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Abstract

Recommender systems are ubiquitous on the Web, improving user satisfaction and
experience by providing personalized suggestions of items they might like. In the
past years, knowledge-aware recommender systems have shown to generate high-
quality recommendations, combining the best of content-based and collaborative
filtering. The crucial point to leverage knowledge graphs to generate item recom-
mendations is to be able to define effective features for the recommendation problem.
Knowledge graph embeddings learn a mapping from the knowledge graph to a
feature space solving an optimization problem, minimizing the time-consuming
endeavor of feature engineering and leading to higher quality features. Thus, the
main pillar of this thesis investigates the use of knowledge graph embeddings for
recommender systems. In this thesis, we introduce entity2rec, which learns user-
item relatedness for item recommendation through property-specific knowledge
graph embeddings. entity2rec has been benchmarked with a set of existing knowl-
edge graph embeddings algorithms (translational models, node2vec) that we have
applied to the recommendation problem and with popular collaborative filtering
algorithms on three standard datasets. entity2rec has shown to generate accurate and
non-obvious recommendations, achieving high accuracy, serendipity, and novelty,
and to be particularly effective when the dataset is sparse and has a low popularity
bias. Furthermore, entity2rec is based on a recommendation model that encodes
the semantics of the knowledge graph and can thus be interpreted and configured
for a particular recommendation problem. entity2rec has also been tested in a cold
start scenario with real new users through a web application called TinderBook.
TinderBook is a web application that recommends books to users, given a single
book that they like, leveraging an item-item relatedness measure based on entity2rec.

In addition to defining effective features, a crucial element for the quality of
knowledge-aware recommender systems is the quality of the knowledge graph itself.
Typically, when building a knowledge graph from a set of heterogeneous data sources,
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duplicates are a major source of noise in the data. Thus, the second part of the thesis
deals with the entity matching problem in the process of knowledge graph generation.
In this thesis, we introduce “STEM: Stacked Threshold-based Entity Matching”.
STEM is a machine learning layer that can be ‘stacked’ upon existing threshold-
based classifiers to improve their precision and recall for the entity matching task.
STEM has been tested on three datasets from different domains (finance, music)
using two different threshold-based classifiers (linear and Naive Bayes), significantly
improving the quality of the entity matching. STEM has also been applied in the
context of the European research project 3cixty in the creation of a tourist knowledge
graph encompassing places and events of a city, enhancing the deduplication process,
and consequently, the quality of the knowledge graph.

Finally, this thesis deals with the extension of the recommendation problem to
temporal sequences, i.e. with Sequence-Aware Recommender Systems (SARS).
Specific attention is devoted to the problem of learning to recommend tourist paths,
sequences of tourist activities that can be of interest for a user. We propose the Path
Recommender, an approach based on a Recurrent Neural Network (RNN) trained
on sequences of user check-ins collected from Foursquare. The Path Recommender
shows to outperform a set of competing sequence-aware algorithms (bigram, Condi-
tional Random Fields) on a set of relevant metrics. An extended and ad-hoc version
of the Path Recommender architecture is devised for the problem of automated
playlist continuation and tested in the context of the RecSys2018 challenge, achiev-
ing the 14th position out of 33 participants in the creative track and the 36th position
out of 113 participants in the main track. The Foursquare dataset that has been
collected and the evaluation framework for SARS that has been defined in this work
have become public resources available to the research community.
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Chapter 1

Introduction

1.1 Less is more: personalization in the digital age

“Less is more” is the motto that the architect Ludwig Mies van der Rohe invented

to describe the minimalist aesthetic in architecture. In the digital age, though,

abundance is king: 300 hours of video are uploaded to YouTube every minute1,1,569

TV shows and 4,010 movies are available on Netflix2, 20 millions of songs are on

Spotify3 and 564 million of items are sold on Amazon only in the US4. Indeed, it is

estimated that 90% of all the world’s data has been created in the past two years5.

This abundance of options to choose from within just one-click should make us

happier and more satisfied with our decisions, allowing us to find what is just right

for our needs. In fact, this is seldom the case. Psychological studies show that

humans are quite bad at choosing among many different options, easily feeling

overwhelmed, choosing “none of the above” or opting for poor compromises [4].

The studies point out that choosing between a large number of possibilities quickly

becomes a burden as a result of complex interaction among psychological processes

that permeates our culture. We are surrounded by high expectations and get easily

disappointed by choosing any option that is not the very best, we feel the burden of
1https://bit.ly/36a6Bym
2https://bit.ly/2RpGAHg
3https://bit.ly/36gKc2z
4https://bit.ly/2rfxlPk
5https://bit.ly/2Yr6YSm

https://bit.ly/36a6Bym
https://bit.ly/2RpGAHg
https://bit.ly/36gKc2z
https://bit.ly/2rfxlPk
https://bit.ly/2Yr6YSm
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opportunity cost (‘if I had bought X rather than Y, would have that been better?’),

we often regret what we chose (‘I should have never bought this!’), we are averted

to trade-offs (‘I want a fast, beautiful and new car that is also very cheap’) and so

on. On top of this, we have extremely little patience in making choices. Consumer

research suggests that a typical Netflix user loses interest after a time interval of

60 to 90 seconds of choosing, skimming through 10 to 20 titles on one or two

screens [5]. Providing relevant content to users in a short time is crucial to keep

users engaged.

Recommender Systems (RSs) are defined as software tools and techniques

providing suggestions for items to be of use to a user [6]. A RS can be seen as

a personalized filter that help users in reducing the number of available options,

pre-filtering a subset of items that are deemed relevant, and thus reducing the burden

of the decision-making process. Nowadays, all of major web companies make

use of recommender systems to engage their customers and provide them with

tailored content (e.g. Netflix [5], Amazon [7], Youtube [8]). The business value

of recommender systems for these platform-based companies is enormous. For

instance, Netflix has estimated that its recommender system, by avoiding customers’

unsubscriptions and maximizing the effective catalog size, allows them to save more

than 1B$ per year [5].

Artificial Intelligence is the buzzword of the moment and it is considered by

many experts as the technological revolution of the century. Looking at its history,

the quest for AI dates back to the origin of computer science, and many attribute its

birth as a discipline to the Darthmouth workshop in 1956 [9]:

“We propose that a 2-month, 10-man study of artificial intelligence be carried out

during the summer of 1956 at Dartmouth College in Hanover, New Hampshire. The

study is to proceed on the basis of the conjecture that every aspect of learning or any

other feature of intelligence can in principle be so precisely described that a machine

can be made to simulate it. An attempt will be made to find how to make machines

use language, form abstractions and concepts, solve kinds of problems now reserved
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for humans, and improve themselves. We think that a significant advance can be

made in one or more of these problems if a carefully selected group of scientists

work on it together for a summer.”

Ever since, AI has encountered phases of strong optimism (within a generation

... the problem of creating artificial intelligence will substantially be solved, Marvin

Minsky, 1967 [10]) and phases of pessimism (so-called ‘AI winters’), during which

skepticism grew stronger as the problem turned out to be much more complex than

it first appeared. In recent years, AI has fed on the explosion of data available

on the Web. Machine Learning (ML), and more specifically Deep Learning and

Neural Networks, the fields that studies algorithms that are able to learn from data

generalized rules in a bottom-up fashion, and Semantics, the field that studies how to

better structure and organize data in a semantic way in a top-down fashion, have led

the development of AI. Both ML and Semantics are applied nowadays in designing

Recommender Systems that support our choices. ML is applied to extract from

the user’s history general patterns, which are then used to provide personalized

suggestions. If an Amazon user has bought a Los Angeles Lakers jersey and a Space

Jam DVD, chances are that we are talking about a basketball fan. If a Netflix user

has watched Manhattan, Match Point and Vicky Cristina Barcelona, it is likely to be

a Woody Allen lover. If a Spotify user has listened to Metallica, Iron Maiden and

Led Zeppelin, he/she will probably listen to hard rock and metal music.

On the other hand, Semantics has allowed to create web-scale knowledge bases,

often called Knowledge Graphs (KG), which contain a huge amount of information

related to the items of the recommendations [11]. Who are the starring actors of

Pulp Fiction? What is the abstract of the book 1984? Who wrote the song Wish

You Were Here? What do Fargo and The Big Lebowski have in common? All of

these questions can have an answer thanks to the data openly and publicly available

on the Web in the Linked Open Data cloud [12] and can be used to generate more

accurate recommendations, to enrich items descriptions and to gain transparency

into recommendations (Sec. 2.2.2).

This thesis is located at the intersection between the Recommender Systems and

the Semantics research fields, showing how machine learning algorithms can be used
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to learn features from knowledge graphs to make recommendations. This approach

allows to leverage the advancements in Machine Learning in learning features for

prediction problems and the wealth of data available on the Web in the structured

form of Knowledge Graphs. In the next section, we outline the research challenges

and the contributions of the thesis to this overarching research goal.

1.2 Research challenges and contributions

RSs are typically divided into two families: content-based recommender systems and

collaborative filtering recommender systems [13] (see also Sec. 2). RSs collect users’

preferences, which are either explicitly expressed, e.g., as ratings for products, or are

inferred by interpreting user actions, e.g. views and clicks on a web page. Content-

based recommender systems recommend items that are similar to the ones that the

user has liked in the past. Content-based recommender systems require the definition

of a feature vector describing the item content, and suffer the overspecialization

problem, i.e. they tend to recommend similar items over and over again. On the

contrary, collaborative filtering recommender systems leverage the preferences of

other users to identify suitable items for the target user. In its simplest formulation,

collaborative filtering recommends to the target user items that users with similar

preferences have liked in the past [14]. A major appeal of collaborative filtering

is that it does not require an item model and can perform recommendations across

different item types (e.g. can recommend books given preferences about shoes).

Furthermore, by relying on the preferences of other ‘similar’ users, it does not

suffer from the overspecialization problem. For these reasons, collaborative filtering

is probably the most popular and widespread approach to create recommender

systems. However, collaborative filtering suffers from the data sparsity problem [13],

i.e. it does not generate accurate recommendations when few data about users’

preferences is available in the system. Another important limitation of collaborative

filtering is that it cannot recommend ‘new items’, i.e. items that have never been

consumed. Collaborative filtering algorithms also have a limited capability of

generating explanations for the recommendations, as they cannot leverage the item

content for this purpose [15]. Hybrid recommender systems combine content-based
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and collaborative filtering in the attempt to address the limitations of both approaches

and received a lot of attention in the past years [16]. Knowledge graphs are an

ideal data structure for hybrid recommender systems. Thanks to their flexibility,

knowledge graphs can easily model heterogeneous entities, such as users, items,

and other entities, and different types of interactions between them, such as the

preference of a user for an item or the relation of an item with a particular entity.

In the past years, several studies have made of use of knowledge graphs for hybrid

recommender systems, and a few of them have started to use knowledge graph

embeddings for this task (see Paragraph 2.2.2). We believe that the use of knowledge

graph embeddings is quite promising and interesting for recommender systems, as it

allows to leverage the effectiveness of state-of-the-art feature learning algorithms

from machine learning research to obtain feature vectors from knowledge graphs to

make recommendations. In this context, we formulate the first research challenge of

this work (Chapter 3):

RQ1 How can knowledge graph embeddings be used to create accurate, non-

obvious and semantics-aware recommendations based on both collaborative

and content-based filtering?

To address this question, we devise a knowledge graph model including users,

items (entities that are the object of recommendations) and other entities (e.g.

starring actors of a film, author of a book). The knowledge graph includes a

set of different relations, such as user-item interactions (explicit or implicit

feedback) through the ‘feedback’ property and item-entity relations through a

diversity of properties (e.g. ‘starring’, ‘director’, ‘author’). Then, a diversity

of approaches can be used to generate recommendations using knowledge

graph embeddings. Thus, within this major research question, we formulate

and address four sub-research questions:

RQ1.1 how can translational models for knowledge graph embeddings be

used to generate recommendations from a knowledge graph?

We show that translational models (TransE, TransH, TransR) can be ap-

plied directly on the knowledge graph model, embedding all entities and

relations into vectors. Then, the recommendation problem is addressed

as a link prediction problem of the ‘feedback’ property.
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RQ1.2 how can the graph embedding algorithm node2vec be used to generate

recommendations from a knowledge graph?

We show that node2vec can be applied directly on the knowledge graph

model, embedding all entities into vectors. The recommendation problem

is then addressed retrieving the closest items to users in the vector space.

RQ1.3 how can a recommender system use the effectiveness of node2vec in

learning features from graphs, while encoding the semantics of multiple

properties with the purpose of making recommendations?

To address this question, we introduce entity2rec, which generates

property-specific knowledge graph embeddings for item recommenda-

tion. entity2rec generates property-specific embeddings using node2vec

on property-specific subgraphs and computes user-item property-specific

relatedness scores using a relatedness function in the vector spaces. Then,

property-specific relatedness scores are aggregated into a single relat-

edness score that is used to retrieve relevant items for the user. In this

way, entity2rec extends node2vec to multi-relational graphs, allowing to

improve the quality of recommendations even in high sparsity and low

popularity bias datasets and to encode the semantics of the properties in

the recommendation model. The semantic information that is encoded in

the recommendation model can be used to better interpret and explain

recommendations.

RQ1.4 how can entity2rec generate recommendations to new users?

We deploy entity2rec in Tinderbook, a web application that recommends

books to users, given a single book that they like. Tinderbook does not

require any log-in or previous information about the user, but only a

single book they like. Property-specific knowledge graph embeddings

built through entity2rec are used to create an item relatedness function,

which is leveraged to retrieve the closest items to the one provided by the

user in the onboarding phase. Tinderbook shows that entity2rec can be

easily extended to generate recommendations to new users.

A critical element for the quality of recommendations generated using knowledge

graphs is the quality of the knowledge graph itself. Typically, knowledge graphs
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are built integrating data from different data sources, which can contain the same

entity (e.g. the same event from different event databases). Although at a first

glance the problem might appear trivial, identifying and removing duplicates from

heterogeneous data sources can be very challenging, as a consequence of the noise

in the data, different formats, ambiguous names, several names referring to the same

entity and so on. The problem is known as entity matching (Sec. 2.1.2). Entity

matching (also known as instance matching, data reconciliation or record linkage) is

the process of finding non-identical records that refer to the same real-world entity

among a collection of data sources [17]. Entity matching calls for algorithms that

are able to automatically assess, with a certain degree of confidence, whether two

records refer to the same real world entity. A common way to approach the problem

is the use of threshold-based classifiers [18], such as Silk [19]. The basic idea of

threshold-based classifiers is that of computing a set of property-specific similarities

between pairs of records (e.g. string similarity between names, geographic distance

between locations), deriving a global score that indicates the degree of confidence of

the classifier in saying that the records are indeed the same entity. The confidence

score is compared with a decision threshold in order to obtain the final decision. The

higher the threshold, the more selective the classifier will be. Thus, the threshold

introduces a trade-off between the precision and recall of the algorithm and is

typically manually tuned to maximize the F-score of the algorithm. After a set

of preliminary experiments conducted in the context of the FEIII challenge [20],

we observed that combining a set of decision thresholds using simple ensemble

techniques such as majority or union voting breaks the trade-off between precision

and recall, slightly improving both at the same time. In light of this finding, we

have moved forward to investigate whether more sophisticated ensemble techniques

based on machine learning, could do even better. Stacked Generalization (os simply

stacking) [21], i.e. the use of the predictions of an ensemble of classifiers as a feature

vector for an additional supervised classifier, seemed like an excellent candidate for

this purpose. Thus, we have formulated the following research challenge (Chapter 4):

RQ2 Can ensemble learning algorithms such as stacked generalization improve the

performance of threshold-based classifiers in the entity matching process?

To address this question, we introduce STEM (Stacked Threshold-based Entity
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Matching). STEM is a machine learning layer that can be stacked upon any

threshold-based classifier to enhance the quality of the entity matching. More

specifically, STEM combines the predictions of different thresholds through a

supervised classifier, breaking the trade-off between precision and recall, and

improving the entity matching in terms of F-score. Within RQ2, we formulate

three sub-research questions:

RQ2.1 Does STEM improve the F-score of threshold-based classifiers in a

significant and consistent way?

We present experimental tests on three datasets and using two different

threshold-based classifiers, showing that, in all cases, STEM improves

the performance of the threshold-based classifier, up to 43% of F-score.

RQ2.2 How does STEM perform when little training data is available?

We assess the F-score of STEM varying the amount of available training

data, comparing it with that of a set of supervised classifiers directly

trained on property-specific similarity values computed between pairs of

records. The experiments show that STEM consistently performs better

with respect to competitors and is less sensitive to the amount of training

data.

RQ2.3 How can STEM be applied in the process of building a knowledge

graph containing Points of Interests (POI) and events for tourists?

We report on the application of STEM in the context of the 3cixty Euro-

pean research project. 3cixty had the goal of creating an application to

guide tourists in the exploration of a city by means of a comprehensive

knowledge graph containing places and events of a city. STEM has

been applied in the process of generation of the 3cixty knowledge graph,

improving the entity matching process and thus the final quality of the

knowledge graph.

So far, we have always referred to recommender systems that recommend a

single item. We have also assumed that the history of user preferences is the source

of information to learn from. However, not always long-term information about the
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user is available, and, at the same time, short-term information is extremely relevant

in certain applications. A clear example is the tourist domain. We have all probably

experienced the feeling of being lost in a city as tourists and the need of organizing a

tour that maximizes our satisfaction in the city exploration. In the past, the creation

of tourist paths has often been addressed as a specific application of the orienteering

problem [22], i.e. a problem of optimization with constraints whose goal is to

find a path that visits a number of points optimizing a global score. Recently, some

studies have turned the problem upside down, opting for an inductive approach where

‘optimal’ tourist paths are learned from real user’s data and recommended to the user.

Location-based Social Networks (LBSN) represent a great source of data about users’

movement in a city, which can be leveraged to make personalized recommendations.

LBSN allow users to check-in in a Point-of-Interest (POI)6 and share their activities

with friends, providing publicly available data about their behavior. However, a RS

that suggests activities to do in a city ought to take into account where the user was

to effectively recommend where to go next. Suppose the user is in an Irish Pub at

8 PM: is the user more likely to continue her evening in a Karaoke Bar or in an

Opera House? Better a Chinese Restaurant or an Italian Restaurant for dinner after

a City Park in the morning and a History Museum in the afternoon? We define such

a sequence of activities as a ‘path’ or a ‘trail’.

The problem of recommending tourist paths calls for techniques that are specifically

meant to deal with sequential data. These systems are known as Sequence-Aware

Recommender Systems (SARS) and they are receiving a lot of attention in domains

such as music, tourism, e-commerce. SARS are based on a variety of machine

learning approaches, but only few studies have used Deep Learning (DL) models

(Sec. 2.2.3), in spite of their effectiveness in modelling sequential data in other

domains such as Natural Language Processing [23]. Furthermore, many works

conducted in this field lack a common definition of the problem that they are trying

to address, standard evaluation protocols and datasets specifically conceived for

sequences [24]. In this thesis, we aim to contribute to fill these gaps by addressing

the following research challenge (Chapter 5):

6The term venue is used interchangeably with POI in this work to describe an entity that has a
somewhat fixed and physical extension as defined by http://schema.org/Place

http://schema.org/Place


10 Introduction

RQ3 How can we create a recommender system that learns to recommend tourist

paths from LSBN data, effectively leveraging the temporal correlation among

tourist activities?

To answer this research question, we introduce the Path Recommender, a RNN

that learns to model and generate sequences of tourist activities from a dataset

of Foursquare check-ins. In this context, we introduce three sub-research

questions:

RQ3.1 How can we benchmark different SARS, improving the comparability

and reproducibility of experiments?

We introduce an evaluation framework called Sequeval, which defines a

set of metrics and evaluation protocols for sequence-aware recommender

systems, and a new dataset of check-ins that we have collected, processed

and publicly released.

RQ3.2 How do deep learning methods perform compared to other more

traditional modelling approaches in the generation of tourist paths?

We compare the RNN approach of the Path Recommender to a set of

sequence-aware algorithms, showing that it is able to generate accurate

and non-obvious recommendations.

RQ3.3 How can we extend the Path Recommender to deal with the automated

music playlist continuation task?

We describe the extension of the Path Recommender elaborated for

the task of automated music playlist continuation in the context of the

RecSys2018 challenge. The extended model contains a number of im-

provements specifically meant to deal with the task, such as the capability

of handling song titles and lyrics.

In the next section, we summarize the thesis structure.

1.3 Thesis structure

As illustrated in Fig. 1.1, the thesis is divided in six chapters, addressing research

challenges within the Recommender Systems and Semantics research fields.
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RECOMMENDER SYSTEMS SEMANTICS

CHAPTER 3: ENTITY2REC
CHAPTER 6: CONCLUSIONS

CHAPTER 2: STATE OF THE ART
CHAPTER 1: INTRODUCTION

CHAPTER 5: PATH 
RECOMMENDER

CHAPTER 4: STEM

Fig. 1.1 The thesis is divided in six chapters, addressing research challenges in the fields of
Recommender Systems and Semantics.

Chapter 1 provides the general context in which the thesis is grounded, describes

the research challenges and contributions of the thesis and provides an outline of the

work.

In Chapter 2, the state-of-the-art is described, going from general notions about RS

and Semantics to the most recent and advanced works in the field.

Chapter 3 contains the theoretical and experimental work concerning the use of

translational models [25, 26], node2vec [27] and entity2rec [3] to create knowledge

graph embeddings for recommender systems.

Chapter 4 describes the STEM (Stacked Threshold-based Entity Matching) ap-

proach [28], its experimental validation and the use-case of the 3cixty research

project [29].

Chapter 5 describes the Path Recommender [30], the evaluation framework Sequeval

and the collection of the check-in dataset [31, 32], and the extension of the Path

Recommender to the music domain [33].

In Chapter 6, we summarize the findings and highlights, outline the future work, and

draw the main conclusions of the thesis.
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State of the art

This chapter aims to introduce a set of notions that are important for the understanding

of the context in which the thesis is located. We provide basic notions on well-

established concepts such as Knowledge Graphs and Recommender Systems, as well

as summaries of the most recent work in the scientific literature related to what is

presented in this thesis.

2.1 Knowledge Graphs

2.1.1 Background

Knowledge Graphs (KG) are graph-structured knowledge bases (KB) that store fac-

tual information in the form of relationships between entities [34]. Graph-structured

representations have a long history in the fields of logic and artificial intelligence,

often under the name of ‘semantic networks’ [35]. Knowledge graphs enable the

modeling of real world entities and their relations, powering search engines [36], as

well as natural language understanding systems [37]. The term ‘Knowledge Graph’

has been popularized by Google in 2012 [36] to describe their graph-structured

knowledge base containing hundreds of millions of entities and relations. The

Google Knowledge Graph has a major role in the company’s search engine, provid-

ing atomic answers to queries and showing a side panel with specific information
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Fig. 2.1 Google Knowledge Graph information for the entity Thomas Jefferson. The panel
shows a short textual description of the entity, a link to Wikipedia and a set of important
properties that describe him. Then, related entities are shown. By Google - Google web
search, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=37997885

concerning the entity mentioned in the user query. See in Fig. 2.1 an example of

the side panel from the Google Knowledge Graph for the entity ‘Thomas Jefferson’.

The panel shows a short textual description of the entity, a link to Wikipedia and

a set of important properties that describe him. Then, related entities in the KG in

terms of what the users typically also search for are shown.

Most of the major tech companies have built proprietary knowledge graphs to power

their search functions, e.g. Microsoft Satori1 or Amazon’s Product Graph2. KGs

constitute a fundamental ingredient for Question Answering systems and for today’s

voice assistants (Amazon’s Alexa, Microsoft’s Cortana, Google’s Assistant, Apple’s

1https://bit.ly/2DU3rCX
2http://lunadong.com/talks/PG.pdf

https://commons.wikimedia.org/w/index.php?curid=37997885
https://bit.ly/2DU3rCX
http://lunadong.com/talks/PG.pdf


14 State of the art

Siri)3.

Knowledge graphs are also the backbone of the Linked Open Data cloud [12] and

the graph-based representation is the core of the RDF standard [38] and the Semantic

Web [39]. In the past years, several publicly available KGs have been created, such

as DBpedia [11], Wikidata [40] or YAGO [41]. DBpedia and Wikidata are probably

the most well known public knowledge graphs, and they are both derived from

Wikipedia. DBpedia is built by extracting information from Wikipedia infoboxes

and currently contains information about 38.3 million things4. Wikidata is a more

recent project, started in 2012 by the Wikimedia foundation, collaboratively edited

and created by the community. Although it is younger than DBpedia and not as

mature from some viewpoints such as the programmatic access to data, it is gaining

momentum, and currently contains information about 69.7 million things5. In this

thesis, we often rely on DBpedia to create a KG for recommender systems (Chap. 3).

The major convenience of using DBpedia is that it has often been used to create

semantics-aware RS and that public mappings to standard RS datasets have been

publicly released [42].

Knowledge graphs are graphs in the sense that they store facts under the form

of links between entities. For example, consider the fact that Obama was born in

Hawaii. Both ‘Obama’ and ‘Hawaii’ are represented as nodes of the graph, whereas

the property ‘birth place’ is represented by a typed edge connecting the two nodes.

A fact is thus represented by a triple: (subject, predicate, object), e.g. (Obama,

birthPlace, Hawaii). Both entities, such as Obama and Hawaii, and predicates such

as ‘birthPlace’ are identified by unique identifiers, and classified in an ontology,

which pre-defines all possible entity and relation types. Consider the example of the

DBpedia Ontology: each entity is a ‘resource’, marked by the prefix ‘dbr’ standing

for DBpedia resource, and relations are defined by the prefix ‘dbo’ standing for

DBpedia ontology. Thus, a valid triple of DBpedia is: (dbr:Obama, dbo:birthPlace,

dbr:Hawaii) (Fig. 2.2). A more formal definition of knowledge graph and ontology

is provided in Sec. 3.1.

3https://bit.ly/2RrE1nU
4https://wiki.dbpedia.org/about
5https://www.wikidata.org/wiki/Wikidata:Statistics

https://bit.ly/2RrE1nU
https://wiki.dbpedia.org/about
https://www.wikidata.org/wiki/Wikidata:Statistics
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dbr:Barack_Obama

dbr:Hawaii

dbo:birthPlace

dbo:award

dbr:Nobel_Peace_Prize

dbo:party

dbr:Democratic_Party_(United_States)

dbo:spouse

dbr:Michelle_Obama

Fig. 2.2 An excerpt from DBpedia representing the entity Barack Obama. Properties are
represented as typed edges connecting the entity to other entities.

Although the interpretation of existing triples in a KG is straight-forward, that of

non-existing triples is less so. Two alternative assumptions are normally proposed:

1. Closed World Assumption (CWA): non-existing triples indicate false rela-

tionships. For instance, if there is no triple indicating that Obama is married, it

means that he is not married.

2. Open World Assumption (OWA): non-existing triples do not mean that the

relationship is false or true, but simply unknown. In the former example, the

information about Obama’s marriage might simply be missing from the KG.

In some cases, a Local Closed World Assumption (LCWA) [43] is formulated, which

assumes that a KG is only locally complete. Given an observed triple (s, p,o), it

assumes that any other triple (s, p, ô) with ô ̸= o is false. Note that this is strictly

true for 1-to-1 relations such as birthPlace, but not necessarily for 1-to-N relations

such as literaryGenre. Given that large-scale web KGs are incomplete, Semantic

Web and RDF follow the OWA, which we also follow in this thesis, unless specified

otherwise.
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The completeness and the quality of a KG are crucial points, which strongly

depend on the approaches used to construct them. KGs can be created through totally

curated approaches, where experts manually input all the necessary information,

leading to very high quality graphs. This process is however not scalable and very

time-consuming. Collaborative approaches for KG creation, such as the one used in

Wikidata, attempt to improve the scalability of the process by distributing the effort on

the members of the community. This approach preserves the quality of the graph, but

depends on the good will of a number of individuals who need to be coordinated and

motivated in the endeavor. Automated structured approaches attempt to reduce the

human effort in the process, by extracting information from semi-structured sources

(e.g. Wikipedia infoboxes) using ad-hoc rules, and often results in high-quality KGs

such as DBpedia. Also structured sources, such as existing open databases, are often

used and integrated in the construction of a KG. As we will see in the next section,

this leads to a complicated issue that is known as entity matching. However, most of

the information on the Web is unstructured. For this reason, recently, some works

have developed automated unstructured approaches that attempt to extract structured

information from text or other media of web pages using machine learning [43].

Although scalable and with a high coverage, these methods are still far from being

as accurate as the other approaches.

In the following section, we introduce a problem that has been dealt with in this

thesis and that is crucial for the construction of knowledge graphs from structured

sources: the problem of entity matching.

2.1.2 Entity Matching

Knowledge graphs are often built integrating a set of heterogeneous structured data

sources, aiming to increase their coverage and comprehensiveness. Typically, this

leads to the fact that different records from different data sources (or even from the

same data source) refer to the same real world entity. Suppose that you need to

create a knowledge graph containing all the restaurants of a city, and, in order to

do so, you decide to integrate a data source X and a data source Y. Now, suppose

that data source X contains a record for a restaurant named ‘Da Luigi’, located in
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‘Via Napoleone, 32’ and data source Y contains a record for a restaurant named ‘Da

Luigi’ located in ‘Via Monti, 10’. Will they be two different restaurants? Or is the

address of one of the two restaurants wrong? The problem of deciding whether

two records refer to the same real world entity is called ‘entity matching’6. Entity

matching is a crucial task for data integration [44] and probabilistic approaches able

to handle uncertainty have been proposed since the 60s [45].

A survey of frameworks for entity matching is reported by Köpcke in [18], where

a classification of several entity matching frameworks is done by analyzing the

entity type, i.e. how the entity data is structured, blocking methods, i.e. the

strategy employed to reduce the search space and avoiding the comparison of

each possible pair of records, the matching method, i.e. the function utilized

to determine if a pair of records represents the same real world entity and the

training selection, i.e. if and how training data is used. By taking into account

the matching method, entity matching frameworks may be divided in frameworks

without training [46–48], in which the model needs to be manually configured,

training-based frameworks [49, 50], in which several parameters are self-configured

through a learning process on an annotated training set, and hybrid frameworks,

which allow both manual and automatic configuration [51, 52].

The authors of the survey thoroughly compare different frameworks on a set of key

performance indicators and highlight a research trend towards training-based and

hybrid approach, which, in spite of the dependence on the availability, size and

quality of training data, significantly reduce the effort of manual configuration of

the system. The most commonly used supervised learners are Decision Trees and

SVM. Training can help for different purposes, such as learning matching rules or in

which order matchers should be applied, automatically setting critical parameters

and/or determining weights to combine matchers similarity values [53, 54, 50, 51].

In [55], a comparison among the most common supervised (training-based) learning

models is reported together with an experimental evaluation. The authors report

a high degree of complementarity among different models which suggests that a

combination of different models through ensemble learning approaches might be an

effective strategy. The idea of ensemble learning is to build a prediction model by

6Also known as ‘Entity resolution’ when it includes the final step of merging the two entities into
a new one to be input in the KG
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combining the strengths of a collection of simpler base models. Ensemble learning

can be broken down into two tasks: developing a population of base learners from

the training data, and then combining them to form the composite predictor [56]. In

[53] the authors report that an ensemble of base classifiers built through techniques

such as bagging, boosting or stacked generalization (also known as stacking)

generally improves the efficiency of entity matching systems. Another evidence

of the efficiency of ensemble approaches to entity matching is reported in [57].

Ensemble learning has also been successfully applied to other fields relevant to the

Semantic Web community, such as Named Entity Recognition [58, 59]. In Chapter 4,

we show that stacking is also effective when applied to a single threshold-based

classifier using the predictions of several decision thresholds as features. This allows

stacking to be an incremental improvement, a generic layer that can be used on top of

any existing threshold-based classifier already in use by researchers and practitioners.

In the past years, the Linked Data [12] research community has shown a great

deal of interest for Entity Matching. More specifically, Entity Matching (or Instance

Matching) can be seen as a part of the process of Link Discovery. Link Discovery has

the purpose of interlinking RDF data sets that are published on the Web, following

the evidence of recent studies that show that 44% of the Linked Data datasets are not

connected to other datasets at all [60]. Link Discovery can be seen as a generalization

of Entity Matching, because it can be used to discover other properties than an

equivalence relation between instances. Furthermore, as remarked in [61], in Link

Discovery resources usually abide by an ontology, which describes the properties that

resources of a certain type can have as well as the relations between the classes that

the resources instantiate. The authors of [61] report a comprehensive survey of Link

Discovery frameworks, which shows that modern framework such as Silk [62, 63],

LIMES [64], EAGLES [65] combine manually defined match rules with genetic

programming and/or active learning approaches to automatize the configuration

process. A different approach is proposed by WOMBAT [66], which relies on an

iterative search process based on an upward refinement operator. WOMBAT learns

to combine atomic link specifications into complex link specifications to optimize

the F-score using only positive examples. Another line of work is that of collective
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entity matching (or resolution) systems, which are not based on pairwise similarity

comparison, but rather on the attempt to capture the dependencies among different

matching decisions [67–72].

Some approaches have modeled the problem of entity matching as a link prediction

problem approached building knowledge graph embeddings, where the property to

predict is ‘equal to’ [73]. In [74], knowledge graph embeddings are used to obtain a

distance measure between entities that is used to determine whether they represent

the same entity or not. The next section specifically deals with knowledge graph

embeddings.

2.1.3 Knowledge Graph Embeddings

‘Embedding’ is a buzzword nowadays. In recent years, there has been an explosion

of works concerning the topic, especially for what concerns word embeddings. Word

embeddings are vector representations of a word, typically in a Euclidean space,

which preserve the semantics of the word. Word embeddings have become extremely

popular after the release of the Word2Vec model [75]. Word2vec efficiently learns

word embeddings by training a shallow neural network to predict the context of a

word, defined by a sliding window of amplitude c. Thus, given a word wt , the context

is defined by the surrounding words wt−c,wt−c+1, ...,wt+c−1,wt+c. Two different

architectures are proposed, the Continuous Bag-of-Words model (CBOW) and the

Skip-Gram model.

Continuous Bag-of-Words (CBOW) Model: the CBOW model imple-

ments a neural network where the input corresponds to the context words

wt−c,wt−c+1...wt+c−1,wt+c and the output to predict is the target word wt (Fig. 2.3).

Given T training words w1...wT , the learning process is defined as an optimization

problem of the average log-probability of observing the target word wt given context

words wt−c,wt−c+1...wt+c−1,wt+c with respect to the parameters of the neural

network model W :

W = arg maxW
1
T

T

∑
t=1

log pW (wt |wt−c...wt+c) (2.1)
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where pW (wt |wt−c...wt+c) is modeled by the softmax function:

pW (wt |wt−c...wt+c) =
exp(v̂v′wt

)

∑
V
w=1 exp(v̂v′w)

(2.2)

where v′wt
is the output vector of the target word wt , V is the whole vocabulary of

words, and v̂ is the average of the context vectors vwt−c ..vwt+c .

Skip-Gram Model: the Skip-Gram model implements a two layer neural network

where the input corresponds to the target word wt and the output to the context

words wt−c,wt−c+1...wt+c−1,wt+c (Fig. 2.3). Given T training words w1...wT , the

optimization problem is defined as:

W = arg maxW
1
T

T

∑
t=1

c

∑
j=−c,̸=0

log pW (wt+ j|wt) (2.3)

where the probability pW (wt+ j|wt) is modeled by the softmax function:

pW (wO|wI) =
exp(v′wO

vwI)

∑
V
w=1 exp(v′wvwI)

(2.4)

where v′w and vw are the input and output representations of the word w and V is the

complete vocabulary of words. Given the computational cost of summing over all

the words in the vocabulary, in both CBOW and Skip-gram models, the denominator

of Eq.2.2 and Eq.2.4 is normally approximated using either hierarchical softmax or

negative sampling [75]. In recent years, more models of word embeddings have

been proposed, the most famous being FastText [76], which pushes the Word2Vec

model to account for sub-word information.

DeepWalk [77] has shown that language models such as Word2Vec [75] can be

extended to graph structures. We have seen that Word2Vec works by training a neural

network to predict neighboring words in a text. But what is the neighborhood of a

node in a graph? The key idea of DeepWalk is that of defining the neighborhood of a

node as the nodes that are sampled in a random walk process. In this way, DeepWalk
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w(t+1)

w(t+2)

Fig. 2.3 Comparing the CBOW (left) and the Skip-Gram (right) architecture [1]
.

is converting the graph into a ‘text’ by performing a set of random walks on the

graph, making the sequences of nodes sampled during walks become ‘sentences’ of

the text. Then, neural language models originally devised for text, such as Word2Vec,

can be applied on the unrolled graph, learning node embeddings as if they were

‘words’ of a document. In DeepWalk, a random uniform random walk is used, but

different graphs have different connectivity patterns that should be taken into account

when building node representations.

node2vec [78] has built upon this insight, introducing a more sophisticated random

walk strategy that can be more easily adapted to a diversity of graph connectivity

patterns, outperforming DeepWalk. node2vec has two additional hyper-parameters

(p,q) with respect to DeepWalk, which can be set to fine-tune the 2nd order random

walk exploration strategy to the structural properties of the graph. p is called the

return parameter and governs the likelihood of returning to the previous node,

q is called the in-out parameter and governs the likelihood of moving one step

away from the previous node (Fig. 2.4). These two hyper-parameters allow to

create random walks that mix Breadth-First-Search and Depth-First-Search. Then,

similarly to DeepWalk, Word2Vec can be applied on the unrolled graph, generating

node embeddings. Node embeddings generated through DeepWalk and node2vec

can be used for a variety of tasks such as link prediction, multi-label classification,

node relatedness. In Chapter 3, we show the application of node2vec on knowledge

graphs to generate recommendations.
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Fig. 2.4 node2vec random walk transition probabilities a, given that the walk is currently in
v and it just visited t. If p is low, the walk is likely to go back to the previous node. If q is
low, the walk is likely to move one step away from the previous node.

In knowledge graphs, though, not only the graph structure has to be encoded into

the features, but also properties and/or entity types. Thus, knowledge graph embed-

dings are vector representations of entities and/or relations that attempt to preserve

the structure and the semantics of the knowledge graph. They are generated using

feature learning algorithms that project entities and/or relations into a vector space by

solving a learning problem (unsupervised or supervised). Typically, generating KG

embeddings involves three steps: (1) representing entities and relations (2) defining

a scoring function (3) learning entity and relation representations [79]. According

to [79], KG embeddings can be roughly categorized in: semantic matching models

and translational distance models.

Semantic matching models are based on a similarity-based scoring functions that

measures the plausibility of a triple by matching the semantics of the latent repre-

sentations of entities and relations. RESCAL [74] is a semantic matching model,

based on a tensor factorization method that explains triples via pairwise interactions

of vector representations of entities:

f (s, p,o) =
d

∑
i=1

d

∑
j=i

siMpi jo j (2.5)
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where Mp is the matrix representing the relation p and si and o j are the latent vector

representations of entities s and o. Entities are represented by vectors and relations

by matrices. Thus, RESCAL requires O(d2) parameters per relation, where d is the

dimension of the embedding vector. Other examples of semantic matching models

are: DistMul [80], which simplifies RESCAL by representing relations with diagonal

matrices, thus reducing its complexity; ComplEX [81], which extends DistMul using

complex numbers in place of real numbers; NTN (Neural Tensor Network) [82],

which is an expressive neural network that learns representations using non-linear

layers. Recent work has dropped the assumption of embedding in a Euclidean space,

showing that using hyperbolic spaces can lead to better performance, especially in

modelling hierarchies [83, 84].

On the other hand, translational distance models are based on a scoring function

that measures the plausibility of a triple by measuring distances in the vector space,

typically after performing a translation operation. Popular examples are TransE [85],

TransH [86], and TransR [87]. The basic idea of translational models is that mod-

elling relations in a KG as translations in a vector space. In TransE, for instance, it is

assumed that s+ p≈ o and the scoring function becomes:

f (s, p,o) = D(s+ p,o) (2.6)

where D is a distance function in the vector space such as the L1 or L2 norm. In

this thesis, we have applied translational models to the recommendation problem

and we provide a detailed description of this process in Chapter 3.2.1. We focus on

translational models, as they have shown to be intuitive, computationally efficient

and accurate at the same time. However, as a future research line, semantic matching

models might as well be applied to the recommendation problem.

Another popular knowledge graph embedding approach is RDF2Vec [88]. RDF2Vec

is based on a neural language model similar to DeepWalk, and it has been applied to

small and large scale RDF graphs with a number of different applications such as

link prediction, entity relatedness and entity recommendation. In general, knowledge

graph embeddings have been applied to address several tasks such as link prediction,

triple classification, entity classification, entity resolution, relation extraction, ques-

tion answering, and recommender systems [79]. A specific paragraph of the next
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section is dedicated to describing published work on knowledge graph embeddings

for recommender systems (Sec. 2.2.2), which are the central topic of this thesis.

Before delving into that, though, we provide a general overview of basic concepts in

the Recommender Systems fields as well as on the research trends in the field.

2.1.4 Summary

In this section, we have introduced the concept of Knowledge Graph and discussed

the state-of-the-art in two important related research topics: Entity Matching and

Knowledge Graph Embeddings. We have seen that Knowledge Graphs are graph-

based knowledge bases, which have gained popularity in the past years thanks to their

richness and flexibility, both as proprietary assets of tech companies and as Open

Data publicly released on the Web through the Linked Open Data movement. We

have discussed the troublesome endeavor of building a KG, with a specific focus on

the Entity Matching problem when integrating data from heterogeneous sources. We

have then presented one of the hottest research topics related to KGs, i.e. the learning

of KG vector representations using KG embeddings. After introducing the general

concept of embeddings and reviewed the famous Word2Vec model for learning word

embeddings, we have described popular approaches that are specifically meant to

learn embeddings of (knowledge) graphs.

2.2 Recommender Systems

2.2.1 Background

Recommender Systems (RSs) are software tools and techniques providing sugges-

tions for items to be of use to a user [6]. As discussed in Chapter 1, RSs have gained

popularity on the Web as effective tools to deal with the problem of information

overload and in supporting the choices of users among large sets of available op-

tions. RSs are typically based on the history of the user’s preferences, which can be

expressed in two ways:
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Explicit feedback: the user explicitly communicates the value of an item, for

instance using a graded scale. A typical form of explicit feedback are ratings.

Ratings have been used substantially in the past years by the research community,

also thanks to the Netflix prize [89] whose task was developing algorithms that are

able to predict movie ratings. The task is known as rating prediction and its goal

is predicting the rating value that a user will assign to a certain item. However,

the final objective of the RS is providing a small subset of relevant items for the

user, which can be shown in the limited space of a web interface. This problem is

known as top-N item recommendation (see Sec. 3.1 for a formal definition). In the

past, models trained for rating prediction were used for top-N item recommendation,

using the predicted rating to rank a set of items that are presented to the user. This

approach is far from optimal, as studies have shown that RSs optimized for rating

prediction do not necessarily perform well for top-N item recommendation [90]. For

this reason, recently, more attention has been placed on addressing the top-N item

recommendation problem using models that optimize directly the ranking quality,

rather than the error on ratings. Many platforms (e.g. Netflix) have also switched

from a five stars rating mechanism to a thumb-up/thumb-down explicit feedback,

as binary feedback can be easily used for assessing the quality of ranking models

and requires less cognitive effort to the user. In this thesis, we always consider an

experimental scenario where we have binary feedback and we directly address the

top-N item recommendation problem (Sec. 3). Explicit feedback is precious, as it

provides a direct and easy way to understand the user’s taste. However, the users

typically only rate a small portion of the items that they consume. Thus, explicit

feedback is extremely sparse and in many cases it is useful to resort to implicit

feedback.

Implicit feedback: the user interacts with an item and assumptions are made on

her opinion on the item. Examples are clicks, views, purchases, browsing history,

mouse movements. No explicit information about the appreciation of the item is

provided, but educated guesses are possible. For instance, if a user frequently listens

to an artist, it is reasonable to assume that she likes the artist. Or similarly, if a

user has bought an item and does not return it, we can assume that he likes it. All
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of these assumptions make implicit feedback less reliable than explicit feedback.

However, implicit feedback is abundant, and can provide a lot of information on

the user’s behavior. For this reason, in the past years, many RSs have started to

encompass implicit feedback in their models, typically accounting for different

confidence levels [91].

As mentioned in Sec. 1, RSs are typically divided in content-based and collabo-

rative filtering systems. We will now give an overview of the most commonly used

techniques in content-based and collaborative filtering. In the following, we will

generally refer to a utility function rui, which models the usefulness of item i for user

u. In this perspective, the goal of the RS is that of finding the items i that maximize

the utility function rui for u.

Content-based filtering (CBF) is based on the principle of recommending to

the user items that are similar to the ones he/she liked in the past. Content-based

recommenders require an item model, i.e. a feature vector describing an item. For

instance, in the case of a song recommender, each song could be modelled as a

vector including the artist, the album, the year of publishing, or the record label.

Some approaches then proceed by creating an annotated corpus, labeling as positive

examples items that are liked by the user, and train supervised classifiers to identify

them [92]. This requires, however, a good number of annotations to provide good

performance, as they require to train one classifier per user of the system. Other

approaches use a nearest neighbor model, where the utility rui of user u for item i is

given by:

rui =
∑ j∈Nu(i) si jru j

∑ j∈Nu(i) |wi j|
(2.7)

where si j is a measure of content similarity between item i and j and Nu(i) are the

nearest items to i among those already consumed by u.

Often, content-based filtering is used for textual documents. Text documents can be

represented through keywords or through more sophisticated approaches based on

semantics [93, 94]. Recently, different works have used embeddings to learn item

representations for content-based recommender systems [95, 96]. Semantic-aware

approaches show generally better performance with respect to keywords-based ones,
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as they allow to disambiguate textual information and to model semantic relations

among words and sentences [92].

One of the advantages of content-based recommender is that they can generate

recommendations using only the target user feedback, with no need to look into

the behavior of other users (‘user independence’). Another important advantage

of content-based recommenders is that they can recommend new items, if they are

similar in content to the ones that the user has liked (‘new items’). Furthermore,

content-based recommendations are easy to explain to the user, as the dimensions

of the content that are most similar to the user profile can be highlighted together

with the recommendation, e.g. “we suggest Pulp Fiction because it stars John

Travolta” (‘Explainability’). However, content-based recommenders typically end

up in a loop where only items of the same genre are recommended, resulting in a

lack of serendipity (‘Overspecialization’). Furthermore, they need an item model,

which requires domain knowledge (e.g. which actors are starring in a movie),

strongly hinders recommendations between different types of items (e.g. hard to find

content similarities between a song and a pair of shoes) and, in some cases, requires

advanced modeling techniques based on semantics and/or on machine learning to

create effective item representations (‘Limited content analysis’).

Collaborative filtering (CF) recommends to the target user items that users with

similar preferences have liked in the past [14]. The traditional approach to CF is

based on neighborhood models [97]. User-based systems, such as GroupLens [98],

predict the interest of a user u for an item i using the ratings given to i by other users

that have similar rating patterns (‘neighbors’). The neighbors of user u are typically

the users v whose ratings on the items rated by both u and v are most correlated to

those of user u (Fig. 2.5). More formally, the predicted utility of user u for item i is

given by:

rui =
∑v∈Ni(u)wuvrvi

∑v∈Ni(u) |wuv|
(2.8)

where wuv is a similarity function between users and Ni(u) are the nearest neighbors

of user u who rated item i. Several possible similarity functions are possible, such

as the cosine similarity or the Pearson correlation similarity [97]. Note that, in

pure CF, the similarity function does not depend on user’s characteristics, such as
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Fig. 2.5 User-based collaborative filtering. Similar users to the active user in terms of
consuming patterns are identified (‘neighbors’). Then, items consumed by the neighbors that
the active user has not consumed yet are presented as recommendations.

demographics, but only on his/her consuming patterns. In a nutshell, in user-based

collaborative filtering, rui is a weighted average of the appreciation of the item i

given by similar users.

On the other hand, item-based systems [99], predict the interest of a user u for an

item i based on the ratings of u for items similar to i (Fig. 2.6):

rui =
∑ j∈Nu(i)wi jru j

∑ j∈Nu(i) |wi j|
(2.9)

where wi j is a similarity function between items and Nu(i) are the most similar items,

among those already consumed by u, to the item i. Note that the equation resembles

that of a content-based KNN (Eq. 2.7). Differently from content-based systems,

though, the similarity of two items is high if several users of the system have rated

these items in a similar fashion and not if they are similar in content. In fact, CF

does not need item models at all.

Traditional neighborhood models such as [99] are still quite widespread in industry,

because of their simplicity, efficiency (they require no training phase) and stability
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Fig. 2.6 Item-based collaborative filtering. Similar items, in terms of consuming patterns, to
the items consumed by the active users are identified and presented as recommendations.

(item-based systems can make recommendations to new users once item similarities

have been computed), and for their moderate transparency (in item-based approaches

neighboring items can be shown to the user as explanations). However, neighborhood

models have limited coverage, as they only rely on co-rated items, and are sensitive

to sparse data. Latent-factor models address these issues and usually generate more

accurate recommendations with respect to neighborhood models, as the Netflix prize

has shown [100]. Latent-factor models are typically based on matrix factorization

and learn user and item representations as vectors in a latent space from the user-item

interaction matrix [101]. Take as an example Fig. 2.7, users and items are projected

in the latent space. For instance, users that tend to like highly caloric fruits, will

score highly on that dimension, similarly to highly caloric fruits. Users who like

small fruits will score low on that specific dimension, similarly to small fruits. In

this way, users end up close together in the vector space to fruits they like or may

like. Note that latent dimensions do not have an explicit semantics and are often not

easy to interpret. In its basic formulation, the utility function rui is modeled as a dot
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size

calories

Fig. 2.7 Matrix Factorization individuates latent dimensions to explain the consumption
patterns of the users.

product of the user and the item latent vector:

r̂ui = qT
i ∗ pu (2.10)

Then, the loss function becomes:

L(p,q) = ∑
u,i
(rui−qT

i ∗ pu)
2 +λ (∥qi∥2 +∥pu∥2) (2.11)

where the first term represents the squared difference between the actual ratings rui

and the predicted ratings qT
i ∗ pu and the second term is a regularization that prevents

latent factors from becoming arbitrarily large. The loss can have many additional

terms, accounting for users and items biases for instance, and can be minimized using

stochastic gradient descent or Alternating Least Squares [100]. Specific models have

been proposed to deal with implicit feedback and to endow matrix factorization

with weights accounting for different levels of confidence in the preferences of the

users (Weighted Regularized Matrix Factorization) [91]. Then, since recommender

systems usually provide a ranked set of items, other optimization criteria have been

proposed to directly address the learning of latent factors as a ranking problem [102].
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A very popular algorithm for collaborative filtering that combines the strength of

neighborhood-based and model-based approaches is the Sparse LInear Method

(SLIM) [103]. SLIM uses the same linear prediction function of an ItemKNN model,

but the item similarity matrix W is learned by minimizing a loss function L. The

loss function includes a least-square term to obtain accurate recommendation, an

L1 regularization term to have a sparse W and an L2 regularization term to prevent

overfitting.

Collaborative filtering is arguably the most widespread recommendation ap-

proach in industry. Nevertheless, collaborative filtering typically suffers the cold start

problem, namely it cannot generate recommendations for new users and items and it

does not perform well when the dataset is very sparse [100]. Take as an example

Fig. 2.6, since no user has consumed grapes, grapes are a new item and cannot be

recommended to any user using CF. On the other hand, content-based filtering could

recommend it, was it similar in content to fruits that the user has liked. Besides, col-

laborative filtering systems can only generate explanations in terms of similar items,

whereas content-based systems can leverage the item content. Consider the example

of Fig. 2.6. The model could easily come up with an explanation such as: “People

who like cherries are also interested in oranges”. This type of explanation is quite

common in modern e-commerce portals, as it is easy to generate using CF systems.

However, explanations that take into account the item content, such as “This orange

comes from your favorite farmer” or “This orange is biological”, cannot be generated.

Hybrid recommender systems put together content-based and collaborative fil-

tering logics in the attempt to take the best of both worlds [16, 104]. Different

strategies have been experimented to create hybrid recommender systems [13]. In

some cases, predictions of CBF and CF systems are combined a posteriori, for

instance using a voting scheme [105]. In other cases, content-based profiles are used

to boost collaborative filtering systems [106] and viceversa [107]. Most researchers

are currently working on a single unified model that combines both content-based

and collaborative filtering [108, 109]. The work presented in this thesis belongs to

this family.

Factorization Machines (FMs) are popular algorithms to create hybrid recommender
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Fig. 2.8 Factorization Machine matrix model. User-item interactions are modeled as feature
vectors x that contain an index of the user, an index of the item, additional information such
as user and/or item properties or contextual information such as the time of the interaction.
Picture is taken from the original paper [2].

systems using a single unified model [2]. FMs work with an extremely sparse matrix,

containing a one-hot encoding of users, items and additional information about users

and items (Fig. 2.8). Then, the model equation is:

y(x) = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=1

< vi,v j > xix j (2.12)

where w0 ∈ R, w ∈ Rn, and:

< vi,v j >=
k

∑
f=1

vi f v j f (2.13)

are the parameters to estimate. k is a hyper-parameter of the model that determines

the dimensionality of the factorization. Note that FMs reduce to matrix factorization,

if the matrix of Fig 2.8 only contains the first and second group, i.e. the user and

item indexes. For this reason, factorization machines can be seen as an extension

of matrix factorization methods, which can also encompass additional user and

item information in the form of feature vectors, and are thus ideal to create hybrid

recommender systems. Factorization machines have also been used to model other

information about the user-item interaction, such as contextual information [110].

Another popular algorithm for creating hybrid recommender systems is the Sparse

LInear Method with Side Information (S-SLIM) [111], an extension of the SLIM



2.2 Recommender Systems 33

method that includes side information about the items. S-SLIM uses information

about the item content to create constraints on the learning of the item similarity

matrix W that is used to make recommendations. A first approach (‘Collective’)

assumes that, if two items are similar in content, they should also be similar in

co-purchase behavior. Thus, the same similarity matrix W that predicts purchase

behavior should also predict item features. An alternative approach assumes that the

item-item similarity matrix W can be in turn derived from a weighted combination

of the item features, where the weights are learned from the optimization problem.

Knowledge graphs are an ideal structure for hybrid recommender systems. They

are able to model the interactions of multiple users with multiple items, which can

be used for collaborative filtering, and interactions between items and other entities,

which can be used as an ‘item model’ for content-based filtering. In the next section,

we describe the most relevant and recent works on RSs using knowledge graphs, i.e.

‘Knowledge-aware Recommender Systems’.

2.2.2 Knowledge-aware Recommender Systems

In the past years, several works have shown the effectiveness of using knowledge

graphs to generate recommendations. Many also make use of Linked Open Data to

create KGs for recommender systems, as they represent a wealth of multi-domain

knowledge about the items of the recommendations [112]. As mentioned earlier

in Sec. 2.2.1, a typical application of semantics and KGs in recommender systems

is the construction of an item model. For instance, in [94], the authors extend the

popular Vector Space Model (VSM) [113] from the Information Retrieval research

field to model items in a KG. In VSM, a textual document d is represented as a

n-dimensional vector:

d = (w1,w2, . . . ,wn) (2.14)

where w1 are term frequency-inverse document frequency (TF-IDF) weights associ-

ated to the words in the document and n is the size of the vocabulary. The intuition

of [94] is that in a KG, two entities s1 and s2 are related if there are many triples

with the same property and object. Thus, each item i, under a specific property p, is
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represented as :

ip = (wp
1 ,w

p
2 , . . . ,w

p
n) (2.15)

wp
j are TF-IDF weights, where the TF of a term is defined as the frequency of node j

as object of the triple (i, p, j). The similarity between items is given by a weighted

average of the cosine similarity between the property-wise representation of items,

which becomes part of a nearest neighbor model similar to Eq. 2.7.

Many works have also used KGs to create hybrid recommenders. For instance, the

same extended VSM of [94] is combined with collaborative filtering for a LOD-based

event recommender systems in [114].

In [115], the authors propose HeteRec, an approach based on a hetereogeneous

information network including user-item interactions and item relationships to other

entities. They use the graph to diffuse the observed user implicit feedback along

different meta-paths (i.e. the sequence of types of the edges of a path) to generate

recommendation candidates. Then, they apply matrix factorization to compute user

and item latent factors, which are combined in a global recommendation model.

In [116], the authors propose three methods to generate KG-based recommendations

based on probabilistic logic programming. The first, EntitySim, uses only the links

of the graph, the second, TypeSym also uses the types of the entities, and the third,

GraphLF, combines graphs with matrix factorization.

In SPrank [117, 42], the authors start from a knowledge graph including user-item

interactions and item relations to other entities. They define a set of features based

on the number of meta-paths connecting users to items, which are then combined in

a global score through a learning to rank algorithm.

Knowledge graphs are also valuable for their ability of generating effective ex-

planations. As discussed in Sec. 2.2.1, explanations can be generated in terms of

neighboring items, users, or item content and KGs can generate all of these expla-

nations, as they typically include all the necessary information. In [15], the authors

propose a method that jointly ranks items and entities in the KG so that entities can

be used as an explanation of the recommendations. In [118], the authors propose Ex-

pLOD, a framework that generate explanations of recommendations creating a graph

connecting items liked by the user in the past with the recommended items through

the properties available in the KG. In [119], the authors augment an autoencoder
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architecture with semantic information from DBpedia to generate content-based ex-

planations for recommendations. In [120], the authors propose a method that jointly

learns association rules between items in a knowledge graph and a recommender

model to generate explainable recommendations.

These systems are based on manually defined vector models and similarity functions.

In the next section, we discuss approaches based on knowledge graph embeddings.

Knowledge graph embeddings for recommender systems In the past couple of

years, some works have applied knowledge graph embeddings to recommender

systems. In [121], the authors use translational models to create knowledge graph

embeddings that are then combined with embeddings of the items’ content (textual

and visual knowledge) to initialize a matrix factorization. This paper represents

an interesting example of how knowledge graph embeddings can be combined

with other representations build from multimedia content in order to foster the

recommendation quality.

In [95], RDF2Vec embeddings are used to create item representations for a

content-based Item-KNN recommender system. The model can be seen as an

improvement over the model of [94], where the VSM model of the item has

been replaced by an entity embedding that preserves the structure of the graph in

the vector space. RDF2Vec embeddings have also been used to create a hybrid

recommender system as feature vectors of a Factorization Machine in [88].

In [122], the authors use recurrent neural networks to learn representations of

different meta-paths connecting users and items that are then aggregated through a

pooling and a fully connected layer.

In [123], the authors experiment with different graph embedding techniques on a

knowledge graph, showing that the combination of collaborative and content-based

information leads to better result in all cases. In [124], the authors create

metapath-aware embeddings using DeepWalk [77], which are then combined using

an aggregation function and used to initialize a matrix factorization for rating

prediction. This work shares some similarities with the work presented in this

thesis (Chapter 3), in the way it builds KG embeddings using a graph embedding

algorithm using one metapath at the time and then merges them. The first important
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difference is that it is based on DeepWalk rather that on node2vec, which is more

primitive in its random walk strategy (see the discussion above in Sec. 2.2.1).

Furthermore, the use of metapaths rather than single properties leads to a more

complex recommendation model, not as easy to interpret and configure as entity2rec

(see Sec. 3.4.3), and to a complexity that scales with the number of metapaths rather

than with the number of properties.

2.2.3 Sequence-aware Recommender Systems

As described in Chapter 1, in many domains, such as the tourist one, it is important to

generalize the discussion to RSs that recommend sequences of items, i.e. Sequence-

Aware Recommender Systems (SARS) [24].

LBSN represent a great source of data about users’ movement in a city, which can

leveraged by RSs to provide personalized recommendations. One of the distinctive

features of LBSN data with respect to traditional location prediction systems, which

are mainly based on GPS data and focus on physical mobility [125], is the rich

categorization of POIs in consistent taxonomies, which attribute an explicit semantic

meaning to users’ activities. The availability of venue categories has opened new

research lines, such as statistical studies of venues peculiarities [126], automatic

creation of representations of city neighborhoods and users [127, 128], definition

of semantic similarities between cities [129]. Most importantly, venue categories

play an important role in POI recommender systems, as they enable to model user

interests and personalize the recommendations [130]. These works, though, do not

account for temporal correlations among the visits of POIs, and are thus not suitable

to generate tourist paths. On the other hand, the goal of the next POI prediction

problem is to predict a sequence of venues (‘a tourist path’) that can be interesting for

a given user, given some training sequences of previously liked POIs. For instance,

in [131] the authors propose a matrix factorization method including personalization

and geographic constraints that attempts to predict the next check-in of the user

based on her past activities and geographical factors. Feng et al. [132] proposed a

metric embedding algorithm that captures both the sequential information and the
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individual preference. Such metric is used to create a Markov chain model capable

of representing the transition probabilities between a given POI and the next one.

The key features that are implicitly considered in the embedding creation phase

are the conceptual similarity and the geographical distance of the analyzed venues.

These two studies directly develop a model to recommend the next POI, while in

[133] the authors focus on modeling sequences of venue categories. They propose a

framework that uses a mixed Hidden Markov Model to predict the most likely next

venue category and recommend POIs belonging to the most likely next category in

the neighborhood of the user. Another interesting work is that of [134], where the

authors address the next POI prediction problem using a personalized Markov Chain

with latent patterns optimized using Bayesian Personalized Ranking.

As we mentioned in Chapter 1, the problem of next POI prediction share important

features with that of itinerary recommendation, which aims at recommending se-

quences of POIs by solving the orienteering problem. Typically, to each POI a score

is assigned based on popularity and/or personal preferences, travel times between

POIs are inferred from data, and the problem of itinerary recommendation is tackled

as an optimization problem where the objective is to maximize the total possible

score of the itinerary while complying with the constraints [135, 22, 136].

Another common application domain for SARS is music. The task of generating

music playlists was already discussed and presented in a seminal work by Herlocker

et al. in 2004 [137]. The authors suggested that it would be interesting to be able

to suggest, in the music domain, not only the songs that will be probably liked

by a certain user, but an entire playlist of songs that is globally pleasing. This

problem was later addressed by Chen et al. [138], who designed and implemented a

recommender system capable of generating personalized playlists by modeling them

as Markov chains. The problem of playlist generation has received a lot of attention

lately, thanks to the ever increasing use of streaming platforms for music content,

such as Spotify, Amazon Music or Apple music, which allow users to create, edit

and listen to music playlists. For these reasons, the RecSys2018 challenge [139],

sponsored by Spotify, has dealt with the automated music playlist continuation task.

The results of the challenge are summarized in [140] and provide important insights

on the best performing approaches to the problem. The challenge has shown that
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most of the top-performing systems use a combination of well known methods for

RS such as matrix factorization and learning to rank models, often in a two-stage

approach. A high recall model is first used to identify a large set of potential

candidate songs for the music playlist, and then a second model, typically based on

learning to rank, is used to rank the candidates and obtain the final suggested songs.

Neural networks were also used to learn playlist representations using autoencoders,

Convolutional Neural Networks (CNN) or RNNs. In this thesis, we describe our

participation to the RecSys2018 challenge, where we propose a RNN architecture

(Sec. 5.5), which achieved a good ranking. Recurrent Neural Networks (RNNs)

have received a great deal of attention in machine learning research lately [141],

as, thanks to their improved architectures [142, 143] and the advancements in

computational power, they are able to effectively model sequences. For this reason,

they have been used successfully for tasks such as speech recognition [144],

sentiment analysis [145], image captioning [146] and neural language models [23].

One of the typical applications of RNN in the field of language modeling is that of

generating text by recursively predicting the next word in a sentence [147].

One of the oldest applications of SARS is that of predicting Web navigation

patterns. Zhou et al. [148] describe a web RS based on a sequential pattern mining

algorithm. The training set is given by the access logs of a website and the goal of

the system is to predict the next web page that a user will visit, given her previously

visited pages. Interactions between users and web pages are also the typical object

of prediction of session-based recommenders [149]. In session-based recommender

systems, no long-term information is available about the user, and the goal is to

predict the next interaction of the user with the system, given a set of short-term

interactions. A common example is predicting where the user will click next, given

the history of the session’s clicks. This is a very active line of research, as it deals with

a very common problem in websites for which users normally do not authenticate

with a personal profile. Interestingly, it is one of those problems where RNNs have

most commonly been used in the RS research field [24].

Another application of SARS is the market basket analysis, where the goal is to

use the sequence of previous transactions in order to predict what a customer is going



2.2 Recommender Systems 39

to buy next [150]. For example, Rendle et al. [151] proposed a method based on

personalized transition graphs over Markov chains, while Wang et al. [152] designed

a recommender capable of modeling both the sequential information from previous

purchases and the overall preferences by a hybrid representation.

2.2.4 Evaluation of Recommender Systems

Most of the research in the RS field has focused on developing new algorithms for

recommendations, and as discussed in the previous sections, a plethora of approaches

exist nowadays to generate recommendations. How to decide which algorithm suits

best an application among the large number of available systems? Typically, such a

decision is made through experimental evaluations. Evaluations can be divided into

three families: offline experiments, user studies and online evaluations [153].

In offline experiments, a pre-collected dataset of user’s choices is used and an eval-

uation protocol is set up with the aim of simulating the behavior of real users. For

instance, the Movielens1M [154] dataset contains 1M ratings of users on movies. It

can be split into a training set to train the model and into a validation set to test the

model’s performance, simulating a real recommender systems.

In user studies, a set of test subjects is selected and asked to perform a number of

tasks while interacting with the recommender system. For instance, they can be asked

to express their appreciation for a set of recommended items. User studies are much

more flexible than offline experiments, as they can be designed to answer questions

that cannot be trivially simulated (e.g. ‘How surprised were you in receiving this

recommendation?’). Furthermore, they are closer to a real production environment,

where the ultimate goal of the RS is to improve the satisfaction of users. However,

user studies are more time-consuming and expensive to run than offline experiments

and are impossible to repeat in the same exact conditions, hindering comparability

and reproducibility. Also, great care has to be put in the selection of the subjects in

reproducing the population of the real RS.

In online evaluations, data is gathered from the users’ behavior while they interact

with the real application. Online evaluations are meant to directly measure the sys-

tem’s goal, such as the improvement in the click-through rate given by a specific RS
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technique. These tests in real production environments are risky, as they expose users

to techniques that are still under development. Thus, typically offline experiments

and user studies are run before running real online evaluations.

In this thesis, we mostly use offline experiments, as they are the most widespread

practice among researchers, thanks to their reproducibility and relative ease of im-

plementation.

The first ingredient for the offline evaluation of a RS is the definition of a set of

purposeful metrics. Different properties of a RS can be tested and prediction ac-

curacy is the most widely used, as it is reasonable to assume that, the more a RS

is accurate in its predictions, the more it will be appreciated by the user. On top

of this, prediction accuracy is simple to measure in offline experiments and several

metrics have been devised for this purpose. For the task of rating prediction (see

Sec. 2.2.1), commonly used metrics are the Root Mean Squared Error (RMSE) or

the Mean Absolute Error (MAE) between the predicted and the actual ratings. For

the top-N item recommendation problem (see Sec. 2.2.1), metrics from Information

Retrieval (IR) such as precision@N, recall@N, Non-Discounted Cumulative Gain

(NDCG@N) [155] are used to assess the accuracy of the ranking of items. When

using IR metrics, an important point to be specified is the candidate generation

process, i.e. what are the candidate items that are ranked by the RS [156]. Three

protocols are commonly used [157]:

• All Items: for each user, all items in the catalog are candidate items for the

recommendations, both in the training and in the test set. This protocol assumes

that items can be consumed multiple times by the user. It also assumes that

items that are not appearing in the test set of the user are negative examples.

• All Unrated Items: for each user, all items in the catalog that he/she has not

already rated in the training set are candidate items for the recommendations.

This protocol is similar to All Items, but assumes that the user can only

consume the item once. The All Unrated Items is described in detail in

Sec. 3.3, being the one used in this thesis.

• Rated Test Items: for each user, only the rated items in his/her test are used

as candidates. This allows to not make the assumption that unrated items are
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negative examples. However, it does not reproduce well a real environment,

where the goal of the RS is to rank all the items in the catalog, rather than

those that the user has already consumed.

Metrics of the IR family are gaining popularity in the evaluation of RS [90] and are

used in this thesis (Sec. 3.3), together with metrics that go beyond pure accuracy.

Indeed, in a survey on RS evaluation [137], the authors review several metrics,

suggesting that accuracy alone is not sufficient to measure the RS quality. For

instance, a user might find very accurate, but obvious and boring, the suggestions of

a RS proposing only very popular Oscar-winning movies. For this reason, they also

review and discuss metrics such as coverage, novelty, serendipity, and confidence.

Coverage measures the ability of the RS of spanning the entire catalog of items in the

recommendations. Novelty measures the ability of the RS of recommending items

that appear as novel to the user. Serendipity measures the ability of recommending

accurate and unexpected items to the user. Confidence measures the degree of

confidence of the RS in the recommendation that it makes. These metrics are

typically computed user-wise and then averaged across all the users of the system

(except for other cases, where additional information about users is available and

other partitions can be created [158]). Formal definitions of these metrics are

provided in Sec. 3.3 for the entity2rec experimental setup and in Sec. 5.3.2 for

Sequeval.

Another important element of an offline experiment is the splitting protocol.

Jannach et al. [159] compared several recommendation algorithms in an offline

experiment, analyzing their performance by relying on a comprehensive evaluation

framework. The authors considered different splitting protocols and metrics,

designed to characterize both the accuracy, in terms of rating and ranking, and the

coverage of the suggested items. The results of the experimental trails suggest that

some common algorithms, despite their high accuracy, tend to only recommend

popular items that are probably not very interesting for the users of a real system.

This problem is related to the popularity biases introduced by the offline evaluation

protocol: for this reason, it is not advisable to compare different algorithms by

relying only on measures related to their accuracy. In addition, different splitting
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protocols produce significantly different and non-comparable outcomes.

Several software tools are available with the purpose of simplifying the process of

comparing the performance of recommendation algorithms. They typically include

some evaluation protocols and a reference implementation of well-known techniques.

However, the comparability between the results of these framework is still an issue.

Said and Bellogín [160] compared several of these tools in order to check if their

results are consistent. They discovered that the values obtained with the same dataset

and algorithm may vary significantly among different frameworks. For this reason,

it is not feasible to directly compare the scores reported by these tools, because they

are obtained relying on several protocols. The discrepancies reported by the authors

are mainly caused by the data splitting protocol, the strategy used to generate the

candidate items, and the implementation choices related to the evaluation metrics.

In light of these considerations, in this thesis, we describe in detail the experimental

setup, specifying the choice in the generation of candidates for the ranking, the

metrics, the splitting protocol, the exact version of the dataset used as well as the

software implementations (Sec. 3.3).

2.2.5 Summary

In this section, we have introduced a set of basic notions related to the field of

Recommender Systems, illustrating the different types of feedback used, the different

possible formulations of the recommendation problem and the most commonly used

models for RSs. We have highlighted the pros and cons of the different approaches,

showing how the research trend is directed towards hybrid systems that combine

the best of collaborative and content-based filtering. We have shown how KGs are

ideal to build hybrid recommenders and reviewed the state-of-the-art in KG-aware

recommender system, with a specific attention on methods that use KG embeddings.

Then, we have discussed the extension of the recommendation problem to sequences

of items and presented the state-of-the-art in sequence-aware recommender systems

and their possible applications. Finally, we have discussed the thorny matter of the

evaluation of RSs, remarking the importance of choosing metrics and evaluation
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protocols that well fit with the measurement of specific properties of interest of the

RSs under analysis.



Chapter 3

entity2rec: Property-specific
Knowledge Graph Embeddings for
Item Recommendation

In the last decade, research on recommender systems has shown that hybrid systems

generally outperform collaborative or content-based systems, addressing problems

such as data sparsity, new items or overspecialization [13]. Knowledge graphs are

an ideal data structure for hybrid recommender systems, as they allow to easily

represent user-item interactions, and item and user properties as typed edges con-

necting pairs of entities. Recommender systems based on knowledge graphs have

shown to generate high quality recommendations that are also easier to interpret

and explain (see Sec. 2.2.2). The crucial point to use knowledge graphs to perform

item recommendations is to be able to effectively define a measure of user-item

relatedness on the graph. At the present time, most knowledge-aware recommender

systems are based on manually engineered features based on path counting and/or

random walks [112]. However, machine learning research has shown that feature en-

gineering, in addition to being a cumbersome and time-consuming endeavor, leads to

features that are task-specific and do not perform as well as those devised by feature

learning algorithms [161]. Feature learning algorithms applied to a knowledge graph

generate ‘knowledge graph embeddings’, which have proven to be very effective for
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prediction tasks such as knowledge graph completion (see Sec. 2.1.3).

In this chapter, we address the following research questions:

RQ1 How can knowledge graph embeddings be used to create accurate, non-

obvious and semantics-aware recommendations based on both collaborative

and content-based filtering?

Within this major research question, we formulate and address four sub-

research questions:

RQ1.1 how can translational models for knowledge graph embeddings be

used to generate recommendations from a knowledge graph?

RQ1.2 how can the graph embedding algorithm node2vec be used to generate

recommendations from a knowledge graph?

RQ1.3 how can a recommender system use the effectiveness of node2vec in

learning features from graphs, while encoding the semantics of multiple

properties with the purpose of making recommendations?

The remainder of the chapter is structured as follows. In Sec. 3.1 we provide a set of

basic definitions that are used throughout the chapter, in Sec. 3.2 we describe how

translational models and node2vec are applied to generate recommendations from

knowledge graphs and we describe the entity2rec approach, in Sec. 3.3 we report

the experimental setup, in Sec. 3.4 we describe the results of the experimental com-

parison between KG embeddings recommender systems and collaborative filtering

systems, in Sec. 3.5 we describe the TinderBook use-case and how entity2rec can be

used in a cold-start scenario. Finally, in Sec. 3.6 we summarize the chapter.

Part of the work described in this chapter has been published in the proceedings of

the European Semantic Web Conference (ESWC) and itssatellite events [26, 26] and

of the ACM conference on Recommender Systems (RecSys) [3].

3.1 Definitions

In this section, we introduce some definitions that will be used in the remaining of

this thesis.
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entity2rec: Property-specific Knowledge Graph Embeddings for Item

Recommendation

Definition 1 A knowledge graph is a set K = (E,R,O) where E is the set of entities,

R⊂ E×Γ×E is a set of typed relations between entities and O is an ontology. The

ontology O defines the set of relation types (‘properties’) Γ, the set of entity types Λ,

assigns entities to their type O : e∈ E→Λ and entity types to their related properties

O : ε ∈ Λ→ Γε ⊂ Γ.

Definition 2 Users are a subset of the entities of the knowledge graph, u ∈U ⊂ E.

Definition 3 Items are a subset of the entities of the knowledge graph, i ∈ I ⊂ E.

Users and items form disjoint sets, U ∩ I = /0.

Definition 4 A triple is an edge of the knowledge graph, i.e. (i, p, j)∈ R where i∈ E

and j ∈ E are entities and p ∈ Γ is a property.

Definition 5 The property ‘feedback’ describes an observed positive feedback

between a user and an item. Feedback only connects users and items, i.e.

(u, f eedback, i) where u ∈U and i ∈ I.

A depiction of the knowledge graph model for the specific case of movie recom-

mendation is provided in Fig. 3.1.

The problem of top-N item recommendation is that of selecting a set of N items

from a set of possible candidate items. Typically, the number of candidates is order

of magnitudes higher than N and the recommender system has to be able to identify

a short list of very relevant items for the user. More formally:

Definition 6 Given a user u ∈U, the set of candidate items Icandidates(u)⊂ I is the

set of items that are taken into account as being potential object of recommendation.

Definition 7 A ranking function ρ(u, i) : (u, i) ∈U× Icandidates(u)→R is a function

that takes as inputs a user and a candidate item and assigns a score to them. The

higher the score, the more relevant the item is deemed to be for user u.
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Fig. 3.1 Knowledge graph represents user-item interactions through the special property
‘feedback’, as well as item properties and relations to other entities. Items are represented
in blue, whereas other entities are represented in grey. The knowledge graph allows to
model both collaborative and content-based interactions between users and items. In this
depiction, ‘starring’ and ‘director’ properties are represented as an example, more properties
are included in the experiments.
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Definition 8 A ranking function ρ(u, i) induces a permutation of integers corre-

sponding to sorting the list of items Icandidates(u) according its score:

π(u, Icandidates(u)) = {i1, i2, . . . , iL} (3.1)

where L = |Icandidates(u)| and ρ(u, i j)> ρ(u, i j+1) for any j = 1, . . . ,L−1.

Definition 9 Top-N item recommendation provides to each user u ∈U the recom-

mended items R(u), i.e. the first N ≤ L elements of π(u, Icandidates(u)):

R(u) = π(u, Icandidates(u))N
1 = {i1, i2, . . . , iN} (3.2)

where ρ(u, i j)> ρ(u, i j+1) for any j = 1, . . . ,N−1.

3.2 Knowledge Graph Embeddings Models

3.2.1 Translational Models

In this subsection, we address RQ1.1: how can translational models for knowledge

graph embeddings be used to generate recommendations from a knowledge graph?

In order to predict missing relations in a knowledge graph, most algorithms rely on

feature learning approaches that are able to map entities and relations into a vector

space, generating knowledge graph embeddings. Recommendations on a knowledge

graph can be seen as predicting the missing feedback property (Fig. 3.2), which mod-

els the user appreciation for an item, as described in Sec. 3.1. Translational models

embed entities and relations in a vector space, by seeing relations as translations in

the vector space. Different models have been proposed in the past years, we compare

the following:

• TransE [85]: learns representations of entities and relations so that h+ l ≈ t

where (h, l, t) ∈ R is a triple. h is the ‘head’ entity, l is the relation and t is the

‘tail’ entity. The score function for a triple is thus f (h, l, t) = D(h+ l, t) where
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D is a distance function such as the L1 or the L2 norm. TransE has a space

complexity O(nd +md) and a time complexity O(d).

• TransH [86]: first extension of TransE, enables entities to have different

representations when involved in different relations by projecting entities on a

hyperplane identified by the normal vector wl . The score function becomes:

f (h, l, t) = D(h⊥+ l, t⊥), where h⊥ = h−wT
l hwl and t⊥ = t−wT

l twl and D

is a distance function such as the L1 or the L2 norm. TransH has twice more

parameters to learn relations than TransE O(nd +2md) and a time complexity

O(d).

• TransR [87]: enables entities and relations to be embedded in a separate vector

space through a matrix Ml associated to any relation l that performs projections

of vectors from entity to relation space. The score function is: f (h, l, t) =

D(hl + l, tl) where hl = hMl and tl = tMl and D is a distance function such

as the L1 or the L2 norm. TransR, by introducing a separate vector space of

dimension k, has a higher time and space complexity: O(dk) and O(nd+mdk)

respectively.

TransE is the oldest and simplest among the three methods, and it is considered

to be a seminal work, opening the research line and showing its promising results.

TransH and TransR are conceived to allow an entity to have different representations

depending on the relation that involves them (Fig. 3.2). Generally, TransH and

TransR perform better than TransE, at the cost of a higher model complexity. Since

results may change depending on the dataset and on the problem at hand, we

experiment with all of them for the recommendation problem.

The models are trained through the minimization of a pairwise ranking loss

function L that measures the total difference between the scores of ‘positive triples’

D+ and ‘negative triples’ D−, plus regularization terms such as the margin γ and

other constraints:

L = ∑
(h,l,t)∈D+

∑
(h′,l,t ′)∈D−

max(0,γ + fl(h, t)− fl(h′, t ′)) (3.3)
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Fig. 3.2 Recommending items as a knowledge graph completion problem. Translational
models are used to predict the ‘feedback’ property.

Positive triples D+ are triples of the knowledge graph K, whereas negative triples D−

are obtained by ‘corrupting’ positive triples replacing the head or tail entities with

other entities. Notice that this strategy can produce false negatives, as knowledge

graphs are known to be incomplete and missing triples can still be valid facts. In

order to reduce this risk, we adopt the strategy described in [86], which considers

non-uniform sampling probabilities depending on the type of relation. The core

idea of using translational models for item recommendation is that of using the

negative score assigned to a triple f (u, f eedback, i) as the ranking function, i.e.

ρ(u, i) =− f (u, f eedback, i) (Fig. 3.3).

3.2.2 node2vec

In this subsection, we address the RQ1.2: how can the graph embedding algorithm

node2vec be used to generate recommendations from a knowledge graph?

node2vec [78] learns representations of nodes in a graph through the application of

the word2vec model on sequences of nodes sampled through random walks (Fig. 3.4).

The innovation brought by node2vec is the definition of a random walk exploration

that is flexible and adaptable to the diversity of connectivity patterns that a network

may present. Given a knowledge graph K encompassing users U , items I (the object
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Fig. 3.3 (a): in TransE, user, items and relations are embedded in the same space and the
ranking function is defined through the distance between the u+ f eedback and i (b): in
TransH, translations are performed on the hyperplane w f eedback and thus the ranking function
is defined through the distance between u⊥+d f eedback and i⊥ (c): in TransR, entities and
relations are embedded in different vector spaces and thus the ranking function is defined
through the distance between u f eedback + f eedback and i f eedback



52
entity2rec: Property-specific Knowledge Graph Embeddings for Item

Recommendation

Bob

director

director

director

director

feedbackfeedback
Alice

feedback
feedback

Coen 
brothers

Fargo

The Big Lebowski

Michael Bay

Pearl Harbor

Armageddon

starring

Bruce Willis

Steve Buscemi

starring

starring

feedback

Bob

Alice
Coen 
brothers

Fargo

The Big Lebowski

Michael Bay

Pearl Harbor

Armageddon

Bruce Willis

Steve 
Buscemi

Pearl Harbor, Michael Bay, 
Armageddon, Bruce Willis, 
…

Steve Buscemi, Fargo, Bob, 
Armageddon, Alice, Pearl 
Harbor, …

The Big Lebowski, Coen 
Brothers, Fargo, Bob, 
Armageddon, Alice, …

random 
walks word2vec

Fig. 3.4 Node2vec for item recommendation using the knowledge graph. node2vec learns
knowledge graph embeddings by sampling sequences of nodes through random walks
and then applying the word2vec model on the sequences. The ranking function for item
recommendation is then given by the node relatedness in the vector space.

of the recommendations, e.g. a movie) and other entities E (objects connected to

items, e.g. the director of a movie), node2vec generates vector representations of the

users xu and of the items xi (and of other entities xe). More specifically, node2vec

learns a mapping x : e ∈ K→ Rd , optimizing the node2vec objective function [78]:

max
x ∑

e∈K
(− logZe + ∑

ni∈N(e)
x(ni) · x(e)) (3.4)

where Ze = ∑v∈K exp(x(e) · x(v)) is the per-node partition function and it is

approximated using negative sampling [75], and N(e)∈K is the neighborhood of the

entity e defined by the node2vec random walk. Thus, we propose to use as a ranking

function the relatedness between the user and the item vectors: ρ(u, i) = s(x(u),x(i))

where s is the cosine similarity in this work. Note that, although in general the

knowledge graph K is a directed graph, in this case we neglect the direction of

properties in the random walks, as the final objective is the estimation of a symmetric

user-item relatedness function.

3.2.3 entity2rec

The crucial point to leverage knowledge graphs to perform item recommendations is

to be able to effectively model user-item relatedness from this rich heterogeneous
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network. To this end, it is highly desirable to opt for approaches that are able to

automatically learn user and item representations from an optimization problem

on this graph of interactions, minimizing the time-consuming endeavour of feature

engineering and leading to better performance [161]. This justifies the choice of

knowledge graph embeddings. At the same time, though, it is also beneficial to use a

recommendation model whose features have a straight forward interpretation and that

can thus be easily adapted to a specific recommendation problem. node2vec [78] has

recently shown to be particularly effective at learning vectorial node representations

and can be used to generate recommendations, as discussed in the previous section.

However, node2vec cannot account for the diversity of semantic properties of a

knowledge graph. Films can be related in terms of starring actors and not in terms of

subject, can share the same director but not the same writer. Processing the whole

knowledge graph altogether neglecting the semantics of the properties would not

allow to account for these variations.

In this subsection, we address RQ1.3: how can a recommender system use the effec-

tiveness of node2vec in learning features from graphs, while encoding the semantics

of multiple properties with the purpose of making recommendations?

To address this question, we start by learning property-specific vector representation

of nodes considering one property at the time, i.e. creating property-specific sub-

graphs Kp. Then, for each Kp independently, we learn a mapping xp : e ∈ Kp→ Rd ,

optimizing the node2vec objective function [78]:

max
xp

∑
e∈Kp

(− logZe + ∑
ni∈N(e)

xp(ni) · xp(e)) (3.5)

where Ze = ∑v∈Kp exp(xp(e) · xp(v)) is the per-node partition function and it is ap-

proximated using negative sampling [75], and N(e) ∈ Kp is the neighborhood of

the entity e defined by the node2vec random walk. The optimization is carried out

using stochastic gradient ascent over the parameters defining xp and it attempts to

maximize the dot product between vectors of the same neighborhood, i.e. to embed

them close together in vector space. Similarly to what has been in done in 3.2.2, we

consider K as an undirected graph. The global approach is summarized in Fig. 3.5.
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Fig. 3.5 entity2rec creates property-specific subgraphs, computes property-specific embed-
dings and derives property-specific relatedness scores. The property-specific relatedness
scores are then aggregated to obtain a global relatedness score, which is used as a ranking
function for item recommendation. The figure illustrates the case in which hybrid property-
specific subgraphs are used, as described in Section 3.2.3, and where only the starring and
the director properties are considered.
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Property-specific subgraphs

We consider two different strategies to create property-specific subgraphs. The first

one is the one presented in [3], which keeps separated collaborative and content-

based information. We shall note with Kp the property-specific subgraphs created

with this strategy and we will refer to it as entity2rec (2017) in Section 5.5.6. The

latter is the one presented in this work, which considers hybrid property-specific

subgraphs, in the sense that each of them contains both collaborative and content-

based information. We refer to the hybrid subgraphs as K+
p and to the whole

approach as entity2rec, as it has proven to be the most effective one among the two

(see Section 3.4).

Collaborative-content subgraphs For each property p∈Γε , we define a subgraph

Kp as the set of entities connected by the property p, i.e. the triples (i, p, j). For

example, if p = ‘starring’, we have edges connecting movies to their starring actors,

e.g. (Fargo, starring, Steve_Buscemi), if p = ‘subject’ we have edges connecting

movies to their category, e.g. (Fargo, subject, American_crime_drama_films). The

only subgraph Kp containing users is that corresponding to p = ‘feedback’, where

triples represent user-item interactions, e.g. (user201, feedback, dbr:Fargo). From

the vector representations xp, property-specific relatedness scores can be defined as

follows:

ρp(u, i) =

s(xp(u),xp(i)) if p = ‘ f eedback′

1
|R+(u)|∑i′∈R+(u) s(xp(i),xp(i′)) otherwise

where R+(u) denotes a set of items liked by the user u in the past and s denotes a

measure of vector similarity. In this work, we consider s as the cosine similarity.

The features include both collaborative and content information and have a straight-

forward interpretation. When considering p = ‘feedback’, K is reduced to the

graph of user-item interactions and thus ρ f eedback(u, i) models collaborative filtering.

ρ f eedback(u, i) will be high when x f eedback(u) is close to the item x f eedback(i) in vector

space, i.e. when i has been liked by users who have liked the same items of u in the

past and are thus tightly connected in the K f eedback graph. On the other hand, when
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p corresponds to other properties of the ontology O, the features encode content

information. For instance, if p is ‘starring’, ρstarring(u, i) will be high if xstarring(i) is

close to items xstarring(i′), i.e. when i shares starring actors with items that the user u

has liked in the past. For ‘new items’, i.e. with no feedback from users, we are still

able to compute all the content-based features.

Hybrid subgraphs The largest issue with the use of property-specific subgraphs

that consider collaborative and content-based information as separated is that of-

ten these graphs have poor connectivity, as a consequence of the fact that many

properties connect one item to a few or even a single entity. This is clearly unde-

sirable for feature learning algorithms based on random walks such as [3, 78, 77].

Consider the example of the property p = ‘director’. Since most films have only

one director, Kdirector is similar to a set of disconnected star graphs, where each

director is connected to his/her movies. In order to overcome this limitation and

maintain the interpretability and explainability of the approach of using one property

at the time to create features, we propose to use the ‘feedback’ property as a pivot

property to create bridges between different parts of the graph, i.e. to replace Kp with

K+
p = Kp

S
(u, f eedback, i), where u ∈U and i ∈ I. Therefore, we move from an

approach where collaborative (K f eedback) and content-based (Kp with p ̸= f eedback)

information is well distinguished to a set of property-specific graphs that are hy-

brid, as they contain both the ‘feedback’ information and one specific item property

(Fig. 3.6).

In this case, Γε = Γε \ f eedback. From the subgraphs K+
p , vector representations

xp can be learned as described above and property-specific relatedness scores between

a user u ∈U and an item i ∈ I can be defined as follows:

ρp(u, i) = s(xp(u),xp(i)) (3.6)

where s is the cosine similarity. Note that since users are now part of every subgraph

K+
p , it is no longer necessary to distinguish between collaborative features, where

the relatedness score can be computed directly as in Eq. 3.6, and content-based

features that require to look at the items that the user u has rated in the past, as done
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in [3]. For ‘new items’, i.e. with no feedback from users, we are able to compute all

features.

Global user-item relatedness

For each user-item pair, we are now able to compute all property-specific related-

ness scores ρ⃗(u, i) = {ρp(u, i)}p∈Γ, either using content/collaborative subgraphs as

described in Section 3.2.3 or using hybrid subgraphs as described in Section 3.2.3.

We aim to consider these scores as features of a global user-item relatedness model

that can be used to provide item recommendation. To this end, we experiment both

an unsupervised and a supervised approach.

Unsupervised approach

In the unsupervised approach, user-item property-specific relatedness scores are

combined into a single user-item relatedness score used as ranking function ρ(u, i)

through different possible functions such as:

entity2recavg(u, i) = avg({ρp(u, i)}p∈Γ) (3.7)

entity2recmin(u, i) = min({ρp(u, i)}p∈Γ) (3.8)

entity2recmax(u, i) = max({ρp(u, i)}p∈Γ) (3.9)

Supervised approach

In the supervised setting, we define the global user-item relatedness ρ(u, i;θ) =

f (⃗ρ(u, i);θ) as a function f of the property-specific scores ρ⃗(u, i) and of a set of

parameters θ . The goal is that of finding the parameters θ that optimize top-N item

recommendation as a supervised learning to rank problem [162].

Training data Given the set of users U = {u1,u2, . . . ,uN}, each user uk is as-

sociated with a set of items from feedback data i⃗k = {ik1, ik2, . . . , ikn(k)}, where

n(k) denotes the number of feedback released by the user uk, and a set of labels
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y⃗k = {yk1,yk2, . . . ,ykn(k)} denoting the ground truth relevance of items i⃗k (e.g. ratings

with explicit feedback or boolean values with implicit feedback). The training set is

thus represented as τ = {(uk, i⃗k, y⃗k)
N
k=1}. In the case of implicit feedback, negative

examples are obtained by random sampling, i.e. by randomly selecting items that

the user has not interacted with.

Sorting ρ(u, i;θ) is a ranking function, meaning that, for each user uk, the corre-

sponding items i⃗k are sorted according to its score. ρ(u, i;θ) induces a permutation

of integers π(uk, i⃗k,θ), corresponding to sorting the list of items i⃗k according its

score (see Section 3.1).

Loss The agreement A(π(uk, i⃗k,θ), y⃗k) between the permutation π(uk, i⃗k,θ) in-

duced by ρ(u, i;θ) and the list of ground truth relevance of items y⃗k can be measured

by any information retrieval metric that measures ranking accuracy, such as P@k

[163]. From this score, a loss function can be easily derived as:

C(θ) =
N

∑
k=1

(1−A(π(uk, i⃗k,θ)) (3.10)

Optimization The learning process has thus the objective of finding the set of

parameters θ that minimize the loss function C over the training data:

θ̂ = argmin
θ

C(θ) (3.11)

In this work, we use LambdaMart [164], a listwise learning to rank algorithm that

has state-of-the-art results in learning to rank and has shown to achieve the best

scores in previous work such as [3, 117]. We define:

entity2reclambda(u, i) = LambdaMart({ρp(u, i)}p∈Γ) (3.12)
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Fig. 3.6 (a): Property-specific subgraphs as defined in [3]. Collaborative and content
information are separated. User-item relatedness scores can be computed directly only for
K f eedback, whereas for content properties it is necessary to average the distance with respect to
the items that a user has rated in the past. For properties such as “director”, the connectivity
is poor. (b): Property-specific subgraphs as defined in this work. Feedback from user to
items is included in every graph, improving connectivity and allowing to measure directly
user-item relatedness for all properties.
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Computational complexity

In this section, we derive the computational complexity of entity2rec in terms of

the number of users U and the number of items I. The computational complexity of

entity2rec can be divided into a component required for training and one required

for testing:

Tentity2rec = T train
entity2rec +T test

entity2rec (3.13)

The training of entity2rec can be in turn expressed as the training time of node2vec

repeated for p times, where p is the number of distinct properties in the graph, which

is the time required to generate the embeddings and the time required to learn the

global relatedness score:

T train
entity2rec = pT train

node2vec +T train
global (3.14)

node2vec is mainly composed of three steps: one in which transition probabilities

are pre-computed for each edge, one in which nodes are sampled through random

walks, and one in which the word2vec model is applied to learn the embeddings

[78]:

T train
node2vec = Tpreprocessing +Twalks +Tword2vec (3.15)

The time for pre-processing transition probabilities depends on the number of edges

Tpreprocessing = O(E). Since a fixed number of random walks is performed for each

node and a single random walk is done in unitary time, Twalks = O(N). Learning the

embeddings with word2vec using the Skip-gram model can be done in Tword2vec =

O(Nlog2N) as explained in [1]. Summing the three components, we obtain that:

T train
node2vec(N,E) = O(E)+O(N)+(N log2 N) (3.16)

Given that the number of edges E ∼UI and the number of nodes N ∼U + I, we

have:

T train
node2vec(U, I) = O(UI)+O(U + I)+O((U + I) log2 (U + I)) (3.17)
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Now, in the unsupervised case:

T train
global = O(1) (3.18)

and the total training complexity:

T train
entity2rec(p,U, I)=O(pUI)+O(p(U+I))+O(pU log2(U+I))+O(pI log2(U+I))

(3.19)

The time for testing is:

T test
entity2rec = O(pUI) (3.20)

as for each pair of user and items we need to compute p scores. The total complexity

for entity2rec becomes:

Tentity2rec(p,U, I)=O(pUI)+O(p(U+I))+O(pU log2(U+I))+O(pI log2(U+I))

(3.21)

meaning that for large values of U and I:

Tentity2rec(p,U, I)∼ O(pUI) (3.22)

entity2rec is linear in the number of users, linear in the number of items and linear in

the number of properties in the graph. Note that the dependence on p can be removed

using an embarrassingly parallel implementation that distributes the generation of

the embeddings on different machines, obtaining:

T parallel
entity2rec(U, I)∼ O(UI) (3.23)

3.3 Experimental setup

In this section, we describe the experimental setup, providing information about the

three datasets used in the experiments, how the knowledge graph has been created,

and how we have configured and evaluated the systems.
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3.3.1 Datasets

The first dataset is MovieLens 1M.1 MovieLens 1M [154] is a well known dataset

for the evaluation of recommender systems and it contains 1,000,209 anonymous

ratings of approximately 3,900 movies made by 6,040 MovieLens users. The

second dataset is the LastFM dataset,2 which contains 92,834 listen counts of 1,892

users of 17,632 musical artists [165]. The third dataset is LibraryThing,3 which

contains 7,112 users, 37,231 books and 626,000 book ratings ranging from 1 to

10. For these three datasets, their items have been mapped to the corresponding

DBpedia entities [42] and we make use of these publicly available mappings4 to

create the knowledge graphs using DBpedia data [11]. The mappings have been

created semi-automatically, using DBpedia look up[12] and then checking manually

suspicious cases, such as entities referenced multiple time, and items with no match.

We select the most frequently occurring properties p from the DBpedia Ontology5

(see Appendix A), and for each item property p, we include all the triples (i, p,e)

where i ∈ I and e ∈ E, e.g. (dbr:Pulp_Fiction, dbo:director, dbr:Quentin_Tarantino)

in KMovielens1M.6 We finally add the ‘feedback’ property, modeling user-item

interactions. Similarly to what has been done in previous work [166, 88], we add a

‘feedback’ edge for all movie ratings where r ≥ 4 in Xtrain, all user-item interactions

in LastFM as the dataset does not contain explicit feedback, and ratings where r ≥ 8

for LibraryThing.

We split the data into a training Xtrain, validation Xval and test set Xtest contain-

ing, for each user, respectively 70%, 10% and 20% of the ratings. Users with less

than 10 ratings are removed from the dataset, as well as items that do not have a

corresponding entry in DBpedia. In this process, we lose 674 movies from Movie-

lens1M, 27 users and 7867 musical artists from LastFM, 323 users and 27305 books

for LibraryThing. The final datasets statistics after this processing are reported in

1https://grouplens.org/datasets/movielens/1m/
2https://bit.ly/2s2No2Q
3https://www.librarything.com
4http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
5https://wiki.dbpedia.org/services-resources/ontology
6dbo stands for DBpedia Ontology, dct stands for Dublin Core Terms and dbr stands for DBpedia

resource.

https://grouplens.org/datasets/movielens/1m/
https://bit.ly/2s2No2Q
https://www.librarything.com
http://sisinflab.poliba.it/semanticweb/lod/recsys/datasets/
https://wiki.dbpedia.org/services-resources/ontology
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Dataset Domain Feedback Users Items ρf H
Movielens 1M Movie 948976 6040 3226 95.13 7.17
LastFM Music 78633 1865 9765 99.57 7.77
LibraryThing Book 410199 6789 9926 99.39 8.26

Table 3.1 Datasets statistics. ρr represents the sparsity of the user-item interactions, H is the
entropy of the positive feedback distribution.

Table 3.1. The sparsity of the feedback matrix ρ f is defined as:

ρ f =
F
|U ||I|

(3.24)

where F is the number of user-item interactions (e.g. ratings or implicit feedback),

|U | is the number of users and |I| is the number of items in the dataset. The sparsity

measures how many interactions, out of all the possible interactions, have actually

taken place between users and items of the system. Given that typically users interact

with a very limited fraction of all the items available, the sparsity of datasets for

recommender systems is generally very high [167]. We observe that Movielens 1M

has a much lower sparsity with respect to LastFM and LibraryThing. The entropy of

the dataset is defined in terms of the distribution of positive feedback assigned by

users to items:

H =−∑
i∈I

P+(i) logP+(i) (3.25)

where P+(i) : I → [0,1] is the fraction of positive feedback attributed to the item

i. The entropy of the dataset is a useful measure of the popularity bias, i.e. the

effect according to which most of the positive feedback is concentrated on a few very

popular items [90]. Being the entropy maximum when the distribution is uniform, a

low entropy value indicates a strong concentration of feedback on very popular items,

i.e. high popularity bias, whereas a high entropy value points at the contrary effect.

In Figure 3.7, we represent the P+(i) distributions for the three datasets to visualize

this effect. Movielens 1M and LastFM have a strong popularity bias, whereas this

effect is relatively weaker for LibraryThing.
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Fig. 3.7 Showing how the positive feedback is distributed among the items of the three
datasets, in a log-log scale. LastFM has a strong concentration in the top-100 items, but it
has a significant long tail compared to Movielens 1M. In LibraryThing, the popularity bias is
weaker and the feedback is more evenly distributed among the items. These considerations
are consistent with the values of entropy reported in Table 3.1.
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3.3.2 Evaluation

We use the evaluation protocol known as AllUnratedItems [157], i.e. for each user,

we select as possible candidate items, all the items present in the training or in the

test set that he or she has not rated before in the training set:

Icandidates(u) = I \{i ∈ Xtrain(u)} (3.26)

Items that are not appearing in test set for user u are considered as negative examples,

which is a pessimistic assumption, as users may actually like items that they have

not seen yet. Scores are thus to be considered as a worst-case estimate of the real

recommendation quality. We measure standard information retrieval metrics such as

precision (P@k) and recall (R@k).

P(k) =
1
|U | ∑u∈U

k

∑
j=1

hit(i j,u)
k

(3.27)

R(k) =
1
|U | ∑u∈U

k

∑
j=1

hit(i j,u)
|rel(u)|

(3.28)

where the value of hit is 1 if the recommended item i is relevant to user u, otherwise

it is 0, and rel(u) is the set of relevant items for user u in the test set. Differently

from P(k), R(k) accounts for the fact that different users can have a different number

of relevant items, e.g. for a user who is highly selective and likes fewer items, finding

relevant items is harder.

In addition to these accuracy-focused metrics, we also decided to measure the

serendipity and the novelty of the recommendations. Serendipity can be defined

as the capability of identifying items that are both attractive and unexpected [168].

[169] proposed to measure it by considering the precision of the recommended

items after having discarded the ones that are too obvious. Eq. 3.29 details how we

compute this metric. hit_non_pop is similar to hit, but top-k most popular items are

always counted as non-relevant, even if they are included in the test set of user u.

Popular items can be regarded as obvious because they are usually well-known by
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most users.

SER(k) =
1
|U | ∑u∈U

k

∑
j=1

hit_non_pop(i j,u)
k

(3.29)

In contrast, the metric of novelty is designed to analyze if an algorithm is able to

suggest items that have a low probability of being already known by a user, as they

belong to the long-tail of the catalog. This metric was originally proposed by [170]

in order to support recommenders capable of helping users to discover new items.

We formalize how we computed it in Eq. 3.30. Note that this metric, differently from

the previous ones, does not consider the correctness of the recommended items, but

only their novelty.

NOV(k) =− 1
|U |× k

· ∑
u∈U

k

∑
j=1

log2 Ptrain(i j) (3.30)

The function Ptrain : I→ [0,1] returns the fraction of feedback attributed to the item i

in the training set. This value represents the probability of observing a certain item

in the training set, that is the number of ratings related to that item divided by the

total number of ratings available. In order to avoid considering as novel items that

are not available in the training set, we consider log2(0)
.
= 0 by definition.

We compare entity2rec to a set of state-of-the-art collaborative filtering recom-

mender systems from the MyMediaLite library [171], which has shown to outperform

competing libraries in controlled experiments [172]:

• BPRMF: a matrix factorization method where the optimization is performed

using Bayesian Personalized Ranking [102].

• BPRSLIM: a Sparse LInear Method where the optimization is performed using

Bayesian Personalized Ranking [103].

• ItemKNN: a K-nearest neighbor recommender based on items [99].

• LeastSquareSLIM: a Sparse LInear Method optimized for the ranking elastic

net loss [103].

• MostPop: a simple baseline algorithm where the top-N popular items are

recommended to every user.
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• WRMF: the Weighted Regularized Matrix Factorization is a matrix factor-

ization method where a weighting matrix is used to account for different

confidence levels in the user-item feedback [91].

Furthermore, we include in the evaluation translational-based models (Sec. 3.2.1)

and node2vec (Sec. 3.2.2). Finally, as a non KG-based hybrid algorithm we add

the Ranking Factorization Machine (RankingFM) [2] with side information using

the Turi Create library7. As side information, we use the entities connected to the

specific items from the DBpedia KG. All the baselines have been trained on the

user ratings contained in Xtrain in the original matrix format and tested on Xtest .

The implementations of the translational based embeddings8 and of node2vec9 are

available online. entity2rec is also publicly available on GitHub.10

3.3.3 Configuration

We have configured entity2rec hyper-parameters by assessing the P@5 of the model

on the validation set, using grid and manual searches. We have optimized the

dimension of the embeddings d, the maximum length of the random walk l, the

context size for the optimization c, the return parameter p, the in-out parameter

q, the number of random walks per each node of the graph n (see [78] for more

information on these parameters). More in detail, we started to search for hyper-

parameters on the Movielens 1M dataset, making a grid search and evaluating

the model on the validation set, using the ranges p ∈ {0.25,1,4}, q ∈ {0.25,1,4},
d ∈ {200,500}, l ∈ {10,20,30,50,100}, c ∈ {10,20,30}, n ∈ {10,50}. We found

the optimal configuration in this range to be C1= {p : 4,q : 1,d : 200, l : 100,c : 30,n :

50}, and we observed that the performance was improving when increasing l and c.

Thus, we have run a configuration C2 = {p : 4,q : 1,d : 200, l : 100,c : 50,n : 100},
which achieved better performance on the validation set. For LastFM, we started

from the configuration C1, and then explored the ranges: p ∈ {1,4}, q ∈ {1,4},
c ∈ {30,40,50,60}, l ∈ {60,100,120}, n ∈ {50,100}. We found the configuration

7https://github.com/apple/turicreate
8https://github.com/thunlp/KB2E
9https://github.com/aditya-grover/node2vec

10https://github.com/D2KLab/entity2rec

https://github.com/apple/turicreate
https://github.com/thunlp/KB2E
https://github.com/aditya-grover/node2vec
https://github.com/D2KLab/entity2rec
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C3 = {p : 4,q : 4,d : 200, l : 100,c : 60,n : 100} to be optimal on the validation set

in this range. For LibraryThing, we have explored the ranges p ∈ {1,4}, q ∈ {1,4},
c ∈ {30,50}, keeping l = 100, n = 100, d = 200. The optimal configuration is:

C4 = {p : 1,q : 1,d : 200, l : 100,c : 50,n : 100}. The hyper-parameters of the

LambdaMart [164] algorithm have been left to their default values as reported in

the implementation that has been used for this work.11 In general, we can observe

that, for all datasets in consideration, using long walks (l = 100), many walks per

entity (n = 100), and a large context size such as c = 50 improves the quality of the

recommendations. This kind of configuration ought to be used as a starting point in

configuring entity2rec with new datasets.

3.4 entity2rec experimental results

3.4.1 Hybrid property-specific subgraphs

In this section, we compare the new version of entity2rec based on hybrid property

specific subgraphs to the one proposed in [3], i.e. entity2rec to entity2rec (2017).

In Table 3.2, Table 3.3 and Table 3.4, we report statistics for the property-specific

subgraphs Kp and K+
p for Movielens 1M, LastFM and LibraryThing respectively.

It can be noticed that for many content properties, the average degree is small,

indicating that items are connected to few entities, as discussed in Section 3.2.3. On

the other hand, hybrid property-specific subgraphs always have a better connectivity

in terms of average degree of the nodes.

We have compared entity2rec to entity2rec (2017) for the three datasets un-

der analysis, measuring P@5, R@5, SER@5, and NOV@5. We have also added

entity2rec f eedback, which only uses the feedback graph and is thus equivalent to

node2vec, as a baseline to see whether entity2rec or entity2rec (2017) are more

effective in using content properties. The results are reported in Table 3.5, Table 3.6

and Table 3.7. The first finding is that entity2rec consistently obtains better scores

for different configurations of the hyper-parameters for the three datasets, proving

11https://github.com/jma127/pyltr

https://github.com/jma127/pyltr
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Kp K+
p

property N M κ N M κ

dbo:cinematography 2757 2136 1.6 9881 382636 77.4
dbo:director 4607 3142 1.4 10881 383642 70.5
dbo:distributor 3180 3180 2.0 9594 383680 80.0
dbo:editing 2292 1809 1.6 9851 382309 77.6
dbo:musicComposer 3682 3031 1.7 10322 383531 74.3
dbo:producer 4358 3817 1.8 11135 384317 69.0
dbo:starring 8969 13990 3.1 15375 394490 51.3
dbo:writer 5044 3836 1.5 11668 384336 65.9
dct:subject 9809 49897 10.2 15967 430397 53.9
feedback 9119 380500 83.5 n/a n/a n/a

Table 3.2 Network stats for Movielens 1 M for Kp and K+
p . N = n_nodes, M = n_edges,

κ = average_degree.

Kp K+
p

property N M κ N M κ

dbo:associatedBand 15212 19492 2.6 20169 74444 7.4
dbo:associatedMusicalArtist 15211 19491 2.6 20168 74443 7.4
dbo:bandMember 9768 7587 1.6 17113 62539 7.3
dbo:birthPlace 5650 5581 1.9 12992 60533 9.3
dbo:formerBandMember 8870 7481 1.7 16621 62433 7.5
dbo:genre 10258 26064 5.1 13034 81016 12.4
dbo:hometown 9646 12386 2.6 13870 67338 9.7
dbo:instrument 2236 4411 3.9 11137 59363 10.7
dbo:occupation 2211 3246 2.9 10970 58198 10.6
dbo:recordLabel 12159 20279 3.3 15938 75231 9.4
dct:subject 25827 88375 6.8 27946 143327 10.3
feedback 10147 54952 10.8 n/a n/a n/a

Table 3.3 Network stats for LastFM for Kp and K+
p . N = n_nodes, M = n_edges, κ =

average_degree.
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Kp K+
p

property N M κ N M κ

dbo:author 13132 9757 1.5 20564 194416 18.9
dbo:country 2015 1921 1.9 16657 186580 22.4
dbo:coverArtist 1990 1438 1.4 17126 186097 21.7
dbo:language 1975 1906 1.9 16630 186565 22.4
dbo:literaryGenre 7211 8526 2.4 17292 193185 22.3
dbo:mediaType 4632 5539 2.4 16676 190198 22.8
dbo:previousWork 4845 3261 1.3 17559 187920 21.4
dbo:publisher 8696 8241 1.9 17878 192900 21.6
dbo:series 3317 2562 1.5 17319 187221 21.6
dbo:subsequentWork 5928 3930 1.3 18245 188589 20.7
dct:subject 18903 51324 5.4 26138 235983 18.1
feedback 16501 184659 22.4 n/a n/a n/a

Table 3.4 Network stats for LibraryThing for Kp and K+
p . N = n_nodes, M = n_edges,

κ = average_degree.

the effectiveness of using hybrid property-specific subgraphs as suggested in this

work. The second finding is that using learning to rank (entityreclambda) is crucial

to obtain good recommendations for entity2rec (2017), but it is no longer useful

for entity2rec, especially if hyper-parameters are properly optimized. In order to

interpret this result, we remind the reader that, as shown in [3], the most relevant

information to make predictions comes from the user-item interaction, i.e. from the

‘feedback’ property. In entity2rec (2017), the feedback property was contained only

in the ‘feedback’ subgraph, and thus the learning to rank was fundamental to attribute

different weights to the properties. On the other hand, for hybrid property-specific

subgraphs, user-item interactions are present for all the properties, and the feature

learning process, with an appropriate configuration of the hyper-parameters, is able

to encode effectively all the necessary information to make recommendations, so

that the learning to rank algorithm appears redundant and even damaging, and a

simple unsupervised approach such as averaging the features is more effective. It

is also worth noticing that entity2rec (2017) might appear to have a higher novelty

than entity2rec. However, this is likely due to the fact that it has a lower accuracy

rather to the algorithm itself. In fact, in Tab. 3.5 if you compare the configuration
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System P@5 R@5 SER@5 NOV@5
entity2reclambda (C2) 0.2125 0.0967 0.1913 9.654

entity2recavg (C2) 0.2372 0.1045 0.2125 9.577
entity2recmin (C2) 0.2198 0.0976 0.1946 9.466
entity2recmax (C2) 0.2206 0.0951 0.2038 10.046

entity2reclambda (2017) (C2) 0.1836 0.0748 0.1640 9.948
entity2recavg (2017) (C2) 0.0578 0.0234 0.0523 11.085
entity2recmin (2017) (C2) 0.0166 0.0090 0.0166 11.541
entity2recmax (2017) (C2) 0.0099 0.0023 0.0095 12.129

entity2rec f eedback (C2) 0.1801 0.0814 0.1629 9.881
entity2reclambda (C1) 0.2221 0.0988 0.2021 9.891

entity2recavg (C1) 0.2265 0.0997 0.2051 9.820
entity2recmin (C1) 0.2020 0.0912 0.1787 9.744
entity2recmax(C1) 0.1954 0.0865 0.1825 10.208

entity2reclambda (2017) (C1) 0.1670 0.0707 0.1521 10.369
entity2recavg (2017) (C1) 0.0100 0.0052 0.0100 14.582
entity2recmin (2017) (C1) 0.0214 0.0107 0.0213 12.214
entity2recmax (2017) (C1) 0.0069 0.0020 0.0069 12.416

entity2rec f eedback (C1) 0.1464 0.0685 0.1329 10.377
Table 3.5 entity2rec outperforms entity2rec (2017) for different configurations of hyper-
parameters on Movielens 1M (C1 = {p : 4,q : 1,d : 200, l : 100,c : 30,n : 50}, C2 = {p : 4,q :
1,d : 200, l : 100,c : 50,n : 100}). In entity2rec as presented in this work, the learning to rank
is no longer useful, as the unsupervised approach appears to be more effective. Results can
be considered with no error for comparisons as the standard deviation is negligible up to the
reported precision. Through the comparison with entity2rec f eedback, we see that entity2rec is
more effective than entity2rec (2017) at leveraging the item content.
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System P@5 R@5 SER@5 NOV@5
entity2reclambda (C3) 0.1852 0.1066 0.1512 10.101

entity2recavg (C3) 0.2062 0.1191 0.1682 10.379
entity2recmin (C3) 0.2055 0.1191 0.1664 9.807
entity2recmax (C3) 0.1693 0.0986 0.1423 10.243

entity2reclambda (2017) (C3) 0.1469 0.0844 0.1194 11.092
entity2recavg (2017) (C3) 0.0597 0.0351 0.0574 13.143
entity2recmin (2017) (C3) 0.0002 0.0001 0.0002 13.09
entity2recmax (2017) (C3) 0.1387 0.0801 0.1063 11.426

entity2rec f eedback (C3) 0.1542 0.0886 0.1198 11.512
entity2reclambda (C1) 0.1745 0.1009 0.1405 11.227

entity2recavg (C1) 0.1505 0.0870 0.1182 12.267
entity2recmin (C1) 0.1699 0.0981 0.1343 11.331
entity2recmax (C1) 0.1295 0.0753 0.1037 10.537

entity2reclambda (2017) (C1) 0.1054 0.0611 0.081 12.273
entity2recavg (2017) (C1) 0.0396 0.0238 0.0380 13.689
entity2recmin (2017) (C1) 0.0002 0.0001 0.0002 13.089
entity2recmax (2017) (C1) 0.0952 0.0553 0.0651 12.450

entity2rec f eedback (C1) 0.0872 0.0508 0.0600 12.762
Table 3.6 entity2rec outperforms entity2rec (2017) for different configurations of hyper-
parameters on LastFM (C1 = {p : 4,q : 1,d : 200, l : 100,c : 30,n : 50}, C3 = {p : 4,q : 4,d :
200, l : 100,c : 60,n : 100}). In entity2rec as presented in this work, the learning to rank is
no longer useful, as the unsupervised approach appears to be more effective. Results can be
considered with no error for comparisons as the standard deviation is negligible up to the
reported precision. Through the comparison with entity2rec f eedback, we see that entity2rec is
more effective than entity2rec (2017) at leveraging the item content.
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System P@5 R@5 SER@5 NOV@5
entity2reclambda (C4) 0.1271 0.0803 0.1229 12.469

entity2recavg (C4) 0.1800 0.1072 0.1736 12.886
entity2recmin (C4) 0.1831 0.1084 0.1757 11.709
entity2recmax (C4) 0.1634 0.0984 0.1591 12.783

entity2reclambda (2017) (C4) 0.1322 0.0746 0.1285 13.000
entity2recavg (2017) (C4) 0.0720 0.0495 0.0719 13.481
entity2recmin (2017) (C4) 0.0060 0.0027 0.0060 13.396
entity2recmax (2017) (C4) 0.0319 0.0250 0.0316 14.549

entity2rec f eedback (C4) 0.1534 0.0926 0.153 13.007
entity2reclambda (C1) 0.1396 0.0815 0.1365 13.261

entity2recavg (C1) 0.1678 0.1014 0.1639 12.731
entity2recmin (C1) 0.1735 0.1041 0.1689 12.301
entity2recmax (C1) 0.1411 0.0865 0.1390 13.629

entity2reclambda (2017) (C1) 0.1160 0.0689 0.1132 13.444
entity2recavg (2017) (C1) 0.0661 0.0453 0.0661 13.270
entity2recmin (2017) (C1) 0.0041 0.0018 0.0041 13.545
entity2recmax (2017) (C1) 0.0129 0.0122 0.0128 14.339

entity2rec f eedback (C1) 0.1632 0.0976 0.1578 12.410
Table 3.7 entity2rec outperforms entity2rec (2017) for different configurations of hyper-
parameters on LibraryThing (C1 = {p : 4,q : 1,d : 200, l : 100,c : 30,n : 50}, C4 = {p : 1,q :
1,d : 200, l : 100,c : 50,n : 100}). In entity2rec as presented in this work, the learning to rank
is no longer useful, as the unsupervised approach appears to be more effective. Results can
be considered with no error for comparisons as the standard deviation is negligible up to the
reported precision. Through the comparison with entity2rec f eedback, we see that entity2rec is
more effective than entity2rec (2017) at leveraging the item content



74
entity2rec: Property-specific Knowledge Graph Embeddings for Item

Recommendation

with the worst accuracy of the new approach entity2recmax(C1) with the one with

the best accuracy of the old approach entity2reclambda(C2)(2017), you can see that

the novelty of entity2recmax(C1) is higher than entity2reclambda(C2)(2017). Sim-

ilar observations can be done for the other two datasets. Finally, the comparison

with entity2rec f eedback, which is equivalent to using node2vec on the collaborative

graph only, allows us to draw some observations on the effect of content properties.

Results show that, for all datasets and all configurations, entity2rec using hybrid

property-specific subgraphs has better scores than entity2rec f eedback, implying that,

content information when encoded in hybrid property-specific subgraphs, is useful to

enhance recommendations. For entity2rec(2017) this is true for Movielens1M and

for the (C1) configuration of LastFM, where entity2reclambda(2017) outperforms

entity2rec f eedback, but not for the (C3) configuration of LastFM and for Library-

Thing. We can therefore conclude that, in agreement with our argument of the graph

connectivity, the most effective way to encode content-based information to improve

the quality of recommendation is that of the hybrid property-specific subgraphs.

3.4.2 Comparison with other recommender systems

We have measured P@5, R@5, SER@5, and NOV@5 for all the recommender sys-

tems and the three datasets under analysis. We can see from Figure 3.8a, Figure 3.8b,

and Figure 3.8c that entity2rec outperforms competing systems for all datasets for

P@5, R@5, and SER@5, except for P@5 in Movielens 1M where WRMF is per-

forming better. As we can see from Figure 3.8d, WRMF is characterized by low

novelty of the recommendations, i.e. it tends to recommend very popular items. This

proves to be effective in Movielens 1M and LastFM that have a high popularity bias

as shown by the entropy value (Table 3.1), the distribution of items (Figure 3.7),

previous literature [90] and the effectiveness of the MostPopular baseline. Looking

at SER@5, i.e. considering the top-5 items as non relevant, entity2rec has a slightly

better score than WRMF. Movielens 1M is also characterized by a lower sparsity with

respect to the other datasets, and this favors collaborative filtering systems, which are

known to suffer from data sparsity [13]. In fact, all of collaborative filtering systems,

even ItemKNN that does not perform dimensionality reduction, achieve scores above
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Fig. 3.8 Results on Movielens 1M, LastFM, and LibraryThing datasets for P@5, R@5,
SER@5, and NOV@5. entity2rec performs well for all datasets, but it is especially ef-
fective for LibraryThing, where sparsity and entropy are high. Scores are reported in
tabular form in Appendix B. entity2rec refers to entity2recavg(C1), entity2recavg(C2), and
entity2recavg(C3) for Movielens 1M, LastFM, and LibraryThing respectively. node2vec
refers to node2vec(C1), node2vec(C2) and node2vec(C3) for Movielens 1M, LastFM, and
LibraryThing respectively. Results can be considered with no error for comparisons as the
standard deviation is negligible up to the reported precision.
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20%. LastFM is much sparser than Movielens 1M, and this affects the performance

of ItemKNN, whereas matrix factorization based techniques maintain good scores.

In LibraryThing, where the popularity bias is weaker (Figure 3.7), entity2rec is sig-

nificantly more effective than competing systems and matrix factorization techniques

are much less well performing with respect to the other two datasets. ItemKNN, on

the other hand, is outperforming matrix factorization techniques. Looking at R@5

(Figure 3.8b) we can see that entity2rec outperforms all competing systems, also

in the Movielens 1M dataset, where WRMF has a better precision. Since R@5 is

weighting the number of hits by the number of relevant items for the user, this shows

that entity2rec generally works better than other systems with users having fewer

relevant items.

In terms of novelty, ItemKNN is the best performing system (Figure 3.8d), but it

is not comparable to competing systems in terms of P@5, R@5 and SER@5. Rec-

ommender systems based on knowledge graph embeddings (entity2rec, node2vec,

translational models) have better novelty with respect to collaborative filtering sys-

tems. We also observe that entity2rec outperforms node2vec for all the datasets and

for P@5, R@5, and SER@5, justifying the creation of property-specific embeddings

that are aggregated in a later stage, rather than embedding the whole knowledge

graph. Furthermore, we observe that using knowledge graph embeddings approaches

based on neural language models such as entity2rec and node2vec is more effective

than using translational models.

In general, we can say that entity2rec generates accurate (high precision and

recall) and non-obvious (high serendipity, good novelty) recommendations and it is

particularly effective with respect to state-of-the-art systems when the sparsity and

the entropy of the datasets are high (e.g. LibraryThing). A tabular representation of

the scores on the three datasets is reported in Appendix B.

3.4.3 Model Interpretability

In this section, we address the question of the interpretation of the entity2rec model.

We focus on entity2recavg, as it proved to be more effective on the three datasets.

entity2recavg, as described in Section 3.2.3, is the average of property-specific
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relatedness scores:

entity2recavg(u, i) = avg({ρp(u, i)}p∈Γ) (3.31)

where the property-specific relatedness scores are obtained from the embeddings of

the property-specific subgraphs, containing user-item interactions and item relations

p to other entities. With respect to most knowledge-aware recommender systems

based on metapaths, the interpretation is thus easier, as it considers one property at

the time. We report in Table 3.8, Table 3.9, and Table 3.10 the scores of using a single

property ρp as a ranking function. We can see that for all datasets, the information

coming from “dct:subject" is quite relevant. Then, for movies, the starring actors and

the director appear to be strong features, for musical artists the record label and the

genre, and for books previous and subsequent work. In general, none of the features

individually outperforms the average of the features.

The simplicity of the final ranking function and the ability to interpret the model

in an easy way has several positive consequences. An in-depth discussion of this

point is matter of future work, but we mention two big advantages. The first is that

entity2rec can be easily used in an interactive interface, as a sort of multicriteria

recommender system, replacing Eq. 3.31 with a weighted average of the property-

specific relatedness score. For example, the user might assign more weight to the

“director" property and recommendations could change accordingly. The second is the

possibility of explaining recommendations along different dimensions. Explanations

can be generated in terms of related items, looking at what items of the users’ profile

are more similar to the recommended ones using the global ρ(u, i) (e.g. “Because you

liked Titanic"); in terms of properties, by comparing the property-specific relatedness

scores ρp(u, i) and using the highest scores to unravel specific properties of the item

to which the user is more related (e.g. “Because you may like the cast"); in terms

of item content, since property-specific relatedness scores ρp(u,e) can be measured

between a user u and any entity of the knowledge graph e ∈ E, not just for items

i ∈ I (e.g. “Because you may like Steve Buscemi").
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K+
p P@5 R@5 SER@5 NOV@5

dbo:cinematography 0.1847 0.0813 0.1675 9.835
dbo:director 0.1913 0.0842 0.1741 9.859

dbo:distributor 0.1846 0.0805 0.1673 9.894
dbo:editing 0.1829 0.0810 0.1668 9.855

dbo:musicComposer 0.1861 0.0817 0.1691 9.891
dbo:producer 0.1777 0.0826 0.1603 10.349
dbo:starring 0.2113 0.0937 0.1965 9.957
dbo:writer 0.1808 0.0822 0.1652 10.393

dct:subject 0.2249 0.0958 0.2044 9.831
Table 3.8 Feature evaluation for Movielens 1M dataset. The most effective features appear to
be the subject, the starring actors and the director of the movie. The writer and the producer
introduce more novelty. Results can be considered with no error for comparisons as the
standard deviation is negligible up to the reported precision.

K+
p P@5 R@5 SER@5 NOV@5

dbo:associatedBand 0.1539 0.0894 0.1253 11.05
dbo:associatedMusicalArtist 0.1575 0.0915 0.1299 10.95

dbo:bandMember 0.1511 0.0873 0.1217 11.60
dbo:birthPlace 0.1612 0.0925 0.1287 11.08

dbo:formerBandMember 0.158 0.0909 0.1274 11.48
dbo:genre 0.1801 0.1042 0.1466 10.33

dbo:hometown 0.1708 0.0979 0.1371 10.36
dbo:instrument 0.1601 0.0919 0.1270 11.25
dbo:occupation 0.1457 0.0844 0.1103 10.96
dbo:recordLabel 0.1856 0.1076 0.1532 10.42

dct:subject 0.1954 0.1131 0.1655 10.19
Table 3.9 Feature evaluation for LastFM dataset. The most effective features appear to be
the subject, the record label and the genre. The instruments and the former band players
introduce more novelty. Results can be considered with no error for comparisons as the
standard deviation is negligible up to the reported precision.
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K+
p P@5 R@5 SER@5 NOV@5

dbo:author 0.1603 0.0972 0.1556 12.736
dbo:country 0.1629 0.0976 0.1572 12.360

dbo:coverArtist 0.1625 0.0973 0.1571 12.362
dbo:language 0.1619 0.0971 0.1558 12.350

dbo:literaryGenre 0.1633 0.0978 0.1583 12.353
dbo:mediaType 0.1610 0.0956 0.1559 12.411

dbo:previousWork 0.1688 0.1001 0.1630 12.523
dbo:publisher 0.1643 0.0979 0.1588 12.326

dbo:series 0.1635 0.0976 0.1581 12.460
dbo:subsequentWork 0.1687 0.1007 0.1634 12.520

dct:subject 0.1733 0.1037 0.1684 12.031
Table 3.10 Feature evaluation for LibraryThing dataset. The most effective features appear to
be the subject, the previous and following works. The author introduces more novelty. Results
can be considered with no error for comparisons as the standard deviation is negligible up to
the reported precision.

3.5 Use-case: the Tinderbook application

In this section, we show how entity2rec deals with the new user problem, i.e. we

address RQ1.4. We introduce the problem of book recommendation in a cold start

scenario and describe the Tinderbook application, how entity2rec works within it, its

evaluation and the lessons learned from the experimentation. Tinderbook is available

online at: www.tinderbook.it.

3.5.1 Cold start: item-based book recommendations

In recent years, the explosion of information available on the Web has made ever

more challenging the task of finding a good book to read. In 2010, the number

of books in the world was more than one hundred millions12 and approximately

2,210,000 new books are published every year13. At the same time, a survey shows

that in the US a reader typically reads 4 books in one year14 and a study shows that

on average, fewer than half of the books are finished by the majority of readers and

12https://bit.ly/36akNY8
13https://bit.ly/2DRSr94
14https://bit.ly/2Lz6uo9

www.tinderbook.it
https://bit.ly/36akNY8
https://bit.ly/2DRSr94
https://bit.ly/2Lz6uo9
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that most readers typically give up on a book in the early chapters15. These figures

show the importance and the complexity of the process of selecting a book to read

among the enormous amount of available options. Recommender systems (RS) have

provided a great deal of help in this task, using algorithms that predict how likely it

is for a user to like a certain item, leveraging the history of the user preferences [6].

Most of the existing book recommender systems are typically based on collaborative

filtering, which suffers from the cold start problem [13], and are thus based on long

onboarding procedures, requiring users to log-in and to rate a consistent number of

books (Section 3.5.5).

The goal of the Tinderbook application is that of recommending books to read,

given a single book that the user likes. In a more formal way, we need to define a

measure of item relatedness ρ(i j, ik) which estimates how likely it is that the user will

like the book ik, given that the user likes the book i j. The item relatedness ρ(i j, ik) is

used as a ranking function, i.e. to sort the candidate items ik ∈ Icandidates(u) given the

‘seed’ item i j. Then, only the top N elements are selected and presented to the user.

The approach to define the measure of item relatedness ρ(i j, ik) is based on entity2rec.

We apply entity2rec to generate property-specific knowledge graph embeddings,

but then, we focus on item-item relatedness, rather than on user-item relatedness,

given the absence of the user profile. In light of the experimental results described in

Sec. 3.4, we use the ‘average’ as the final aggregation function. Property-specific

item-item relatedness scores are then averaged to obtain a global item-item related-

ness score that is used as a ranking function (Figure 3.9). We define:

ρentity2rec(i j, ik) = avg({ρp(i j, ik)}p∈Γ) (3.32)

where ρp(i j, ik) = cosine_sim(xp(i j),xp(ik)) and xp is the property-specific knowl-

edge graph embedding obtained using node2vec on the hybrid property-specific

subgraph. The only difference with respect to Eq. 3.31 is that, rather than measuring

user-item relatedness, we are now measuring item-item relatedness. We compare

this measure of item relatedness with that of an ItemKNN [99], which is a purely

collaborative filtering system. The relatedness between the items is high when they

15https://nyti.ms/36fk6wy

https://nyti.ms/36fk6wy
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Fig. 3.9 The knowledge graph represents user-item interactions through the special property
‘feedback’, as well as item properties and relations to other entities. The knowledge graph
allows to model both collaborative and content-based interactions between users and items.
In this figure, ‘dbo:author’ and ‘dct:subject’ properties are represented as an example, more
properties are included in the experiments. Property-specific subgraphs are created from the
original knowledge graph. Property-specific embeddings are computed, and property-specific
item relatedness scores are computed as cosine similarities in the vectors space. Finally,
property-specific relatedness scores are averaged to obtain a global item-item relatedness
score.
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tend be liked by the same users. More formally, we define:

ρItemKNN(i j, ik) =
|U j∩Uk|
|U j∪Uk|

(3.33)

where U j and Uk are the users who have liked item i j and ik respectively. We also

use as a baseline the MostPop approach, which always recommends the top-N most

popular items for any item i j. Then, we compare entity2rec with a content-based

measure of item relatedness based on a cosine similarity between TF-IDF vectors

(see Sec. 2.2) built using DBpedia properties of an item as if they were “words” of a

document:

ρT FIDF(i j, ik) = cosine_sim(T FIDF(i j)),T FIDF(ik)) (3.34)

Finally, we compare entity2rec with a measure of item relatedness based on knowl-

edge graph embeddings built using RDF2Vec [88]. RDF2Vec turns all DBpedia

entities into vectors, including the books that are items of the recommender system.

Thus, we simply use as a measure of item relatedness the cosine similarity between

these vectors:

ρRDF2Vec(i j, ik) = cosine_sim(RDF2Vec(i j),RDF2Vec(ik)) (3.35)

where RDF2Vec(i j) stands for the embedding of the item i j built using RDF2Vec.

Note that this is a purely content-based recommender such as the one implemented

in [95], as DBpedia does not contain user feedback.

3.5.2 Offline evaluation

The dataset used for the application and for the offline evaluation is LibraryThing

and we use the evaluation protocol known as AllUnratedItems [157]. The offline

experiment simulates the scenario in which the user selects a single item he/she

likes i j (so-called ‘seed’ book) and gets recommendations according to an item-item

relatedness function ρ(i j, ik), which ranks the candidate items ik. We iterate through

the users of the LibraryThing dataset, and for each user we sample with uniform
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System P@5 R@5 SER@5 NOV@5
entity2rec 0.0549 0.0508 0.0514 11.099
ItemKNN 0.0484 0.0472 0.0463 12.200

TFIDF 0.0322 0.0283 0.0312 12.568
RDF2Vec 0.0315 0.0288 0.0311 13.913
mostpop 0.0343 0.0256 0.0070 8.452

Table 3.11 Results for different item-item relatedness measures. entity2rec provides more
accurate recommendations with respect to pure collaborative filtering such as ItemKNN and
to the Most Popular baseline. It also scores better with respect to the content-based TF-IDF
and RDF2Vec, although RDF2Vec has the best novelty. Scores can be considered as without
error, as the standard deviation is negligible up to the reported precision.

probability an item i j that he/she liked in the training set. Then, we rank the can-

didate items ik ∈ Icandidates(u) using ρentity2rec(i j, ik), ρitemknn(i j, ik), ρT F−IDF(i j, ik),

ρRDF2Vec(i j, ik) and MostPopular, and we measure P@5, R@5, SER@5, NOV@5.

The results show that entity2rec obtains better precision, recall and serendipity with

respect to competing systems (Table 3.11).

3.5.3 Application

In this section, we describe the Tinderbook application.

Session

A complete usage session can be divided in two phases (Figure 3.10):

1. Onboarding: the user lands on the application and gets books that are sampled

with a chance that is proportional to the popularity of the book. More in detail,

a book is sampled according to:

p(book)∼ P+(book)
1
T (3.36)

where P+ is the popularity of the book, which is defined as the fraction of

positive feedback (ratings r ≥ 8) obtained by the book in the LibraryThing

dataset. T is a parameter called “temperature” that governs the degree of
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1. ONBOARDING 2. RECOMMENDATIONS

The Zombie Survival Guide
Max Brooks

Fig. 3.10 A complete session of use of the application. The user selects a book that she likes,
gets book recommendations based on her choice and provides her feedback. User can get
info about the book by pressing on the “Info” icon.

randomness in the sampling. T → 0 generates a rich-gets-richer effects, i.e.

most popular books become even more likely to appear in the extraction. On

the contrary, when T grows the distribution becomes more uniform, and less

popular books can appear more often in the sampling. The user has to discard

books (pressing “X" or swiping left on a mobile screen) until a liked book is

found. The user can get additional information about the book (e.g. the book

abstract from DBpedia) by pressing on the “Info” icon.

2. Recommendations: after the user has selected a book (“seed book”), she

receives five recommended books based on her choice, thanks to the item-item

relatedness ρentity2rec (see Section 3.5.1). The user can provide feedback on

the recommended books using the “thumbs up” and “thumbs down” icons, or

swiping right or left. The user can again get additional information about the

book (book abstract from DBpedia) by pressing on the “Info” icon.

The graphical user interface of Tinderbook aims to engage users using playful

interaction on popular like/dislike interaction [173]. The graphical representation

of cards and a slot-machine-like interaction engage the users into an infinite swipe

left and right loop as the popular Tinder interface [174]. We choose to adopt digital

cards interface for Tinderbook because it can be applied to a variety of contexts and,

combined with ubiquitous swipe gesture, can alleviate information overload and
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items to select from.

3. RECOMMENDATIONS
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4. FEEDBACK
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2. DISCARD
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liked book is found. 

Server saves discarded 
books in MongoDB.

book URI
user_id

POST

‘ok’ ‘ok’

Fig. 3.11 Tinderbook interactions and corresponding API calls. In 1. ONBOARDING, books
are sampled with a chance proportional to their popularity, as described in Eq. 3.36. In
2. DISCARD, the user goes through proposed books until he/she finds a liked book. In 3.
RECOMMENDATIONS, the user receives five book recommendations related to his/her
chosen book. In 4. FEEDBACK, the user judges the quality of the recommendations.

improve the user experience aspect of apps16. Moreover, Tinderbook can further

leverage engagement data, i.e. each individual user-swipe interaction, to get insights

on users’ satisfaction in the usage of the application. The interactions of the user are

mapped into API calls to the server, as described in Figure 3.11.

Architecture

The overall architecture is presented in Figure 3.12. DBpedia is the main data source

for the application. DBpedia is queried to get book title, author and abstract. Google

images is queried to retrieve thumbnails for images, using the book title and author

extracted from DBpedia to disambiguate the query. The model is a key-value data

structure that stores item-item similarities as defined in Eq. 3.32 and it is used to

get the five most similar books to the chosen book. MongoDB is used to store the

discarded books, seed books, and the feedback on the recommended books (“thumbs

up” or “thumbs down”), in order to evaluate the application in the online scenario

(Section 5.5.6). Book metadata are collected once for all the books at the start of the

server and kept in memory to allow faster recommendations.

16https://www.nngroup.com/articles/cards-component/

https://www.nngroup.com/articles/cards-component/
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Fig. 3.12 The architecture of the Tinderbook application. The user interacts through the user
interface, which makes calls to the API. In turn, the API interacts with the similarity model
to get recommendations, DBpedia to enrich book descriptions, Google to get book covers
and MongoDB to save books chosen (‘seed’) and discarded (‘discard’) in the onboarding
phase and the users’ feedback in the recommendation phase (‘feedback’).

3.5.4 Online Evaluation

Tinderbook has been deployed on Nov 22nd, 2018. In this section, we report the

results of usage data collected for two weeks, going from Nov, 22nd to Dec, 6th

(Table 3.12). In order to evaluate the application, we have defined a set of Key

Performance Indicators (KPIs), which are specific to the online scenario, in addition

to the metrics defined in Section 3.3.2. In the online experiment, we define the

recommendation as a ‘hit’ if the user provides positive feedback (“thumb up” or

swipe right), and as a ‘miss’ if the user provides negative feedback (“thumb down”

or swipe left) in the recommendation phase. Recall cannot be measured in the online

experiment, as we do not have a test set to measure rel(u).

Definition 10 We define completeness as the average percentage of rated books per

session, given that the user has entered the recommendation phase.

Definition 11 We define discard as the average number of discarded books in the

onboarding phase

Definition 12 We define dropout as the percentage of users who leave the applica-

tion during the onboarding phase
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All T=0.3 T=1.
tot. # seeds 470 358 112

tot. # feedback 1,936 1495 441
tot. # discarded books 3,668 2263 1405

Table 3.12 Total usage stats for the online experiment for the whole experiment (22 Nov - 6
Dec), for T = 0.3 configuration only (22nd, Nov - 29th, Nov) and for the T = 1. configuration
only (30th, Nov - 6th, Dec).
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Fig. 3.13 Showing how different values of the temperature affect the popularity of the books
chosen as “seeds” for the recommendations in the onboarding phase. In both cases, seeds are
strongly concentrated among the most popular books. However, in the case of T = 0.3 the
effect is stronger, with all of the seeds falling into the top 20% most popular books. In the
case of T = 1., roughly 80% of the seed books fall into the top 20% most popular books.

Definition 13 We define seed popularity as the average popularity of the seed books

Definition 14 We define recommendation time τ as the average time required to

provide the list of recommended books in the recommendation phase

In the first week, we have experimented an onboarding phase with a temperature

parameter set to T = 0.3. In the second week, we have increased this temperature

to the value of T = 1. As described in Section 3.5.3, the temperature T governs

the degree of randomness in the popularity-driven book sampling of the onboarding

phase. The first effect observed as a consequence of the increase in temperature

in the onboarding phase was the fact that less popular books were chosen during
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the onboarding phase. In Figure 3.13, we represent the distribution of seed books

falling in the top x% popular items for T = 0.3 and T = 1. The picture shows

that T = 1 has made less popular books appear more frequently in the choices of

the users in the onboarding phase with respect to the initial configuration T = 0.3.

However, it is worth noticing that most seed books are still concentrated among

the most popular books (80% in the top 20% popular books). The change of

temperature has also had effects on the other KPIs. In order to compare the two

different onboarding configurations T = 0.3 and T = 1., we have measured the KPIs

mean values and standard deviations and run a statistical test to assess whether

the observed differences were statistically significant or not. More specifically,

we have run a Welch’s t-student test [175] with a confidence value of α = 0.05,

only p < α are considered as statistically significant. As shown in Table 3.13, the

onboarding configuration T = 1.0 decreases the average popularity of the seed books

in a statistically significant way. This leads to the fact that users have to discard more

items before finding a liked book in the onboarding phase, as it can be noticed by

the increase of the average number of discarded books. However, the number of

dropouts does not increase in a statistically significant way, meaning that we cannot

say that this fact is pushing users to get bored during the onboarding and leave the

application more easily. In fact, it shows that users are engaged enough to keep

using the application even if they have to discard more books in the onboarding.

Interestingly, the configuration with T = 1.0 is also increasing the novelty, meaning

that less popular books also appear more often in the recommendations. Overall,

we can claim that T = 1.0 is the best configuration for the application, as it leads to

more novelty without significantly increasing the number of dropouts.

The recommendation time is very short, roughly 10 milliseconds, as it involves

accessing values from a key-value data store, which can be done in unitary time. More

specifically, we measure τ = 0.012448±0.000255 across the whole experiment.

3.5.5 Competing Systems

Existing book recommender systems are typically based either on content-based or

collaborative filtering [176]. In Figure 3.14, we report a comparison of Tinderbook
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T = 0.3 T = 1. p value significant
P@5 0.497368±0.026381 0.495833±0.052701 9.79E-01 no

SER@5 0.417105±0.024892 0.437500±0.047382 7.07E-01 no
NOV@5 8.315443±0.176832 10.095039±0.347261 2.30E-05 yes

completeness 0.903947±0.018229 0.937500±0.025108 2.86E-01 no
discard 6.321229±0.663185 12.544643±2.070238 2.09E-03 yes
dropout 0.131285±0.019150 0.178571±0.039930 2.45E-01 no

seed pop 0.002626±0.000060 0.000835±0.000086 2.74E-48 yes
Table 3.13 Tinderbook KPIs for the T = 0.3 configuration only (22nd, Nov - 29th, Nov) and
for the T = 1. configuration only (30th, Nov - 6th, Dec). Welch’s t-student test is used to
compare the KPIs with a confidence value α = 0.05.

with existing book recommender systems. The first point that makes Tinderbook

stand out from competitors is the recommendation algorithm, a hybrid approach

based on knowledge graph embeddings. In the past years, several works have shown

the usefulness of knowledge graphs for recommender systems, and more specifically,

of Linked Open Data knowledge graphs [112]. More in detail, knowledge graphs are

often used to create hybrid recommender sytems, including both user-item and item-

item interactions. For instance, in [117] and in [42], the authors use hybrid graph-

based data model utilizing Linked Open Data to extract metapath-based features that

are fed into a learning to rank framework. Recently, some works have used feature

learning algorithms on knowledge graphs, i.e. knowledge graph embeddings for

recommender systems, reducing the effort of feature engineering and resulting in

high-quality recommendations [124, 121, 88, 26, 27]. In particular, entity2rec [3],

on which Tinderbook is based, has shown to create accurate recommendations using

property-specific knowledge graph embeddings.

The second point that makes Tinderbook stand out is the Graphical User Interface

(GUI) and the quick onboarding process, with no necessity of log-in or account

creation. Card-based GUI are a great way to deliver information at a glance. Cards

help avoid walls of text, which can appear intimidating or time-consuming and

allow users to deep dive into their interests quicker. Many apps can benefit from a

card-based interface that shows users enough necessary information to make a quick

maybe/no decision [177]. Cards serve as entry points to more detailed information.

According to Carrie Cousins, cards can contain multiple elements within a design,
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Fig. 3.14 Comparison of existing book recommender systems.

but each should focus on only one bit of information or content [178]. A famous

example of card-based GUI is that of the dating application Tinder, and according to

Babich: “Tinder is a great example of how utilizing discovery mechanism to present

the next option has driven the app to emerge as one of the most popular mobile apps.

This card-swiping mechanism is curiously addictive, because every single swipe is

gathering information - cards connect with users and offer the best possible options

based on the made decisions.” [174].

Finally, Tinderbook leverages DBpedia [12] and this allows to leverage a wealth

of multi-language data, such as book descriptions, without the cost of creating and

maintaining a proprietary database.
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3.6 Summary

In this chapter, we have discussed the work relative to knowledge graph embeddings

for recommender systems, part of it has been published in [3, 27, 26, 25].

We have introduced a set of crucial definitions, such as knowledge graph and

item recommendation. Then, we have described how translational models, node2vec

and entity2rec work in generating recommendations through knowledge graph em-

beddings. We have described a common experimental setup, composed of three

datasets, a specific evaluation protocol and a set of metrics to evaluate the quality

of the recommendations. We have then compared these systems among each other

and with a set of state-of-the-art collaborative filtering systems. entity2rec tend to

outperform competing systems, especially when the dataset is strongly sparse and

has a low popularity bias. This is when the recommendation problem becomes inter-

esting, because heuristics based on popularity fall short and traditional collaborative

filtering algorithms have poor results. We have shown that entity2rec is based on a

simple recommendation model, defined by the average of a set of property-specific

relatedness score. For this reason, it can be easily intepreted and/or configured

for a specific recommendation need, like in a multi-criteria recommender system.

Finally, we have introduced Tinderbook, a book recommender system that provides

book recommendations given a single book that the user likes. Tinderbook shows

how entity2rec works with new users, and highlights the value of using semantic

technologies in building recommender systems in an applied scenario.



Chapter 4

STEM: Stacked Threshold-based
Entity Matching

In the last decade, we have witnessed to the generation of several knowledge graphs

that grant access to an enormous amount of structured data and knowledge. However,

the generation of knowledge graphs has required a tremendous manual effort to

overcome several challenges. One of the typical issues in the generation of knowl-

edge graphs that integrate data from a collection of heterogeneous sources is that

of automatically detecting duplicate records. Entity matching (also known as in-

stance matching, data reconciliation or record linkage) is the process of finding

non-identical records that refer to the same real-world entity among a collection

of data sources (see Sec. 2.1.2). Entity matching allows to identify redundant data,

remove them (deduplication) and obtain unambiguous entities. Entity matching

is rendered troublesome by the different data models used by the data providers,

by possible misspellings, errors and omissions in data descriptions, by the use of

synonyms, as well as the presence of implicit semantics in the textual descriptions.

Entity matching systems typically define a metric to measure a similarity between

entities. This metric can be defined through knowledge of the domain and a trial-

and-error process, in a top-down manner [46, 47], or can be learned from annotated

examples, in a bottom-up way [63, 65]. Then, the similarity is turned into a con-

fidence score, which represents the degree of confidence in asserting that the pair

of entities is a match. Finally, a threshold has to be specified, in order to convert
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the confidence score into a decision, namely classifying the pair as a match or not.

This decision threshold introduces a trade-off between the precision, i.e. the capacity

of discriminating false positives, and the recall, i.e. the capacity of individuating

true positives, of the algorithm. Indeed, higher values of the threshold lead to a

more selective classifier, which tends to incur in false negatives, reducing the recall

of the algorithm, while lower values of the threshold produce the opposite effect.

Thus, the user typically attempts to find a balance between these two measures,

either manually or using more sophisticated approaches that are able to learn a

configuration from annotated examples. Independently from the strategy chosen to

set the final threshold, state-of-the-art systems typically rely on a single decision

threshold. In this thesis, we show that the combination of the predictions of an

array of thresholds using ensemble learning is able to break the trade-off between

the precision and the recall of the algorithm, increasing both at the same time, and

consequently the F-score of the algorithm. The first experiment we have performed

used simple ensemble techniques such as majority and union voting, and already

yielded good results in the context of the Financial Entity Identification and In-

formation Integration (FEIII) Challenge. challenge [20]. The natural evolution of

the work was to use more sophisticated techniques such as stacking, to boost the

performance of the entity matching ensemble. We propose a general approach called

STEM (Stacked Threshold-based Entity Matching), which can be applied on top

of any numerical threshold-based entity matching system. STEM is based on the

principle of Stacking (or Stacked Generalization) [21], which consists in training a

meta-learner to combine the predictions of a number of base classifiers.

In this chapter, we address the following research question:

RQ2 Can ensemble learning algorithms such as stacked generalization improve the

performance of threshold-based classifiers in the entity matching process?

To address this question, we introduce STEM (Stacked Threshold-based Entity

Matching). Within RQ2, we formulate three sub-research questions:

RQ2.1 Does STEM improves the F-score of threshold-based classifiers in a

significant and consistent way?
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RQ2.2 How does STEM performs when little training data is available?

RQ2.3 How can STEM be applied in the process of building a knowledge

graph containing Points of Interests (POI) and events for tourists?

The structure of the chapter is the following. In Sec. 4.1, we introduce a set of

definitions for the problem, in Sec. 4.2 we describe the approach of STEM, in Sec. 4.3

we describe the experimental setup, in Sec. 4.4 we report the results obtained by

STEM, and finally in Sec. 4.5 we describe the use of STEM in the construction of

the 3cixty knowledge graph.

Part of the work discussed in this chapter has been published in the proceedings of

the Data Science for Macro-Modeling (DSMM’16) workshop [20], in the Semantic

Web journal [28] and in the Journal of Web Semantics [29].

4.1 Definitions

The problem of entity matching can be defined as follows [179]:

Definition 15 Given two datasets A and B, find the subset of all pairs of entities for

which a relation ∼ holds: M = {e1 ∈ A,e2 ∈ B,(e1,e2) ∈ AxB : e1 ∼ e2}

In this formulation, we assume that the schema mapping problem is solved, and thus:

Definition 16 Given a property π of the schema of A and a property ρ of the schema

of B, we assume that a set of mapped properties has been defined mi = {(πi,ρi)}
with i = 1..K. In the following, when we refer to the properties i = 1..K, we refer to

the components of the mapping mi, i.e. to πi for e1 ∈ A and ρi for e2 ∈ B.

We assume that the comparison between a pair of entities e1 and e2 is carried out on

a set of literal values vi of properties i = 1..K. We assume that the entity matching

system is a pairwise numeric threshold-based binary classifier acting on the properties

i = 1..K. Thus:
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Definition 17 We define the linkage rule as a Boolean function f̂ : (e1,e2)∈ AxB→
{0,1}, where f̂ = 1 indicates that the pair is deemed a match and f̂ = 0 indicates

that the pair is not deemed to be a match.

Definition 18 The comparison of two entities is performed using a comparison
vector
s(e1,e2) = {s1(e1,e2),s2(e1,e2)..sK(e1,e2)}, where the components si ∈ R+

represent atomic similarities defined over a number of literal values si(e1,e2) =

s(vi(e1),vi(e2)) of the properties i = 1..K.

Definition 19 The comparison vector is then turned into a confidence vector
c(e1,e2) = {c1(s1),c2(s2)..cK(sK)}, where each component ci represents the degree

of confidence in stating that the pair of entities is a match given by the similarity

score si = si(e1,e2).

Definition 20 We define a confidence function f : c(e1,e2)→ [0,1] which maps the

confidence vector c(e1,e2) into a final score representing the confidence of the entity

matching system to state that the pair of entities is a match.

Definition 21 We define as threshold-based classifier a linkage rule f̂ that depends

on the confidence function f in the following way:

f̂ (e1,e2; t) = θ( f (c(e1,e2))− t) (4.1)

where θ is the Heaviside step function and t ∈ [0,1] is a given threshold.1 The

linkage rule of a threshold-based classifier has a very intuitive interpretation. A

pair of entities is considered to be a match if the degree of confidence f that the

pair is a match and f is above a certain threshold t. The threshold t can be defined

experimentally or can be learned from a set of examples. Independently from the

strategy through which it is set, the threshold t introduces a trade-off between the

1We assume that both f and t are normalized in the [0,1] interval, but it is intuitive to see that
the same argument holds for any closed interval [a,b] ∈ R with a < b, as Eq. 4.1 is invariant to any
multiplying factor within the θ function.
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rate of false positives and false negatives that the algorithm will accept. To see

why this is the case, let us first start from the definition of the two types of errors

defined in [179], considering the variations of the confidence value f ∈ [0,1]. The

first error, which corresponds to the probability of having false positives, occurs

when an unmatched comparison is considered as a match:

p f p = P( f̂ = 1|e1 ̸= e2) =
Z 1

0
P( f̂ = 1| f )P( f |e1 ̸= e2)d f (4.2)

Given that we consider a binary threshold-based classifier, it follows from Eq. 4.1

that:

P( f̂ = 1| f ) = θ( f − t) (4.3)

which leads to:

p f p = P( f̂ = 1|e1 ̸= e2) =
Z 1

t
P( f |e1 ̸= e2)d f (4.4)

The second error, which corresponds to the probability of false negatives, occurs

when a matched comparison is not considered to be a match:

p f n = P( f̂ = 0|e1 = e2) =
Z 1

0
P( f̂ = 0| f )P( f |e1 = e2)d f (4.5)

From Eq. 4.3, it follows that:

P( f̂ = 0| f ) = 1−θ( f − t) (4.6)

and thus:

p f n = P( f̂ = 0|e1 = e2) =
Z t

0
P( f |e1 = e2)d f (4.7)

The probability of true positives is similarly measured as:

pt p = P( f̂ = 1|e1 = e2) =
Z 1

t
P( f |e1 = e2)d f (4.8)

Let us now consider the graphic illustration provided in Fig. 4.1. Assuming that f

is a meaningful confidence function, the probability density function of the values

of f under the condition that e1 = e2, i.e. P( f |e1 = e2), has a higher mean and is
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located to the right, while P( f |e1 ̸= e2), conditioned by e1 ̸= e2, is located to the

left. Let also N+ be the total number of positive pairs, i.e. matching entities, and

N− the total number of negative pairs, i.e. non matching entities, in the data. In

this graphical representation, the linkage rule of Eq. 4.1 implies that the area of

P( f |e1 = e2) situated to the left of the vertical line (in yellow) corresponds to the

probability of classifying a true match as a non matching pair, i.e. to the probability

of producing false negatives p f n. The number of false negatives FN is then given

by FN = p f nN+. On the other hand, the area of P( f |e1 ̸= e2) situated to the right

of the vertical line (in orange) corresponds to the probability of classifying a false

match as a match, i.e. the probability of producing false positives p f p. Similarly

to the previous case, we have that FP = N−p f p. Finally, we also have that the grey

Fig. 4.1 Graphical depiction of p f n, p f p and pt p under the linkage rule Eq. 4.1. The
vertical line represents the decision threshold t. The shape of the probability distribution has
illustrative purposes.

area in the graph is the probability of true positives pt p. The number of true positives

is then given by: T P = N+pt p. From Fig. 4.1 we can see that p f n, and consequently

FN, is increasing when the threshold t increases, and at the same time p f p, and

consequently FP, is decreasing when the threshold t increases. pt p is also decreasing,



4.2 The STEM approach 99

but at a slower pace. Now, if we recall the definition of precision and recall [163]:

p =
T P

T P+FP
(4.9)

r =
T P

T P+FN
(4.10)

we can see that, when t increases, FP→ 0 faster than T P, and p increases. At

the same time, FN is growing and r decreases. Conversely, when t decreases FP

grows and FN decreases, increasing r and decreasing p. Thus, the threshold t

introduces a trade-off between the precision and the recall of the algorithm (we

provide experimental evidence of this heuristic argument in Sec. 5.5.6). Note that

this trade-off is not limited to Entity Matching and is well known by the Information

Retrieval and Statistical Learning community, where precision-recall curves obtained

through variations of the decision threshold are often used as a measure of an overall

algorithm’s efficiency [180, 163, 181].

4.2 The STEM approach

In this work, we show that stacking can break the trade-off by raising both precision

and recall at the same time through supervised learning. Stacking [21] (also known

as stacked generalization), is based on the idea of creating an ensemble of base

classifiers and then combining them by means of a supervised learner, which is

trained on a set of labeled examples. In this case, the base classifiers correspond to a

single threshold-based classifier f̂ (e1,e2; t) with a set of different decision thresholds

t1, t2.., tN . The supervised learner is a binary classifier whose features are the match

decisions of the base classifiers F : { f̂ (e1,e2; t1), f̂ (e1,e2; t2)... f̂ (e1,e2; tN)}→{0,1}
and whose output is a binary match decision, which represents the final decision of

the system. Stacking requires the creation of a gold standard G containing correctly

annotated entity pairs, which are used as a training set for the supervised learning

approach. More in detail, the Stacking Threshold-based Entity Matching approach

(Fig. 4.2) works as follows:
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1. Blocking (optional): although not strictly needed, it is in practice necessary for

large datasets to find good candidates e1,e2 using a blocking strategy, avoiding

a quadratic comparison of entities (see Section 4.3.3 and Section 4.3.4).

2. Threshold-based classifier: start from a linkage rule based on a threshold-

based classifier f̂ (e1,e2; t) such as the one defined in Eq. 4.1

3. Threshold perturbation: generate an ensemble of N linkage rules f̂ (e1,e2; ti)

where ti are linearly spaced values in the interval [t− a
2 , t +

a
2 ] and 0 < a

2 <

min{t,1− t} is the perturbation amplitude

4. Stacking: combines the predictions corresponding to different thresholds us-

ing supervised learning.

Features: use the predictions xi = f̂ (e1,e2; ti) as features for a supervised

learner F(x;w) where w are parameters that are determined by the learning

algorithm.

Training: train the supervised learner F(x;w) on the gold standard G, deter-

mining the parameters ŵ. This typically involves the minimization of an error

function E(x,w,G):

ŵ = min
w

E(x,w,G) (4.11)

The shape of the error function E(x,w,G) and how the optimization is solved

depends on the particular supervised learner that is chosen. We use an SVM

classifier and we thus rely on the SVM training algorithm [56]. Note that the

training process only needs to be done once per dataset, as the learned model

can be stored and loaded for testing.

Testing: generate the final prediction F(x; ŵ).

The intuition behind this approach is that using stacking the space of features is

no longer the confidence score f as for the threshold-based classifier. The supervised

learner F uses as features the set of matching decisions of the base classifiers and, by

combining them in a supervised way, it is no longer tied to the trade-off introduced

by the threshold t that we have described in Sec. 4.1. We show experimental evidence

of the effectiveness of stacking in increasing both the precision and the recall of a
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Fig. 4.2 Global architecture of the STEM framework.
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threshold-based classifier in Sec. 4.4.

We now provide the descriptions of the two threshold-based entity matching systems

that are used in this work, showing that they both constitute particular cases of

Eq. 4.1.

4.2.1 Linear Classifier

One of the simplest models for the confidence function f (e1,e2) of a pair of entities e1

and e2 is that obtained by the linear combination of the components of the confidence

vector c(e1,e2) introduced in Sec. 4.1. Given the set of properties j = 1..K and

their respective values v j(e1) and v j(e2) for both entities, property-wise similarities

are functions that yield a vector of similarity scores s j = s j(v j(e1),v j(e2)), where

typically s j ∈ [0,1] with s j = 1 ⇐⇒ v j(e1)≡ v j(e2). At this point, similarity scores

si are normally turned into the property-wise confidence scores ci = ci(si), which

are then linearly combined through the confidence function f . This is the case

of Silk2 [62], which is a popular Link Discovery framework, specifically built to

generate RDF links between data items within different Linked Data resources.

More specifically, Silk works with distances di rather than with similarities si and

different comparators can be selected to define the distances di, such as Levehnstein,

Jaro-Winkler, exact comparators, Jaccard [182]. Then, distance scores di > 0 are

turned into confidence scores ci according to the rule3 (Fig. 4.3):

ci = c(di) =

(
−di

τi
+1 0≤ di < 2τi

−1 di ≥ 2τi

where τi are property-specific thresholds. Note that ci is a monotone decreasing

function, as it depends on distances di rather than on similarities si values. In this

way, for each property used for the comparison, a confidence score ci ∈ [−1,1] is

obtained. Silk allows to combine these confidence scores in multiple ways, among

2http://silkframework.org
3https://bit.ly/2OWCnsR

http://silkframework.org
https://bit.ly/2OWCnsR
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Fig. 4.3 Silk function to compute property-wise confidence scores from distance values

which the linear combination, which is the one that has been utilized in this work:

f̂ = θ(
K

∑
i=1

wici− t) (4.12)

which corresponds to the linkage rule Eq. 4.1 with:

f (c(e1,e2)) =
K

∑
i=1

wici (4.13)

The final decision threshold t corresponds to the parameter ‘minConfidence’ in Silk

configuration file. This parameter, together with all the others such as property-wise

thresholds or comparators, can be manually set through a trial-and-error process or

they can be learnt through an active learning algorithm that is based on the approach

of letting users annotate matches that produce the utmost information gain [183].

4.2.2 Naive Bayes Classifier

Naive Bayes is a term used to describe a family of classifiers that are based on the

Bayes theorem and on a particular assumption of independence among the compo-
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nents of the evidence vector [184, 185]. We use the formulation of the Naive Bayes

classifier that has been popularized by Paul Graham’s Bayesian spam filter.4 We now

want to show that the Naive Bayes classifier can be considered as a threshold-based

classifier, obeying to the decision rule of Eq. 4.1.

Given a set of classes Xi with i = 1..N and a vector of observations x = {x1,x2..xK},
the Naive Bayes classifier aims to estimate the probability of a class given a set of ob-

served data P(Xi|x) by applying the Bayes theorem and the conditional independence

condition (from this assumption comes the adjective ‘Naive’):

P(Xi|x) =
P(x|Xi)P(Xi)

P(x)
=

P(Xi)∏
k
j=1 P(x j|Xi)

P(x)
(4.14)

In our case, we have a binary classification problem, where the decisions X1 = 1 =

’Match’ and X2 = 0 = ’No Match’ and the observations are represented by the

comparison vector s. Eq. 4.14 for X1 = 1 becomes:

P(1|s) = P(1)∏
k
i=1 P(si|1)
P(s)

Since P(s) = P(s|1)P(1)+P(s|0)P(0) the denominator can be rewritten as:

P(1|s) = P(1)∏
k
i=1 P(si|1)

P(s|1)P(1)+P(s|0)P(0)
(4.15)

and then, using again the conditional independence hypothesis, factorized as:

P(1|s) = P(1)∏
k
i=1 P(si|1)

P(1)∏
k
i=1 P(si|1)+P(0)∏

k
i=1 P(si|0)

(4.16)

Now, by applying Bayes theorem P(si|1) = P(1|si)
P(1) P(si) and P(si|0) = P(0|si)

P(0) P(si),

denoting with x = P(1) and 1− x = P(0), we have:

P(1|s) =
1

xk−1 ∏
k
i=1 P(1|si)

1
xk−1 ∏

k
i=1 P(1|si)+

1
(1−x)k−1 ∏

k
i=1 P(0|si)

(4.17)

4http://www.paulgraham.com/spam.html

http://www.paulgraham.com/spam.html
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Finally, assuming that, a priori, P(1) = P(0) and thus x = 1− x, we can remove the

coefficients and by denoting with ci = P(1|si) we obtain:

P(1|s) = c1c2..ck

c1c2..ck +(1− c1)(1− c2)..(1− ck)
(4.18)

Details of the derivation can be found in [186]. Note that ci = P(1|si) exactly repre-

sents the confidence score derived from the similarity value si. It is also important to

notice that this simplifying assumption P(1) = P(0), although widespread in practice

and used in the implementation of Duke, is not necessary for a Naive Bayes classifier

and can be modified with any other strategy to estimate prior probabilities.

At this point, it is necessary to specify a decision rule, that is a rule to turn the proba-

bility evaluation into a decision. A common approach is the Maximum a Posteriori

(MAP) Estimation [187], namely selecting the class that maximizes the posterior

probability:

X = argmax
Xi

P(Xi|x) (4.19)

which allows to define a binary linkage rule as:

f̂ = 1 ⇐⇒ P(1|s)> P(0|s) (4.20)

which can easily be rewritten as:

f̂ = 1 ⇐⇒ P(1|s)
P(0|s)

> 1 (4.21)

Now, by adopting a decision-theoretic notion of cost, we can turn Eq. 4.21 into

[188]:

f̂ = 1 ⇐⇒ P(1|s)
P(0|s)

> λ (4.22)

where λ is a value that indicates how many times false positives are more costly than

false negatives. From Eq. 4.22, it is clear that if λ > 1, we require that P(1|s) is λ

times greater than P(0|s) in order to consider the pair to be a match, and thus we

are more keen to accept false negatives than false positives. Vice versa, if λ < 1,

the algorithm will tend to have more false positives than false negatives. Finally, by

considering that P(0|s) = 1−P(1|s) and by using Eq. 4.18 we obtain the decision
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rule:

f̂ = 1 ⇐⇒ c1c2..ck

c1c2..ck +(1− c1)(1− c2)..(1− ck)
> t (4.23)

where t = λ

1+λ
. It is now easy to see that Eq. 4.23 can be rewritten as:

f̂ = θ(
c1c2..ck

c1c2..ck +(1− c1)(1− c2)..(1− ck)
− t) (4.24)

which has the same form of Eq. 4.1, where the combination of confidence scores ci

has the role of the global ‘confidence function’:

f (c(e1,e2)) =
c1c2..ck

c1c2..ck +(1− c1)(1− c2)..(1− ck)
(4.25)

We have thus shown that from a Naive Bayes classifier we can obtain a threshold-

based classifier abiding by Eq. 4.1. As we have argued in Sec. 4.1, the threshold

t rules the trade-off between the rate of false positives and false negatives that the

algorithm will accept. This is evident by its relation with λ :

λ → ∞⇒ t→ 1 (4.26)

λ → 0⇒ t→ 0 (4.27)

Thus, the higher the value of t, the higher needs to be the probability that the pair is

a match for the algorithm to consider it a match. Thus, we are less likely to have

false positives and more likely to have false negatives.

In the past years, Naive Bayes classifiers have been utilized in a large num-

ber of fields, such as spam filtering [189], document and text classification [190],

information retrieval [184], entity matching [191] and so on. Duke5 is a popular

open-source deduplication engine, which implements Naive Bayes classification.

Duke is a flexible tool, which accepts different formats of input data, and is easy to

configure through a simple XML file. For each field of each data source, the user can

choose a number of string cleaners, such as functions that remove abbreviations or

normalize lower/upper cases. For each property, Duke allows to select a comparator

5https://github.com/larsga/Duke

https://github.com/larsga/Duke
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among popular string similarity measures such as Levensthein, Jaro-Winkler, exact

comparators and so on [182]. The comparators thus compute, for each property,

a normalized similarity score si. Then, in order to turn similarity scores into a

confidence score ci, Duke uses the heuristic function:

ci = P(1|si) =

(
lowi si ≤ 0.5

(highi−0.5)s2
i +0.5 si ≥ 0.5

where lowi and highi are parameters that the user can configure for each property.

The rationale behind this formula of P(1|si) is that P(1|si = 0) = low and P(1|si =

1) = high, and, as Duke’s users were finding the algorithm to be too strict, a quadratic

instead of a linear trend has been chosen when si is larger than 0.5. After that ci

is computed for each property, the overall P(1|s) is calculated through Eq. 4.18

and the decision is taken through Eq. 4.23. Similarly to the case of Silk, the final

decision threshold t is a parameter that can be configured in a XML file. Duke

also includes a genetic algorithm that automatizes the configuration process and in

general represents a valid alternative to the manual configuration. Through an active

learning approach, Duke asks to the user in an interactive way if a pair of entities

should be a match or not, selecting the most informative pairs, i.e. the ones with

utmost disagreement among the population of configurations [65].

4.2.3 Computational complexity

A crucial point for entity matching systems, which are often used to find matching

entities among datasets with large numbers of instances, is their computational

complexity. The stacking approach introduced by STEM adds an overhead to the

runtime performance of the base classifier due to the generation of the ensemble of

predictions and to the learning process. More in detail, the computational complexity

of STEM in the current sequential implementation can be roughly approximated

with:

TST EM ≈ N ∗Tbaseclassi f ier(n,m)+Tstacking(N,g,k)

where N is the number of features, n is the number of instances of the first dataset,

m is the number of instances of the second dataset, g is the size of the training
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set and k is the size of the test set. Tbaseclassi f ier(n,m) depends on the nature and

the configuration of the base classifier, especially on the blocking strategy. Let us

assume that the base classifier adopts a smart blocking strategy such as that of Silk,

we can assume that Tbaseclassi f ier(n,m) = O(n+m) [192]. Tstacking(N,g,k) depends

on the supervised learner that is used and depends on the training and the testing

time Tstacking(N,g,k) = Ttrain(N,g)+Ttest(N,k). The training and testing processes

can easily be decoupled, for instance saving the trained model to a file and loading

it subsequently for testing. However, in this section, we discuss the worst case in

which we need to first train and then test the model. In this work, we use a kernel

SVM6 classifier as a supervised learner, whose complexity may vary depending on a

number of practical factors depending on the specific implementation. However, as a

rule of thumb, it is reasonable to assume [193, 194] that: O(N ∗g2)< Ttrain(N,g)<

O(N ∗g3) and Ttest(N,k)< O(N ∗ k). To summarize, we can then say that:

T train
ST EM < N ∗O(n+m)+O(N ∗g3) (4.28)

T test
ST EM < N ∗O(n+m)+O(N ∗ k) (4.29)

In our experiments, we have that g ≤ n, g ≤ m and, by using cross-validation, we

have that k ≈ g. In practice, we observe that when the number of features N grows,

the time for generating the predictions quickly surpasses the time of stacking, i.e.

N ∗Tbaseclassi f ier(n,m)> Tstacking(N,g,k) (see Section 5.5.6 for an example). Note

that the time could be reduced to TST EM ≈ Tbaseclassi f ier(n,m)+ Tstacking(N,g) by

parallelizing the generation of the predictions of the N base classifiers, which we

leave as a future work.

4.3 Experimental setup

As we have explained in Sec. 4.2, the STEM approach is general and can be utilized

on top of any threshold-based entity matching system. In this work, we have

implemented it and evaluated through two different open source frameworks, Duke

and Silk, which are based respectively on a Naive Bayes and on a linear classifier.

6http://scikit-learn.org/stable/modules/svm.html

http://scikit-learn.org/stable/modules/svm.html
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In Sec. 4.3.3 and in Sec. 4.3.4, we describe the configuration process of these

frameworks inside STEM. The software implementation of STEM, the configuration

files and the data used for the experiments are publicly available on github.7

4.3.1 Datasets

The first dataset utilized for the evaluation of the proposed approach is that released

by the organizers of the Financial Entity Identification and Information Integration

challenge of 2016 (FEIII2016).8 The purpose of the challenge is that of creating a ref-

erence financial-entity identifier knowledge graph linking heterogeneous collections

of entity identifiers. Three datasets have been released:

• FFIEC: from the Federal Financial Institution Examination Council, provides

information about banks and other financial institutions that are regulated by

agencies affiliated with the Council.

• LEI: contains Legal Entity Identifiers (LEI) for a wide range of institutions.

• SEC: from the Securities and Exchange Commission and contains entity

information for entities registered with the SEC.

In this work, we focus on the Entity Matching of entities of the FFIEC database and

the SEC database, as it proved to be the most challenging one. The gold standard,

which can be seen as a benchmark for the evaluation of the systems as well as a set

of annotations to create a supervised system, has been created by a panel of experts

of the field. The gold standard contains 1428 entity pairs, with 496 positive and 932

negative examples. The dataset is available online.9

A second evaluation of the STEM approach is performed on the dataset released by

the DOREMUS project10 in the context of the instance matching track of the Ontol-

ogy Alignment Evaluation Initiative 2016 (OAEI201611). The Instance Matching

7https://github.com/enricopal/STEM
8https://ir.nist.gov/dsfin/index.html
9https://ir.nist.gov/dsfin/data/feiii-data-2016-final.zip

10http://www.doremus.org/
11http://islab.di.unimi.it/im_oaei_2016/

https://github.com/enricopal/STEM
https://ir.nist.gov/dsfin/index.html
https://ir.nist.gov/dsfin/data/feiii-data-2016-final.zip
http://www.doremus.org/
http://islab.di.unimi.it/im_oaei_2016/
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Track of the OAEI 2016 aims at evaluating the efficiency of matching tools when the

goal is to detect the degree of similarity between pairs of items/instances expressed

in the form of OWL Aboxes. The DOREMUS datasets contain real world data

coming from two major French cultural institutions: the French National Library

(BnF) and the Philharmonie de Paris (PP). The data is about classical music works

and is described by a number of properties such as the name of the composer, the

title(s) of the work, its genre, instruments and the like. We focused our evaluation on

two tasks, whose description we report here:

• DOREMUS 9-heterogeneities: “This task consists in aligning two small

datasets, BnF-1 and PP-1, containing about 40 instances each, by discovering

1:1 equivalence relations between them. There are 9 types of heterogeneities

that data manifest, that have been identified by the music library experts, such

as multilingualism, differences in catalogs, differences in spelling, different

degrees of description.”

• DOREMUS 4-heterogeneities: “This task consists in aligning two bigger

datasets, BnF-2 and PP-2, containing about 200 instances each, by discovering

1:1 equivalence relations between the instances that they contain. There are

4 types of heterogeneities that these data manifest, that we have selected

from the nine in the Nine hererogeneities task and that appear to be the most

problematic: 1) Orthographical differences, 2) Multilingual titles, 3) Missing

properties, 4) Missing titles.”

Data is accessible online.12 To the reference links provided by the organizers, we

add 20 and 123 false links respectively for the DOREMUS 9-heterogeneities and

the DOREMUS 4-heterogeneities gold standards, to enable the supervised learning

approach implemented by STEM that necessitates both positive and negative entity

pairs. No mapping among properties is necessary for this dataset, as the schema is

already aligned.

An additional dataset used in the experimentation of the STEM approach is

derived from the 3cixty Nice knowledge graph. This knowledge graph contains

12http://islab.di.unimi.it/im_oaei_2016/data/Doremus.zip

http://islab.di.unimi.it/im_oaei_2016/data/Doremus.zip
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Dataset Domain Provider Number of entities Format
FFIEC Finance Federal Financial Institution Council 6652 CSV
SEC Finance Security and Exchange Commission 129312 CSV

BnF-1 Music French National Library 32 RDF
PP-1 Music Philharmonie de Paris 32 RDF

BnF-2 Music French National Library 202 RDF
PP-2 Music Philharmonie de Paris 202 RDF

3cixty Nice places Culture and Tourism 3cixty Nice knowledge graph 336,900 RDF

Table 4.1 Datasets summary

Dataset 1 Dataset 2 Gold standard pairs Challenge Task
FFIEC SEC 790 FEIII2016 FFIEC-SEC
BnF-1 PP-1 52 OAEI2016 DOREMUS 9-heterogeneities
BnF-2 PP-2 325 OAEI2016 DOREMUS 4-heterogeneities

3cixty Nice places 3cixty Nice places 756 - -

Table 4.2 Matching tasks summary

Nice cultural and tourist information (such as Place-type entities) and it is created

with a multi datasource collection process, where numerous entities are represented

in multiple sources leading to duplicates. This creates the need of matching and

the resolution of the entities. Further details of the making of the knowledge

graph with the selection of the gold standard is detailed in Sec. 4.5, while in this

section we report the statistics of the gold standard that drove the entity matching task.

For the FEIII and the DOREMUS datasets, we assume that the Unique Name

Assumption is true, meaning that two data of the same data source with distinct

references refer to distinct real world entities. For 3cixty this is clearly not the case,

as we are matching the dataset with itself to detect duplicates.

A summary of the datasets statistics is reported in Tab. 4.1 and of the matching

tasks in Tab. 4.2.

4.3.2 Scoring

To evaluate the efficiency of the algorithm we have used the standard precision p,

recall r and f measures [163]. These measures, if not specified otherwise, have been

evaluated through a 4-fold cross validation score process. Given the ambiguity of the
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definition of p, r and f when performing cross validation [195], we hereby specify

that we have used the average of their values over the four folds. The computation

of the precision score depends on the closed/open world assumption (Sec. 2.1), i.e.

whether we assume that all correct matches are annotated in the gold standard or not.

In practice, it is normal to have in the gold standard only a fraction of all the real

matching entities and we thus follow, by default, the open world assumption. In this

case, when a pair of entity is considered to be a match by STEM and is not present in

the gold standard, we are unable to determine whether this is due to a false positive

or to a missing annotation and we simply ignore it in the scoring. In the case of the

experiments with DOREMUS datasets, where the organizers of the challenge claim

to have annotated all the true matches, we follow the closed world assumption. In

this case, every match that is not annotated in the gold standard is considered as a

false positive.

4.3.3 Duke

Entity format: Duke is able to handle different formats for input data, such as .csv

(comma separated value) or .nt (n-triples). In the first case, an entity is represented

by a record in a table. In the second case, an entity is a node in a knowledge graph.

Blocking method: we reduce the search space for the entity matching process from

the space of all possible pairs of entities AxB using an inverted index, in which

property values are the indexes and the tuples are the documents referred by the

indexes. The lookup of a tuple given a value has, therefore, a unitary cost. We

reduce the search space to a small subset of the most likely matching entity pairs

that satisfy a given Damerau-Levenshtein distance [196] for each value pair of the

tuples, and we considered the first m candidates.13

13We empirically set the distance to 2 and the number of potentially retrievable candidates to
1,000,000 (conservative boundary).
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Configuration: the first step of the implementation consists in configuring Duke.

Duke is built by default on top of a Lucene Database,14 which indexes the records

through an inverted index and does full-text queries to find candidates, implementing

the blocking strategy. The Lucene Database can be configured in Duke by setting a

number of parameters such as the max-search-hits, that is the maximum number

of candidate records to return or min-relevance, namely a threshold for Lucene’s

relevance ranking under which candidates are not considered. Duke then allows

to select a number of properties to be taken into account to establish if a pair of

entities match, such as name, address, zip code. Duke requires to specify a mapping

between the fields of the data sources and those on which the comparison has to

be performed, e.g. “LegalName → NAME, LegalEntityAddress → ADDRESS,

LegalEntityCode→ ZIPCODE”. In this case, we have manually configured Duke

during the participation to the FEIII2016 challenge and the choice of cleaners,

comparators, as well as the detailed mapping among the properties is reported

in [20].

4.3.4 Silk

Entity format: Silk is specifically built to deal with RDF formats, such as .ttl

(turtle) or .nt (n-triples), where entities are represented as nodes in a Knowledge

Graph. However, it allows to convert data from a variety of formats, such as .csv

(comma separated values).

Blocking method: Silk implements a multidimensional blocking system, called

MultiBlock [197], which is able to not lose recall performance. Differently from

most blocking system that operates on one dimension, MultiBlock works by map-

ping entities into a multidimensional index, preserving the distances between entities.

Configuration: Silk can easily be configured through an XML file. To configure

the blocking algorithm, it is sufficient to specify the number of blocks, which we

have empirically set to 100. A set of properties i = 1..K onto which the matching is

14https://lucene.apache.org

https://lucene.apache.org
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based needs to be specified and then, for each of them, the user can select among a

large number of ‘transformators’ (comparable to Duke’s cleaners) to pre-process and

normalize strings. The choice of transformators and comparators has been based on

the result obtained with Duke in the participation to the FEIII challenge and a similar

configuration file has been produced for Silk. A manual configuration to optimize

the f score has been used also for the DOREMUS data in the context of the OAEI

challenge [198].

4.3.5 Stacking

Differently from the previous steps, which are mainly based on low-level string

similarity measures, the supervised learner can implicitly learn semantic similarities

from the human annotations of the gold standard. The stacking process is

implemented through a Python script that executes Duke or Silk a number N

of times, editing the threshold t through uniform perturbations of amplitude a,

automatically modifying Duke’s or Silk’s configuration file. Then, the script saves

Duke’s or Silk’s outputs and turns them into a training set for a supervised learner

with id1, id2 pairs on the rows and N features on the columns.

The user may choose different supervised learners for the stacking layer. What

we have experimentally found to work better, given the small number of features,

is an SVM with a RBF kernel [56]. In many cases, such as the default one, the

learning algorithm leaves a number of parameters (so-called “hyper parameters”) to

be determined. Let F(x; ŵ,θ) be a supervised learner where θ is the vector of hyper

parameters (C and γ in the case of SVM with RBF kernel). In order to optimize the

efficiency of the algorithm with respect to these hyper parameters, we have trained

the algorithm on an array of possible values of θ and selected θ̂ as the vector that

optimized 4-fold cross validation score (grid search cross validation [199]).

For what concerns the number of features N, it is reasonable to expect that higher

values tend to increase the efficiency of the algorithm up to a saturation point,

where no further predicting power is added by an additional instance of the base

classifier. Actually, we observe that increasing the number of features can also

lead to efficiency decrease, as a typical overfitting problem. This saturation point
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will typically depend on the amplitude a of perturbation, as with small intervals

−a/2,a/2 we expect it to occur earlier. This will also depend on the size of the

datasets and its complexity, so no one-fits-all solution has been individuated. The

experiments of Sec. 4.4.1 with varying values of a and N show that a = 0.25 and

N = 5 appears to be a good rule of thumb.

4.4 STEM Experimental Results

4.4.1 STEM vs threshold-based classifiers

In this section, we address the research question RQ2.1: Does STEM improves the

F-score of threshold-based classifiers in a significant and consistent way?

We first provide evidence of the trade-off between precision and recall introduced by

the decision threshold and then we show that STEM is able to increase the precision

and the recall of the base classifiers at the same time. In the following, we refer to the

STEM approach implemented on top of Duke as STEM-NB and to that implemented

on top of Silk as STEM-LIN.

The premise of this work is that the threshold t in decision rule Eq. 4.1 introduces

a trade-off between precision and recall. In Sec. 4.1 we have provided a heuristic

argument of why this should be the case and now we provide experimental results. In

Fig. 4.4, we report the precision and recall obtained by running Duke on the FFIEC-

SEC dataset for a set of 20 equally spaced threshold values t ∈ [0.05,0.9]. The graph

clearly shows the trade-off between precision and recall of the algorithm ruled by

the threshold t. The trend for both curves is non-linear, with moderate changes in the

central part and sudden variations at the sides. The typical configuration process of

a threshold-based classifier attempts to find a balance between the two metrics, in

order to maximize the F-score of the algorithm. Then, using STEM, both metrics can

be increased at the same time using stacking. In Tab. 4.3 and Tab. 4.4 we support this

claim by reporting respectively the results obtained using STEM-NB and STEM-LIN

on FFIEC-SEC, DOREMUS 4-heterogeneities, DOREMUS 9-heterogeneities tasks,

varying the number of features N. The value of the perturbation amplitude a has
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Fig. 4.4 Precision and recall curves as functions of the threshold t for Duke on the FEIII
dataset. It clearly shows the trade-off between p(t) and r(t) introduced by the Naive Bayes
classifier decision rule Eq. 4.23

been fixed to a = 0.25 following the analysis reported in Fig. 4.5, which shows

that this value allows to reach f = 0.95 with only 10 configurations and limits the

dependence on the value of N. The plot also shows that the saturation effect tends

to occur sooner when a is small, as this corresponds to a denser and therefore less

informative sampling of the interval.

In Tab. 4.3, we can observe that, for the FFIEC-SEC task, even with a small number

of features N = 5, stacking leads to a significant increase of the F-score of the

algorithm (12%), obtained by increasing both precision and recall at the same time.

Increasing the number of features N tends to increase the efficiency, with a saturation

effect as the number gets larger. Indeed, going from N = 5 to N = 10 only grants

a 1% gain and no difference of efficiency is observed from N = 10 to N = 20. A

similar behavior is observed for the DOREMUS tasks, where the big efficiency leap

is given by the introduction of stacking, whereas raising the number of features

N grants small improvements in the case of 4-heterogeneities and decreases the

efficiency in the case of 9-heterogeneities. A similar behavior is observed for all the

experiments that we have done.

To show that the increase of efficiency is not dependent on the particular threshold-

based classifier, we have run the same experiments using STEM-LIN and reported

the results in Tab. 4.4. In this case, we can observe that, although absolute values are
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FFIEC-SEC DOREMUS 4-heterogeneities DOREMUS 9-heterogeneities
Base classifier N p r f δ f p r f δ f p r f δ f

Duke n/a 0.88 0.77 0.82 0 0.46 0.57 0.51 0 0.48 0.66 0.55 0
STEM-NB 5 0.90 0.98 0.94 12% 0.89 0.98 0.93 42% 0.97 1.0 0.99 44%
STEM-NB 10 0.93 0.97 0.95 13% 0.89 0.98 0.93 42% 0.94 1.0 0.97 42%
STEM-NB 20 0.94 0.97 0.95 13% 0.89 0.99 0.94 43% 0.87 1.0 0.93 35%

Table 4.3 Results of STEM-NB vs Duke for a = 0.25 and different values of N across
different datasets

FFIEC-SEC DOREMUS 4-heterogeneities DOREMUS 9-heterogeneities
Base classifier N p r f δ f p r f δ f p r f δ f

Silk n/a 0.57 0.67 0.59 0 0.45 0.43 0.43 0 0.46 0.81 0.58 0
STEM-LIN 5 0.77 0.81 0.79 20% 0.82 0.93 0.86 43% 0.89 1.0 0.94 36%
STEM-LIN 10 0.78 0.83 0.80 21% 0.75 0.66 0.69 28% 0.89 1.0 0.94 36%
STEM-LIN 20 0.77 0.84 0.81 22% 0.75 0.60 0.64 21% 0.87 1.0 0.93 35%

Table 4.4 Results of STEM-LIN vs Silk for a= 0.25 and different values of N across different
datasets

Fig. 4.5 F1 score for different combinations of a and N on the FFIEC-SEC dataset for
STEM-NB
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lower, the increase in efficiency given by the stacking layer is equally or even more

important, achieving a +20% on the F-score with only N = 5 in the FFIEC-SEC

task and a +43% and +36% for DOREMUS tasks. Also in this case, both precision

and recall are increased at the same time and a saturation effect can be detected as N

grows. In general, it seems that the saturation effect occurs earlier for DOREMUS

tasks, as in three cases out of four with N = 5 we already reach the peak efficiency

and the fourth case the efficiency only increases by 1%. This is probably due to the

fact that DOREMUS datasets are smaller and thus a model with too many features

tends to overfit the data.

4.4.2 STEM vs supervised learning on similarity values

In this section, we address the second research question of the chapter, namely

RQ2.2: How does STEM performs when little training data is available?

We compare the hybrid approach of STEM with a system that performs machine

learning ‘from scratch’. More in detail, we have compared STEM to a number of

commonly used machine learning algorithms, using similarity values si as features.

In addition to verifying whether STEM performs better than the other systems in

absolute, the intent is also to see whether it is less dependent on the amount of

annotated training data. Indeed, given the quadratic nature of the entity matching

problem, in most real usage scenarios, annotating a comprehensive gold standard

(such as those of FEIII and DOREMUS) is an extremely time consuming endeavour

and the user is able to annotate just a small fraction of all possible entity pairs.

Therefore, it is interesting to see how an entity matching system performs with a

small amount of annotated training pairs. To this end, we have studied how STEM

performs at the variation of the amount of training data with respect to an SVM

classifier with a RBF kernel, a random forest and a logistic classifier. In order

to avoid possible size effects on the scores, we have split the FEIII data in two

halves, according to the stratified sampling technique, i.e. keeping constant the

proportion of matching and non matching pairs in the two parts. The first half is

used as training data and the second half is used as test data. Then, we randomly

extract a fraction z of training data from 0.1 to 0.9, train the systems and score
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Fig. 4.6 F-score at the variation of the percentage of training data used. STEM-NB is
compared to an SVM classifier, a Random Forest and a logistic classifier

them on the test set, which remains the same. For each value of z, we repeat the

extraction 50 times and we compute the average value. Using the FEIII datasets

and the STEM-NB implementation, values of si have been computed using the same

comparators with the same configuration of STEM-NB. The configuration procedure

of the machine learning classifiers is the same as that described in Sec. 4.3.5, namely

a grid search hyper parameters optimization has been used to maximize 4-fold cross

validation scores, setting C and γ for SVM, ‘n_estimators’ for the random forest and

the regularization constant C for logistic regression.15 The result of the experiment

is depicted in Fig. 4.6. We can see that STEM-NB performs better than any other

classifier in absolute terms, reaching a peak of 0.931 when 90% of the training data is

used. Moreover, it shows little dependency on the amount of training data, producing

0.914 with only 10% of the training data. SVM performs better than the other pure

machine learning approaches when 90% of training data is used, but decreases fast

when annotated examples are reduced. In Tab. 4.5, we report, for each classifier, the

quantitative estimation of the dependency of f from the fraction of training data z,

obtained through the statistical estimation of the angular coefficient m of a linear

fit of the points (i.e. the straight lines of Fig. 4.6). What we can observe is that

more complex models such as SVM and Random Forest tend to depend more on the

amount of training data, while a simple linear model such as logistic regression is

15http://scikit-learn.org/stable/user_guide.html

http://scikit-learn.org/stable/user_guide.html
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Classifier min max m
STEM-NB 0.91 0.93 0.015±0.008

SVM 0.74 0.84 0.09±0.01
Random Forest 0.74 0.83 0.09±0.01

Logistic 0.78 0.82 0.002±0.006

Table 4.5 Dependency on the amount of training data. ‘Min’ and ‘Max’ represent respectively
the minimum and maximum F-score and ‘m’ represents the angular coefficient of a straight
line interpolating the points of Fig. 4.6

performing well even with a small amount of training data. The logistic model is

even less dependent on the training data than a hybrid approach such as STEM, but

it is not comparable in terms of absolute efficiency. STEM thus represents a model

that is complex enough to achieve good efficiency in absolute terms and it is also

able to maintain it with a little amount of training data.

4.4.3 Runtime performance

In Sec. 4.2.3 we have discussed the computational complexity of STEM, which can

be summarized as TST EM ≈ N ∗Tbaseclassi f ier(n,m)+Tstacking(N,g,k). We have also

argued that we observed that the time required to run the ensemble of base classifiers

is longer than the time required for the stacking layer. In this section, we show an

example of such a behavior measuring the runtime of STEM-NB on the DOREMUS

4-heterogeneities dataset with increasing number of features N. In Fig. 4.7, we can

see that the time required to generate the features Tbase = N ∗Tbase_classi f ier quickly

becomes much more significant than the time required for stacking Tstacking. A similar

behavior has been observed for all the datasets under consideration, suggesting that

a parallelization of the feature generation process would greatly improve the runtime

performance of STEM as a whole. In general, we also observe a linear trend in both

the components Tbase(N) and Tstacking(N), which implies a linear trend for the total

time TST EM, consistently with what we expect from Sec. 4.2.3.
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Fig. 4.7 Runtime for STEM-NB on DOREMUS 4-heterogeneities task with increasing
number of features N.

4.5 Use-case: building the 3cixty Knowledge Graph

We further validate STEM by describing its implementation in a concrete use case,

represented by the 3cixty European research project.16 We address the third research

question of the chapter RQ2.3: How can STEM be applied in the process of building

a knowledge graph containing Points of Interests (POI) and events for tourists?

4.5.1 Overview

3cixty is a semantic web platform that enables to build real-world and comprehensive

knowledge bases in the domain of culture and tourism for cities. The entire approach

has been tested first for the occasion of the Expo Milano 2015 [200], where a

specific knowledge base for the city of Milan was developed. Later, it has been

refined with the development of knowledge bases for other cities, among those Nice.

These knowledge bases contain descriptions of events, places (sights and businesses),

transportation facilities and social activities, collected from numerous static, near-

and real-time local and global data providers, including Expo Milano 2015 official

16https://www.3cixty.com

https://www.3cixty.com
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services in the case of Milan, and numerous social media platforms. The generation

of each city-specific 3cixty knowledge base follows a strict data integration pipeline,

that ranges from the definition of the data model, the selection of the primary sources

used to populate the knowledge base, till the entity matching used for distilling the

entities forming the final stream of cleaned data that is then presented to the users

via multi-platform user interfaces. A detailed description of the technology leading

to the creation of the knowledge base is reported in [29]. In the remainder of this

section we introduce the creation of the gold standard for 3cixty and the experimental

results obtained using STEM for the entity matching problem.

4.5.2 Gold Standard Creation

The 3cixty knowledge bases contain information about places, events, artists, trans-

portation means, and user-generated content such as media and reviews. The knowl-

edge bases are built using three types of data sources:

• local sources usually offered by city open data portals,

• global sources such as social media platforms,

• editorial data generated by experts of the domain.

STEM is used to remove duplicates among these heterogeneous data sources in the

construction of the knowledge graph. Although ideally we might want to create

a gold standard for all the cities where 3cixty is applied, this approach would not

be scalable, as it would require a manual effort for each new city. Hence, we have

generated a gold standard only from the 3cixty Nice KB, i.e. the knowledge base

built for the Nice area. Given the generality of the stacking layer of STEM, which

only uses numerical thresholds as features, and the of the data model of the different

3cixty knowledge bases, the SVM model can be trained once using the 3cixty Nice

gold standard, and can then be applied to other cities.

The gold standard has gone through a process of identifying, with a random

sampling, a small portion of Place-type pairs17 to match, totaling 756 pairs. This
17For the sake of brevity we report the entity matching process of the Place-type entities
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accounts to a tiny fraction of the entire set of possible pairs (order of 109 possible

pairs); then, two human experts rated each as a match or as no-match. The annotation

process was divided in two steps: i) individual annotation, i.e. each expert performed

annotations separately; ii) adjudication phase, i.e. the two experts compared the

annotations and resolved eventual conflicts.

This has prompted the creation of a gold standard that accounts 228 match and

528 no-match pairs.18

4.5.3 Experimental Results

Similarly to what has been done in Sec. 4.4.1, we compared STEM with Duke. In

order to put Duke in the best conditions, we let it learning the best configurations

using the active learning built-in function, just giving as input the instance fields to

be utilized in the matching task and the gold standard created by the two experts.

The built-in active learning function works as follows: it iterates multiple times

changing the configurations of the comparators aiming to minimize the matching

error rate. Such a process prompts the creation of a configuration file summarizing

the best Duke settings for the dataset used.

Having observed that it performs better than STEM-LIN (Sec. 5.5.6), we have

then deployed STEM-NB using Duke configured as above and we conducted a 4-fold

cross validation. Table 4.6 shows the results of the experiments. We can observe

how STEM with five classifiers holds better results than a single run of Duke with a

δ f of 20%. We can also observe how the boost STEM introduces is slightly reduced

with an increasing number of Duke instances N, similarly to what observed for

DOREMUS data. As we mentioned earlier in the paper, this is the typical overfitting

problem, where introducing additional complexity in the model does not provide

better learning. As a general suggestion, N = 5 seems to be enough to obtain a

consistent increment of efficiency with respect to the baseline without overfitting the

data. The matching process with N = 5 took approximately 3 hours on a laptop with

4 cores and 12GB of RAM.
18We aim to share the Gold Standard once the paper is published to foster the reuse and experimental

reproducibility.
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Base classifier N p r f δ f
Duke n/a 0.76 0.65 0.70 0

STEM-NB 5 0.90 0.92 0.90 20%
STEM-NB 10 0.76 0.81 0.78 8%
STEM-NB 20 0.79 0.81 0.79 9%

Table 4.6 Results of STEM-NB vs Duke on the 3cixty Nice dataset for a = 0.25 and different
values of N.

4.6 Summary

In this chapter, we have described STEM: Stacked Threshold-based Entity Matching.

First, we have introduced and explained the entity matching problem, introducing

a set of formal definitions that allowed us to show that the use of threshold-based

classifiers introduce a trade-off between precision and recall. Then, we described

STEM, a machine learning layer that combines the predictions of a set of threshold-

based classifiers through stacking. We have shown that stacking breaks the trade-off

between precision and recall, significantly enhancing the F-score, using two different

threshold-based classifiers and three different datasets. We have also shown that

STEM is less dependent on the amount of training than a system that performs

machine learning from ‘scratch’, i.e. using directly property similarity values.

Finally, we have described how STEM has been applied in a real use-case: the

construction of the 3cixty knowledge graph. We have described the aim of the 3cixty

project and shown how STEM has been an important element of the process of

knowledge graph generation, improving the data reconciliation process and leading

to a higher quality of the graph.



Chapter 5

Path Recommender: Predicting Your
Next Stop-over with Recurrent
Neural Networks

Where should I go next? All of us have probably asked this question while visiting

a city. Traditional tourist guides typically provide a set of predefined tours curated

by experts, which can be useful to support a city exploration. However, predefined

tours need to be manually updated, do not take into account personal preferences

(e.g. art lover vs sports fan) or contextual information (e.g. sunny vs rainy weather).

Thus, researchers in the RS field are trying to work on algorithms that learn to

recommend tourist paths from data, providing scalability and the possibility of

including personal preferences and contextual information. Often, these studies have

made use of Location-based Social Networks (LBSN) data. A famous LBSN is

Foursquare1, which, through its application Swarmapp2 allows users to check-in

in a POI, sharing their location with friends. The next POI prediction problem has

the goal of predicting where the user will go next, given a set of user’s check-ins.

Given that the user has checked-in in an Italian Restaurant and in a City Park, where

is she likely to go next? Note that predicting these sequences require an implicit

modeling of at least two dimensions: 1) temporal, as certain types of venues are

1https://it.foursquare.com/
2https://www.swarmapp.com/

https://it.foursquare.com/
https://www.swarmapp.com/
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more temporally related than others (e.g. after an Irish Pub, people are more likely to

go to Karaoke than to a History Museum) 2) personal, as venue categories implicitly

define a user profile, independently from their order (e.g. Steakhouse and Vegetarian

Restaurant do not go frequently together).

In order to address this problem, it is necessary to define appropriate models that

are specifically meant to deal with sequential data, to have at disposal a dataset

containing sequences of check-ins to use for training, and to well define a standard

and reproducible evaluation protocol that allows a fair comparison with competing

approaches.

To address these challenges, in this chapter, we address the following research

questions:

RQ3 How can we create a recommender system that learns to recommend tourist

paths from LSBN data, effectively leveraging the temporal correlation among

tourist activities?

To answer this research question, we introduce the Path Recommender and

three sub-research questions:

RQ3.1 How can we benchmark different SARS, improving the comparability

and reproducibility of experiments?

RQ3.2 How do deep learning methods perform compared to other more

traditional modelling approaches in the generation of tourist paths?

RQ3.3 How can we extend the Path Recommender to deal with the automated

music playlist continuation task?

The remainder of the chapter is structured as follows. In Sec. 5.1 we formalize

the problem, providing a set of definitions generally related to sequence-aware

recommender systems; in Sec. 5.2 we describe the RNN architecture of the Path

Recommender; in Sec. 5.3 we describe the evaluation protocol Sequeval, which is

used to evaluate the Path Recommender and compare it to a set of sequence-aware



5.1 Definitions 127

algorithms; in Sec. 5.3.4 we describe the Semantic Trails Dataset (STD), which has

been collected from Foursquare and has been used to train the Path Recommender;

in Sec. 5.4, we describe the experimental results obtained from the comparison of the

Path Recommender with competing systems; in Sec. 5.5 we describe the extension

of the Path Recommender model devised to address the music playlist continuation

task in the RecSys2018 challenge; in Sec. 5.6 we summarize the chapter.

Part of the work described in this chapter has been published in different workshops

of the RecSys conference [30, 31, 33, 32].

5.1 Definitions

In a traditional recommender system, users express positive or negative preferences

about a certain item. An item may be, for example, a product, a song, or a place.

In contrast, we assume that when a user consumes or interacts with an item, she

expresses an implicit rating about it. This assumption in literature goes under the

name of implicit feedback (Sec. 2.2.1). Since we are also considering the temporal

dimension in order to build the sequences, each rating is associated with a timestamp

that represents the point in time when it was recorded.

Definition 22 Given the space of items I , the space of users U , the space of

timestamps T , a rating r ∈R is a tuple r = (ι ,υ ,τ), where ι ∈I is the item for

which the user υ ∈U expressed a preference at the timestamp τ ∈T .

By relying on the set of ratings R available in the system, it is possible to

construct the sequences that will be used to train and to evaluate the recommender.

Each sequence only includes the ratings expressed by a single user. On the other

hand, each user may produce several sequences.

The concept of sequence is similar to the concept of session in a traditional web

interaction: if two ratings are distant in time more than an interval δτ , then they

belong to different sequences. Some ratings may be isolated and, for this reason, not

part of any sequence. The most appropriate value for δτ depends on the domain: for
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example, in the point-of-interest recommendation scenario, it could be considered of

a few hours as reported in [132].

Definition 23 A sequence s ∈S is a temporally ordered list of ratings ⟨r1,r2, . . . ,

rn⟩ created by a particular user υ ∈U , i.e., for each i, ri = (ιi,υ ,τi) and τi < τi+1.

In Algorithm 1, we list the procedure for creating the set S , given the set of

users U , the set of ratings R, and a time interval δτ .

Algorithm 1 Generation of the set S , given U , R, and δτ .

Require: U ̸= { /0}∧R ̸= { /0}∧δτ
.
= τi− τ j

1: S ←{ /0}
2: for all υ ∈U do
3: s←∅
4: for all ri ∈Rυ : τi−1 < τi∧ i > 1 do
5: if τi < τi−1 +δτ then
6: if s is ∅ then
7: s← ⟨ri−1⟩
8: end if
9: s← s+ ⟨ri⟩

10: else
11: if |Rs|> 1 then
12: S ←S ∪{s}
13: s←∅
14: end if
15: end if
16: end for
17: end for
18: return S

A sequence-based recommender is a RS capable of suggesting a personalized se-

quence that is built starting from a seed rating r0, considering the example sequences

already available in the system and the specific behavior of a certain user. The seed

rating is characterized by a seed item ι0, a target user υ , and an initial timestamp τ0.

The seed item can be represented by any item that belongs to the catalog, but, more

in general, it is a point in the space of items I . For example, in the music domain,

it could identify not only a particular song, but also an artist, a genre, or a mood.
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The target user is the user to whom the sequence is recommended, while the initial

timestamp represents the point in time in which the recommendation is created. The

generated sequence is of fixed length and it contains exactly k ratings. Note that if

k = 1, we are dealing with a sequential recommender as defined in [152].

Definition 24 Given a seed rating r0 ∈ R : r0 = (ι0,υ ,τ0), and a length k ∈ N,

a sequence-based recommender is the function sequence : R × N → S , i.e.

sequence(r0,k) = ⟨r1,r2, . . . ,rk⟩ : ri = (ιi,υ ,τi).

Most sequence-based recommenders are based on probability models, and there-

fore they can be interpreted as a sampling function σ applied to the conditional

probability P(⟨rk,rk−1, . . . ,r1⟩|r0):

sequence(r0,k) = σ(P(⟨rk,rk−1, . . . ,r1⟩|r0)) (5.1)

Using the chain rule, the sequence probability P(⟨rk,rk−1, . . . ,r1⟩|r0) can be

written as:

P(⟨rk,rk−1, . . . ,r1⟩|r0) =P(rk|⟨rk−1, . . . ,r0⟩)·

P(rk−1|⟨rk−2, . . . ,r0⟩) · · ·P(r1|⟨r0⟩)
(5.2)

For example, in the case of a Markov chain, each rating depends on the previous

one, i.e. P(rk|⟨rk−1, . . . ,r0⟩) = P(rk|rk−1):

P(⟨rk,rk−1, . . . ,r1⟩|r0) = P(rk|rk−1)P(rk−1|rk−2) · · ·P(r1|r0) (5.3)

Thus, a sequence-based recommender system typically works by learning from

a set of sequences Straining the conditional probability of the next rating rk to the

sequence of previous ones ⟨rk−1,rk−2, . . . ,r0⟩, i.e. the factors of the right-hand side

of Equation 5.2. Sampling sequences directly from Equation 5.2 would require

computing the probabilities of all the |I|k possible sequences, where |I| is the size

of the vocabulary of items and k is the length of the sequences. Since this becomes
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easily computationally unfeasible, we opt for a greedy approach, in which at each

step we sample the next most likely item. A sampling function ρ is defined in order

to select a particular next rating from the previous ones at each step:

r̂k = ρ(P(rk|⟨rk−1,rk−2, . . . ,r0⟩)) (5.4)

A trivial example of ρ is the argmax function, which simply selects the most

probable next rating. In the following, we will assume that ρ is implemented by a

weighted random sampling function.

Algorithm 2 formalizes the procedure for generating a personalized sequence,

given a seed rating r0, and a length k, i.e. it describes the sampling function σ . For k

times, the next rating of the recommended sequence is generated using the function

predict. The function predict : S →R implements the sampling function ρ and

it returns the most probable next rating for the current input sequence. In practice,

the sequence-based recommender system can estimate the probability that the next

rating of the current sequence will include a particular item at a certain timestamp.

Note that the greedy procedure described in Algorithm 2 is not the only way

to create samples of sequences, but only the one that is adopted in this work for

his computational efficiency. Some alternatives are the brute-force approach where

the probability of all possible sequences of length k is estimated, or beam search

approaches where the probability of sub-sequences of length 11 < ksub < k are

estimated for a number of steps k//ksub of times.

Algorithm 2 Recommendation of a sequence of length k.
Require: r0 ∈R ∧ k > 0

1: s← ⟨r0⟩
2: for i = 1 to k do
3: ri← predict(s)
4: s← s+ ⟨ri⟩
5: end for
6: return s−⟨r0⟩

In order to compute some metrics that are part of the evaluation framework, it is

necessary to know the number of items that are associated with a certain sequence.
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For this reason, we define the set Is as the set of items that are part of the sequence

s, and the set Rs as the set of ratings that are part of the sequence s. Therefore, |Is|
is the number of distinct items available in s, while |Rs| represents the length of s.

For instance, we can suppose that the set of ratings R is equal to {(ι1,υ1,τ1),

(ι2,υ1,τ2),(ι3,υ2,τ3),(ι1,υ1,τ4),(ι2,υ2,τ5),(ι3,υ1,τ6)}. Then, if we assume that

the only pair of timestamps that violates the δτ constraint is (τ4,τ6), we can cre-

ate two sequences: s1 = ⟨(ι1,υ1,τ1),(ι2,υ1,τ2),(ι1,υ1,τ4)⟩, and s2 = ⟨(ι3,υ2,τ3),

(ι2,υ2,τ5)⟩. The rating (ι3,υ1,τ6) is not part of any sequence because it was created

at some point in time later than τ4 +δτ and we do not have any subsequent rating

expressed by υ1. We also observe that |Is1| = 2 and |Rs1| = 3. We would like to

recommend a sequence s of length 2 to user υ1 starting from item ι3 at timestamp

τs,0. A possible solution to this problem is to define rs,0 = (ι3,υ1,τs,0) and then to

recommend s = sequence(rs,0,2) = ⟨(ι2,υ1,τs,1),(ι1,υ1,τs,2)⟩, where τs,1 and τs,2

may be used to suggest when consuming the items.

In this work, we address the problem of next POI category prediction, i.e. we

aim to learn to predict the category of the next POI that a user will visit, in order to

be able to generate and recommend new paths. Thus, the role of the ratings is taken

by the check-ins of the users.

Definition 25 Given the space of POI categories C, the space of check-in ids I, the

space of timestamps T , the space of users U, a check-in is a set v = {i,c,τ,u} where

i ∈ I is the check-in id, c ∈C is the category of the POI, τ ∈ T is the timestamp at

which the check-in has been performed and u ∈U is the user who has performed the

check-in.

In this work, the space of possible categories C is defined by the Foursquare Taxon-

omy, which defines and classifies categories in a hierarchical ontology containing

920 categories3. We define a path (or trail) as a list of consecutive check-ins created

by the same user within a certain amount of time:

3https://developer.foursquare.com/categorytree

https://developer.foursquare.com/categorytree
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Definition 26 A path (or trail) s ∈S is a temporally ordered list of check-ins ⟨c1,

c2, . . . ,cn⟩ created by a particular user υ ∈U , i.e., for each i, ci = (νi,υ ,τi) and

τi < τi+1.

Definition 27 We define a category index α ∈ N with α = 1..|C| and that uniquely

identifies a category cα ∈C.

In order to learn to generate the next category ct+1 of a path, we learn a model of

the conditional probability P(ct+1|ct ,ct−1,ct−2, ...,c1) from these sequences of POI

categories, in accordance to what described in Eq. 5.2, and sample from it the next

POI (Eq. 5.4).

5.2 The Path Recommender model

Most of existing studies attempt to model directly sequences of POIs rather than

their categories for the next POI prediction problem (see Sec. 2.2.3). In this work, we

decide to focus on modeling sequences of POI categories to enhance the generality

and the portability of the obtained results. This can be considered as a first step in the

next POI prediction problem, as the POI category can then be turned into a specific

POI by querying a database of POIs according to a variety of parameters, such as the

user context (e.g. position, weather) and/or specific POI features such as popularity,

average prices and the like.

We propose an approach based on Recurrent Neural Networks, which are specifically

meant to deal with sequential data. The main difference of RNNs with respect to

standard feed-forward neural networks is the presence of a hidden state variable

ht , whose value depends both on the input data presented at time xt and, by means

of loop connections, on the previous hidden state ht−1[201]. A typical applica-

tion of RNNs in neural language modeling is that of generating text recursively

applying a “next word prediction" [147], and in the same spirit we address the

problem of next POI category prediction. The main idea is that of using a supervised

learning approach where the targets correspond to the inputs shifted in time, i.e.

X = {(c j
0,c j

1, ...,c
j
N j−1)} and Y = {(c j

1,c j
2, ...,c

j
N j
)} where j = 1...M is the path
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index and N j is the length of the j− th path. The architecture of the neural network

is illustrated in Fig. 5.1. To simplify the notation, we now drop the path index j and

Art_Museum Park Sushi_Restaurant EOP

Cafeteria Art_Museum Park Sushi_Restaurant

GRU

x0

o0 o1 o2 o3

x1 x2 x3

Dropout Dropout Dropout Dropout

Target

encoding encodingencodingencoding

GRU GRU GRU

Input layer

Hidden layer(s)

Output layer

Softmax Softmax SoftmaxSoftmax

h0
h1 h2 h3

Wo Wo Wo Wo

c1 c2 c3
c4

c0 c1 c2 c3

Fig. 5.1 Architecture of the RNN. ‘EOP’ is a special symbol describing the end of a path.

consider one path to illustrate the functioning of the network. A venue category ct is

fed into the network via an encoding into an input vector xt , which is then passed to

a Gated Recurrent Unit. Gated Recurrent Units (GRU) are gating mechanisms that

improve the ability of the RNNs to store long sequences and that recently have been

proven to be as effective as more complicated architectures such as Long Short-Term

Memory (LSTM) units [143]. The update of the GRU unit hidden state, i.e. the

computation of the new state ht given the previous state ht−1 and the current input xt ,

is described by the following equations:

rt = sigmoid(Wrht−1 +Wrxt +br) (5.5)

h′t = tanh(Wi(rt⊗ht−1)+Wixt +bi) (5.6)

zt = sigmoid(Wzht−1 +Wzxt +bz) (5.7)

ht = zt⊗h′+(1− zt)⊗ht−1 (5.8)

where sigmoid and tanh indicate respectively the sigmoid and hyperbolic tangent

activation functions and ⊗ represent the element-wise product of the matrices. r is

called the ‘reset gate’ and it allows to forget or remember the previous state ht−1

when generating the candidate state h′t . z is called the ‘update gate’ and intuitively it
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controls how much the unit needs to update its state. Wi, Wr, Wz are weight matrices

that are learned during the training.

The GRU computes the hidden state ht which is stored for the next iteration and used

to compute the output of the current iteration ot . Before computing the output ot ,

during training time, a Dropout layer is applied. The Dropout layer is a regularization

mechanism which, at training time, randomly switches off a fraction p of neurons,

called the dropout rate, preventing them from co-adapting and overfitting the sampled

data [202]. Dropout can be modelled with a mask vector mt , whose values can be

either 1 or 0 with probability p. After the dropout layer, the output state ot =

tanh(Wohtmt) is computed using a fully connected layer whose weights are defined

by the matrix Wo, which is learned at training time. Wo is shaped so that the dimension

of the output vector is equal to the number of possible categories, i.e. |ot | = |C|.
Thus, we can index the components of the output vector using the category index

oα
t . Then, the Softmax layer normalizes the outputs, turning them into a probability

distribution over a set of possible outcomes [203]:

so f tmax(oα
t ) =

eoα
t

∑
|C|
k=1 eok

t
(5.9)

In this way, the Softmax layer models the probability distribution of the next category:

so f tmax(oα
t ) = P(ct+1 = cα |ct ,ct−1,ct−2, ...,c1) (5.10)

as oi
t depends on the current category encoding xt of ct , but also on all the previous

encodings of the sequence by means of the hidden state ht . During the training

process, we train the network to produce a probability distribution of categories that

is as close as possible to that observed in the data, i.e. maximizing the probability of

the observed data. Therefore, we define the loss Lt as the cross entropy:

Lt =−logP(ct+1 = cα
t+1|ct ,ct−1,ct−2, ...,c1) =−log(so f tmax(oα

t )) (5.11)

where cα
t+1 is the category observed in the data as t + 1 element of the path. The

loss is optimized using Adam [204], an enhanced version of the stochastic gradient

descent that introduces momentum and adaptive learning rates. The gradients of
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the loss function are computed using back propagation on the unrolled neural

network [205]. The model has a number of hyper-parameters, such as the number of

neurons in the hidden state nhidden, the number of hidden layers nlayers, the learning

rate lr and the number of epochs η . We optimize these hyper parameters using a grid

search on a validation set, setting: (nhidden = 64, lr = 10−4, epochs = 5, nlayers = 3).

5.3 Experimental setup: the Sequeval framework

Comparing the performance of several recommenders with an experiment that in-

volves a live system is not always feasible or appropriate. For this reason, it is

necessary to first perform a preliminary evaluation in an offline scenario [206]. How-

ever, in SARS there is a lack of standard evaluation protocols [24]. Thus, in this

section, we address RQ3.1: How can we benchmark different SARS, improving the

comparability and reproducibility of experiments?

To this end, we introduce the evaluation framework Sequeval. Sequeval is made of an

evaluation protocol, presented in Section 5.3.1, a set of evaluation metrics, described

in Section 5.3.2, and a software implementation that is introduced in Section 5.3.3.

5.3.1 Evaluation Protocol

One of the first problems that an evaluation framework should consider is how to

split the dataset between the training set and the test set. This task is not trivial, as

it will deeply influence the outcome of the experimentation [160]. Since we are

dealing with sequences, we need to split the set of sequences S in a training and

test set such that S = Straining∪Stest .

Several solutions to this problem are possible: a simple but effective one is to

perform the splitting by randomly assigning sequences to these sets according to a

certain ratio, typically the 80% for training and the 20% for testing. If the number of

sequences available is limited, it is necessary to perform a cross-validation. Another

possibility is to identify an appropriate point in time and to consider all the sequences
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created before it as part of the training set, and after it as part of the test set. This

protocol simulates the behavior of a recommender introduced at that point in time

and it avoids too optimistic results caused by the knowledge of future events [207].

The latter solution can be considered the most reliable one, but if we do not have

any temporal information because the sequences have already been created, it is

necessary to adopt a random protocol.

More in general, it is impossible to identify a splitting method that is appropriate

for every experiment, as it depends on the domain and on the dataset available. For

this reason, Sequeval does not impose the adoption of a particular splitting protocol,

but the experimenter can choose the most appropriate one.

In order to compute the metrics that are part of the evaluation framework, the

sequence-based recommender is trained with all the sequences s ∈Straining. Then,

for each test sequence s ∈ Stest : s = ⟨r1,r2, . . . ,rn⟩, we predict a recommended

sequence s of length k using r1 = (ι1,υ ,τ1) as seed rating, i.e. s = sequence(r1,k).

Therefore, s is a sequence suggested by the recommender, for the same user and

starting from the same item of s. We also define s′ as the reference sequence, i.e.

s′ = ⟨r2,r3, . . . ,rn⟩ or s′ = s−⟨r1⟩. The reference sequence is equal to the original

sequence, but the first rating is omitted, as it was already exploited for creating the

recommended sequence. This procedure is graphically illustrated in Figure 5.2.

5.3.2 Evaluation Metrics

The second component of Sequeval is a set of eight metrics that we present in the

following. We include in such set not only classic metrics like coverage and precision

but also less widespread ones like novelty, diversity, and serendipity. Furthermore,

we introduce the metric of perplexity, as it is explicitly designed for characterizing

sequences [208].

Coverage

In general, the coverage of a recommender is a measure that captures the number

of items in the catalog over which the system can make suggestions [206]. For
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Fig. 5.2 An illustration of the evaluation procedure. First, the set of sequences is split in a
training and a test set. Then, the recommender is trained with the sequences available in the
training set. Finally, the recommender is asked to generate a sequence for each seed from the
test set; such sequences are compared with the corresponding reference sequences.
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example, in an online store scenario, it could represent the percentage of products

that are recommended to users in a certain period of time. An algorithm with a

higher coverage is generally considered more useful because it better helps users to

explore the catalog.

We generate a set of recommended sequences considering as seed the first rating

of all sequences in the test set Stest for a recommender that suggests sequences

of length k. Afterwards, we compute the distinct number of items available in the

sequences created and we divide the result by the cardinality of the set I .

coverage(k) =
|
S

s∈Stest
Isequence(r1,k)|
|I |

(5.12)

This metric expresses the percentage of items that the sequence-based recom-

mender is capable of suggesting when generating sequences similar to the ones

available in the test set and it is strictly related to its cardinality. This approach is

similar to the metric of prediction coverage described by Herlocker et al. [137].

Precision

Precision is a widespread metric in the context of information retrieval evalua-

tion [209] and it represents the fraction of retrieved documents that are relevant. For

a traditional recommender system, precision measures the fraction of recommended

items that are relevant for a certain user [210]. If we consider a sequence-based

recommender, it is necessary to compute this metric for each sequence s ∈Stest ,

instead of each user.

precision(k) =
1

|Stest |
· ∑

s∈Stest

hit(s′,s)
min(|Rs′|,k)

(5.13)

The function hit : S ×S → N returns the number of items in s that are also

available in s′. If the same item is present in s multiple times, it is considered a hit

only if it is repeated also in s′. This is an extension to the traditional definition of

precision that also considers the fact that an item may appear multiple times inside a

sequence.
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The number of relevant items is divided by the minimum number between the

length of the reference sequence |Rs′| and the length of the recommended sequence

k. We decided to adopt this solution in order to avoid penalizing an algorithm that is

evaluated considering reference sequences shorter than the recommended sequences.

nDPM

The Normalized Distance-based Performance Metric (nDPM) was originally pro-

posed by Yao in the context of information retrieval [211]. The intuition of the author

is that, in order to compare a system ranking with a reference user ranking, it is

necessary to consider all the possible pairs of items available in the system ranking:

they can be agreeing, contradictory, or compatible with respect to the user ranking.

We decided to adopt such a metric instead of the Normalized Discounted Cumulative

Gain (nDCG) [212] because, in a sequence of recommendations, it is not necessarily

true that the first items are more important than the last ones.

nDPM(k) =
1

|Stest |
· ∑

s∈Stest

2pairs−(s′,s)+pairsu(s′,s)
2pairs(s)

(5.14)

The function pairs− : S ×S →N returns the number of pairs in the sequence s
that are in the opposite order with respect to the reference sequence s′. The function

pairsu : S ×S → N returns the number of pairs in the sequence s for which the

ordering is irrelevant, i.e. when at least one of the items is not available in s′ or

when at least one of the items is available multiple times in s′. Finally, the function

pairs : S →N returns the number of all possible pairs available in the recommended

sequence s. The pairs are created without considering the ordering of the items inside

a pair: for example, if we have the sequence ⟨a,b,c⟩, the possible pairs are (a,b),

(a,c),(b,c).

The value of this metric will result close to 1 when the sequences generated by

the recommender are contradictory, to 0 when they have the same ranking, and to 0.5

when the ordering is irrelevant because they contain different items. A low precision

will imply a nDPM very close to 0.5.
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Diversity

The metric of sequence diversity included in this framework is inspired by the

metric of Intra-List Similarity proposed by Ziegler et al. [213]. The recommended

sequences are considered as lists of items and the obtained value is not related to

their internal ordering. The purpose of this metric is understanding if the sequences

contain items that are sufficiently diverse. A higher diversity may be beneficial for

the users, as they are encouraged to better explore the catalog [214].

diversity(k) =
1

|Stest |
· ∑

s∈Stest

∑
k
∀i,∀ j:0<i< j 1− sim(ι i, ι j)

k× (k−1)
(5.15)

The function sim : I ×I → [−1,1] is a generic similarity measure between

two items. This measure may be taxonomy-driven or content-based: for example,

a possible content-based similarity measure is the cosine similarity. The resulting

value is a number in the interval [0,2]: higher values represent a higher diversity.

Novelty

Vargas et al. [170] suggested that it would be useful to be able to characterize the

novelty of the recommendations. They proposed a metric that rewards algorithms

capable of identifying items that have a low probability of being already known by a

specific user because they belong to the long-tail of the catalog. We have included

such metric in our framework in order to assess if the items available in the suggested

sequences are not too obvious.

novelty(k) =− 1
|Stest |× k

· ∑
s∈Stest

k

∑
i=1

log2 freq(ι i) (5.16)

The function f req : I → [0,1] returns the normalized frequency of a certain item

ι ∈I , i.e. the probability of observing that item in a given sequence s ∈Straining.

We can define the probability of observing the item ι as the number of ratings related

to ι in the training sequences divided by the total number of ratings available. We

also assume that log2(0)
.
= 0 by definition, in order to avoid considering as novel
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items for which we do not have any information, i.e. the items that do not appear in

the training sequences.

Serendipity

Serendipity can be defined as the capability of identifying items that are both at-

tractive and unexpected [168]. Ge et al. proposed to measure the serendipity of a

recommender by relying on the precision of the generated lists after having discarded

the items that are too obvious [169].

In order to create a list of obvious items, it is possible to exploit a primitive

recommender, that is a recommender only capable of making obvious suggestions.

For example, a primitive recommender could be implemented using the Most Popular

(MP) baseline, which is defined in Section 5.3.3. It is reasonable to assume that

popular items do not contribute to the serendipity of the recommendations because

they are already well known by many users.

By modifying the metric of precision described in Section 5.3.2, it is possible

to introduce the concept of serendipity in the evaluation of a sequence-based rec-

ommender. In this case, the primitive recommender will always create a sequence

of length k that contains the items that are have been observed with the highest

frequency in the training set.

serendipity(k) =
1

|Stest |
· ∑

s∈Stest

hit(s′,s− ŝ)
min(|Rs′|,k)

(5.17)

We define ŝ as the sequence generated by the primitive recommender from the

same seed of s, i.e. ŝ = primitive(r1,k). Moreover, the sequence s− ŝ contains all

the ratings related to the items available in s that are not present in ŝ. The resulting

value will be a number in the interval [0,1], lower than or equal to precision. The

difference between precision and serendipity represents the percentage of obvious

items that are correctly suggested.
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Confidence

The metric of confidence reflects how much the system trusts its own suggestions

and it is useful for understanding how robust is the learned model [215]. It is usually

computed as the average probability that the suggested items are correct. This

metric expresses the point of view of the recommender, as the probability is reported

by the model. Therefore, the metric is always equal to 1 with the most popular

recommender, as it is certain of the predictions.

A sequence-based recommender generates the next item of the sequence by

considering all the previous items. For this reason, we can interpret the conditional

probability of obtaining a certain item, given the sequence of previous ones, as the

confidence that the system has in that suggestion.

confidence(k) =
1

|Stest |× k
· ∑

s∈Stest

k

∑
i=1

P(ι i|ι i−1, ι i−2, . . .) (5.18)

We also define ι0
.
= ι1, i.e. the zero-th item of the recommended sequence is its

seed item. Therefore, this metric is computed by also considering the probability of

obtaining the first item ι1, given the seed item of s.

Perplexity

Perplexity is a widespread metric in the context of neural language modeling evalua-

tion [208], typically used to measure the quality of the generated phrases. Because

there is a strong similarity between creating a sequence of natural language words

and sequence of recommended items given an initial seed, perplexity can be also

successfully exploited in this context.

This metric can be defined as the exponential in base 2 of the average negative

log-likelihood of the model, i.e. the cross entropy of the model. For models based

on the cross entropy loss function such as neural networks, the perplexity can also

be seen as a measure of convergence of the learning algorithm. Differently from

the metric of confidence, the conditional probability P(ιi+1|ιi, ιi−1, . . .) is computed
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considering the items of the test sequence s, and not of the recommended sequence s.

For this reason, it does not express the point of view of the recommender.

perplexity = 2
− 1

∑s∈Stest |Rs|−1 ·∑s∈Stest ∑
|Rs|−1
i=0 log2 P(ιi+1|ιi,ιi−1,...) (5.19)

Intuitively, the obtained value represents the number of items from which an

equivalent random recommender should choose in order to obtain a similar sequence.

The lower is the perplexity, the better is the system under evaluation. Therefore,

the perplexity of a random recommender is equal to |I |. If the performance of the

recommender is worst than a random one, the perplexity will be higher than |I |: for

example, if only one conditional probability is equal to zero, then perplexity =+∞.

5.3.3 Implementation

The third component of Sequeval is sequeval [216], a Python implementation of

the evaluation framework which is publicly available.4 This implementation is based

on the evaluation protocol presented in Section 5.3.1 and it includes the metrics

described in Section 5.3.2.

Furthermore, it provides four baseline recommenders, which can be interpreted

as an adaptation of classic non-personalized recommendation techniques to our

sequence-based scenario. In addition to these baselines, we also include a Conditional

Random Field (CRF) to the comparison:

Most Popular The Most Popular (MP) recommender analyses the sequences avail-

able in the training set in order to compute the popularity of each item, i.e. the

number of times an item appears in the training sequences. Then, at recom-

mendation time, it ignores the seed rating, and it always creates a sequence

that contains the most popular item as the first rating, the second most popular

item as the second rating, and so on. More formally, the probability that the

item ιi will appear in the i-th rating of the sequence is P(ιi) = 1, where i also

represents the position of the item in the ranking of the most popular ones.

4https://github.com/D2KLab/sequeval

https://github.com/D2KLab/sequeval
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Random The random recommender simply creates sequences composed of ratings

that contain an item randomly sampled from a uniform probability distribution.

The seed rating is discarded and the probability of observing the item ιi is

P(ιi) = 1/|I |, where |I | represents the number of items available in the

system.

Unigram The unigram recommender is capable of generating sequences that contain

ratings with items sampled with a probability proportional to the number

of times they were observed in the training sequences. In particular, the

probability of observing the item ιi is equal to the number of ratings containing

ιi divided by the total number of ratings available in the training sequences.

Similarly to the previous baselines, the seed rating is ignored during the

recommendation phase.

Bigram The bigram recommender estimates the 1-st order transition probabilities

among all possible pair of items available in the training sequences. The add-

one smoothing technique is exploited to avoid the attribution of a strict zero

probability to the pairs that were not observed during the training phase [217].

At recommendation time, the seed rating is exploited for selecting the first item,

and then each item will influence the choice of the next one. The probability of

sampling item ιi after item ιi−1 is equal to the number of times this transition

occurred in the training sequences plus one divided by the total number of

transitions available.

CRF the CRF-based recommender system is implemented using the CRFsuite

software package.5 Since we are interested in predicting an item given the

previous one, we have considered as feature vectors the training sequences

without their last rating and as corresponding output vectors the same se-

quences without their first rating. We have used the gradient descent algorithm

with the L-BFGS method [218] as the training technique. We have chosen

to generate both the state and the transition features that do not occur in the

dataset and we have set the maximum number of iterations allowed for the

optimization algorithm to 100.
5http://www.chokkan.org/software/crfsuite

http://www.chokkan.org/software/crfsuite
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5.3.4 Datasets

Different studies have been conducted by considering user-created geographical data

obtained from LBSN and different datasets of check-ins collected from LBSN are

already available. The NYC Restaurant Rich Dataset [219] includes check-ins of

restaurant venues in New York City only, as well as tip and tag data collected from

Foursquare from October 2011 to February 2012. The NYC and Tokyo Check-in

Dataset [220] contains check-ins in New York City and Tokyo collected from April

2012 to February 2013, together with the timestamp, GPS coordinates and venue

category of the check-in. The Global-Scale Check-in Dataset (GSCD) [221] includes

long-term global-scale check-in data collected from the 415 most checked cities in

the world on Foursquare. All of these datasets are publicly available on the Web.6

However, none of these datasets is focused on temporal sequences of check-ins and

we opt for collecting our own dataset.

We collected check-ins performed by the users of the Foursquare Swarm7 mobile

application and publicly shared on Twitter from the Twitter API.8 Then, we retrieved

the category of the place associated with the check-in thanks to the Foursquare API.9

For this reason, the items of the dataset are represented by the venue categories

available in the Foursquare taxonomy.10. In order to avoid using check-ins generated

by bots, we have discarded the users that performed multiple check-ins in less

than one minute. We have also pruned the check-ins associated with the venue

categories that are usually not of interest for a tourist, for example the ones related to

workplaces. In order to generate the sequences more efficiently, we decided to also

remove the users that have performed less than 10 check-ins in total. We have set the

δτ parameter of the evaluation framework Sequeval (Algorithm 1) to 8 hours. This

means that two check-ins must not be distant in time more than eight hours belong

to the same path, similarly to what has been done in [222]. Regarding the splitting

protocol, we have selected the timestamp-based one, considering the timestamp

associated with the first rating as the timestamp of the sequence.

6https://bit.ly/2DUhAQn
7https://www.swarmapp.com
8https://developer.twitter.com
9https://developer.foursquare.com

10https://developer.foursquare.com/docs/resources/categories

https://bit.ly/2DUhAQn
https://www.swarmapp.com
https://developer.twitter.com
https://developer.foursquare.com
https://developer.foursquare.com/docs/resources/categories
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In order to test the RNN architecture on an additional domain, we have used

an additional dataset. The dataset contains several playlists originally collected by

Shuo Chen from Yes.com in the context of his research on metric embedding [138].

Such website provided a set of APIs11 for programmatically retrieving songs aired

by different radio stations in the United States. By crawling them in the period from

December 2010 to May 2011, he managed to obtain 2,840,553 transitions. Even if

Yes.com is no longer active, the playlist dataset is publicly available.12

Yes.com does not include the timestamps, but only the playlists. Therefore, we

have assumed that each playlist represents a sequence, as defined in our evaluation

framework. In this case, it is not necessary to apply Algorithm 1 because the

sequences are already available in the dataset in an explicit form. Since a timestamp-

based splitting is not feasible, we have selected, for this dataset, a random splitting

protocol. Furthermore, since we do not have any information regarding the radio

stations, it is necessary to consider the playlists as if they were created by the same

user. This approximation is acceptable in the context of sequence recommendation

and it is allowed by the evaluation framework. In fact, differently from traditional

evaluation approaches, all the metrics we propose are averaged over the sequences

and not over the users. Finally, because of the computational complexity of the task,

we have randomly reduced the complete dataset 10 times its original size and we

have pruned the songs that appear less than 50 times.

The Yes.com and Foursquare datasets are characterized by a different distribu-

tion of their items, i.e. songs and venue categories, as it can be observed from

Figure 5.3. In particular, Foursquare contains few items that are extremely popular,

while Yes.com presents a plot that is more smooth. This conclusion is numerically

supported by the values of entropy [223] obtained for the two distributions, which

are 4.95 for Foursquare and 6.75 for Yes.com.

Table 5.1 summarizes the number of users, items, ratings, and sequences available

in these datasets. For what concerns the Foursquare, these stats and the experimental

results reported in Sec. 5.4 refer to the data collected from October to December

2017. The collection of data from Foursquare is ongoing and, in a successive work,

11https://bit.ly/2RvLjag
12https://www.cs.cornell.edu/~shuochen/lme/data_page.html

https://bit.ly/2RvLjag
https://www.cs.cornell.edu/~shuochen/lme/data_page.html
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Fig. 5.3 A stacked barplot with a logarithmic scale representing the number of ratings for
each item. Note the different shapes of their long-tail distributions: it is possible to observe
that Foursquare has more popular items than Yes.com. Note that this also due to the fact that
Foursquare has fewer items in absolute terms compared to the Yes.com dataset.
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Dataset |U | |I | |R| |S |

Yes.com 1 1,089 118,022 10,551
Foursquare 44,319 651 1,047,429 400,261

Table 5.1 The number of users, items, ratings, and sequences for each dataset.

we have mapped the datasets to Schema.org categories and to Wikidata entities. This

has given birth to the Semantic Trails Datasets [32].

5.4 Path Recommender Results

In this section, we address RQ3.2: How do deep learning methods perform compared

to other more traditional modelling approaches in the generation of tourist paths?

We rely on Sequeval to compare the RNN models with a set of competing systems.

Table 5.2 lists the results obtained by the RNN recommender in the tourist domain. In

this case, the most popular recommender system accounted for the highest precision,

meaning that the top-5 items are extremely common (Fig. 5.3), but, as usual, its

coverage is very limited and it achieved the lowest novelty. As expected, the random

recommender scored the lowest precision, and the highest coverage and novelty. The

differences among the unigram, the bigram, and the CRF recommenders are evident:

the unigram accounted for higher precision because of the strong popularity bias

of the dataset, while the bigram for the lowest perplexity. The RNN recommender

system obtained the second best precision and perplexity, resulting in a good com-

promise if we are interested in optimizing both these metrics. Most importantly,

RNN obtains the best serendipity, showing that it is able to generate accurate, but

non-obvious, recommendations.

The value of the RNN with respect to competing systems is even more evident

on the Yes.com dataset, whose popularity bias is weaker. Table 5.3 summarizes

the figures of the comparison conducted with Yes.com. The Most Popular (MP)

recommender achieved a fair precision, but at the price of a very low coverage,

because its predictions are deterministic. Unsurprisingly, the lowest precision, and

the highest novelty and diversity are associated with the random recommender. In
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MP Random Unigram Bigram CRF RNN

Coverage 0.0077 1.0000 0.9616 1.0000 0.9677 0.5069
Precision 0.2259 0.0080 0.0774 0.0607 0.0754 0.0962
nDPM 0.4998 0.5000 0.4994 0.4998 0.4993 0.4991
Diversity 0.9194 0.9971 0.9616 0.9777 0.9621 0.9469
Novelty 4.6056 12.300 7.1421 9.0216 7.3710 6.8374
Serendipity 0.0000 0.0060 0.0256 0.0230 0.0252 0.0365
Confidence 1.0000 0.0015 0.0171 0.0140 0.0179 0.0264
Perplexity +∞ 651.00 141.41 122.99 147.49 140.39

Table 5.2 Overview of the results of the baselines and both CRF and RNN with Foursquare.

MP Random Unigram Bigram CRF RNN

Coverage 0.0046 1.0000 0.9945 1.0000 0.9991 0.9458
Precision 0.0503 0.0090 0.0127 0.0103 0.0190 0.0782
nDPM 0.5007 0.5000 0.5000 0.5000 0.5000 0.4986
Diversity 0.6925 0.9900 0.9815 0.9854 0.9788 0.9052
Novelty 7.2383 10.380 9.7349 10.315 9.8449 9.5762
Serendipity 0.0000 0.0089 0.0107 0.0095 0.0179 0.0706
Confidence 1.0000 0.0009 0.0016 0.0011 0.0020 0.0123
Perplexity +∞ 1089.0 848.96 637.53 747.33 183.49

Table 5.3 Overview of the results of the baselines and both CRF and RNN with Yes.com.

contrast, the unigram, the bigram, and the CRF recommenders obtained comparable

scores of precision, but the bigram is the most appealing of these three techniques,

because of its lower perplexity and higher novelty.

We can observe that the RNN recommender achieved the highest precision and

the lowest perplexity, resulting to be the most promising algorithm for a future online

experimentation. Its nDPM is slightly lower than 0.5, meaning that the items are

usually predicted in the correct order. We can also observe that its serendipity is close

to the value of precision: for this reason, it is possible to assume that the majority of

the sequences are not obvious.

Given the promising results obtained by the Path Recommender also in the music

domain, we extended its architecture in the participation to the RecSys2018 challenge

(Sec. 5.5).
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5.5 From Tourist Paths to Music Playlists: the Rec-

Sys2018 challenge

In recent years, music streaming services strongly modified the way in which people

access to music content. In particular, the music experience does not foresee anymore

to follow pre-defined collections of tracks (albums) edited by music stakeholders

(artists and labels): the end-user can now produce her/his own playlist with poten-

tially unlimited freedom. As a consequence, the automatic playlist generation and

continuation are now crucial tasks in the recommender system field. This section

describes our results for the task of automated music playlist completion obtained

in the context of the RecSys Challenge 2018 [139] and addressed the RQ3.3: How

can we extend the Path Recommender to deal with the automated music playlist

continuation task?.

The model used is an extension of the Path Recommender to deal with specifical of

the challenge of the challenge and the music domain.

5.5.1 The RecSys2018 Challenge

The RecSys2018 challenge has been sponsored by Spotify and dealt with the auto-

matic music playlist continuation task [139]. This task consists of adding a number

of tracks to a music playlist in a way that fits the original playlist. Participants

had to devise algorithms that predict, for a given playlist, an ordered list of 500

recommended candidate tracks.

A specific dataset has been released by Spotify for the challenge: the Million Playlist

Dataset (MPD), which includes, for each playlist, its title and the list of tracks

contained in it (including album and artist names), plus some additional metadata

such as Spotify URIs and the playlist’s number of followers. The evaluation of the

submissions was based on three metrics. The R-precision measures the fraction

of recommended relevant items among all known relevant items, and it does not

depend on the order of the tracks. The clicks metric is tied to a Spotify’s feature that

recommends 10 tracks and measures the number of refreshes that a user should do to

find the first relevant track. The third metric is the Non-Discounted Cumulative Gain
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Fig. 5.4 The proposed ensemble architecture for playlist completion. The inputs are a playlist
and its title.

(NDCG), a standard information retrieval metric commonly used to measure ranking

quality [155].

The challenge has two tracks: in the main track only the MPD data can be used,

in the creative track the MPD data can be enriched with external data sources (e.g.

song lyrics).

5.5.2 Ensemble

Our approach builds upon an ensemble voting strategy of different runs of multiple

Recurrent Neural Networks (RNNs) and one execution of Title2Rec (Sec. 5.5.4). The

RNNs are configured differently in terms of network inputs and hyper-parameters.

The RNNs are used to predict the missing tracks to be part of a playlist and thus

assume to have seed(s) track(s) of the playlist to be utilized as initial elements of

the network bootstrap (Section 5.5.3). However, when only the title of the playlist

is available, our approach relies on a fall-back strategy that implements a K-means

clustering of the playlists and a word embedding model of their titles (trained with

fastText), called Title2Rec (Section 5.5.4). Figure 5.4 illustrates the overall approach.

The ensemble weighs the rankings of the different runs by giving more impor-

tance (more weights) to the top ranked tracks and less to the low ranked tracks,
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similarly to a Borda count election.13 In detail, given a ranked set of predictions

coming from a configuration k, corresponding to a particular configuration of the

RNN jointly combined with Title2Rec, Rk = {T1,T2, . . . ,T500}, we assign to each

track a score sk that has its maximum for the first track in the ranking and mini-

mum for the last one, i.e. sk(Ti) = 500− i+ 1. Then, we sum the scores over all

the configurations that we want to ensemble, obtaining a final score for each track

s(Ti) = ∑k sk(Ti) which we use to create the final ranking of the tracks. Take as

an example (with 3 tracks instead of 500 in the predictions) a configuration 1 with

ranking R1 = {T1,T2,T3} and a configuration 2 with ranking R2 = {T1,T3,T2}. We

would get s1(T1) = 3, s1(T2) = 2, s1(T3) = 1, s2(T1) = 3, s2(T3) = 2, s2(T2) = 1 and

thus s(T1) = 3+ 3 = 6, s(T2) = 2+ 1 = 3, s(T3) = 1+ 2 = 3, obtaining as a final

ranking R = {T1,T2,T3}, or equivalently R = {T1,T3,T2} as T2 and T3 have the same

score.

5.5.3 Recurrent Neural Networks

We proceed by extending the Path Recommender approach (Sec. 5.2) to music

playlist. We use RNNs, more specifically Long-Short Term Memory (LSTM)

cells [142], in a similar vein to the language modeling problem, i.e. training the

network to predict the next track in a playlist and sampling tracks from the learned

probability model to generate predictions. In practice, rather than using only the

track as input, we use a richer representation that also exploits the artist, the album,

the title and, possibly, lyrics features (Figure 5.5).

In the following sections, we describe in detail the input features as well as the

generation strategy.

Input Vectors

Track, Album and Artist Embeddings In order to leverage the information in

the dataset concerning tracks, artists and albums, we opt for an approach based

on word2vec [75] embeddings. More precisely, we train the word2vec model

13https://en.wikipedia.org/wiki/Borda_count

https://en.wikipedia.org/wiki/Borda_count
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Fig. 5.5 RNN architecture for playlist completion. The input vectors include word2vec
embeddings for the track, the album, and the artist, a fastText embedding for the playlist title
and numerous features extracted from the lyrics.

separately on sequences of tracks, albums and artists in the order of appearance in

the playlist, obtaining three separated word2vec models encoding co-occurrence

patterns of tracks, albums and artists respectively. Each word2vec model is based on

the Skip-gram model with negative sampling using default hyper-parameters of the

Gensim implementation [224]: embedding vector dimension is d = 100, learning

rate α = 0.025 linearly decaying up to minα = 0.0001, window size c = 5, number

of epochs is η = 5.

We concatenate the three representations of the tracks, albums and artists, obtain-

ing an input vector xw2v whose dimensionality is |xw2v|= 300.

Titles Embeddings The title of a playlist can potentially contain interesting infor-

mation about the intention and the purpose of its creator. The title can suggest that

the tracks in certain playlist are intended to suit a certain goal (e.g. party, workout),

a mood (sad songs, relaxing), a genre (country, reggae), or a topic (90’s, Christmas).

Our intuition, supported by the experiments described later in this section, is that

playlists with similar titles may contain similar tracks. The title similarity could rely

on pre-trained models and thesauri. However, we opted for computing a model that

is specific for the playlist continuation task, using the sole data of the MPD.
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Fig. 5.6 Pipeline for generating the title embedding model used in Title2Rec. The embeddings
are computed through a fastText model trained on a corpus of concatenated titles of similar
playlists.

A playlist embedding pw2v is computed as the mean of the embeddings of the

tracks composing the playlist, already generated in Section 5.5.3. The playlist

embeddings are then grouped in n clusters, applying the K-means algorithm.

We empirically observed that, apart from very general clusters, we also created

clusters containing specialized playlists, obtaining as a consequence groups of titles

that belong to the same semantic area. For example, a cluster contains playlists like

Christmas feels, December or with titles including the emoji of Santa Claus, while

another group encompasses playlists like country and Alabama.

Each cluster c expresses a composed label, which is the concatenation of the

titles of all the playlist p ∈ c separated by a blank space. These labels can be seen as

a corpus of n documents (one for each cluster) that is used as input for the fastText

algorithm [225]. Because this algorithm is able to represent textual information at

the level of n-grams from 3 to 6 character, the Title2Rec model in output computes

the embeddings of any playlist title, being this already seen in the dataset or totally

unknown. Figure 5.6 illustrates the process of the Title2Rec model generation.

Lyrics Embeddings Since playlists contain tracks that share semantic properties

(such as the genre) and acoustic properties (such as the mood), we hypothesize their

lyrics share features as well. To this end, we extract numerous features from the

lyrics for a large set of tracks used in the MPD dataset (v∈Rn) that describe different

stylistic and linguistic dimensions of a song text:

• vocabulary (v ∈ R): as a measure of the vocabulary richness, we compute the

type-token ratio of a song text.

• style (v ∈ R27): to estimate the linguistic style of a song text, we measure the

line lengths (in characters and in tokens) and the frequencies of all major part-
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of-speech tags. We further count rhyme occurrences and “echoisms” (sung

words like “laaalala” and “yeeeeeeeaaaaaaah”).

• semantics (v ∈ R60): we build a topic model with 60 topics on the song text

bag of words using Latent Dirichlet Allocation [226]. Each song text is then

represented by its association to these topics.

• orientation (v ∈ R3): this dimension models how the song narrative (entities,

events) is oriented with respect to the world. We encode a temporal dimension,

i.e. whether the song mainly recounts past experiences or present/future ones,

by representing the fraction of past tense verb forms to all verb forms as a

feature.

• emotion (v ∈ R6): we model the subjectivity (subjective vs. objective) as

well as the polarity (positive vs. negative) of the song text. Furthermore, the

emotions conveyed are modelled in a common two-dimensional model that

accounts for degrees of arousal and valence.

• song structure (v ∈ R4): as a proxy of the structure of the lyrics, we use the

line lengths as well as the lengths of paragraphs in the song text.

For experimental purposes, we grouped the previous features in two additional

categories:

• deterministic (v∈R23): it encompasses all features generated in a deterministic

way such as features related to the structure, the vocabulary, and the style of

the lyrics. We excluded from this group the frequencies of part-of-speech tags,

as they depend on the tagger used.

• fuzzy (v ∈ R18): it includes the features generated in a non-deterministic

fashion such as orientation, emotion, and the frequencies of part-of-speech

tags.

All features are scaled using a custom feature scaler that combines two elements:

i) account for outliers by scaling the data non-linearly based on the percentile of
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the feature value distribution they belong to; ii) scale the data linearly to the same

[−1,1] interval that non-lyrics features live in.

Retrieving lyrics for the MPD dataset is achieved by linking it to the WASABI

corpus [227].14 The WASABI corpus is an ongoing resource that contains 2.1M

song texts (of 77k artists), and for each song it provides the following information:

the lyrics extracted from http://lyrics.wikia.com, the synchronized lyrics (when

available) from http://usdb.animux.de, DBpedia abstracts and categories the song

belongs to, genre, label, writer, release date, awards, producers, artist and/or band

members, the stereo audio track from Deezer (when available), the unmixed audio

tracks of the song, its ISRC, BPM, and duration. In total, we linked 416k tracks in

MPD (out of 2.2M unique tracks) to WASABI tracks that contain the lyrics. While

the linked tracks proportion with ∼20% seems small, the linked tracks cover 53%

of all 66M track occurrences in MPD because of the typical fat-tailed distribution,

where some songs are extremely common while most titles occur only rarely in a

playlist. Linking the lyrics was done in three levels of accuracy: direct Spotify URI

matching gave us 155k links, exact artist and title matching provided 334k matches,

and finally lower casing and deleting bracketed content (in song titles only) led to

51k matches. As the results overlap we ended up with 416k matched tracks in total.

Some of our lyrics features are language-specific, so we decided to compute lyrics

features exclusively on English song texts. This finally resulted in 367k English

song texts we computed lyrical features on. Language detection is done with the

langdetect package15 and datasets of MPD and WASABI are merged along the axes

of their Spotify URIs, artist names, song title names, respectively. Masking is used

for all the songs for which a match has not been found and lyrics features could not

be extracted.

Learning Model

As mentioned earlier, we address the problem of playlist continuation as a language

modeling problem. More specifically, we train the RNN to predict the next track

in a playlist, defining the targets Y to be the inputs X shifted in time, i.e. X =

14https://wasabi.i3s.unice.fr
15https://github.com/Mimino666/langdetect

http://lyrics.wikia.com
http://usdb.animux.de
https://wasabi.i3s.unice.fr
https://github.com/Mimino666/langdetect
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{(T̂ j0, T̂ j1, . . . , T̂ jN j−1)} and Y = {(T j
1,T j

2, . . . ,T
j

N j
)} where T̂ represents a track

and its metadata (artist, album, playlist title, lyrics features), T represents a track

id in a playlist, j = 1, . . . ,M is a playlist index and N j is the length of the j-th

playlist. In this way, we train the model to learn a probability distribution of the next

track P(TN |T̂N−1, T̂N−2, . . . , T̂0) given the previous ones, which is parametrized by

the network outputs that are converted into probabilities by the final softmax layer

(Figure 5.5). The training algorithm attempts to minimize the cross-entropy loss

function L, that measures the disagreement between the learned probability model

and the observed probability model of the targets Y . The perplexity metric that is

reported in the experiments (Section 5.5.5) corresponds to ppl = 2L. In practice,

rather than using probabilities, we use the ‘logits’ pi where i is a track index, un-

normalized scores that are proportional to the probabilities. Different optimization

algorithms to minimize the loss are empirically compared (Section 5.5.5).

Generating predictions

We experiment three different strategies to generate track predictions from the RNN.

Given an input seed and the hidden state, the trained model outputs the logits pi,

i.e. un-normalized scores that are proportional to the probability that a given track

appears after the sequence of seeds s. In details, we considered the following

approaches, as depicted in Figure 5.7.

do_sample It samples the track with the highest logit pi, where î = arg max(pi),

given the set of seeds s. It adds the sampled track î to the seeds s, then it

repeats the previous operations until 500 tracks are sampled.

do_rank It ranks the tracks according to their logit value pi, given all the seeds s,

then it selects the top-500 tracks with the highest logit.

do_summed_rank It computes the logits pi for every seed. It averages all the logits

in the sequence obtaining p̂i and then it ranks the tracks according to the values

of p̂i.
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Fig. 5.7 Three strategies for generating track predictions.

5.5.4 Title2Rec

In order to leverage the information contained in the title of the playlists, we propose

a new approach called Title2Rec. Title2Rec recommends tracks taking as input

the playlist title, following the procedure illustrated in Figure 5.8. The title is

translated into a vector pt2r, named title embedding, computed by applying the

strategy described in Section 5.5.3 to the playlists defined in the MPD dataset.

Given a new seed playlist, we compute its title embedding in the same way. Then,

we select a subset P including the top-300 most similar playlists to the given one by

comparing its embeddings with pt2r using the cosine similarity. Finally, the required

number of tracks are selected among the ones available in P. The tracks have been

ordered to ensure that the most popular ones in P are placed at the top of the list.

5.5.5 Optimization

In the following sections, we describe the empirical evaluations conducted with the

purpose of optimizing the configuration of the RNN, Title2Rec, and the ensemble.

RNN Optimization

For optimizing the hyper-parameters of the RNN, we executed a grid search on

a down-sampled version of the MPD dataset containing 100,000 playlists. We

considered the following parameters:
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Fig. 5.8 The Title2Rec algorithm compares the fastText representation of the title of a seed
playlist to the known ones using the cosine similarity.

• optimizer: opt = {Gradient, RMSProp, ADAM}

• learning rate: lr = {1, 0.5, 0.1, 0.01}

• number of steps: ns = {10, 20}

• hidden layer size: hl = {50, 100}

For each configuration (opt, lr, ns, hl), we trained the RNN model and we

measured its perplexity on a validation set consisting of 1,000 playlists. Furthermore,

we measured its R-Precision, NDCG, and Click metrics as defined in the challenge

rules on a separate test set of the same size. The validation and test sets used for

optimization purposes contain playlists with the first 5 tracks available as the initial

seed, while the others are hidden.

We considered a total of 48 possible configurations: the values of perplexity of

the most significant ones are reported in Table 5.4. Perplexity measures the ‘surprise’

of the probabilistic model in observing the data and it is defined as sL where L is the
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Optimizer L.R. Steps Hidden ppl Time R-Prec.

ADAM 1 20 100 1357.04 3:29 0.1739
ADAM 1 10 100 1482.86 3:39 0.1742
Gradient 1 10 100 1693.96 3:32 0.1566
ADAM 1 10 50 1716.92 2:30 0.1745
Gradient 1 10 50 2005.54 2:25 0.1543

Table 5.4 The results of the most significant RNN models. ‘L.R.’ stands for learning rate,
‘Steps’ for the number of time steps, ‘Hidden’ for the size of the hidden layer, ‘ppl’ stands
for perplexity, ‘Time’ is the training time in hours:minutes.

cross-entropy loss function. Thus, lower values of perplexity corresponds to better

models. We observe that, when the hidden size is fixed, the best performing optimizer

is ADAM. Furthermore, increasing the number of steps reduces the perplexity of the

RNN, but it does not have a significant effect on the R-Prec.

Finally, because of time constrains, we selected the configuration

(ADAM, 1, 10, 50) as the optimal one, despite its higher perplexity: in

fact, we empirically observed that a smaller hidden size results in a shorter training

duration.

We evaluated in a controlled setting all the strategies for generating the rec-

ommended tracks described in Section 5.5.3. We observed that, independently

from other hyper-parameters, the technique called do_summed_rank systematically

achieved better results than the other ones in all the metrics considered. For this

reason, we selected this algorithm as our track generation strategy.

Finally, we analyzed the effects on the evaluation metrics of the different cat-

egories of features extracted from the lyrics as defined in Section 5.5.3, and we

selected the groups emotion and fuzzy as the most performing ones.

Title2Rec Optimization

In order to improve the performances of Title2Rec, we worked on different parts

of the pipeline. Each optimization has been tested by running the algorithm on a

validation set of 1,000 playlists. Then, only the edits that improved the scores with

respect to the non-optimized version have been kept in the final version.
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We applied a pre-processing on each single title that performed a series of tasks:

• lowercasing;

• detecting and separating emoji from words;

• separating the skin code from the emoji;

• detecting and separating emoticons from words;

• transforming space-separated single letters into words (e.g. “w o r k o u t”

becomes “workout”;

• remove ‘#’ from hashtags.

Other tasks that have been tested with no improvements are:

• detecting and separating punctuation from words;

• removing stop words;

• removing all spaces.

The latter point has been partially exploited because we noticed an improvement

in the results by including in the corpus both versions of the title – keeping the spaces

(as in “green day”) and removing them (“greenday”).

Another optimization step included the usage of different parameters for exe-

cuting the pipeline. The clustering phase have been tested with different values of

k (the number of clusters in output for the K-means algorithm). The value of 500

gives better results than smaller and bigger ones, which produce clusters that are

respectively less specialized and less populated. The fastText training has been run

with 5 epochs, a learning rate of 0.1 and different loss functions (ns, hs, softmax),

window sizes (3, 5, 10). The values in italics represent the best results.

The ordering by popularity described in Section 5.5.4 has been modified so that

the impact of each playlist is proportional to the similarity of its title to the seed.

In other words, a track has a higher chance to be recommended if it is included in
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a large number of playlists in P and if most of them are among the top ones more

similar to the seed.

Finally, some improvements come from the inclusion of the playlist descriptions

in the training. On the whole set of descriptions in the MPD dataset, we compute

a TF-IDF model. Thanks to this, we are able to extract a set of keywords for each

description by selecting the 3 words with the highest score. These keywords are

added to the documents used to build the clusters. The contribution of the description

is null when the playlist does not include any.

Ensemble Optimization

We studied the performance of the ensemble by applying a combination without

repetition sampling of the different runs for each of the tracks, namely main and

creative, and for different groups of runs. In detail, given n the total number of

runs, and k the grouping factor, we devised a number of n!
k!(n−k!) , where we varied

k = 1, . . . ,n− 1. We then selected the best performing configuration for both the

main and the creative tracks by optimizing the three metrics used for the final ranking.

These configurations are reported in Section 5.5.6.

5.5.6 Experimental Results

In order to evaluate the effectiveness of our approach, we have divided the official

MPD dataset in a training, a validation, and a test set. The validation and the test set

contain 10,000 playlists each, that is the 1% of the original dataset. These playlists

have been selected according to the characteristics of the MPD provided by Spotify.16

Thus, the validation and test playlists are divided into 10 different categories: each

of them defines a peculiar way of hiding some information during the testing phase,

i.e. the number of seed tracks or their order.

Furthermore, we have implemented an evaluation tool that computes on our split

the same metrics that are described in the challenge rules. Following this approach, it

is possible to inspect the evaluation results for each category of the test set separately.

16https://recsys-challenge.spotify.com/challenge_readme

https://recsys-challenge.spotify.com/challenge_readme
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Approach Optimizer Epoch R-Prec. NDCG Click

Title2Rec - - 0.0837 0.1260 12.007
Word2Rec - - 0.0963 0.1444 8.4322
RNN 300 Gradient 1 0.1417 0.1621 4.1902
RNN 300 Gradient 2 0.1500 0.1656 3.9433
RNN 300 ADAM 1 0.1557 0.1702 3.9213
RNN 300 ADAM 2 0.1457 0.1672 4.4224
RNN 400 ADAM 1 0.1572 0.1708 3.9340
RNN 400 ADAM 2 0.1520 0.1694 4.1307
RNN Emotion ADAM 1 0.1556 0.1702 4.0101
RNN Emotion ADAM 2 0.1500 0.1680 4.3594
RNN Fuzzy ADAM 1 0.1555 0.1698 3.9950
RNN Fuzzy ADAM 2 0.1503 0.1683 4.3456

Table 5.5 Results of different approaches on our test set

As expected, the category containing playlists with only their title and no tracks

proved to be the most difficult one to address.

Table 5.5 contains the results obtained on our test set by Title2Rec, Word2Rec,

and the RNNs trained with different optimizers and input vectors. Word2Rec cor-

responds to the word2vec model trained on sequences of tracks as described in

Section 5.5.3 and used to generate predictions directly by looking up the 500 most

similar tracks to the seeds. All the neural models, but the first two, were trained

with the optimal configuration described in Section 5.5.5. These models are com-

putationally demanding: the training phase lasted more than three days per epoch.

The numbers 300 and 400 represent the dimensionality of the input vectors: the 300

models were trained without the title embeddings, while the 400 ones also exploit

the fastText model described in Section 5.5.3. All the RNNs that include the features

extracted from the lyrics were trained with input vectors of dimensionality higher

than 400.

Table 5.6 lists the results computed on our test set for the best performing

configurations in the two tracks of the challenge. The models combined in the

ensemble are the following:
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Track R-Precision NDCG Click

Main 0.1611 0.1710 3.6349
Creative 0.1634 0.1717 3.5964

Table 5.6 Results of the ensemble on our test set

Main track RNN 300 (Gradient; Epoch 1 and 2), RNN 300 (ADAM; Epoch 1 and

2), and RNN 400 (Epoch 1 and 2).

Creative track RNN 300 (Gradient; Epoch 1 and 2), RNN 300 (ADAM; Epoch 1),

RNN 400 (Epoch 1 and 2), RNN Emotion (Epoch 1 and 2), and RNN Fuzzy

(Epoch 1 and 2).

We achieve the 14th position out of 33 participants in the creative track and the 36th

position out of 113 participants in the main track.

5.6 Summary

In this chapter, we have introduced the Path Recommender, a RNN-based recom-

mender systems that learns to generate tourist paths from Location-Based Social

Network data, such as Foursquare check-ins. We have described and defined the

problem of recommending sequences, first, in general, and then with specific refer-

ence to the tourist use-case. Then, we have described how the RNN model works,

providing the details of the model’s architecture. We have introduced Sequeval,

an evaluation framework that includes protocols, metrics, and baselines for the

evaluation of SARS, and described the process of data collection from Foursquare.

Finally, we have discussed the extension of the Path Recommender model to the

music playlist continuation task in the RecSys2018 challenge.

The experimental results have shown that the Path Recommender, and more in gen-

eral RNNs, generates accurate and non-obvious recommendations with respect to

competing algorithms. This is in line with the general trend observed in machine

learning research, where neural networks are taking over as the most powerful and

accurate methods to learn from data. Also, as shown in the RecSys2018 challenge
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experiment, their structure is sufficiently flexible to include heterogeneous features

coming from different data sources (e.g. text). The analogy on which we have based

the work of this chapter is a powerful one. Seeing sequence-aware recommenda-

tion as a language modelling problem leads to an easy application of all the recent

breakthroughs in language modelling (e.g. transformer-based architectures such as

BERT [228]) to the sequence recommendation problem.

In the evaluation process, we have observed that also for sequence-aware recom-

mendations the popularity bias can be a strong factor that influences the results and

needs to be properly addressed using novelty-aware metrics. Sequeval aims to help

in this by providing a set of metrics that go beyond accuracy and that are specifically

conceived for sequence-aware recommendations.



Chapter 6

Conclusions

In this thesis, we have addressed a set of research challenges in the fields of

Recommender Systems, Semantics, and, more in general, Artificial Intelligence.

Two big families of approaches can be identified in AI history: a deductive

approach where intelligence is hard-coded into machines as sophisticated rule-based

algorithms that allow machines to make logical inferences and perform tasks, an

inductive approach where intelligence arises as a pattern recognition process from

a set of empirical observations (data). In recent years, the tremendous growth

of data and of computing power, together with the advancements in the machine

learning field (Deep Neural Networks especially) have strongly pushed the research

towards inductive, data-driven approaches, which have accomplished tasks that

were not possible before. Semantics, on the other hand, has historically been closer

to deductive approaches, in the way it attempts to classifies and structure data

according to well defined logically and semantically coherent structure.

This thesis shows that these two approaches actually strongly benefit from each

other. Knowledge graphs are a very valuable source of data for machine learning

algorithms to perform prediction tasks as, for instance, as we show in Chapter 1, they

are able to enhance quality of recommendations and make them more explainable

and transparent. At the same time, machine learning algorithms can be very useful

in the process of generation of a knowledge graph, for instance, for the task of entity

matching, as we have shown in Chapter 4. We also show that, in the end, they

can serve the same purpose of supporting the decision-making process, either by
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providing well structured information in the form of knowledge graphs (see the

3cixty use-case of Chapter 4), or by providing personalized suggestions through

recommender systems (Chapter 3 and Chapter 5).

We conclude our work by first reporting a summary of the findings of our research,

in the form of answers to the RQs presented in Chap. 1, and, then, by pointing at

current gaps of the work we presented, describing how future work can possibly

address them.

6.1 Summary

The first chapter of the thesis deals with knowledge graph embeddings for recom-

mender systems:

RQ1 How can knowledge graph embeddings be used to create accurate, non-

obvious and semantics-aware recommendations based on both collaborative

and content-based filtering?

The first step that is common to all approaches is the knowledge graph model.

As we have discussed in Chapter 2, knowledge graphs are popular nowadays for

their ability to model heterogeneous entities and relations. The key insight in the

recommender system domain is that users can be included in the graph together with

their appreciation for specific items, modelled by a special property, which we call

‘feedback’. This enables collaborative filtering, as user liking patterns can be mined

to make recommendations. Also, relations between items and other entities (e.g.

starring actors of a movie) are included in the model, making possible content-based

filters. Based on this model, we have introduced a number of approaches to make

recommendations by creating knowledge graph embeddings.

Translational Models: translational models are popular algorithms to predict

missing properties in a knowledge graph. We have shown that these models

(TransE [85], TransH [86], TransR [87]) can be easily applied to make recommenda-
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tions. The key ingredient is that the appreciation of an item by a particular user is

modeled as the ‘feedback’ property. All the nodes and the properties of the graph are

embedded in the vector space. Then, the recommendation problem is addressed as a

link prediction problem of the ‘feedback’ property. Our experiments have shown

that translational models are competitive with state-of-the-art collaborative filtering

systems in terms of accuracy. However, neighborhood-based graph embedding

methods such as node2vec and entity2rec are generally more effective.

node2vec: node2vec [78] is a state-of-the-art algorithm for graph embeddings.

It has built upon existing algorithms based on neural language models (e.g.

DeepWalk [77]) introducing a new definition of node neighborhood that is more

flexible and adaptable to the topology of real work networks. We have shown that

node2vec can be applied directly on the knowledge graph model, embedding all

entities into vectors. The recommendation problem is then addressed retrieving

the closest items to users in the vector space. node2vec generates very accurate

recommendations, generally outperforming collaborative filtering and translational

models. node2vec, however, does not preserve the semantics of the knowledge

graph, as properties are ignored. To address this gap, we introduce entity2rec.

entity2rec: entity2rec generates property-specific knowledge graph embeddings

for item recommendation. entity2rec can be seen as an extension of node2vec to

knowledge graphs for the recommendation problem. Its property-specific approach

allows to improve the quality of the recommendations and to encode the semantics

of the properties in the recommendation model. We have performed several

experiments to define how property-specific subgraphs should be built and how the

algorithm should be configured, showing that hybrid property-specific subgraphs

significantly enhance the recommendation quality and that when using hybrid

property-specific subgraphs and a proper configuration of the hyper-parameters

(long walks, many walks per entity, large context size), the learning to rank is no

longer beneficial. Our experiments show that entity2rec generates high-quality

recommendations, especially for datasets characterized by a high sparsity and a

lower popularity bias. This is the typical case where the recommendation problem is
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challenging, since little information is known about the user and non-personalized

algorithms based on item popularity are ineffective. The recommender model of

entity2rec preserves the semantics of the knowledge graph, as it averages a set of

property-specific relatedness scores. This linear recommendation function could be

easily modified according to weights entered by a user in an interactive interface.

Furthermore, property-specific relatedness scores can be leveraged to generate rich

explanations of the recommendations, in terms of related past items, item properties

and item content. More about this aspect is discussed in the Future Work.

Tinderbook: we have tested entity2rec in an online scenario by developing and

publishing the Tinderbook application. In Tinderbook, property-specific knowledge

graph embeddings built through entity2rec are used to create an item relatedness

function, which is leveraged to retrieve the closest items to the one provided by the

user in the onboarding phase. This setup shows that entity2rec can be used in a

cold-start scenario, by using item-item similarities rather than user-item similarities

as in the original formulation. The offline evaluation shows that entity2rec, within

this experimental setting, outperforms baselines such as ItemKNN and MostPop, but

also a content-based recommender based on KG embeddings built using RDF2Vec.

Also, we have received good feedback from users in terms of usability and usefulness.

The second chapter of the thesis deals with improving the accuracy (precision

and recall) of the entity matching in the process of a knowledge graph generation.

Specifically, we have addressed the following research question (Chapter 4):

RQ2 Can ensemble learning algorithms such as stacked generalization improve the

performance of threshold-based classifiers in the entity matching process?

STEM: entity matching is often based on threshold-based classifiers, i.e. binary

classifiers that predicts that a pair of records is a match if their confidence is above

a specific threshold. This decision threshold is typically manually configured,

attempting to find a trade-off between precision and recall. To break this trade-off

and improve the F-score, we introduce STEM (Stacked Threshold-based Entity
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Matching), a machine learning layer that can be stacked upon any threshold-based

classifier. STEM uses the predictions of different decision thresholds as features

of a supervised classifier, which learns to combine them to output a final decision.

We have performed experimental tests on three datasets belonging to different

domains and using two different threshold-based classifiers, one based on a linear

model [19] and one based on a Naive Bayes [186]. The results show that, in all

cases, STEM improves the performance of the threshold-based classifier, up to

43% of F-score. We have assessed the F-score of STEM varying the amount of

available training data, comparing it with that of a set of supervised classifiers

directly trained on property-specific similarity values computed between pairs of

records. The experiments show that STEM consistently performs better with respect

to competitors and is less sensitive to the amount of training data.

3cixty: in the process of generation of the 3cixty knowledge graph for the

municipality of Nice, STEM has been applied for matching places and events

coming from a number of local and global data providers. In this context, it has

shown to be scalable and fast enough to adapt to a real use-case and to outperform

simple threshold-based classifiers.

Finally, in this thesis, we have worked on the problem of sequence-aware recom-

mendation, through the following research question:

RQ3 How can we create a recommender system that learns to recommend tourist

paths from Location-Based Social Network data, effectively leveraging the

temporal correlation among tourist activities?

Path Recommender: often we have wondered ‘where should I go next?’ in the

exploration of a city. Personalized suggestions of city tours are extremely valuable

for a tourist, and lots of research has recently focused on generating sequence of

tourist activities in a data-driven way. To accomplish this goal, we have collected

data from Foursquare, a popular Location-based Social Network Data where

users can publish information about their activities in a city. We have extracted
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sequences of tourist activities, so called ‘paths’ or ‘trails’, which we release in

the open source Semantic Trails Dataset [32]. This dataset has been used to train

the Path Recommender, a sequence-aware recommender systems based on RNNs,

to predict tourist paths. We have used a simple architecture based on GRU [229]

cells, which has shown to outperform competing systems such as bigram models or

Conditional Random Fields (CRF) [230] for the problem of generating tourist paths.

Furthermore, the Path Recommender has been used in a European project called

PasTime to create an application that support tourists in exploring a city providing

personalized tour recommendations.

Sequeval: in the process of benchmarking and evaluating the Path Recommender,

we have realized that there was a substantial gap of metrics and evaluation protocols

for sequence-aware recommender systems. Thus, we have created Sequeval, an

evaluation framework for sequence-aware recommender systems. Sequeval extends

a set of metrics that have originally been proposed for traditional recommender

systems, considering a number of dimensions that go beyond pure accuracy, such

as novelty, diversity and serendipity. Sequeval has been tested with different

sequence-aware recommender systems and different datasets, is an open source

project, publicly available on Github.

RecSys2018 challenge: we have extended the Path Recommender architecture

to address a similar sequence prediction problem, i.e. playlist continuation in the

context of the RecSys2018 challenge [139]. We have used an RNN based on LSTM

cells [142], with a set of ad-hoc modifications for the playlist continuation problem.

The RNN can include, together with the sequence of songs, a variety of external

information extracted from song lyrics and from song titles. The RNN has achieved

the 14th position out of 33 participants in the creative track and the 36th position out

of 113 participants in the main track.
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6.2 Future work

In this section, we discuss some of the gaps and opportunities for future work

concerning what we have presented in this thesis.

entity2rec
Streaming: currently, entity2rec does not support streaming data. This means

that whenever new data is added to the knowledge graph, embeddings have to be

regenerated from scratch. A future work is to extend the algorithm so that the

embeddings can be updated whenever new feedback comes in. Given the local

nature of the random walk exploration, this could be accomplished by performing

a set of random walks only in the neighborhood of the newly added nodes in the

graph, similarly to what described in DeepWalk [77]. Future experiments should

clarify whether this approximation performs sufficiently well and what are the most

suitable configurations of the learning algorithm for this setup.

Explanations: several times we have mentioned that entity2rec can in principle

generate rich explanations of recommended items, given that it uses a knowledge

graph model that includes a lot of information, such as a related entities to a specific

item. For instance, by comparing the values of ρp(u, i) we might understand which

specific aspect of the item i is closer to the user u. For instance, if we saw that

ρdirector(u, i)> ρp(u, i) for any p, we might conclude that the director is the aspect

of the movie that is closer to the user u, and generate as an explanation: ‘Since you

like this director...’. This approach to generate explanations is hard to test in an

offline setting, but it could be tested in an online experiment using a simple A/B

testing protocol.

Personalized entity linking: using knowledge graph embeddings, it is easy to

measure the relatedness between a user and a specific entity. Given the vector

representations of u and e, a similarity function can be used to obtain ρ(u,e). Given

that entity relatedness is a crucial ingredient for entity linking algorithms [231],

ρ(u,e) could be used to personalize an entity linking algorithm, giving higher

priorities to entities that are particularly relevant for a specific user.

Additional information about user-item interaction: we have modelled user-item
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interactions as simple unweighted edges in a graph, showing whether the user liked

an item or not. For the Movielens and the LibraryThing dataset, we have binarized

ratings data using a threshold, and for LastFM we have modelled every interaction

as a positive feedback. However, the number of times a user listened to a given artist

in LastFM is a valuable information and should be leveraged by the recommendation

model. As a future work, it is possible to include this information as a set of weights

on the ‘feedback’ edges of the knowledge graph. These weights are taken into

account in the random walk exploration, which will then affect the embeddings and

the recommendation function.

The case of explicit feedback, such as ratings, is slightly more complicated, as

negative ratings are not to be considered as connections at all. A possible solution

would be to only use positive ratings as an edge, attaching their value as a weight,

and neglecting negative ratings. A more sophisticated approach would require a

different loss function for learning the embeddings, such as a pairwise ranking loss

function, where negative ratings can be considered as negative examples.

Similarity functions in entity2rec: we have run a large set of experiments for

entity2rec, searching for optimal hyper-parameters, as well as comparing different

aggregation functions. However, we have always used the cosine similarity function

to retrieve recommended items in the embedding space. Given that many similarity

functions exist, and that they could have a major impact on the set of recommended

items, as a future work it is possible to experiment with new similarity functions

within entity2rec.

Tinderbook
Improve data quality: DBpedia has allowed to create the knowledge graph for the

recommendation algorithm, connecting books through links to common entities and

complementing the collaborative information coming from LibraryThing ratings

with content-based information. Furthermore, DBpedia has enabled to obtain

rich book descriptions (e.g. abstract), without the cost of creating, curating and

maintaining a book database. The multilinguality of DBpedia will also be a great

advantage should we extend Tinderbook to other languages in the future. On the

other hand, using DBpedia data has some pitfalls. The first one is the data loss
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during the mapping, as only 11,694 out of a total of 37,231 books (31.409%) in

the LibraryThing dataset are mapped to DBpedia entities1. The second one is that,

in some cases, the information in DBpedia resulted to be inaccurate. For example,

during some preliminary tests, we have noticed that in many cases the thumbnail

reported in the ‘dbo:thumbnail’ property is far from ideal to represent accurately the

book (see Jurassic Park novel2), and we had to rely on Google to find better book

covers. As a future work, we will experiment with different knowledge graphs such

as Wikidata [40] to see whether this can limit the data loss and the overall quality of

the metadata provided in the recommendations.

Diversity and novelty: users typically gave positive feedback about Tinderbook,

saying that it was fun to use (“cool! it’s fun!") and that recommendations were

accurate (“It gave me all of my favorite books!”). Some users, though, complained

that the recommendations lacked diversity (e.g. “I got all recommendations from

the same author”), or novelty (“recommendations are a bit too classic”). As a short

term solution, we have added a rule that prevents to have more than two books

from the same author of the seed book in the recommended list. As a future work,

though, we will try to improve other dimensions of the recommendation quality

such as the diversity and the novelty, as most of the work so far has been done in

optimizing the accuracy of the recommendations in an offline setting. This can be

accomplished applying hard constraints (e.g. removing top K popular items from the

recommendations) or through a soft constraint, for instance by adding a term in the

loss function that encourages diverse and novel recommendations in the solution of

the minimization problem.

Translational models
Multi-type user-item interactions: in this work, we have always dealt with simple

user-item interactions, such as a like or a rating for a movie, which we modelled

with the ‘feedback’ property. However, in some recommendation problems, it can

be useful to model multiple types of interactions. Consider the example of ads. A

user might close the ads, watch it, click on the advertised link or even purchase the

product. These interactions have a different meaning and could be modelled as

1https://github.com/sisinflab/LODrecsys-datasets/tree/master/LibraryThing
2http://dbpedia.org/page/Jurassic_Park_(novel)

https://github.com/sisinflab/LODrecsys-datasets/tree/master/LibraryThing
http://dbpedia.org/page/Jurassic_Park_(novel)
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different properties (e.g. ‘discard’, ‘watch’, ‘click’, ‘buy’), showing an increasing

degree of interest in the item. Translational models are naturally meant to predict

multiple properties, as they are conceived to perform link prediction on knowledge

graphs, and could be easily applied to this type of problem.

STEM
Stacking: in STEM we have only experimented with an SVM classifier, but any

classifier can in principle be used for the stacking layer. Future experimental

work should clarify whether the advantage brought by stacking to threshold-based

classifier can be even more significant with other machine learning algorithms (e.g.

random forests, neural networks...). Furthermore, more classifiers could be stacked

or ensembled together, and stacking could be applied to other parameters of the

algorithms.

Parallel implementation: STEM is computationally more expensive than a

single threshold-based classifier, as it involves running several instances of the

threshold-based classifier and then training a supervised learner on top of their

matching decisions. Among these two components of the total STEM runtime, we

observe that for the datasets that we have used in this work, the first is the most

expensive step. Thus, as a future work, we plan to improve the computing time

of the software using a parallel and/or distributed implementation to allow the

simultaneous execution of processes.

Path Recommender
Instance recommendation: the Path Recommender generates sequences of venue

categories such as ‘Art Museum’. Then, a logic needs to select a specific instance

(e.g. ‘The Museum of Modern Art’) of that category that is suitable for the user.

As a future work, we plan to implement a logic that selects instances from venue

categories based on the user context (geographic position, time of the day, weather,

etc...) and the personal user history.

Knowledge and sequence-aware recommendations: in this manuscript, we have

considered recommender systems based on knowledge graphs and on sequence-

aware algorithms, but we have not discussed the intersection between these two. For
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the datasets used for the Path Recommender evaluation, no knowledge graph was

available to enhance recommendations using techniques discussed in Chapter 3 and

thus we have relied only on collaborative information, i.e. user checkins. However,

The use of knowledge graph embeddings in sequence-aware recommendations is,

to the best of our knowledge, a highly promising and highly unexplored research

area. Hence, in the future, we plan to explore the effect of features extracted using

knowledge graph embeddings in a sequence-aware recommender system.
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Appendix A

Item Modeling

In order to create the knowledge graph, we need an item model, i.e. we need

to define the properties that describe an item type for the datasets used in this

work. To this end, we start from the DBpedia Ontology, that defines properties

for different item types1. However, a property selection strategy purely based on

the schema of the data does not provide any guarantee on how frequently used are

those properties in the data. Thus, we opt for an empirical approach where we

count what are the DBpedia properties (“dbo:") most frequently used in DBpedia

data to describe the items in the datasets. More specifically, for each item i in

the dataset, we retrieve all triples (i, p,o) in DBpedia and we the frequency of

occurrence of the properties p. Then, we sort the properties according to their

frequency of occurrence and we select the first N so that the frequency of the N+1-th

property is less than 50% of the previous one. In this way, we avoid to select a

fixed number of properties and we rely on the actual frequency of occurrence

to determine the cut-off. Finally, we add “dct:subject" to the set of properties,

as it provides an extremely rich categorization of items, as done in previous

work [3, 117]. We obtain: [“dbo:director", “dbo:starring", “dbo:distributor",

“dbo:writer",“dbo:musicComposer", “dbo:producer", “dbo:cinematography",

“dbo:editing", “dct:subject"] for Movielens 1M, [“dbo:genre”, “dbo:recordLabel”,

“dbo:hometown”, “dbo:associatedBand”, “dbo:associatedMusicalArtist”,

“dbo:birthPlace”, “dbo:bandMember”, “dbo:formerBandMember”, “dbo:occupation”,

1http://mappings.dbpedia.org/server/ontology/classes/

http://mappings.dbpedia.org/server/ontology/classes/
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“dbo:instrument”, “dct:subject"] for LastFM and [“dbo:author", “dbo:publisher",

“dbo:literaryGenre", “dbo:mediaType", “dbo:subsequentWork", “dbo:previousWork",

“dbo:series", “dbo:country", “dbo:language", “dbo:coverArtist", “dct:subject"].

Recently, some works such as ABSTAT [232] have dealt with the prob-

lem of finding a selection of properties to create a knowledge graph that

optimizes recommender systems accuracy. For example, for the datasets

under analysis, ABSTAT property selection in the configuration: k = 10,

norep.AbsOccAvgS is: [“dbo:director”, “dbo:starring”, “dbo:distributor”,

“dbo:writer”, “dbo:musicComposer”, “dbo:producer”, “dbo:cinematography”,

“dbo:music”, “dbo:language”, “dct:subject”] for Movielens 1M, [“dbo:genre”,

“dbo:recordLabel”, “dbo:hometown”,“dbo:birthPlace”,“dbp:placeOfBirth”,

“dbo:deathPlace”, “dbo:field”, “dbo:nationality”, “dbp:placeOfDeath”, “dct:subject”

] for LastFM and [“dct:subject”, “dbo:author”, “dbo:publisher”, “dbo:literaryGenre”,

“dbo:mediaType”, “dbo:country”, “dbo:language”, “dbo:series”, “dbo:nonFictionSubject”,

“dbo:coverArtist”]. We have run an experiment comparing entity2rec on a KG built

using our property selection and the ABSTAT selection for the LastFM dataset,

which is the one where the properties are differing more, but the scores did not show

a consistent improvement of the recommendation quality (Tab. A.1).
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Property selection System P@5 R@5 SER@5 NOV@5
dbo + frequency (C3) entity2reclambda 0.1852 0.1066 0.1512 10.101
dbo + frequency (C3) entity2recavg 0.2062 0.1191 0.1682 10.379
dbo + frequency (C3) entity2recmin 0.2055 0.1191 0.1664 9.807
dbo + frequency (C3) entity2recmax 0.1693 0.0986 0.1423 10.243

ABSTAT (C3) entity2reclambda 0.1799 0.1039 0.1419 10.343
ABSTAT (C3) entity2recavg 0.1915 0.1102 0.1528 10.681
ABSTAT (C3) entity2recmin 0.2010 0.1162 0.1604 9.830
ABSTAT (C3) entity2recmax 0.1731 0.1003 0.1422 10.280

dbo + frequency (C1) entity2reclambda 0.1745 0.1009 0.1405 11.227
dbo + frequency (C1) entity2recavg 0.1505 0.0870 0.1182 12.267
dbo + frequency (C1) entity2recmin 0.1699 0.0981 0.1343 11.331
dbo + frequency (C1) entity2recmax 0.1295 0.0753 0.1037 10.537

ABSTAT (C1) entity2reclambda 0.1750 0.1011 0.1433 11.251
ABSTAT (C1) entity2recavg 0.1390 0.0808 0.1043 12.039
ABSTAT (C1) entity2recmin 0.1604 0.0926 0.1264 11.320
ABSTAT (C1) entity2recmax 0.1382 0.0800 0.1110 10.968

Table A.1 ABSTAT property selection and the heuristics used in this paper (“dbo + fre-
quency") are compared on the LastFM dataset. The heuristics work best for C3 = {p : 4,q :
4,d : 200, l : 100,c : 60,n : 100}, ABSTAT selection works best for C1 = {p : 4,q : 1,d :
200, l : 100,c : 30,n : 50}. Scores can be considered with no error for comparisons as the
standard deviation is negligible up to the reported precision.



Appendix B

entity2rec scores

In this section, we report the extended results of the comparison of entity2rec with

the state-of-the-art in tabular form. For completeness, we include also:

• SoftMarginRankingMF: a matrix factorization model for item prediction opti-

mized for a soft margin (hinge) ranking loss [110].

• WeightedBPRMF: a weighted version of BPRMF with frequency adjusted

sampling [233].

All scores can be considered as without error up to the digit reported in the tables, as

the standard deviation is negligible.
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System P@5 R@5 SER@5 NOV@5
entity2reclambda (C2) 0.2125 0.0967 0.1913 9.654

entity2recavg (C2) 0.2372 0.1045 0.2125 9.577
entity2recmin (C2) 0.2198 0.0976 0.1946 9.466
entity2recmax (C2) 0.2206 0.0951 0.2038 10.046

node2vec (C2) 0.2313 0.0994 0.2119 9.675
TransE 0.2014 0.0791 0.1951 9.882
TransH 0.2001 0.0772 0.1920 9.768
TransR 0.1864 0.0731 0.1822 9.960
BPRMF 0.2150 0.0809 0.1829 9.303

BPRSLIM 0.2252 0.0961 0.1969 9.438
ItemKNN 0.2004 0.0758 0.1920 10.546

LeastSquareSLIM 0.2162 0.0832 0.1656 8.811
MostPopular 0.1446 0.0492 0.0647 8.429

SoftMarginRankingMF 0.1222 0.0405 0.1206 9.721
WeightedBPRMF 0.0945 0.0364 0.0900 11.334

WRMF 0.2550 0.0991 0.2117 8.910
RankingFM 0.2202 0.0737 0.1782 8.996

Table B.1 Results for the Movielens 1M dataset. Scores can be considered with no error for
comparisons as the standard deviation is negligible up to the reported precision.
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System P@5 R@5 SER@5 NOV@5
entity2reclambda (C3) 0.1852 0.1066 0.1512 10.101

entity2recavg (C3) 0.2062 0.1191 0.1682 10.379
entity2recmin (C3) 0.2055 0.1191 0.1664 9.807
entity2recmax (C3) 0.1693 0.0986 0.1423 10.243

node2vec (C3) 0.1994 0.1161 0.1665 10.337
TransE 0.1628 0.0935 0.1393 9.662
TransH 0.1549 0.0892 0.1347 9.791
TransR 0.1417 0.0812 0.1276 10.643
BPRMF 0.1254 0.0720 0.0798 7.976

BPRSLIM 0.1921 0.1106 0.1526 8.860
ItemKNN 0.1144 0.0652 0.0956 13.116

LeastSquareSLIM 0.1502 0.0868 0.1050 8.307
MostPopular 0.0764 0.0444 0.0231 7.307

SoftMarginRankingMF 0.0426 0.0244 0.0387 9.876
WeightedBPRMF 0.1067 0.0611 0.0958 10.452

WRMF 0.2003 0.1152 0.1598 8.305
RankingFM 0.1678 0.0963 0.1324 8.985

Table B.2 Results for the LastFM dataset. Scores can be considered with no error for
comparisons as the standard deviation is negligible up to the reported precision.
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System P@5 R@5 SER@5 NOV@5
entity2reclambda (C4) 0.1271 0.0803 0.1229 12.469

entity2recavg (C4) 0.1800 0.1072 0.1736 12.089
entity2recmin (C4) 0.1831 0.1084 0.1757 11.709
entity2recmax (C4) 0.1634 0.0984 0.1591 12.783

node2vec (C4) 0.1749 0.1046 0.1706 12.495
TransE 0.0972 0.0598 0.0944 11.370
TransH 0.1041 0.0634 0.1016 11.397
TransR 0.0774 0.0459 0.0748 11.474
BPRMF 0.0377 0.0262 0.0240 9.487

BPRSLIM 0.1136 0.1013 0.0982 9.853
ItemKNN 0.1225 0.1009 0.1177 13.114

LeastSquareSLIM 0.0722 0.0522 0.0565 10.131
MostPopular 0.0343 0.0256 0.0070 8.453

SoftMarginRankingMF 0.0204 0.0141 0.0183 10.313
WeightedBPRMF 0.0381 0.0326 0.0375 11.830

WRMF 0.0802 0.0620 0.0658 9.101
RankingFM 0.0840 0.0464 0.0778 10.021

Table B.3 Results for the LibraryThing dataset. Scores can be considered with no error for
comparisons as the standard deviation is negligible up to the reported precision.
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