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Abstract— In this paper we present a macro-model for a true random
number generator which internally exploits a pipeline analog-to-digital
converter modified to operate as an interleaved chaotic map. The model
is tuned to reproduce the non-idealities of a 0.35µm CMOS double-poly
triple-metal technology. It is based on circuit-level simulations but is
extremely more efficient and can be used to run the statistical tests to
assure the quality of the output stream.

I. INTRODUCTION

Random Number Generators (RNGs) represent a fundamental issue
in many engineering tasks. For instance RNGs are inherent in many
communication protocols and in the synthesis of confidential keys
for symmetric and public-key crypto-systems in the computation
of algorithms such as the DSA [1], [2]. The properties a RNG
must satisfy depend on the specific application where the RNG is
employed. Generators suitable for security related applications must
meet much stronger requirements than for other applications [2]; the
fundamental property of all cryptographic techniques to foil pattern
analysis is strongly dependent on the unpredictability of the random
generators they employ. In the general case, unpredictability is the
most important property of a RNG. We can say a random number
generator is ideal when, basing on the observation of the previous
symbols, we get no information at all about the next symbol.

It is generally recognized that ideal random sources can only be
approximated. An ideal source is capable of producing infinitely long
sequences made of perfectly independent bits, with the property that,
when restarted, the source never reproduces a previously delivered
sequence (non-repeatability).

The RNG we discuss here belongs to the class of true-random
number generators, i.e. generators that rely on micro-cosmic pro-
cesses which result in macroscopic observables that can be regarded
as random noise. They are the best approximation of ideal random
generators and often, in common perception, completely identified
with them. This category of generators is widely deployed in security
related applications such as data security and cryptography, where the
deterministic (and thus predictable) behavior of, for example, pseudo-
random generators can hardly be desirable.

Our RNG (section II) is based on a chaotic circuit source [3].
The capability of non-linear systems to exhibit non-classical, irregular
(i.e. chaotic) behaviors has longly been appealing for RNGs [4], [5].
A chaotic random source is based on a deterministic model where
entropy enters only as system initial condition. However, the initial
condition is set by the system noise floor, so that the information
comes from a physical process and the associated entropy is infinite.
The main advantages of the proposed circuit is that it is very similar
to the implementation of recent pipeline analog-to-digital converters
(ADCs) based on 1.5 bit/stage cells; this permits a vast re-use of
design competences and macro-blocks developed in this field and
also ensure embeddability in all mixed signal integrated circuit.

A circuit implementing this RNG has been designed (section III);
to validate the design i.e. to verify the quality of the output stream,
statistical tests are available (see, for example, [6], [7] and [8]).
However these tests require sequences of millions of bits, which
cannot be generated with a circuit-level simulation since, due to the
circuit complexity, they achieve a throughput of few hundreds of
bits per hours. So we developed an efficient macro-model of the
circuit (section IV) based on Monte-Carlo simulations of the circuit;
though simple, this model is realistic since it includes possible errors
coming from implementation inaccuracies. With this model we can
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Fig. 1. PWAM map found in ADC pipeline converters (A); Embedded
Markov chain (B); and simplified chain (C).

test (section V) the quality of the output stream, and and also check
what kind of post-processing circuit is the most appropriate for the
circuit.

II. CIRCUIT DESCRIPTION

The proposed circuit relays on a simple chaotic map as chaotic
source. Chaotic maps [9] are 1D discrete-time autonomous systems,
whose evolution is described as xn+1 = M (xn) where M is a non-
linear function that maps an interval I (usually I = [−1, 1]) into
itself.

Supposing M is exact [9], from any initial condition x0 ∈ I
these systems generate trajectories whose symbols xk appears as
completely random and also which are distributed according to a sym-
bol density which is independent of the initial condition and called
invariant density. Also, these systems exhibit a strong dependence on
the initial condition: two trajectories given by the same system with
two very close initial conditions appear as completely uncorrelated.
This property is fundamental since it guarantees non repeatability in
true-implemented systems, where initial condition is set by circuit
noise. The key idea is to achieve a RNG from a quantization of the
system state xk of a chaotic map. Since quantization is non-reversible
operation, the analog state of the system cannot be obtained through
the observation of all the quantized quantities and so the evolution
of the system cannot be predicted.

The map M used as chaotic source is the map depicted in
figure 1-A. This is a variant of the well-known Bernoulli shift
and has very good robustness properties [10], [11] against both
noise perturbations and implementation errors, which make this map
very suitable as true-implemented chaotic source. Also this map
is a Piece-Wise Affine Markov (PWAM) map [12]; if we set the
partition {X0,X1,X2, X3} = {[−1,−1/2[, [−1/2, 0[, [0, 1/2[, [1/2, 1]}
and consider only the interval where, at every time step, the map state
xk is, the dynamics of the system evolution can be studied through
the Markov chain in figure 1-B. The chain is clearly not suitable for
the direct generation of independent and identically distributed (iid)
– loosely speaking random – symbols, but its particularly regular
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Fig. 3. Layout of the designed ADC-based RNG.

structures allows us to aggregate its states obtaining a simpler chain,
equivalent to that of the unbiased coin toss (figure 1-C).

To minimize the effect of isolated non-idealities and increase
throughput it is sensible to unroll the time-updating relationship
xk = M (x) in a l-stages pipeline structure as in figure 2 If the
map M of figure 2-A is employed at each stages, the architecture is
very similar to that of a pipeline A/D converter, i.e. particular A/D
architecture in which the conversion is obtained through a series of
l simpler A/D intermediate conversions [13]. In fact, is shown in
[3] that ADCs with one-and-a-half bit per stages architecture exploit
an analog processing unit whose in/out relationship is precisely that
in figure 1-A. The only difference between a 1.5 bit/stage pipeline
ADC and the proposed pipeline chaotic map is that the ADC is an
open-loop system, while the chaotic map is a closed-loop system.

This structure can be proven [3] to be equivalent to l independent
chaotic systems operating in parallel. The model is interleaved in the
sense that the evolution function of every chaotic system at time n
does not depend on its state at time n− 1, but on the state, at time
n−1, of another system. With this configuration we get at each time
step an iid bit for each of these systems; hence the whole pipeline
generates l iid bits per time step.

III. CIRCUIT IMPLEMENTATION

The proposed ADC-based RNG has been implemented with AMS
CMOS 0.35µm technology. The layout of the chip is shown in
figure 3 while the circuit characteristics are reported in table I. This
chip contains two different pipelines, the first with only two stages
and the second with eight stages. The two pipeline have two different
bias section to reduce interferences, and are designed to operate with
a working frequency up to 5 MHz, so the circuit maximum output
data rate is 40Mbit/s for the eight-stages pipeline.

The core of the circuit is the 1.5 bit A/D cell whose schematic
is shown in figure 4 and is taken from [13]. While a single-ended
configuration is shown for simplicity, the actual implementation is
fully-differential.

This stage operates on a two-phase clock. In a first phase, the input
signal vi, which ranges from −Vref/2 to +Vref/2, is applied either
to the coarse 1.5 bit ADC (with thresholds −Vref/4 and +Vref/4)
and to the sampling capacitors Cs and Cf . The output of the ADC
is also latched at the end of the clock phase. In the second phase,
Cf closes the negative feedback loop around the op-amp while Cs is
switched to the output of the DAC (a simple three-input multiplexer),

Max. working frequency: 5 MHz
Max. data throughput: 5 Mbit/s per stage

(two-stages pipeline): 10 Mbit/s
(eight-stages pipeline): 40 Mbit/s

Area (with pads): 2.400 mm2

(1480 µm x 1620 µm)
Area (without pads): 0.752 mm2

(two-stages pipeline): 0.234 Mbit/s
(eight-stages pipeline): 0.518 Mbit/s

Power supply voltage: 3.3 V
Power consumption (estimated): 56 mW

(two-stages pipeline): 27 mW
(eight-stages pipeline): 29 mW

TABLE I
CIRCUIT CHARACTERISTIC FOR THE DESIGNED ADC-BASED RNG.
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Fig. 4. Switched capacitor 1.5bit A/D converter used as M(x) block.

thus subtracting the output of the multiplexer from the output signal
vi+1. Analytically:

Vi+1 =





(
1 + Cs

Cf

)
Vi − Vref , Vi < −Vref

4(
1 + Cs

Cf

)
Vi, −Vref

4
< Vi <

Vref
4(

1 + Cs
Cf

)
Vi + Vref , Vi >

Vref
4

(1)

Setting Cs = Cf the resulting input/output characteristic is the
desired one.

Due to the switched capacitor implementation this scheme has
many advantages. First, S/H stages are not necessary in the pipeline
if the cells are driven alternatively with two non overlapping clocks;
this however implies that the number of stages must be an even
number. Also the switched capacitor implementation ensures a very
high accuracy.

All the necessary voltages (0, ±VR, ±VR/4) are generated with a
resistive matched ladder biased with a current. This does not guar-
antee extreme accuracy since both bias current and ladder resistance
depend on technology parameters which may have large variations;
however this is not a problem since the circuit performance depends
only on voltage ratios, which conversely can be fixed with high
accuracy.

To validate the design, a netlist extracted from layout and affected
by parameter variations reproducing fabrication imperfections must
be simulated and results matched against test for randomness [6], [7],
[8]. Due to the switched capacitor nature of the circuit, time-domain
simulations are necessary. These simulations are extremely expensive
in terms of computing power. With a state-of-the-art CPU and a
commercial spectre simulator, we get a simulation speed of about
600bit/hour (i.e. about 0.15bit/s) for the two stages-pipeline circuit.
This is of course unacceptable, since many tests require millions of
bits to run. For this reason we developed a macro-model capable
of a throughput of several order of magnitude higher than the full
circuit simulation. The macro-model has been developed from the
circuit implementing a two-stages pipeline, but is capable to describe
a circuit with any number of stages.
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Fig. 5. Short time transient analysis for the two-stages pipeline.
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Fig. 6. A collection of (xk+1,xk) points for a single 1.5 bit ADC stage (A);
and zoom around breakpoint α− (B)

Since the circuit is, ideally, 1D discrete-time and time independent,
a 1D discrete-time and time independent model has been selected,
i.e. we focused on modeling the profile of the implemented M and
describe how its varies depend on implementation inaccuracies. Due
to the discrete-time nature of the circuit, the M function can be
analyzed only with a collection of (xk+1, xk) points obtained from
simulations. This could be done with a parametric simulation of a
single time step with different initial values of xk; however there are
no guarantees that the computed initial solution is the actual one. A
better way is to extract the values of the points (xk+1, xk) from a
single, long transient simulation, and down-sample the output stream
with a sampling instant few ns before the front of the clock as shown
in figure 5, where only the differential values of the circuit outputs
are drawn for simplicity. Since it can be proved that points xk are
ideally uniformly distributed in I , from this sampling we obtain a
good discretization of M . This simulation has also been performed
with different values of the actual process parameters to obtain a
model which includes all implementation inaccuracies.

IV. MACRO-MODEL OF THE CIRCUIT

Many Monte-Carlo runs of about 25×103 clock periods have been
simulated for the two-stages pipeline circuit. From each of these runs,
two sets of about 25 × 103 points (xk+1,xk), one for every stage,
have been extracted. From these sets, a version of function M is
computed for every stage of every Monte-Carlo run; these functions
have been analyzed to obtain a simple but realistic map description
including an evaluation of the differences which may exist between
two stages of two different pipelines or between two stages of the
same pipeline.

The model used for the M function is a piece-wise linear model.
The switched capacitor implementation ensures (figure 6-A) a very
high linearity, and also a very good precision on the multiplying fac-
tor. Also the fully differential architecture ensures a high symmetry;
so the M can be described by

M (x) =

{
2x+ β if condition λ1 (x) is true
2x if condition λ2 (x) is true
2x− β if condition λ3 (x) is true

(2)
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Fig. 7. Density of points satisfying condition λ2 (solid line) and linear
approximation p (x) (dotted line) around α− (A) and around α+ (B).

The determination of the three condition λ1, λ2 and λ3 is non-
trivial. Ideally, two breakpoints α− and α+ exist, with λ1 (x) ≡
x < α−, λ2 (x) ≡ α− ≤ x < α+ and λ3 (x) ≡ x ≥ α+. Yet,
the real behavior of the system can be seen in figure 6-B, which
represents a zoom of figure 6-A around the ideal breakpoint α−.
While at a certain distance from the breakpoint the behavior is fully
deterministic, a point very close to the breakpoint could sometimes
verify condition λ1 and sometimes λ2 (the gray area in the figure).
This could be explained considering interferences (e.g spikes on the
power supply voltage) coupling from the other parts of the circuit
which may alter the behavior of the two comparators. Due to the static
nature of the macro-model, these interferences cannot be modeled in
any way but as noise perturbation. So a stochastic transition model
has been implemented; in this model a probability function decides
which linear piece of M is used.

The solid line of figure 7 shows the density of points around the
breakpoints verifying condition λ2 in a Monte-Carlo run; the figure
has been obtained with an histogram analysis. Assuming the system
is ergodic, this function has been taken as the probability function
p (x) that condition λ2 is verified for a point x. With this we set

M (x) =

{
2x+ β x < 0,with probability 1− p (x)
2x with probability p (x)
2x− β x > 0,with probability 1− p (x)

(3)

Ideally p (x) = χ[α−,α+], where χ is the classical indicator

function of an interval. In this model, p (x) has been considered a
trapezoidal function (the dotted line in figure 7):

p (x) =





0 x < α− − 1
2s−

1/2 +
(
x− α−) s− α− − 1

2s− ≤ x < α− + 1
2s−

1 α− + 1
2s− ≤ x < α− − 1

2s+

1/2 −
(
x− α+

)
s+ α+ − 1

2s+
≤ x < α+ + 1

2s+

0 x ≥ α+ + 1
2s+

(4)
The breakpoints α− and α+ are the points where the (fitted)

probability to be in one or another of the two linear pieces of M
is equal. These parameters, as well as s− and s+, are computed
through two separate linear regression, including all points around
α− (or α+ respectively) that verify condition λ2 in each Monte-
Carlo run. All points far enough from the breakpoints to ensure a
deterministic decision (i.e. when the density is 1 or 0) have not been
considered. Even if some slightly differences can be observed in the
value of α− and α+, they are strongly related (see figure 8-A) so
we can assume α = α+ = −α−.

Numerical analysis shows that there can be large differences in
these parameters for different pipeline implementations. However the
differences between different stages in a single pipeline are very
small. This reflects the fact that the latter differences depend only
on inaccuracies such as matching errors, which are typically limited.

For example, a variation up to ±20% from its nominal value can
be observed in β in different Monte-Carlo runs since it depends on
reference voltages which may strongly vary; however no sensible
variation can be observed in β for the two stages of a single Monte-
Carlo run, since in a single simulation (i.e. in a single pipeline) the
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Fig. 8. Scatter plots for α− vs α+ (A); and β vs α (B)

parameter(s) mean value standard deviation
β 2.0376 0.09806
∆α 0 0.004551

s+,s− 124.7316 60.177

TABLE II
EXPECTED VALUE AND DEVIATION FOR MODEL PARAMETERS.

reference voltages are the sames. So β in the macro-model is assumed
to be a global parameter for the entire pipeline. From the analysis
of β in all Monte-Carlo runs, its value is modeled as a Gaussian
random variable with mean value and variation shown in table II.
On the contrary, a fluctuation on the value of α can be observed
even between the two stages of a single pipeline. The value of α
in the macro-model so is computed for every stage of a pipeline
as α = α0 + ∆α where α0 is a global parameter for the entire
pipeline, and ∆α is computed for every stage as in table II. Actually,
α0 is not an independent parameter, and it is strongly related to β
(see figure 8-B). In the model it is taken α0 = β/4, since this is
the expected relation between these two parameters. However, no
relations between the values of s−, s+ and the other parameters
has been found; also since no link with the other parameters can be
anticipated based on circuit design, they are taken as independent for
each pipeline stage.

In the light of this, the proposed model has four parameters:

• β, which is assumed as a global random variable for the entire
pipeline.

• ∆α, s− and s+, which are random variables computed for each
stage of the pipeline.

All these parameters have been assumed to be Gaussian random
variables.

no post– XOR post–processing
processing XOR-2 XOR-4 NLSR

SP800-22 test fraction of P-value greater than 0.01
F 0.057478 1.000000 0.988839 0.988839

BF 0.717076 0.914062 1.000000 0.997768
RN 0.062500 0.594866 1.000000 0.992746

LROO 0.723214 0.984375 0.986607 0.991071
RK 0.991629 0.988839 0.988839 0.988281

DFT 0.289621 0.991071 0.997768 0.992746
NOTM 0.292411 0.981027 0.993304 0.984933
OTM 0.407366 0.966518 0.997768 0.986607

U 0.460938 0.992188 0.991071 0.989955
LC 0.987165 0.989955 0.984375 0.988839
LZ 0.286830 0.982143 0.988839 0.991629
S1 0.037946 0.727679 0.986607 0.992188
S2 0.724330 0.983259 0.986607 0.992188
AE 0.042969 0.667411 0.986607 0.993304
CS1 0.056920 0.997768 0.986607 0.991629
CS2 0.060268 0.998884 0.988839 0.992746
RE N/A 0.986254 0.986111 0.984862

VRE N/A 0.986254 0.993056 0.991986

TABLE III
RESULTS OF RANDOMNESS TESTS ON THE CHAOTIC-ADC RNG WITH

DIFFERENT POST-PROCESSING STAGES.

V. TESTS

The proposed model has been used to perform extensive tests
among several possible choice in terms of number of stages and
post-processing architectures. As an example, table III reports the
results for the SP800-22 test suite [7]. Test are performed generating
instances of an eight-stages ADC. Each instance is simulated to assess
its quality as a converter, and only instances actually producing a
conversion error not larger than 1lsb are passed onto the following
step. For all ADCs passing we generate 106 bits. We stop when about
2000 random number generators have been tested.

Results are presented for the system without any post-processing
stage, with a simple XOR post-processing stage with depth-level of
two and four and a NLSR post-processing [14] Table III reports the
fraction of instances that produce a sufficiently high P-value which
is a real number in [0, 1] estimating the probability that a finite
realization of an ideally random binary process deviates from the
ideal statistic more than the given string. Obviously, the higher the
P-value the more random the string. We consider that a test is passed
if the P-value is greater than α = 0.01, as suggested in [7].

As can be seen, our circuit ensures a very good randomness even
with simplest post-processing stages.

VI. CONCLUSIONS

In this paper an implementation of a 1.5 bit ADC based RNG
is presented. The circuit has been designed and a macro-model of
the circuit from layout simulations has been extracted. This macro-
model has been developed with the analysis of several Monte-Carlo
simulation runs, and it is intended to include errors due both to
coupling perturbations, observed in the comparators behavior, and
to circuit implementation inaccuracies. Simulations carried over by
means of the macro-model produce few Mbits/s to be compared
with the 0.15bit/s of the full transient simulation of the simplest
(unrealistic) circuit. Hence, its availability is essential to perform the
very long simulation needed to assure the quality of the output stream
with respect to the stringent statistical tests currently adopted.
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