Entity (AE) Attestation Routine (ROM) Text Section of SMs (RAM)

Code to Attest (CA) Code (A,B) SM
Memory Access Control (MAC) Bus Controller Memory Access Logic (MAL)

Loader - Modified CPU

Table 4.1: SMART and SANCUS: Abstract Model mapping

We also define some variables for the Model Abstraction introduced above.

1. AE_start_addr and AE_end_addr: represent respectively the first and the
last address of the AE code.

2. is_in_AE_scope = PC ≥ AE_start_addr ∧ PC ≤ AE_end_addr Pro-
gram Counter (PC) belongs to the AE address scope

3. was_in_AE_scope = PPC ≥ AE_start_addr ∧ PPC ≤ AE_end_addr

PC for the previous instruction (PPC) pointed to the AE address scope

4. AE_started: RTL signal high if the Attestation Routine started

5. AE_done: RTL signal high if the Attestation Routine ended

4.5 Security Properties Definition

In this Section, we present security properties that can be checked by a Model
Checker, named Taint properties, and properties used to check whether there are
possible paths outside the normal specification scope, named Path properties. No-
tice that the latter can be verified by a Model Checker as long as the model is
modified (see Section 4.6 for further details).

Taint properties are composed of a pre-condition and a Taint. In this scenario,
a Taint is an untrusted code within the RAM that tries to reach a destination
following an illegal path. The idea of this approach is to write security properties,
using CTL logic, and emulate hacker behavior trying to break the specification. In
this way the properties are specified to verify that the corrupted software cannot
violate the security constraints. Notice that (1) to write these properties, security
knowledge is needed, (2) even considering a huge amount of attacks the verification
can not be complete.
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On the other hand, the idea behind Path properties is that the possible hacker
code is not known but the correct behavior of the system is. Thus we can isolate
the legal information flow and disable it, in order to check whether there exist other
possible flows. In that case they are not legal. Starting from this assumption, the
properties are written in such a way to verify if the hardware and software con-
straints properly guarantee the system fidelity to the project requirements ensuring
that no other behaviors are admitted except for the expected one. The Path prop-
erties are composed by from and to statements that indicate the source (from)
and the destination (to) of the path under evaluation, respectively. The statement
pre_cond is used to introduce constraints [106]. The main advantages of using
Path Properties are:

• Security experts are not needed to define them.

• They can be used to find out paths difficult to discover using Taint Properties.

• In contrast to the Taint Properties, Path Properties are able to find out
illegal paths also considering complex model architectures, i.e., architectures
embedding more than one CPU, having external devices connected and so on.

In the following, we define the security requirements for a generic remote attes-
tation architecture. For each of them we present a set of Taint and Path properties
related to the security model abstraction and variables presented in Section 4.4.

Key secrecy

K is the encryption or decryption key and can be used in Attestation or Message
Confidentiality application flows.

In our approach we consider the secret key K stored in a protected memory
location in RAM. This is true for most of the common secure embedded architec-
tures.

The key is only accessible by the Attestation Entity (AE). All controls relative
to key secrecy are implemented in the Memory Access Control logic (MAC) and
concern the CPU Program Counter (PC). More in details, when an operation wants
to read K, MAC monitors PC checking if it belongs to the AE address space; as a
result, K should be accessed only from within AE-resident code.
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To verify the correctness of an architecture w.r.t. the key secrecy requirement, in
the following we present two properties.

prop_ks1: exclusive access to the key
All user programs (untrusted entities) are not allowed to load K into CPU registers.

Taint property:
AG(¬is_in_AE_scope∧

fetchedInstr = load(key_addr, CPU.registerX)→

AX(¬isIn(K, CPU.registerX))

Taint
Untrusted entity accessing the key memory region. Entering the key memory region
implies loading the content of the specific memory location in a CPU register. In
our scenario only the Attestation Entity can access the key.
Path property:

assert_no_path from AE to CPU.registerX

pre_cond :

¬is_in_AE_scope ∧ load(key_addr, CPU.registerX)

where

• isIn(arg1, arg2) is a function returning true if arg1 is included in the subset
arg2, false otherwise.

• load(arg1, arg2) loads the content of the address arg1 in arg2 register

• key_addr is the address of encryption/decryption key

Notice that, we assume the content of CPU.registerX differs from K before
verification starts.

prop_ks2: no key leakage
Once the cryptography routine is completed, K should be present neither into RAM
locations nor into CPU registers used during the encryption/decryption procedure.
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As we are interested in the behavior verification we do not consider initial value
CPU.registerX equal to the key K.
Taint property:

AG(AE_done→

AX((¬isIn(K, RAM.AElocations)∧

¬isIn(K, CPU.AEregisters)))

Taint
Interruption of the attestation procedure after the elaboration on the key but before
cleaning out the memory from temporary results. This could allow an attacker to
obtain information about the key using intermediate elaboration of it.
Path property:

assert_no_path from AE

to RAM.AElocations ∧CPU.AEregisters

pre_cond : AE_done

where RAM.AElocations and CPU.AEregisters are the RAM locations and
the CPU registers, respectively, used during the encryption/decryption stage. No-
tice that we do not verify the encryption/decryption algorithm correctness since it
is out of the scope of this paper.

Isolation

In a secure architecture some operations and resources should be accessible by
the supervisor only, guaranteeing key isolation, memory safety and atomic execu-
tion of AE code. Any user software (untrusted entity) has the total control of RAM
memory, except for key location, after and before AE code. It can also modify any
writable code and learn any secret that is not explicitly protected by MAC. User
software can even invoke the AE code. An untrusted entity cannot interrupt the
AE code execution, which must be executed atomically and cannot be invoked par-
tially. In our scenario, the mode switching, from user to supervisor, occurs anytime
a user’s application calls AE code.
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We present a set of statements useful to check correct behaviors w.r.t. mode sepa-
ration requirements.

Statement 1 (S1)
The current program counter PC points to the AE address space whereas the previ-
ous program counter PPC does not:

is_in_AE_scope ∧ ¬was_in_AE_scope

Statement 2 (S2)
The current program counter PC does not point to the AE address space whereas
the previous program counter PPC does:

¬is_in_AE_scope ∧ was_in_AE_scope

prop_ms: mode separation
We focus on correct usage of the encryption/decryption (attestation) routine check-
ing whether it starts by calling the entry point instruction and ends by calling the
last AE instruction. We define two sub-properties to check the correct use of the
encryption/decryption routine on entry (P_entry) and on exit (P_exit).
Taint property:

P_entry = AG(S1→ fetchedInstr /= middleInstr)

where: fetchedInstr is the instruction is going to be executed and middleInstr is
a generic AE instruction but the entry point.

P_exit = AG(S2→ PPC = AE_end_addr)

Finally we combine the two above properties as follows:

P_entry ∧ P_exit

Taint
Starting from the hypothesis that the attestation code is immutable and public, the

71



4 – Secure Path Verification

proposed Taint tries to execute the attestation procedure skipping the entry point.
This Taint is implemented by jumping from any memory region (not involved in
the attestation process) into the attestation code (with the exception of the first
attestation instruction).
Path property:

assert_no_path from AE

to CPU.Registers

pre_cond :

(S1 ∧ fetchedInstr = middleInstr)∧

(S2 ∧ PPC = AE_end_addr)

Availability

In order to avoid Denial-of-Service Attacks, untrusted software shall not be able
to write to internal registers, to reset the CPU or to sweep all RAM memory. We
consider the scenario where the attacker can perform an infinite loop manipulating
the cryptography routine (AE code) return address.
prop_av: availability
We assume that the Attestation Entity (AE) return address x is stored in RAM .
We check that x does not belong to the AE address space.
Taint property:

AG(AE_done→ AX(x /∈ AE_addr))

where (x /∈ AE_addr) means that the return address does not belong to the AE
address space.
Taint
The idea behind this Taint is to make attestation procedure endlessly controlling the
“return address after the attestation” x. The proposed Taint uses as x an address
included in the scope of the attestation entity. Since the PC always belongs to the
attestation routine address space then the attestation task never ends.
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Path property:

assert_no_path from RAM

to CPU.PC

pre_cond :

AE_done ∧ PPC ∈ AE_addr

4.6 Security Properties Verification

In this section we present methodologies to verify Taint and Path properties. As
described above, Taint properties can be verified using well known Model Checking
techniques. In order to verify Taint properties we focus on Bounded Model Check-
ing. As already described in the Chapter 2, given a sequential system M and an
invariant property p, SAT-based Bounded Model Checking (BMC) [42] is an itera-
tive process to check the validity of p up to a given bound k. Since we assume that
the details of the architecture under verification are known, we could estimate the
maximum bound of the model. As an example, let us consider the verification of
the Taint property prop_ks2 presented in Section 4.5. Since this properties implies
that Attestation Entity (AE) routine must complete, the maximum bound cannot
be longer than the execution of the AE routine.

Conversely, as discussed in Section 4.5, Path properties cannot be verified using
standard verification techniques, then we present a variant of standard equivalence
checking techniques. Standard equivalence checking is commonly used to prove that
the RTL code and the netlist synthesized from it have exactly the same behavior in
all (relevant) cases. Considering Path properties, in this paper we use an optimized
version of equivalence checking to assert there is no path between a source (src)
and a destination (dst).

Among others, we chose the following way to specify whether there is no legiti-
mate path from location src to location dst in a model:

1. disconnecting signal src from its driving logic

2. making two copies of the model obtained in step 1), generating two identical
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versions of the model, say C1 and C2

3. ensuring that sensitive data is only stored in dst location of C2

4. applying equivalence checking to verify whether the two models are equivalent.
In the affirmative case, there exists an illegal path from src to dst; otherwise,
it does not

Figure 4.2 shows an example of Path property prop_ks1 verification considering the
model Abstraction presented in Section 4.4. The left hand box represents the model
where AE and MAC, i.e., modules can access to the key (K), are disconnected and
the CPU (dst) does not contain K (any value that differs from the K, ? <> K).
The right hand box shows the model where dst contains the sensitive data K. If
the two models are equivalent then there exists an illegal path from RAM (src) to
the CPU (dst), i.e., a security bug is found.

Figure 4.2: Secure Path Verification
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4.7 Experimental Results

We applied our methodology, presented in Section 4.6, on real use cases. We
extended and enhanced two basic CPU models, provided by the VIS-model checker
[71]. New features have been added to support a remote attestation protocol.
Namely we implemented two simplified of the two selected remote attestation ar-
chitectures, namely SMART and SANCUS. The setup for our experiments is an
ordinary workstation with quad-core CPU 2.5 GHz and 16 GB of main memory.
We set time and memory limits as 900 seconds and 4 GB, respectively. We ap-
plied bounded (BMC) and unbounded (UBMC) model checking on both models.
Through an analysis of the implementation details of the models, therefore we set
the maximum bound for BMC as 800 for both.

We have verified the compliance of SMART and SANCUS with the security
requirements defined in Section 4.5. The state-of-the-art PdTrav [72] model checker
has been used for our experiments. PdTrav is a state-of-the-art model checking
framework that implements different verification strategies. PdTrav is a set of
model checking engines that support several model checking methods and symbolic
reachability.

Figure 4.3 and Figure 4.4 depict a comparison between BMC results (this work)
and UMC data presented in [43] for SMART and SANCUS respectively.

As shown, all properties except “prop_av” pass for UMC, same for BMC veri-
fication with a maximum bound of 800. The availability property “prop_av” fails
for both verification methods (it fails at bound 357 for BMC). This means that we
discovered a security bug on both architectures. The selected secure architectures,
limited to model abstraction correctness and implementation errors, is sensitive
to Denial of Service (DoS) attacks, as they disrupt the abiliyy of the system to
function properly. As expected, verification times for UMC are higher than BMC.
This is true for both models and all properties. A first set of experiments without
the proposed approach gave higher times (which we do not show here) due to the
state explosion. We then applied the proposed approach, thus preventing the state
explosion, and drove the verification process. The verification times, Figure 4.3 and
Figure 4.4, are significant smaller than before. This shows the effectiveness of our
methodology.
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Figure 4.3: Verification time for SMART architecture

Figure 4.4: Verification time for SANCUS architecture

4.8 Conclusions

In this work we present Path properties as a natural expression of security re-
quirements, such as confidentiality and integrity. We provide a methodology for
formal verification of such properties within the framework of a standard model
checker. We perform also a comparison between Path properties and Taint prop-
erties, highlighting advantages and disadvantages. Overall, verification results, for
two selected secure embedded architectures, show the effectiveness of our approach.
This work opens new scenarios on formal verification of embedded systems’ security
properties. New ad-hoc verification techniques can be exploited either to reduce
the verification time and/or discovering security bugs. Future works will be focused
on automated generation of Path properties.

76



Chapter 5

Embedded Systems Secure Path
Verification at the HW/SW
Interface

The following chapter has been published as peer-reviewed article in [107].

5.1 Introduction

The growing need in the silicon industry has raised the request for IP cores. The
IP market has witnessed a steady growth during the last two decades due to several
factors, such as lower design cost and reduced time to market. A major contribu-
tion to this proliferation is the use of System-on-Chip (SoC) platforms for mobile
devices. A SoC platform is designed and then implemented by integrating multiple
IP cores from trusted and untrusted IP vendors. Likewise, software is delivered by
third party developers. Both hardware and software industries have risen security
concerns about the rising number of untrusted third parties. As a consequence,
great efforts have been made into researching and developing new methodologies
to provide trustworthiness of third party resources. Until two decades ago, the low
number of direct connections to the Internet and the plethora of embedded OSs
contributed to a certain degree of security: obscurity was still a common approach
to security and the targets were not worthy of being attacked. The new direction
towards the Internet of Things (IoT), machine-to-machine (M2M) communications,
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and remotely-controlled industrial systems, however, have boosted the number of
connected devices. This trend, at the same time, has paved the way to new secu-
rity attacks at the expense of such devices. Although there exists a considerable
collection of attacks, this chapter specifically targets those who exploit implemen-
tation details of platform at hardware/software interface. Methods for prevention
and detection of malicious behaviors have been introduced in the software domain,
both via static and dynamic approachs. In the hardware domain, the scientific
community and the industry have developed several proposals for verification and
validation of SoC’s at pre- and post-silicon level [108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118]. Formal methods (both automated and deductive), among all
the existing techniques, have been very effective in detecting design flaws in both
hardware and software [111, 119, 120]. The deductive approach, involving theorem
proving techniques, requires significant manual effort for converting HDL code to
a formal representation and constructing proof of security properties based on the
design. Moreover, any modification on the design forces the entire deductive pro-
cess to be repeated. Due to the time required for verification extending existing
deductive methods to large scale designs has been a major challenge. To address
this problem, new methods have been proposed in automated formal verification of
SoC-based embedded systems.

Nonetheless, compelling challenges must be tackled down for a complete realisa-
tion of the potential benefits of formal methods within the security field [121]. First
of all, limited scalability is a big issue, where large size models are computationally
expensive to process. There is also a lack of proper techniques:

• formal modeling of the system and adversary behaviour

• formal specification of security properties

• systematic (and possibly automated) verification of properties

On the other hand, we still need a comprehensive approach for their integration
across the layers of abstraction of real systems.

This work tries to push towards a solution of above issues picking up a specific
class of security for low-end embedded devices: remote attestation. Recall from the
previous chapters, Remote Attestation provides support for a trusted party (Veri-
fier) to check Devices based on remote attestation allow a trusted party (Verifier)
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to test the internal state of a remote untrusted party (Prover).
Several methods have been proposed for addressing information flow security,

both for inter- and intra-devices communications. As for the first, namely network-
related data flow workflows, Smith [122] and Russo et al. [123] perform a flow-
sensitive analysis of programs. Knorr [124, 125] uses Petri nets to model workflows
and applies the Bell–LaPadula model to workflow security. Watson [126] proposes
a partitioning method to enforce that security requirements. Zeng et al. [127]
introduced a flow sensitive security model to capture information flow in FCSs
systems. Zeng [128] applies formal verification of secure information flow in cloud
computing.

A second approach of information flow is for intra-devices communications/-
computations and in particular it concerns software security. As with the huge
expansion of the mobile market, it is not unusual to find lots of research in assuring
security in this type of devices. Solutions range from the architectural support [129,
130] up to the OS level [131, 132, 133].

Although it has been mostly used in software security and networking, applica-
tion of information flow tracking at the hardware/software layer has been growing
steadily over the past decades. More precisely, the definition of security-oriented
information flow properties has been defined and then verified with formal methods.

Gamage et al. [134] adopt information flow based enforcement mechanisms for
a CPS security framework and provide a semantic model to analyze confidentiality
violations. Palmer et al. [135] propose a formalized access control logic and an
algorithm to provide inputs to that logic. This approach has been proven to be
effective in industry, Intel has been using it for its pre-silicon validation phase.

Regarding the HW/SW interface, Subramanyan et al. [50, 136] recently for-
malized security requirements as propagation properties. gave a first definition of a
Taint property and used it to create a methodology for hardware security require-
ments verification. They applied their Taint propagation approach for automatic
formal analysis of a commercial SoC design. The experimental results were carried
out with a standard verification tool and showed some security vulnerabilities in
the target architecture. The most important aspect of a Taint property is that it
can capture information flow-related behaviors. The authors express this key con-
cept as follows: "Many security requirements can be formulated as taint propagation
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properties that verify information flow between a set of signals in the design.". Ca-
bodi et al. [43, 84] contributed with portfolios of information flow properties and
introduced a formal framework to verify them.

In [43] we introduce an abstraction-based modelisation approach for secure ar-
chitectures, we define a portfolio of Taint properties connected to remote attesta-
tion security requirements. We provide also a method to integrate such an approach
with standard verification strategies (Bounded and Unbounded Model Checking)
implemented in common model checkers. In [84] we present Path Properties, useful
to formalize many information flow-related requirements as propagation proper-
ties. Hanna [106] has proposed Jasper as an effective alternative to standard model
checking methods. The author starts from the question "is it possible to access our
sensitive information from outside the pin interface (or external access points) to
the system?" More specifically:

• Is it possible to read any security related data from a certain location A to
location B through some control C?

• Is it possible to modify any security related data?

• Are there failure modes that would compromise the safety of any security
related data?

The answer is the Jasper Secure Path Verification App (SPV) that partially au-
tomates the tedious structural analysis otherwise made manually by a verification
engineer. The idea behind it is to apply structural analysis to traverse the cone
of influence of the target signal B backwards and determine whether the traversal
can reach signal A. If signal A in unreachable, it is proven that there is no path
from A to B. However, if signal A is reached, there might be a functional path.
In other words, backward traversal reachability is necessary but not sufficient for
information flow between a source and a sink. The sufficient condition depends on
the model logic and its assumptions. The Jasper SPV App applies the structural
analysis as a simple pre-process method to rule out false paths.

Jasper Secure Path Verification is inherently dissimilar from a standard formal
verification approach. It essentially checks whether there are possible paths outside
the normal specification scope by mimicking the hacker approach: the specification
is analysed and divided into smaller parts to discover information leaks through
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unexpected paths. On the contrary, formal property verification checks whether the
property is always (i.e., mathematically proven) correct under some constraints.

While Jasper has the hacker point of view, and thus is more focused on the
input language/formalism and it is more simulation based, we essentially take the
notion of propagation property and integrate it in a formal verification framework
using a SAT-based verification tool. Moreover, in [106] only a custom closed-source
use case is provided, instead our contribution includes a set of properties for an
entire class of secure architectures.

“Traditional” properties, described in Linear Temporal Logic (LTL) or Compu-
tational Tree Logic (CTL), fail when it comes down to information-flow security.
For instance, they cannot express properties like non-interference. New contribu-
tions have been proposed to solve this issue. On the semantic logic side, Clarkson
et al. [35] propose a new class of properties, namely Hyperproperties. Finkbeiner et
al. [34] introduce new logics for hyperproperties: HyperLTL and HyperCTL*. Even
though it is a promising approach, it only focuses on the logic and their integration
methods. It does not encompass a more general and comprehensive approach for
a holistic integration process. For example, in [136] the authors use dynamic and
symbolic simulation to verify flow properties. Differently, our approach is alterna-
tive: we provide support for a standard model checker for the verification of such
properties.

In the current Chapter we redefine the class of properties presented in [43] as
State properties since they are meant to express state-related properties, in con-
trast to information flow-related properties such as Path properties. The contribu-
tion of this Chapter is an accurate comparison between State Properties and Path
Properties, that are two orthogonal approaches in security verification of different
domains. We intend to provide a set of such properties and a formal framework
to verify them. This framework starts from reduction and refinements steps of an
abstract model, the derivation of properties from security requirements and the
formal verification within a standard model checker. In addition, the formalization
of the model and the properties still needs human effort and it is time-consuming,
thus our goal is towards a partial or complete automation of this process.

Our contributions can be summarized as:

• we define a portfolio of security properties, driven by confidentiality, integrity
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and availability requirements

• we provide formal definitions of two classes of properties: State Properties
and Path Properties

• we perform a comparison and a formal analysis between them

• we show advantages and disadvantages of the two classes: in particular, when
Path Properties perform better than State Properties and vice versa (e.g., for
coverage results or for expressive power)

• we provide a method to integrate Path properties within the framework of a
standard model checker

• we compare State and Path Properties also from an experimental point of
view, showing promising experimental results that support our approach.

5.1.1 Roadmap

Section 5.2 presents the attacker model we refer to in this work. Section 5.3
provides an overview about the security requirements for remote attestation systems
and presents State and Path properties definition and analysis. A brief discussion
about security properties verification approaches is found in Section 5.4. Section 5.5
illustrates experimental results. Finally, Section 5.6 concludes the chapter with
some summarizing remarks.

5.2 System and threat model overview

We address microcontroller-based platforms such as [51], [52]. The model we
use in our experiments is an abstract and memory-reduced variant based on the
above architectures.

The aim of our work is the HW/SW boundary, we provide both hardware and
software implementations for some components. However, the correctness of the
software is out of scope, even though we provide an implementation of the re-
mote attestation routine. Therefore, our contribution can be seen as an empirical
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(model checking oriented) step towards a co-verification approach, rather than a
full HW/SW co-verification methodology.

This section summarizes the system model and the threat model.

5.2.1 Model abstraction and reduction

As the verification of the full (concrete) model would be impractical due to the
state space explosion problem, we adopt abstraction and reduction techniques in
order to achieve equivalence.

Model transformations can be carried out by automated tools or techniques,
but they are out of scope. In this work we focus on manual decompositions, trans-
formations and reductions.

There are several abstraction techniques: from descriptive language-based to
manual decomposition or even automatic methods (e.g., localization abstraction)
[137].

Abstraction creates a simpler and smaller model that approximates the concrete
model. Typically, abstraction leads to an over-approximation, that is the abstract
behavior includes the concrete one. The ultimate goal of abstraction is to preserve
equivalence between the models, thus it is required to perform reduction (or re-
finement) techniques to narrow the abstract behavior and guarantee completeness
[138]. Reductions are usually expressed as equivalence-preserving transformations.
These transformations must be proven to have guarantee: if a property holds in
the abstract model, then it must hold also in the concrete model. Under this as-
sumption, we can say that verifying a property in the abstract model is equivalent
to verifying the same property in the concrete model.

Typical examples of hardware-related reductions are memories and register files.
The model we hereby present is not a full System-on-Chip. Some components

have been removed or abstracted away, because they are irrelevant for our verifica-
tion aims. Memory, also, has been reduced to the minimum size, only the remote
attestation routine and some additional data must fit in it.

In the following there is a list of selected components which we deem relevant
for the verification process:

• Cryptography Entity (CE): it is the hardware support for security-critical
functions, e.g., cryptography functions.
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• Security Memory Access Control (SMAC): it is responsible for memory access
control. Notably, it allows access to the protected memory region only when
CE code is executing. Moreover, it checks that CE code is executed only from
a predefined entry point and returns only from a predefined exit point.

• Memory Data Register (MDR): a special CPU register that acts as a buffer
between memory and the microprocessor.

• Main Memory: standard main memory with RAM and ROM. RAM and
ROM have a single address space.

5.2.2 Threat model

We do not arbitrarily restrict the attack surface because a design that is verified
secure under the most open assumptions will be still secure against less powerful
attackers. In addition, the nature of our verification approach does not require the
modelisation of a specific attack. Rather, our threat model includes any threat to
the system, thus we assume that any system component can be a potential attack
target.

In our threat model, an adversary is capable of launching remote attacks against
the attester, but does not have physical access to the attester’s computer. In other
words, the attacker cannot launch hardware attacks (e.g., resetting the platform
configuration registers (PCRs) in the TPM without rebooting the computer [34]).
Even though the adversary can gain full control (e.g., root) over the attester’s
system by exploiting application level vulnerabilities.

Our attacker model is open, that is the attacker is unknown and is capable of
launching arbitrary attacks against the system. The attacker does not have physical
access to the hardware. Moreover, the hardware-based TCB imposes other few
restrictions: the attacker cannot write to ROM, cannot raise interrupts if they are
disabled [54]. Fault-based attacks and side channel attacks are out of scope.

5.3 Definition of Security Properties

In this Section we present (1) State Properties (SP) and (2) Secure Path Prop-
erties (PP) on a set of security checks. Our main targets are:
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• finding a comprehensive set of properties able to represent and cover our
security objectives;

• compare the power and ability of the two classes of properties on specific
verification targets/problems.

We express State Properties as safety properties (invariants) in CTL. For Path
Properties, though based on the theoretical background of hyperproperties [35] and
[139], we prefer a formalism inspired to [106]. Path Properties are thus described
by:

• From

• To

• Pre-condition (Optional)

• Post-condition (Optional)

State and Path Properties are conceptually different. The idea of the classical
model checking approach (that we call State Property) is to capture the fact that the
system state does not contain an unwanted behavior. Expressing a State Property
often entails to emulate the hacker’s behavior trying to leak or corrupt the system
state. In our case, for instance, we check confidentiality of secure data by verifying
that malicious code is not allowed to obtain a key. A State Property will basically
check whether the key itself could, at a certain moment, be present in a CPU
register. No propagation path is directly involved in this process, unless manually
specified as a patch to the model description. Furthermore, no transformation
on secure data is checked. On the other hand, a Path Property will provide two
potential improvements: explicitly expressing a propagation path from a source to
a destination and enabling to check data transformation through the path. Path
Properties are thus more suited to capture/analyze information flows.

In the rest of this Section, we list and compare State and Path Properties for
confidentiality, integrity and availability.
A naming convention, that we will use from now on, follows:

• CE_start_addr and CE_end_addr: represent respectively the first and the
last CE code address
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• CE_addr_space: represents the CE routine address space, that is {addr | addr ∈
[CE_start_addr, CE_end_addr]}

• is_in_CE_scope = PC ∈ CE_addr_space: it means that Program Counter
(PC) belongs to the CE address space

• was_in_CE_scope = PPC ∈ CE_addr_space: it means that the PC at
the previous instruction (PPC) pointed to the CE address space

• CE_started: register-transfer level signal asserted during the attestation rou-
tine execution

• CE_done: register transfer level signal asserted when the attestation routine
ends and for the duration of the instruction that follows the last one in CE

• R/W_signal: read-write signal asserted when the current instruction is a
memory write

• isIn(arg1, arg2): is a function returning true if arg1 is included in the subset
arg2, false otherwise. From a verification point of view arg1 is always a
single element, arg2, instead, can be a single element or a set of elements (for
example addresses). If it is a single element this function can be exploded as
arg1 = arg2. If it is a set of elements it can be seen as a sequence of equalities
between arg1 and all the elements in the set arg2 (all these equalities are
logically ORed)

• key_addr: is the address of the encryption/decryption key

• trans_in = is_in_CE_scope∧¬was_in_CE_scope: the program counter
PC points to the CE address space whereas the previous program counter
PPC did not

• trans_out = ¬is_in_CE_scope∧was_in_CE_scope: the program counter
PC does not point to the CE address space whereas the previous program
counter PPC did

• ret_addr: Attestation Entity (CE) return address.
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5.3.1 Confidentiality

Exclusive access to the key

(prop_ks1)

We call K the encryption/decryption key that in our scenario is used for attes-
tation and for exchanging confidential messages.

K is stored in a protected memory location in RAM that is accessible only
by the CE. From a design point of view all controls relative to key secrecy are
implemented in the Security Memory Access Control logic (SMAC) and concern
the Program Counter. The SMAC allows the read/write from/to the key only if
PC belongs to the CE address space and MDR contains the key address. Access is
denied for any other component.

User programs (untrusted entities) are not allowed to read K into CPU registers
(represented here by the Memory Data Register (MDR) (Section 5.2). We reduce
the set of possible key data values by adopting a unique value for K different, by
definition, from all other memory/register values. Illegal reading is thus represented
by the presence of UNIQUE_K in MDR.

State property

AG(¬is_in_CE_scope ∧R/W_signal = 0)→

AX(¬isIn(UNIQUE_K, MDR))

An untrusted entity tries to access the key memory region. It means that some-
one is trying to load the content of a specific memory address (we look at the control
bus signal) into any CPU register (we generalize using MDR).

Path property

FROM: key_addr

TO: MDR

PRE_COND: ¬is_in_CE_scope ∧RW_signal = 0

The Path Property states that any kind of data could not flow from the key
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location to the MDR, so this is a more powerful check than simply verifying the
presence of UNIQUE_K in MDR. The precondition is restricting the observed
behavior to read operations, out of the CE address scope.

No key leakage

(prop_ks2)

Once the cryptography routine is completed, K should be present neither in
RAM locations nor in CPU registers used during the encryption/decryption proce-
dure.
Obviously, the initial value of CPU registers should exclude the unique key value K.

State property

AG(CE_done→

AX((¬isIn(UNIQUE_K, RAM.CElocations) ∧

¬isIn(UNIQUE_K, CPU.CEregs)))

where RAM.CElocations and CPU.CEregs are the RAM locations and the
CPU registers, respectively, used during the encryption/decryption stage. The ver-
ification of the encryption/decryption algorithm is out of scope.

Path property

FROM: key_addr

TO: RAM.CElocations ∧ CPU.CEregs

POST_COND: CE_done

The property describes a path from the key location to the RAM or the CPU
registers leading to potential leakages. The post condition is that the attestation
routine has completed.
The taint reaches the destination and it is spot when the post-condition becomes
true.
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5.3.2 Integrity

Integrity is about maintaining consistency, accuracy, and trustworthiness of data
over the entire execution. Data must not be changed in transit, and appropriate
countermeasures are taken to ensure that data cannot be altered by unauthorized
people. In a secure architecture some operations and resources should be accessi-
ble to the supervisor only, guaranteeing key isolation, memory safety and atomic
execution of CE code. Any user software (untrusted entity) has the total control
of RAM memory, except for key location, after and before CE code. It can also
modify any writable code and learn any secret that is not explicitly protected by
SMAC. User software can even invoke the CE code. An untrusted entity cannot
interrupt the CE code execution, which must be executed atomically and cannot
be invoked partially.

In this Section, we do not show how to verify integrity as key modification,
because the corresponding properties would be dual to the ones related to confiden-
tiality. Rather, we focus on an aspect of integrity, atomic execution, which means
to guarantee the atomicity of the attestation routine in order to prevent data cor-
ruption. Here we define the corresponding atomic execution property (prop_ms).

Starting from the assumption that the attestation code is immutable and public,
the proposed attack tries to execute the attestation procedure by skipping the entry
point. This attack is thus implemented by jumping from any memory region (not
involved in the attestation process) into the attestation code (with the exception
of the first attestation instruction).

We check whether the encryption/decryption (attestation) routine starts by
calling the CE entry point instruction and ends (returns) by calling the last CE
instruction.

State property

AG(trans_in→ PC = CE_start_addr ∧

trans_out→ PPC = CE_end_addr)

We did not express path properties on atomic execution, as this clearly is a
state-based property.
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5.3.3 Availability

As availability of information means ensuring that authorized parties have ac-
cess to the information when needed, we consider Denial-of-Service as the main
threat to availability. Here we define the corresponding Denial-of-Service property
(prop_av).

In order to avoid Denial-of-Service Attacks, untrusted software shall not be
able to write to internal registers, to reset the CPU or to sweep all RAM cells. We
consider the scenario where the attacker can trigger an infinite loop manipulating
the cryptography routine (CE code) return address.

We assume that the Attestation Entity (CE) return address ret_addr is stored
in RAM .
We check that ret_addr does not belong to the CE address space.

State property

AG(CE_done→ AX(ret_addr /∈ CE_addr_space))

where (ret_addr /∈ CE_addr_space) means that the return address does not
belong to the CE address space.

The idea behind this attack is to make the attestation procedure endlessly
reloading the “return address after the attestation” ret_addr.

Path property

The State Property checks the behavior upon return from the attestation rou-
tine. This is clearly a check on the system state, that cannot be expressed as a
Path Property. We rather express as a Path Property the integrity of the return
address ret_addr while executing CE.

FROM: MDR

TO: ret_addr

PRE_COND: is_in_CE_scope
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5.4 Verification strategy

In this section we show how to use an existing model checker in order to handle
the properties mentioned in Section 5.1.

State properties can be checked using well known Model Checking techniques.
We primarily exploit Bounded (BMC), as the duration of the remote attestation
routine has a known upper bound, which makes a BMC-based approach complete.

In the experimental section, we will also show results of Unbounded Model
Checking (UMC), when feasible within the adopted time limits, for sake of com-
parison, and in view of more general verification problems.

As an example, let us consider the verification of the State property prop_ks2
presented in Section 5.3. Since this property implies that the Crypto Entity (CE)
routine must complete, the maximum bound cannot be longer than the execution
of the CE routine.

Conversely, as discussed in Section 5.3, Path Properties cannot be verified using
a standard model checker, unless a specific (ad hoc) verification procedure is imple-
mented, or the model is manually transformed in order to embed some information
flow checking circuitry.

As an initial attempt to show the feasibility of the approach, we followed the
latter strategy, keeping an hoc model checking engine as a future development.

In order to model information flow from source to destination, we follow a
product-machine strategy typically adopted in equivalence checking. We generate
two instances of the same model, where path sources are injected with different
data (free inputs) and destinations are checked for equivalence. Any difference
found means that a path from source to destination exists. More in detail, given
src and dst, we:

1. disconnect signal src from its driving logic, or (equivalently) inject an arbi-
trary initial value in src register

2. make two copies of the model obtained in step 1), generating two identical
versions of the model, say M1 and M2

3. apply any additional environment constraint (if needed) to src
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4. verify whether the two models are equivalent at dst. If not, there exists an
illegal path from src to dst; otherwise, it does not.

5.5 Experimental Results

In this section we report verification results for two selected Secure Embedded
Architectures, considering the properties defined in the core section of this work.

5.5.1 Use cases

We focus our attention on two use cases: SMART [51] and SANCUS [52], that
are Remote Attestation architectures.

SMART is based on hardware-software co-design, for establishing a dynamic
root of trust in a remote embedded device. The attestation algorithm uses the
hashing algorithm HMAC, which is located in a Trusted Region TR in ROM;
whereas the secret key K is stored in a particular RAM location. In order to
perform secure Remote Attestation SMART implements two control accesses on
the memory bus controller: 1) K can be accessed only by the instructions located
in the TR 2) an instruction can access TR only from the initial TR address and it
can leave TR only from its last address. As a result, the secret key is only accessible
by the trusted code stored in ROM and (except for the first instruction in TR) if
the current Program Counter points into the TR region, then the previous Program
Counter value must point also into TR.

SANCUS can remotely attest to a software provider that a specific software
module is running untampered and it can authenticate messages from software
modules to software providers. SANCUS achieves these security guarantees without
trusting any infrastructural software on the device. The Trusted Computing Base
(TCB) on the device is only the hardware. SANCUS consists of an Infrastructure
Provider IP that manages a set of microprocessor-based nodes N and a Software
Provider SPi that deploys Software Modules SM into N : these software modules
contain a text section (protected code and constants) and a protected data section.
IP generates (exploiting the key generation functions) and manages three types of
secret keys: 1) KN , shared between node N and IP 2) KN,SP , shared between a
provider SP and node N 3) KN,SP,SM , shared between a node N and a provider
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SP, only accessible by SM.
A software provider SP can enforce Remote Attestation to verify that the correct

software module SM is running on an expected node N through the module key
KN,SP,SM . The attestation code is saved into the text section of SM and the security
memory access control logic (bus controller) ensures that: 1) The protected data
section of a software module is only accessible while code in the text section of that
module is being executed 2) The code in the text section can only be executed by
jumping to a well-defined entry point.

5.5.2 Bounded and Unbounded Model Checking compari-
son

We have implemented prototype versions of the SMART and the SANCUS
architectures on top of an extended version of the CPU model provided by the
VIS model checker. We have performed bounded and unbounded model checking
on both architectures. All our experiments were run on a Quad-core workstation,
with CPU frequency at 2.5 GHz and equipped with a 16 GB main memory. The
time and memory limits were always set to 3500 seconds and 4 GB, respectively.

We have verified if SMART and SANCUS are compliant to the security require-
ments defined in Section 5.3 applying BMC on the defined State properties using
the PdTrav [72] checker. We have defined the bounds exploiting the implementation
details of the attestation routines of both the proposed models. Considering the
execution time of the CE routine, we set the maximum bound for BMC verification
to 800.

Figure 5.1 shows a comparison between BMC results (this work) and UMC
data presented in [43] for SMART and SANCUS respectively. We do not report
experimental results of the PP/UMC verification since they time-out, as expected.

A more accurate analysis would show that the verification result of all properties,
except for prop_av, is PASS for UMC, and PASS within the bound (800) for the
BMC verification. Property prop_av fails due to abstraction.
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Figure 5.1: Verification time for SMART and SANCUS architectures.

5.6 Conclusions

This work addresses a specific and relevant class of embedded systems and of
security properties. Remote attestation on low-end devices represents a meaningful
security problem. On this example we identify a set of properties that cover the
most significant aspects related to security: confidentiality, integrity and availabil-
ity.

State and Path Properties are presented and their pros and cons are discussed.
We highlight their different scope of use and coverage and we verify them using a
standard model checker. Regarding Path Properties, we discuss how to verify them
following an equivalence checking approach.

This work opens new scenarios on formal verification of embedded systems se-
curity properties. Novel ad-hoc verification techniques could be exploited either to
reduce the execution time and/or discovering security bugs.

Future works will focus on automated model abstraction and generation of prop-
erties.
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Chapter 6

Model-Checking
Speculation-Dependent Security
Properties: Abstracting and
Reducing Processor Models for
Sound and Complete Verification

The following chapter has been published as peer-reviewed article in [140] and
then extended in [141].

6.1 Introduction

Security management is rapidly changing to compete with the complexity of up-
coming threats. Awareness that security affects privacy, business and public health
safety is of upmost importance in this highly dynamic scenario. Both software
and Hardware are growing more sophisticated, more compounded, more intercon-
nected. Moreover, CPU performance optimization has been continuously pushing
further by increasing clock frequency and shrinking processing technology. Re-
cently, pipelined CPUs have been massively parallelized allowing mechanisms such
as out-of-order instruction execution and speculative execution. As a consequence,
the attack surface and the number of potential vulnerabilities are becoming bigger.
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For example, Speculative execution is an industry common technique that works
at the microarchitectural level used to improve performance in most of all modern
CPUs. Lately, novel research work has demonstrated that speculative executed
instruction sequences, under certain circumstances and in some architectures, leave
measurable side-effects in the shared components (such as processor caches), even
if instructions are not committed and their transient effect is discarded.

The recent Spectre [17] and Meltdown [16] attacks exploited this modern CPU
optimization and produced a risky landscape that arises more questions than an-
swers.

These two attacks belong to the side-channel attacks class as they extract sen-
sitive data (or sensitive data-dependent information) by taking advantage of the
physical environment, rather than exploiting implementation flaws (e.g., software
bugs or buffer overflows).

Side channels are not a new concept, they have been around since the 80’s. They
have been the topic of quite an extensive research through the years [142, 143, 144,
145], but until recent times they were never considered to top class security threats.
The reason behind that is that usually Side channels attacks demand thorough
knowledge and very peculiar expertise about the target. Instead for Meltdown and
Spectre the attacker would need relatively little technical expertise to perform the
attack.

The speculative attacks, as we call the class of attacks Meltdown and Spectre
belong to, combine speculative execution features and side channels attacks. Since
speculative execution and branch prediction are implemented at microarchitectural
(MA) layer. Typically a side channel attack will create a covert channel to transfer
the microarchitectural state, transient and formally isolated from retired execu-
tion, to the architectural state where it could be retrieved by the attacker. Hence,
the foundation of speculative attacks resides in this discrepancy [146] between the
Instruction Set Architecture (ISA) and the MicroArchitecture (MA).

Even if the ISA has been demonstrated to be functionally correct by valida-
tion and verification processes, the actual MA could be in certain transient states
prone to potential threats, e.g., cache prefetched data exploited by established tech-
niques [147, 148, 149].

In other words, Spectre and Meltdown are variants of side channel attacks that
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are able to make observable formerly isolated states of the microarchitecture. The
attacker is then capable of transferring secrets from shared microarchitectural re-
sources before any access or validity check is enforced.

Although these vulnerabilities are theoretically fascinating, industry has to cope
with their practical impact. The scope of speculation-related attacks such as Melt-
down and Spectre is so broad that it is extremely troublesome to address. A large
variety of systems are likely to be affected, potentially any system that allows to run
untrusted code: web application or browsers, workstations used by employees such
as laptops, desktops, mobile devices, hypervisors in the public cloud, etc. Therefore
Spectre and Meltdown are exceptionally difficult to triage. Since the outbreak it
was clear that specific processor families were affected, but the full scope was sus-
pected to be much wider. Spectre and Meltdown had a great impact which has not
entirely been recognized yet [150]. Fixing these flaws has been a hard job because
speculative execution is largely baked into processor hardware.

Even though several countermeasures have been proposed to relieve the impact
of Spectre and Meltdown [151, 152], they usually are specific for one aspect of
the attack, leaving other attack vectors open. In addition, these patches heavily
affect performance as they come with high overhead. The reported magnitude of
this overhead changes depending on the expected workload characteristics and the
industry sector [153]. Besides, many solutions employ threat models that are too
conservative and make assumptions that can be bypassed by future attacks.

Despite all the research efforts and the adopted countermeasures, security com-
munity still wonders: “how do we prevent such attacks?” and “are our current
verification methods suitable for such attacks?”. Sadly, most of hardware and soft-
ware security methods focus on operating systems, applications, and computer
networks. Even worse, they do not focus on early verification of those systems.
Therefore there is a need for new approaches in hardware and software verification
of out-of-order and speculative execution processors.

In this work, we propose a formal verification approach for security properties in
pipelined out-of-order processors. Our focus is on the recently emerged speculative
execution attacks such as Spectre [17] and Meltdown [16]. We address also scalabil-
ity issues on large hardware design by providing an abstraction and reduction-based
methodology. Correctness follows by well known literature achievements on formal
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processor verification.
Even though automation of the approach is not full, we demonstrate that it is

a viable approach: we perform experimental results on processor model inspired by
the Hennessy and Patterson’s DLX RISC processor [154]. The original design has
been modified (e.g., reorder buffer, pipelining) to support Tomasulo’s algorithm
[155].

A summary of our transformations is the following:

• data abstraction

• refinement

• taint encoding

• pipeline reduction

After the application of model transformations, which preserve functionality
and correctness, we feed the final abstract model to a model checker.

The present work is an extended version of [140].
The chapter is organized as follows:

• Section 6.2 provides state-of-the-art related work and background notions.

• Section 6.3 presents the processor architecture model.

• Section 6.4 gives a detailed description of an implementation of Spectre and
Meltdown.

• Section 6.5 shows the verification approach we adopt on our case-study pro-
cessor model.

• Section 6.6 produces experimental results to support the viability of our
methodology.

• Section 6.7 proposes remarks and future directions in this field.

6.2 Background and Related Works

In the following, we shortly introduce notions and related work for better un-
derstanding of the following sections.
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6.2.1 Side channels

Functionally correctness is not enough in order to guarantee confidentiality:
confidential data must not be leaked to unauthorized parties. A particular class
of attacks, called side channel attacks, is able to leak data through unforeseen
information channels. Channels that take advantage of mechanisms whose main
function is not information transfer are called covert channels [156]. A side channel
is any measurable property of a system that could yield information about the
system itself. Early practical side channel attacks have been demonstrated in [157].
Considering the nature of these attacks, engineers tries to carefully design their
systems to remove as many side channels as possible. The literature shows that
there is an amazing amount of attack vectors: microphones [158], power lines [159],
energy consumption [160], electromagnetic emissions [161], IR photon detectors
[162], ambient light sensor of smartphones [163], high resolution cameras [164].
Time itself can be used as a measurable property to obtain information: varying
execution time for certain security-related operations provides information about
the the operation itself or its secret data. This is the case of Time side channels that
use differential analysis of the variation of time. The reason why time side channels
are so widespread is because of the massive pressure on execution time reductions
and performance optimizations of modern computing systems. Unfortunately, any
shared resources can potentially be a side channel: disk [165], RAM [166], cache
[167], memory bus [168], processor package [169], processor core [170], etc. Side
channels can be found both in concurrent scenarios where different computational
executions compete for shared resources or in time-sharing scenarios where states
persist between context switches. A typical targeted resource is processor caches:
accessing a cached memory location is faster than non-cached addresses, so this time
variation tells what locations were recently accessed. One of the first examples of
a side channels using cache timing is given in [167]. The authors in [171] provide a
survey on timing channels that exploit microarchitectural components.

We now describe briefly three common cache timing attacks: Prime+Probe
[172], Flush+Reload [142] and Evict+Reload [173].

Flush+Reload This cache side channel attack works on the last level cache (LLC).
The attacker uses the clflush assembly instruction to flush out a cached mem-
ory location and then waits for the victim to access that address. The attacker
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accesses again the target location and measures the access time. A short time
implies the target content has been cached again, i.e., the victim accessed the
target. Otherwise, the target has been retrieved from memory, i.e., the victim
did not access the target.

Evict+Reload Evict+Reload is a variant of Flush+Reload because it does not
use the clflush instruction. Cache eviction is achieved by using huge pages.

Prime+Probe The prime and probe technique is composed of two phases: first,
the attacker occupies all cache sets (Priming) with known content and waits
for the victim to use the same allocated cache lines. The attacker then looks
for (Probing) cache sets that have evicted by the victim code and performs
differential analysis on the access time.

6.2.2 Spectre and Meltdown Attacks

On the majority of modern microprocessors, single instructions are first decoded
and sliced into micro-operations (µOPs) then executed. This design decision sup-
ports the extension of specific instructions and superscalar optimizations. Another
level of performance optimization is the so called out-of-order (OoO) execution.
Instructions are not executed in sequential order but they are dispatched to sev-
eral execution units in parallel. This increases the parallelism and therefore the
overall throughput. However, classic hazard are still applicable in this scenario.
If the operands of a µOP are not available, the µOP is stalled until they become
available. If both the instructions operands and the corresponding execution unit
are ready, the microprocessors starts the execution even if previous instructions
are have not finished yet. Only when all previous µOPs have finished, immediate
results are committed to the architectural state. Instructions that are not yet com-
mitted are called transient instructions[16]. The microprocessor usually monitors
the status of transient instructions with a specific component called Reorder Buffer
(ROB). The ROB reorders the instructions as in the original instruction stream and
decides whether to discard them or commit them to the architectural state. For
example, interrupt and exceptions are treated by flushing the entire pipeline. The
existence of transient instructions means that there is a time frame, between the
execution and the retirement, in which temporary results reside somewhere at the
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microarchitectural level (e.g in the shared LLC). This temporary non-coherence
between microarchitectural and architectural states is the foundation of the so-
called speculative execution attacks, to which Spectre and Meltdown belong. How
can we exploit such scenario? Generally software contains data dependencies or
control flow instructions such as conditional branches. In theory, the CPU would
stall until the dependency or the branch condition are resolved. Speculative ex-
ecution, however, implements mechanisms to predict or guess data dependencies
or branch outcomes. The microprocessor continues executing along the predicted
path and buffers the temporary results inside the ROB until the dependencies are
resolved and the prediction is verified. If the prediction was exact, the CPU re-
tires instructions and commits them. On the contrary, in the case of an incorrect
prediction, the microprocessor performs a rollback to a previously correct state
by flushing the pipeline and squashing (i.e., trashing all the results of) the ROB.
From this point of view, transient instructions reflect the existence of unforeseen
(and probably unauthorized) functional paths. As already stated, these unwanted
states and their corresponding temporary results are never committed to the archi-
tectural state in order to guarantee functional correctness. Nevertheless, transient
instructions may leave traces inside the microarchitectural state: the perfect sce-
nario for microarchitectural side channel attacks. This behavior can be exploited to
exfiltrate secret information about the system. Authors in [174] divide speculative
execution attacks in two major classes: control-steering attacks and chosen-code
attacks. Control-steering attacks (Fig. 6.1.a) allow the attacker’s code to force
the target control flow into a speculative wrong path. This is usually done by de-
liberately mis-train the Branch Target Predictors. Temporary execution results in
this wrong path are then retrieved via a covert channel, even though instructions
are eventually flushed out. For example, Spectre and its variants belong to this
class. Code-chosen attacks (Fig. 6.1.b) enable privilege escalation: during wrong-
path execution privileged memory contents are temporarily exposed to unprivileged
malicious code. The attacker is able to choose, for both correct-path and wrong-
path executions, arbitrary instruction sequences. For example, Meltdown and its
variants belong to this class.
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Figure 6.1: Spectre vs Meltdown attack classes

Speculative execution attacks generally follow the same abstract flow, depicted
in Figure 6.2. An initial phase, not shown in the figure, is about preparing the
system: the processor is mis-trained to expect a certain branch outcome, the cache
is prepared for the side channel attack (i.e., flushing or evicting target cache sets).
At this point, the Access Phase 1 starts: the attacker triggers the speculative
execution of instructions that will be eventually squashed due to a mispredicted
branch or an exception. The transient instruction sequence that follows acts as
a microarchitectural covert channel. The secret or a secret-dependent memory
location is loaded into a register. The sensitive data is then transferred, in the
Transmit Phase 2 , to the cache using micro-architectural side effects previously
described. In the Retrieve Phase 3 a cache timing analysis indicates whether and
what cache locations can be probed to retrieve the sensitive data and store them
into a non-speculative state. Ultimately, the instructions involved in phases 1
and 2 are squashed, but phase 3 already committed the temporary results to
the architectural state.
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Figure 6.2: Three phases of speculative execution attacks

6.2.3 Formal Verification of Microprocessors with Out-of-
Order Execution

A vast literature covers the formal verification of processors: techniques from
automation-focused (yet poorly scalable) such as Model Checking [37, 175] to more
complete and powerful ones such as Theorem Proving.

The major problem in the formal processor verification is the scalability. Proces-
sor designs usually tend to be very large with a huge number of states, thus leading
to the problem of state explosion. Most techniques tackle down state explosion
with model transformations:

• data abstraction: the model behavior is over-approximated by (partially)
removing/transforming data (deemed) unnecessary to the proof; assump-
tions have to be made so that the soundness of the approach is guaranteed,
e.g., arithmetic and logic functionalities are already verified. Possible refine-
ment steps are needed, whenever the abstraction is unsound

• model reduction: a form of case split, where only a properly selected subset
of possible execution traces is considered

Theorem proving seems to be the most common approach because of its robust-
ness and flexibility. It is able to prove arbitrary processor configurations and it is a
viable approach even for complex designs. However, Theorem proving techniques
need substantial human efforts and tend to be labor intensive [176, 177].
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Within the field of pipelined processor verification, theorem proving can be
adapted and partially automated, thus leading to approaches that could even be
considered to be generalizations of model checking.

For instance, the desired effect of transient (i.e., unfinished) instructions on the
pipeline has been captured by complete functions, proposed in [178]. Complete
functions can be seen as a map between a flushed state at the architectural level
and any OoO processor state (i.e., microarchitectural). The idea of complete func-
tions has been used to carry out independent compositional proofs that can be
subsequently used as hints for other proofs. The authors in [179] give an example
of this approach for the verification of a Tomasulo compliant OoO processor. The
major drawback is the automation level: the verification engineer has to manually
define a set of completion functions, one per unfinished instruction, and a way to
compose them, in order to form the abstraction of the processor.

Burch and Dill [180] use a similar flushing technique. The abstract model of
the processor is obtained by using what they call uninterpreted functions. The
formal verification is then carried out by symbolic execution. They decompose the
verification problem into three subproblems and require the user to provide some
extra control inputs. This compositional approach solves the problem of state space
explosion. Informally, the first property states that the implementation correctly
executes instructions from a flushed state; the second confirms that stalling does
not affect the specification state; and the third checks that instructions are fetched
correctly. The main benefit of their contribution is that it can be applied without
concrete implementation details. The other advantage is that it can be easily
automated. The manual definition of special decision procedures for uninterpreted
functions is still needed. Furthermore, Burch and Dill apply the technique only to
in-order pipelined processors, without OoO support.

Skakkebaek et al. [181] present a two fold approach. The fist step is to derive an
in-order abstraction model out of the OoO one. They define, using domain-specific
knowledge, a functional equivalence relation between the in-order and the out-of-
order models. The second step is the formal proof that two models are functionally
equivalent by applying a technique called incremental flushing, based on the work
of Burch and Dill. Although the proposed method effectively works for out-of-order
processors, it heavily relies on human-guided theorem proving.
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McMillan [182] verified Tomasulo’s algorithm for out-of-order execution. The
main drive of his work is the complexity reduction of the verification algorithm: a
compositional approach is used to tackle the scalability issue. The major drawback
of this methodology is that a good balance between state space explosion and the
number of invariants must be manually/heuristically reached. Another issue is that
it is not fully automatic.

Sajid et al. [183] extended and combined the BDD techniques with decision
procedures for uninterpreted function symbols. Despite being a great contribution
within the field of formal verification and model checking, this method cannot be
easily integrated with symbolic model checkers. Moreover, they have not considered
the application of their work on the verification of OoO processors.

Berezin et al. [184] incorporate uninterpreted function symbols into traditional
model-checking and propose an scalable and effective propositional completion func-
tion for Tomasulo’s algorithm. Their approach is able to verify Tomasulo’s algo-
rithm in any arbitrary configuration. Moreover, it can be extended for the auto-
matic verification of complex generic parametrized designs.

6.2.4 Verifying Cybersecurity by Tainting

To the best of our knowledge, none of the above contributions is concerned
with the verification of cybersecurity properties. Albeit formal verification has
been effectively applied to cybersecurity, the main efforts have been devoted to the
formalism and the definition of security properties or the mitigation of scalability
issues by mixed dynamic/static techniques such as semi-formal and/or concolic
(concrete symbolic) approaches [185, 186].

Information Flow Tracking (IFT) is a method that tracks propagation of in-
formation through a security-critical system. IFT has been extensively applied to
security contexts for both hardware and software systems. In this context IFT has
been proved to be a reliable technique to verify confidentiality and integrity. The
core idea of IFT has been used for several formal and non formal approaches. Basi-
cally, IFT marks inputs from potentially malicious channels with labels. IFT then
tracks how labeled data propagates through the system. For every instruction, the
processor determines whether to propagate the label to the resulting destination
according to a predefined set of rules. This way information flows become explicitly
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visible to the verification process [130, 129].
IFT techniques have been implemented at different levels of abstraction: from

hardware enforced IFT (both gate [129] and RTL [187] levels) up to modified kernels
[188], VMs [132] and compilers [189].

Usually, in a IFT propagation scheme there are two actors involved (e.g., mod-
ules for hardware, variables for software systems). A general propagation rule states
that the tag should flow from one object A to the object B if and only if a change
in A affects the value of B (i.e., interference property).

Confidentiality and integrity can be expressed using this rule as follows:

• Confidentiality: object A is confidential, while object B is public. An attacker
could gain information about A by observing variations on B. In this case,
the property would be that A must not flow to B.

• Integrity: object A is untrusted, while object B is trusted. An attacker could
gain access to B through malicious modifications on A. Again, the property
would be that A must not flow to B.

A notable variant of IFT is Taint analysis. Security-critical data are tainted, i.e.,
marked as malicious or spurious, when they start from a target input (called source).
The taint is then propagated through the system using the taint propagation rules
and eventually reaches the target output (called sink).

Subramanyan et al. [136] propose the notion of taint-propagation properties, a
novel type of security properties. Their approach is to create a model of the interac-
tions between hardware and software by embedding information flow analysis with
an instruction level abstraction (ILA). It is therefore best suited for hardware/-
software co-verification as it is able to express security properties at the HW/SW
boundary. Nevertheless, vulnerabilities at the microarchitectural level are not cov-
ered in their work.

Further notable research on adapting software taint analysis in the hardware/-
software co-verification, in order to detect security vulnerabilities, has been pio-
neered in [50, 43, 187].

Secure Path Verification [107] represents an alternative to standard model-
checking approaches. As already described in 5 we propose a new category of
properties, namely Path properties, starting from the notion of the mentioned
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taint-propagation properties. A path property includes a source, a destination
and environmental constraints for taint propagation, same as the taint-propagation
property, but it also introduces path constraints to enforce secure information flow
properties. The contribution further introduces a verification engine based on equiv-
alence checking, where taint propagation is embedded in the model checker engine.

As shown before, IFT can be applied at different levels of precision and ab-
straction and this can lead to different verification results in terms of soundness.
The repercussions of this choice are discussed in Sections 6.5.1 and 6.5.3.

6.3 Processor Model

The processor we use in our methodology is based on the renowned Hennessy and
Patterson’s DLX architecture [154], a 32-bit generic RISC processor architecture
that we enhanced by implementing pipelining and speculative execution.

The processor high-level design is shown in Figure 6.3. It employs a load/-
store architecture and maintains a seven-stage pipeline. Support for speculative
and out-of-order execution is provided by the reservation stations and the reorder
buffer. The model is compliant with Tomasulo’s algorithm [155]. The instructions
are executed out of order rather than in sequential order, transient instructions are
managed by the reorder buffer and the reservation stations. Wrong-path instruc-
tions (i.e., instructions that are mispeculated or violate access boundaries) raise
misprediction exceptions, causing the CPU to stop the execution and the pipeline
to be flushed. In case of exception, the instruction sequence is squashed and any
microarchitectural state change after the exception is not committed to the archi-
tectural state. Data and control flow dependencies (e.g., instruction cache miss)
are handled by stalling the pipeline until the dependency is resolved.

The pipelined processor model has 7 stages: [IF1] A 32-bit instruction is fetched
into an instruction fetch buffer from the memory address given by the program
counter PC (branch prediction logic is included).
[IF2] This is meant to be a virtual address translation unit, possibly coupled with
a TLB, but in this case study it is just a combinational delay. We retain this stage
for future work.
[ID] Instruction Decoding, fetching of values from registers, evaluation of branch
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conditionals and target addresses, pipeline hazard detection and control flow of
program execution. Opcodes and operands are fed to the Reorder Buffer (ROB);
Inside the reservations stations transient instructions wait for the availability of
their operands.
[EX] When ready instructions are issued to an available execution unit. The EX
stage executes both integer and floating-point instructions and generates exceptions
as needed. This stage includes reservations stations, providing operands to and
acting as a scheduler for execution units.
[M1] access to data memory for load/store instructions. This stage enables a
bypass towards the ROB, the result of the instruction is routed to reorder buffer
through the common data bus (CDB).
[M2] access to data memory for load/store instructions. This stage is the actual
memory write.
[WB] instruction commit, exception handling and storing values to the register
file. This includes the ROB that retires instructions to the register file. The ROB
writes the results to the register file restoring the original program order. The
execution results are also forwarded through the CDB to the reservation stations,
where other instructions may wait these results as operands.

Exceptions are raised when an instruction, for some reasons, cannot be executed.
Our model includes three types of exceptions: ALU exceptions, mispredicted excep-
tions and memory exceptions. When the CPU receives an exception, executes all
the instructions preceding the interrupted instruction, stops the execution, flushes
the pipeline and starts the exception handler.

Without loss of correctness and for the sake of simplicity, we treat the execution
units as fully pipelined, that is they execute one instruction every clock cycle.
Instructions follow the same behavior: every instruction takes the same number of
clock cycles to be executed, even though we are fully aware that this is not true in
a real microprocessor.
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Figure 6.3: The 7-stage pipelined processor model

6.4 Attack Description

To show the weakness of CPU architectures, we decided to replicate the well-
known Spectre [17] and Meltdown [16] attacks, which both abuse the out-of-order
execution to disclose internal microarchitectural state information.

Both cases are based on side-channel attacks. A side-channel attack is any
attack based on information gained from the implementation of a computer system,
rather than the implemented algorithm itself or the Instruction Set Architecture.
Side-channel attacks typically exploit timing, power, electromagnetic leaks, or other
sources of information.

In the case of Spectre and Meltdown, the attack is based on a covert side-
channel that exploits the timing of cache-based memory accesses. A malicious
attacker intentionally induces a speculated execution of mispredicted instructions.
The effects of these instructions (not yet retired, thus called transient) are not
intended to be committed into the architectural state, as the instructions will be
cancelled and their results discarded. However, they change the internal processor
microarchitectural state, due to a memory read affecting the cache state, observable
by a (timing-based) side-channel: retrieving data from (un-cached) memory takes
longer than retrieving it from cached addresses.

A Meltdown attack provides a way for a user level attacker to read the entire
kernel space memory, including all physical memory mapped in the kernel, being
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able to bypass the privileged-mode isolation. A Spectre attack has a more limited
scope, the memory within the address space of another (victim) process.

Although different, both attacks rely on common “building blocks”. The first
consists of executing one or more instructions which would never be computed in the
proper execution path. Applying Meltdown’s naming convention, we call transient
instruction an out-of-order executed instruction, which will leave measurable side
effects. We also call transient instruction sequence any sequence of instructions
which contains at least one transient instruction. To be able to exploit transient
instructions to perform an attack, the sequence needs to hold a secret value which
will be leaked by the attacker.

The second building block consists of transferring the architectural state affected
by the transient instruction sequence to propagate and extract the leaked informa-
tion.

From a high-level perspective, our attack, based on Meltdown, consists of 3 steps:

1. the attacker chooses an inaccessible memory location, then the contents of
that memory location is loaded into a register;

2. a cache line is accessed by a transient instruction based on the secret contents
of the register;

3. the attacker exploits a side-channel to probe the previously accessed cache line
and leaks information depending on the sensitive data saved at the chosen
memory location.

Listing 1, written in DLX assembly code, presents the basic implementation of
the transient instruction sequence of our attack that is then used to leak information
with a side-channel. We describe now in detail the actions performed and the effect
of every single step of our attack, considering the presented assembly code but also
the processor model under analysis.
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Listing 1. Attack transient instruction sequence in DLX assembly code.

1 ; R1 = i n v a l i d address
2 ; R3 = probe array
3 LW R2, 0(R1)
4 ADD R4 , R2, R3
5 LW R1, 0(R4)

6.4.1 Step One

Referring to line 3 of Listing 1, R1 register holds the invalid address, i.e., an
attacker chosen target kernel address that is loaded into register R2.

The LW instruction is fetched, decoded into µOPs (Although this is true in gen-
eral, in our case-study model there is no generation of micro-operations, i.e., every
instruction is one µOP, due to the simplicity of the model itself.), allocated, and sent
to the reorder buffer, waiting to be executed.

At this point, in order to enable out-of-order execution, register renaming maps
the architectural registers (e.g., R1, R2, R3 and R4 in Listing 1) to underlying
physical registers.

As for out-of-order execution, that aims at increasing CPU throughput, also
the following instructions (lines 4 and 5) have already been fetched, decoded and
allocated as µOPs, they are then sent on hold to the reservation stations, waiting
to be issued to an execution unit.

In general, a µOP is delayed if operands are not available or if all execution units
are already holding and executing other µOPs. In our example, the ADD instruction
must wait for the result of the first LW instruction.

When the contents at the kernel address is loaded (line 3), subsequent instruc-
tions have already been issued in the reservation stations as speculated instructions,
waiting for the kernel address to be available.

Once the needed data are fetched and available on the Common Data Bus (being
accessible to the execution unit and being stored into registers), µOPs on hold can
be executed. After the execution stage, completed µOPs are committed in-order
(write-back stage), with their results affecting the architectural state of the CPU.
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If any interrupt or exception, e.g., illegal access, arise during the execution stage,
the corresponding exception unit handles it.

Therefore, when the LW instruction is retired, if an exception is thrown, then the
pipeline is flushed to discard all the computations of the following speculated in-
structions.

At this point, there exists a race condition between raising an exception and
the speculative execution of our attack, which is described in detail in Section 6.4.2
below.

6.4.2 Step Two

The set of instructions executed during Step One must be carefully crafted to
make a transient instruction sequence.

To transmit the secret outside the CPU microarchitecture, first we define and
allocate in memory a probe array, ensuring that no part of it will be cached. The
original Meltdown attack prevents the hardware prefetcher from loading adjacent
memory locations into the cache. For our purposes, in order to make our attack
model as generic as possible, we avoid this operation.

Then, an address is determined, based on the (inaccessible) secret value, and
it will be used by the transient instruction sequence to perform an indirect mem-
ory access.

The secret value is added to the probe array base address, in order to compose
the target address of the covert channel. The target address is then read and used
to store the corresponding cache line.

Therefore, the goal of our crafted instruction sequence is to alter the cache state,
based on the secret value read during Step 1.

6.4.3 Step Three

In Step 3, the attacker leaks and obtains the secret value (from Step One)
exploiting a microarchitectural side-channel attack which propagates the cache state
(from Step 2) into an architectural state.

This is due to the race condition mentioned in Step One: line 3 gets speculatively
executed, depending on the value of the secret, so a part of the probe array will be

112



6.5 – Proof/Verification

accessed and, most importantly, cached.
To sum up, despite the program never executing lines 4 and 5, the cache state

has changed.
As already stated, Meltdown and Spectre exploit well-known cache covert chan-

nel attacks but their specifics are considered out of scope.

6.5 Proof/Verification

To simplify the verification process, in our approach we propose several model
transformations, oriented to scalability. The performed transformations can be
aggregated into two different typologies:

• data abstraction: register values, along with all the units that handle these
values, as well as the reorder buffer, reservation stations and execution units,
are adequately abstracted. Tainting information and evaluation/propagation
circuitry are then added to or replace them.

• model reduction: applying established processor verification approaches such
as pipeline flushing and reduction by refinement map, we reduce speculation
and parallel execution logic.

Considering that we strive to make our approach as general as possible, our CPU
model does not explicitly feature any main memory, therefore confidential/secret
information is implicitly linked to a given protected/invalid memory address. Con-
sequently, we verify arbitrary sequences of instructions (i.e., no explicit program is
provided).

The completeness of our approach, even though this is a pessimistic choice in
the framework of our analysis, is guaranteed because all possible instructions se-
quences are covered, as well as being consistent with other state-of-the-art processor
verification approaches.

In the following subsections we provide a detailed description of the main notions
of the two typologies of transformations. Albeit a formal proof of correctness is not
provided, we contribute with the basic intuitions that support their applicability.

113



6 – Model-Checking Speculation-Dependent Security Properties

6.5.1 Data Abstraction and Tainting

All related works cited in Section 6.2 follow the same verification approach:
they over-approximate data (and consequently model behavior), provided that ver-
ification is sound. That is, this transformation must guarantee that an abstract
counterexample always implies a concrete one.

In our case, for every register Ri we call Vi its contents. Then, without altering
security properties, Vi is replaced by an abstract value V +

i . As already stated, RAM
memory is removed, adopting common strategies used for data abstraction, which
means drastically reducing its impact on the state of the model. Partial abstraction
of data, not relevant to the property under verification, is often performed. Despite
having greatly reduced the size of the model, we can still perform abstraction: for
example, processor functionality (e.g., ALU data computation/evaluation) can be
considered correct (already verified). In all abstraction processes, properly choos-
ing a correct/adequate abstraction, either by automated or manual selection, is a
challenging task.

Following known methods in hardware verification, we augment each value V +
i

with its corresponding taint value Ti, as depicted in Table 6.1. The ALU, the data
evaluation logic, is enhanced with taint-propagation logic. Taint values are in-
jected, propagated and observed through memory and data transfer components.
Propagation or combination of multiple taints is responsibility of the ALU.

Table 6.1: Concrete versus Abstract model transformation.

Register Concrete Abstract

R1 V1 (V +
1 , T1)

R2 V2 (V +
2 , T2)

... ... ...
Rn Vn (V +

n , Tn)

Table 6.2 shows that while the original processor model executes an arith-
metic/logic operation Vk = OP (Vi, Vj), the abstract model replaces it with V +

k =
OP (V +

i , V +
j ) and provides that the transformation is sound. The first part is data
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evaluation and it is independent from taint values, while the second is taint prop-
agation, which in its broad form involves both data and taint values.

The tainting precision, i.e., the degree of over-approximation, swings between
two corner cases:

• full data dependence: data values are fully involved in taint computation;
whenever computing Tk, actual operand data values are considered; for in-
stance, a bitwise OR operation with all V +

i = 1, or a multiplication with
V +

i = 0, could mask (block) a taint on the other operand (Tj);

• full abstraction from data values: for instance, taint propagation through
a binary ALU operation propagates a taint on any of the operand terms
(Tk = OP T (Ti, Tj) = Ti ∨ Tj).

The level of abstraction certainly affects the soundness of the overall approach:
for detailed comments and proof of correctness of the approach, see Section 6.5.3.

Table 6.2: Comparison of data evaluation and taint propagation between concrete
and abstract models.

Concrete Abstract

Data abstraction + Tainting Vi (V +
i , Ti)

Data evaluation Vk = OP (Vi, Vj) V +
k = OP (V +

i , V +
j )

Taint propagation - Tk = OP T (V +
i , Ti, V +

j , Tj)

Also, the branch misprediction logic is abstracted and replaced by a non-deterministic
value (choice); this operation can be performed without altering the correctness of
our approach, since it generalizes (abstracts) the model under analysis.

Similarly, arithmetic/logic manipulation can be considered already verified,
e.g., as pass-through circuitry for taints. Since we are interested only in data
leakages from/to memory, we can move our focus taint propagation to memory
access logic.

Let us now define the taint source/sink pair. A taint is thus injected at the
memory data input, whenever a protected/invalid address is used, that is a pro-
tected address is loaded into the CDB. In other words, the taint (TMDR) associated
with the Memory Data Register (MDR) is set whenever the address stored in the
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Memory Address Register (MAR) is not in the range of valid addresses (V A.start

and V A.end).

TMDR = MAR < V A.start ∨MAR > V A.end

The taint is propagated through the abstract reservation stations, arithmetic/-
logic execution units and reorder buffer. A taint can be cleared only by the
branch misprediction circuitry, which means in case of an instruction not com-
mitted but aborted.

The target (taint sink) under observation is the memory address. From the
information flow point of view, a taint in a memory address register corresponds to
the property we are verifying.

Prop = ¬(TMAR == TAINT )

Considering, from a tainting point of view, a generic instruction sequence com-
mon to both Meltdown and Spectre attacks, the following actions will be performed:

• inject a taint, exploiting a mispredicted instruction which performs an in-
valid/protected memory access;

• transfer the taint into the (abstracted) reorder buffer, as a data expected to
be committed;

• use the taint, as a data, as part of the computation of the address of a
successive mispredicted memory access: the taint hits the target.

The taint propagation path is described in Figure 6.4. In details, the taint
is injected at the memory read (1), when the address bus is filled in with an
invalid address. As the instructions in the pipeline move through the different
steps, the taint reaches the reorder buffer (2), then it moves on to reservation
stations (3) as new instructions are fed by the instruction cache. The taint enters
reservation stations because of the propagation rules, as tainted data are fetched as
operands of newly arrived instructions. As soon as all the operands are available,
the taint propagates to the corresponding execution unit (4). Eventually it reaches
the Common Data Bus (CDB) and consequently again the reorder buffer (5).
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Figure 6.4: Taint propagation from source (memory read) to sink (reorder buffer)
in our abstract model.

Table 6.3 shows how our model behaves with the instructions in Listing 1. The
first instruction reads from memory (M) at an invalid address (IA) and stores
an invalid data (ID) into the destination. This injects the taint into T2. The
second instruction computes the array displacement as it adds the probe array
start address (PA) and the invalid data. The taint propagation logic, as previously
stated, involves the OR operator on the taints associated with the operands, so in
this case the taint propagates to T4. The last instruction reads in from memory at
the address computed in the second instruction. The taint propagates to T1 and
reaches the target where the property fails.
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Table 6.3: Our model applied to a real use case: a basic implementation of Spec-
tre/Meltdown.

Instruction Symbolic Concrete

LW R2, 0(R1) V +
2 ←M [V +

1 ]
T2 ← T1

ID ←M [IA]
1 inject←−−− 0

ADD R4, R2, R3 V +
4 ← ADD(V +

2 , V +
3 )

T4 ← T2 ∨ T3

PA + ID ← ADD(ID, PA)
1← 1 ∨ 0

LW R1, 0(R4) V +
1 ←M [V +

4 ]
T1 ← T4

Y ←M [PA + ID]
1 target←−−− 1

Table 6.4 shows, in the rightmost table, the same instruction sequence as in
Listing 1, while the leftmost table displays the pipeline evolution. The sequence
implements a generic and simplified version of Meltdown/Spectre attack (as de-
scribed in Section 6.4), in which:

(A) performs a memory access to an invalid address;

(B) executes an arithmetic operation using the secret data;

(C) performs a read from an array with a displacement related to the secret.

Table 6.4: Pipeline evolution of the proposed attack.

Clock ↓ IF ID EX MEM WB Taint Status A LW R2, 0(R1)
1 A B ADD R4, R2, R3
2 B A C LW R1, 0(R4)
3 C B A
4 B/C S A Taint source
5 C B S A Taint in ROB
6 C S B S Taint in EX
7 C S B Taint sink/property asserted
8 C S
9 C

The vertical axis represents time in terms of clock cycles. Columns from IF
to WB represent the different pipeline stages. The last column presents the taint
status and its propagation. Cells filled with “S” are stalls.
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Instructions enter the pipeline and proceed without stalls until clock 3. At clock
4, B and C are stalled to wait for their operands to be ready. When at stage MEM
A reads from memory, the value is placed into the Common Data Bus and becomes
available also to the stalled instructions. At clock 5, B goes on to the next stage,
while C must wait for its operands to be prepared by B, thus a new stall is inserted.
Finally, from clock 7 to 9 the pipeline proceeds without stalls.

The taint source is at clock 4 inside the MEM stage of instruction A, when
the access to the invalid address is performed. At the WB stage of A, the taint
propagates to the reorder buffer. Then the taint propagates to the execution unit
at the EX stage of instruction B. Afterwards during clock 7 the taint, reaching
the CDB, is collected by the taint sink and captured by the previously defined
security property.

Compositional verification schemes are a very common way to exploit abstrac-
tion, where a given module is taken and verified on a local basis, while removing
(i.e., abstracting away) the remaining model components, considered to be the
module’s environment. A refinement of the environment, expressed as a set of
constraints, is usually required to refine it to a sound abstraction, thus leading to
assume-guarantee strategies where a given refinement is either a property (to be
proved/guaranteed) when verifying a module, and an environment constraint (an
assumption) for another module under verification.

Considering our case study, seeing the high simplification level reached by
abstraction/refinement-based abstraction, we decided not to apply any composi-
tional simplification [190].

6.5.2 Combining Model Reduction with Abstraction

The CPU model of our case study, at this point, is further simplified, applying
state-of-the-art methodologies to formal verification of pipelines and speculation
units [180, 191, 190].

Briefly, the processor model was already simplified by transforming data into
taints. At this point instead, we are simplifying all intermediate states associated
with the control logic for parallel execution, with a convenient reduction of the
behavior and considering it as an abstraction, based on proper equivalence notions
between the concrete model and the reduced one.
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Pipeline flushing is often applied, in order to highly simplify model behavior,
by removing all possible interleavings of pipeline executions. As this could lead
to an incomplete solution (missing possible wrong behaviors) the reduced model
is considered to be an abstraction of the real model, where each concrete state
(among the set of all possible pipeline interleavings) is considered to be a possible
refinement of an abstract state in the reduced model: the correspondence is handled
by refinement maps. Similar strategies are also applied whenever reducing the bit
widths of registers, memory words and of memory addresses, the size of the register
file, the number of reservation stations and execution units, etc. All such reductions
are deemed as complete by considering the reduced model as an abstraction of the
concrete (refined) model and/or by proving that the absence of a bug in the reduced
model implies that no bugs are possible in the concrete (non-reduced) one.

While considerably simplifying the model, a reduction process can thus still
guarantee verification completeness.

A detailed description of the reduction strategies is clearly out of our scope in
this work, as any property preserving reduction (with proper refinement map or
alternative theory) is applicable, provided that it guarantees completeness.

We here quickly introduce the simplifications applied on our model:

• pipeline flushing: all pipeline stages are flushed (collapsed), which simplifies
the execution model of an instruction, since the next instruction is initiated
only when the previous one reaches the reorder buffer;

• reorder buffer removal: ROB is reduced into a FIFO queue, which essentially
delays instructions between execution and results availability into the register
file; to be noted that the FIFO strategy preserves the original instruction
order, assuring data dependency;

• reservation station replacement: as straightforward effect of previous pipeline
flushing and ROB removal, reservation stations are bypassed (performing in
fact a model reduction);

• execution units merge: considering the data abstraction performed on our
model, computation parallelism is unnecessary, so just one instance of each
execution unit is useful.
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As a result, of the listed above simplifications, the complete original behavior is
significantly reduced, moving from a pipelined architecture with speculation, to a
fully sequential model with a FIFO-based delay between execution and obtain-
able results.

The performed reduction simplifications guarantee completeness, which means
that taint propagation sets of instructions are not removed, given the following
two conditions:

• consecutive instruction sequences comprise mispredicted instructions, simu-
lating real instructions sequences made by an actual out-of-order CPU; this
behavior is assured by a non-deterministic tag associated with an instruction,
which marks that instruction as mispredicted (this operation is performed
during the abstraction transformation, as described in Section 6.5.1);

• the FIFO-based delay, replacing the ROB, simulates the (illegal) taint-propagation
time from source to sink; this behavior is assured by a proper FIFO queue
size and a proper non-deterministic queue control of get operations, which
transfer data from ROB to the register file.

6.5.3 Correctness of the Approach

We now provide a concise proof of the correctness of our verification approach.
Due to the descriptive nature of the work, where we omit a rigorous formalism
for models, properties and transformation steps, the proof is limited to a sketch,
outlining the theoretical bases that support the proposed methodology.

As with all verification approaches based on model transformations, formal cor-
rectness means soundness and completeness of all model simplifications (abstrac-
tions and reductions) performed. In our case, we operate two classes of simplifica-
tions:

• Abstractions and reductions that do not affect secure information flow by
taint propagation. This is a set of preliminary model transformations oriented
to reduce the data width and the model behavior (pipeline and speculative
execution): transformations guarantee the model functionality, and they have
already been proved correct by related and state-of-the-art works on formal
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verification of processor designs. We do not claim any contribution in this
field, and we assume them as correct

• Abstraction and reduction steps related to secure information flow by taint
propagation. Though we resort to standard formalisms and transformations,
we nevertheless need to show/prove that their combined application is com-
plete and sound.

Model Abstraction and Reduction

As already written, our model abstraction and reduction (with refinement) steps
are based on state-of-the-art formal verification approaches [180, 191], that have
already been proved to be sound and complete by their authors. We can assume
them as correct in terms of processor design, but nothing is said on the processor
state, potentially observed by a side-channel attack. In other words, we exploit
state-of-the-art model simplifications that guarantee model functionality by pruning
and simplifying complex intermediate states and behaviors.

Therefore, the remaining critical issue in our methodology is the correctness
of taint encoding and manipulation all over the abstraction and refinement steps.
This is what was missing in all previous processor verification works, and represents
the main contribution of our work.

To this respect, we need to show that

• tainting does not affect the correctness of the model

• secure information flow by tainting is sound and complete.

The first item is straightforward. We can claim that since a taint is actually
an enhanced data, added to the original one, it does not affect model functionality,
provided that tainting logic is just reading data, while not affecting data evaluation.
More formally, this is clearly shown in Table 6.2, where a result taint (in the more
general case) is a function of operand data and taints (Tk = OP T (V +

i , Ti, V +
j , Tj)),

whereas result data do not depend on operand taints (V +
k = OP (V +

i , V +
j )). The

second item (soundness and completeness of taint propagation) is analyzed in the
next subsection.
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Taint Encoding and Manipulation

In the strict sense, the tainting and transformation steps we perform are unsound
as, due to data abstraction in the taint-propagation circuitry, we could obtain false
negatives (taint-propagation traces not feasible on the concrete model).

In fact, we admit abstract execution traces that propagate the taint through the
ALU logic, whereas no information leakage would characterize the actual model.

This issue can be imputed to the taint-propagation strategy we decided to adopt:
the applied abstraction ignores the fact that a taint could be blocked/hidden by a
real data. The taint computation rules need to take into account both the operation
and the data involved. Precise rules would impose more complexity, so we had to
reach a trade-off between precision and complexity:

• apply precise and narrower tainting rules, cutting off (adopting a more precise
and detailed taint-propagation model) all false negatives;

• adopt an imprecise but efficient approach, thus accepting false abstract coun-
terexamples. If this would be the case, counterexamples could be either:

– post processed, leading to subsequent model refinements;

– be converted into actual (equivalent) concrete counterexamples, by just
exploiting them partially (e.g., by removing data and keeping control
bits), as constraints for a further Bounded Model-Checking (BMC) run
on the concrete model.

In our opinion the second approach is to a great extent coherent with the final
aim of detecting data leakages and solving them.

Therefore, in the end soundness relies on a proper notion of (bi-simulation)
equivalence between abstract and concrete counterexamples: any abstract coun-
terexample is required to be mapped to at least one concrete counterexample by
simple data/behavior refinement: Abstractions done in taint-propagation logic are
sound if, for any tainting blocking based on data values, other non-blocking data ex-
ist.

The approach is complete as no reduction is done on taint computation and
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propagation (all reductions are done just based on equivalence/function preserv-
ing transformations, whose completeness has been proved for model-checking pur-
poses).

6.6 Experimental Results

The approach presented in this chapter was tested and verified on the case study
described in Section 6.3.

The main purpose of our experimentation was not to provide detailed perfor-
mance measures of different model-checking engines/tools, rather to show that re-
sorting to proper abstractions and reductions allows tackling state explosion. This
makes previously unfeasible problems now solvable in matter of seconds with a
state-of-the-art model checker.

The processor was described in Verilog, then converted into the AIGER for-
mat [192] and verified using PdTRAV [72], a state-of-the-art academic model-
checking tool we developed. Both Bounded and Unbounded Model-Checking (interpolation-
based UMC) algorithms were used, with a peculiar focus on model reductions and
transformations [193, 194], multiple properties manipulations [195] and interpolants-
based engines [78, 77].

In detail, taints were encoded as binary data, branch prediction/misprediction
circuitry was entirely abstracted and substituted by a non-deterministic (random)
Boolean value. Moreover, parallel execution units were substituted by a taint prop-
agation pass-through circuitry.

A taint not reaching the address output of the microprocessor model corresponds
to the encoding of the confidentiality property we want to verify.

As already stated in [190], the original full microprocessor model (inclusive of
speculation logic, Tomasulo’s module, pipeline, multiple execution units and data
paths) would be very difficult to verify: the model consisted of more than 120 K
gates and more than 3 K latches. The resulting model after all the simplifications
(abstraction, reduction and tainting), was converted into an AIGER file consisting
of 2724 AND gates and 106 latches, resulting by reducing the register file to 8
registers of 5 bits, and the rest of the control and data logic accordingly. We
also tested larger versions, by expanding the number of data registers up to 16
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and their size up to 32 bits. The largest AIGER file (after Cone-Of-Influence
reduction) included 7245 AND gates and 395 latches. We could verify it by the
BMC verification engine, finding a counterexample of 11 clock steps in times ranging
from less than 1 s to 9 s.

The counterexample retrieved after the verification process presented a data
leakage issue: this bug was made out of an instruction sequence starting with an
invalid memory read (operation which injected the taint), followed by an arith-
metic computation of a memory address (operation which propagated the taint),
and finally a further memory read to the tainted address. This counterexample
can be considered to be an abstracted/reduced version of the example presented in
Table 6.3.

Then the cybersecurity flaw was eliminated (and formally verified by model-
checking, again in less than 1 s and 15 s, with both a Bounded Model-Checking
and an IC3 engine) by patching the model in this way: all speculated instructions
with data dependencies are prevented by an instruction with invalid memory ac-
cess. More in detail, designing a non-buggy (efficient) version of the processor was
out of our scope, we rather wanted to have a working non-buggy model. We thus
exploited the exception generation logic, making it active before committing the
exception generation instruction: whenever an invalid read is done by a specu-
lated instruction, an exception is not generated until confirming (committing) the
instruction (due to branch prediction logic). The exception detection logic immedi-
ately catches the invalid access, then it blocks the read data (thus not available for
subsequent operations) until the instruction is committed or aborted: if committed,
the exception is raised, if aborted, execution resumes on the correct path.

6.7 Conclusions and Future Work

In this chapter, our goal is to describe a formal verification procedure able
to find confidentiality security leaks in contemporary CPU microarchitectures fea-
turing out-of-order/speculative execution, in order to prevent future cybersecurity
speculation-based attacks (as Meltdown or Spectre).

The proposed technique is based on state-of-the-art formal verification concepts,
as model abstraction and model refinement, as well as exploiting novel ideas from
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the information flow tracking field, as taint injection and taint propagation, merging
schemes taken from this two different areas of research to reach our goals.

In future works we will automate the simplifications performed to the model
under analysis (abstraction/reduction), since in this chapter the described trans-
formations were manually driven. Our final goal will be an automated (eventually
in part) transformation and simplification mechanism.
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Chapter 7

Conclusions

In this thesis, we have proposed our work on extending the state of the art with
respect to verification of security-relevant properties in embedded systems. We
selected the most common class of such systems, namely Cyber-Physical Systems
(CPSs), that are networked environments of mingled hardware/software subsys-
tems. The majority of CPSs are both safety- and security-critical since they interact
with our daily lives. Therefore our primary security objectives are confidentiality,
integrity and availability. Keeping those goals in minds, we proposed new verifi-
cation approaches that we demonstrated viable and sound. As the growing size of
CPSs leads to the well-known state space problem while verifying large designs, we
then presented reduction and abstraction techniques to tackle this verification issue.

The first contribution, described in Chapter 3, we performed abstraction and
refinement steps on two prominent representatives of Remote Attestation architec-
tures: SMART and SANCUS. We showed how to express security requirements as
Taint properties. We then extracted, from the two abstract models, a portfolio of
such properties. Model checking results showed that our formal specification and
verification method for security properties in remote attestation architectures is
feasible.

An extension of taint properties is presented in Chapter 4. Path properties are
a new class of properties that are able to capture security vulnerabilities concerning
the flow of data propagating from an attacker-controlled input source to selected
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sink, i.e., they cover a path from one entity source to an entity destination. For
example, the source may be a potentially malicious (i.e., untrusted) RTL (Regis-
ter Transfer Level) register or signal and the destination a sensitive RTL output
signal that we do not want to be reached by confidential data. This is the case of
a confidentiality requirement. As use cases we chose the same targets as in Chap-
ter 3 and we defined a portfolio of Path properties. We employed model checking
techniques to verify them and we presented a brief comparison between Path and
Taint properties.

We performed a thorough analysis and comparison of Path properties with re-
spect to standard state-related properties in Chapter 5. We redefined the second
class State properties as they are meant to express state-related properties, in con-
trast to information flow-related properties such as Path properties. In particular,
starting from a set of security requirements, we defined a portfolio of properties for
each class. We showed advantages and disadvantages of the two classes: in particu-
lar, when Path Properties perform better than State Properties and vice versa (e.g.,
for coverage results or for expressive power). We also provided the implementation
support to integrate Path properties within the framework of a standard model
checker. The comparison was further carried out by an experimental point of view:
they supported the claim of our approach.

The last contribution, presented in Chapter 6, a novel formal verification ap-
proach for security properties in pipelined out-of-order processors. The recently
emerged speculative execution attacks such as Spectre and Meltdown have sparked
concerns in the security community and even in the common public. Common
microprocessor models are large designs and thus suffer from scalability issues.
We presented an abstraction and reduction-based approach to produce an abstract
processor model that is computationally feasible with a standard model checker.
Experimental results supported our claim on scalability and they further demon-
strated that it is a valid security verification method. The bug was indeed exposed
and the model was therefore patched. A subsequent model checker run showed no
sign of the bug.
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Though preliminary, our results have been proved to be viable approaches in the
security verification field. They can be used in conjunction with other techniques
in order to improve the efficiency and coverage. Our focus is mainly towards hard-
ware/software co-design, especially at the HW/SW boundary, but in this thesis we
offered insights from other works that the same concepts can be developed and used
also in other applications.
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