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Abstract
Based on the non-perturbative approach, the hybrid code MARS-K is applied to study fishbone (FB)
instabilities driven by trapped fast ions in a toroidal plasma with q profile nearly being flat or non-
monotonic. We explore the dependency of the fishbone with variation in the fast ion distribution,
thermal particle kinetic effects, safety factor (q) profile and plasma resistivity. When the safety
factor minimum value is larger than unity (i.e. qmin > 1), the mode can be excited by isotropic or
anisotropic fast ions, with the latter strongly enhancing the mode growth rate. The mode frequency
increases with increasing qmin, and is more easily triggered in a equilibrium with two q = 1 surfaces,
compared with the case with one or no q = 1 surface. Kinetic contributions from transit resonance of
passing fast ions and from bounce resonance of trapped fast ions strongly enhance mode instability.
The passing thermal ions induced Landau damping has a strong stabilization effect. Furthermore,
in such a weak, even reversed magnetic shear plasma, the radial mode structure of fishbone mode
monotonically decreases to zero at q = 1 flux surface instead of a step-like function, and it depends
on the kinetic contributions from particles. In addition, the plasma resistivity significantly stabilizes
the mode near the marginally unstable point.

a haogz@swip.ac.cn
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1. INTRODUCTION

In tokamaks, fast ions, generated by neutral beam injection (NBI), can significantly affect
various kinds of magnetic-hydrodynamics (MHD) instabilities, such as resistive wall mode [1–
3] and tearing mode [4]. Fast ions can trigger a variety of instabilities, such as Alfvén
Eigenmodes [5, 6], the fishbone mode [7, 8], fishbone-like modes [9, 10] and peeling modes [11].
The fishbone instability also induces the transport and loss of fast ions, which in turn reduces
the NBI heating efficiency and plasma performance.

The fishbone mode was firstly observed during perpendicular NBI on the Poloidal Divertor
Experiment (PDX) device [12] in 1983. Since this time fishbone modes have been observed on
many other devices, such as PBX [13], DIII-D [14–16], JET [17–24],JT-60U [25], EAST [26],
HL-2A [27–29], NSTX [30] and MAST [31]. The study of fishbone instability is still one of
the most active topics of research.

In analytical studies, some approximations are made in order to obtain the dispersion
relation [7, 30, 32–35], such as assuming large aspect ratio, assuming a step mode structure,
and neglecting the kinetic modification on the mode structure. In addition, the perturbed
potential energy from bulk plasma is assumed to be fixed in analytical model.

However, recent experimental [36] and theoretical [37] studies have shown that fast ions
have significant effect on the mode structure. The perturbed fluid potential energy, which
plays a significant role on determining the fishbone growth rate based on variation principle [7,
32], should be self-consistently computed when the fishbone mode structure is modified by
particle kinetic effects. NIMROD simulation results show that the fishbone mode structure
is different from internal kink [38], in which the thermal particle kinetic effect is neglected
and monotonic q profile is adopted.

In MAST, NSTX and HL-2A plasmas, a fishbone instability can be driven by fast ions in
discharges with reversed magnetic shear in the core region [27, 31, 39]. The dependence of
fishbone on the fast ion distribution, various resonances, and q profile [33, 34, 40] requires
more numerical investigations. Here, we apply the well benchmarked MHD-hybrid code
MARS-K [41, 42] to study the above effects on fishbone, with self-consistent treatment of
not only the eigenvalue but also the mode eigenfunction.

The work is structured as follows. Section 2 describes the formulation of MHD-kinetic
hybrid model and the fast ion distribution function. Section 3 reports the numerical results
showing the influence of fast ion anisotropy, thermal particles, q profile and plasma resistiv-
ity on fishbone instability eigenvalue and mode structure. A summary and discussion are
presented in Sec.4

2. MARS-K CODE

In this work, the MHD-kinetic hybrid code MARS-K is employed [41]. The kinetic effect from
various particle species is evaluated by the solution of the linearized drift kinetic equation
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[43].
For the equilibrium distribution function of fast ions f̂ 0

h , we assume a slowing down dis-
tribution function in energy space with a Gaussian one in pitch space [2] as shown below.

f̂ 0
h(ψp, ε, χ) =

C(ψp)

ε
3/2
k + ε

3/2
c

1

2
√
πδχ

∑
i

Ci exp

[
−(χ− χi)

2

δχ2

]
, (1)

where εa is the birth energy of fast ions, and εc = (3
√
π

4
)2/3(Mh

Mi
)(Mi

Me
)1/3Te is the cut-off

energy of fast ions. Here, the Gaussian width δχ weakly depends on the particle energy εk,
which is written as

δχ2(ψ, ε) = δχ2
0 −

1

3
ln

ε3/2k

(
1 + ε

3/2
c /ε

3/2
a

)
ε
3/2
k + ε

3/2
c

 . (2)

In MARS-K, a curvilinear flux coordinate system (s, θ, ϕ) is employed, such that s ≡
√
ψp,

with ψp being the poloidal flux, and θ and ϕ are the general poloidal and toroidal angle,
respectively. The function C(ψp) is a function of poloidal flux, describing the dependence
of fast ion density on the radial coordinate. The coefficients Ci and χi describe fast ion
distribution in pitch space [2, 44], χ = v∥/v is defined as the pitch of fast ion, and δχ0 is
the parameter we will scan below, which is referred to as the Gaussian width in pitch space
for the fast ions with birth energy. Theoretically, as δχ → ∞, the anisotropic distribution
model recovers to the isotropic model. MARS-K has two separate implementations for the
anisotropic and isotropic models, which allows the internal benchmarks between these two
models.

3. NUMERICAL RESULTS

A. Equilibrium

In this work, we choose a toroidal plasma with large aspect ratio (i.e., ϵ = a/R0 =

0.36/1.65 ≃ 0.2). The toroidal magnetic field at axis is B0 = 1.3 T, the central electron
density ne(0) = 1.38×1019 m−3, and we assume that the electron temperature equals to that
of ions (i.e.Te(0) = Ti(0) = 1.5 keV). The above parameters are reasonable for the discharges
on the HL-2A device [45]. Figure 1 (a) plots the normalized pressure profile. Figure 1 (b)
shows the safety factor profile with reversed magnetic shear in the core region. There are
three rational surfaces inside plasma for this case. When minimum of q (i.e. qmin) is scanned
as studied in Sec.(3 C), there may be only one or two rational surfaces inside the plasma.
Figure 1 (c) and (d) display the fast ion pressure and density profiles normalized to the
thermal pressure and electron density, respectively. In our calculation, electron density is
equal to total ion density, including both the thermal and fast ions.
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FIG. 1. Equilibrium reference case radial profiles. (a) Pressure normalized by B2
0/µ0 with βN =

1.158; (b) safety factor q with reversed magnetic shear in the core region (qmin = 0.97); (c) ratio of
fast ion pressure (Ph) to total plasma pressure (Peq); (d) ratio of fast ion density (nh) to electron
density (ne). Horizontal dashed line in (b) denotes q = 1 value.

B. Effect of fast ion distribution on fishbone instability

In theory, it has been shown that both the growth rate and frequency of fishbone depend
on the fast ion distribution function [33, 34]. Here, we linearly study the fishbone driven by
trapped fast ions and its dependence on fast ion distribution function, including the kinetic
effect of fast ions on the mode structure [41]. In the figures below, the growth rate and
frequency are normalized by the Alfvén frequency (ωA) computed at the magnetic axis.

Figure 2 shows linear properties of the fishbone mode for the equilibrium of Fig. 1. Figure
2 (a) shows that the birth energy of fast ions is almost 45 keV in the whole plasma region.
Figure 2 (b) displays the averaged toroidal precession drift frequency (ωd) of trapped fast
ions, which is in the order of 10−2 at the position where q ∼ 1. Here, only the non-adiabatic
contribution from trapped fast ions is included, in addition to the adiabatic contributions from
all species. Figure 2(c) indicates that the mode growth rate strongly depends on the Gaussian
width parameter δχ0 in the region 0 < δχ0 < 1.5. The growth rate γ/ωA decreases from 0.08

to 0.02 as δχ0 varies from 0.25 to 1.5. The corresponding mode frequency ωr/ωA decreases
from 0.05 to 0.035. When δχ0 > 1.5, the eigenvalue from anisotropic model agrees well with
that from isotropic model. This also numerically confirms the results from anisotropic model.
For the Toroidal-Alfvén-Eigenmode driven by fast ions, similar results were obtained [46].
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FIG. 2. Linear properties of the fishbone mode for the equilibrium of Fig. 1. Radial profile of
(a) fast ion birth energy, (b) toroidal precession drift frequency averaged over the velocity space.
The normalized growth rate (c) and real frequency (d) versus the Gaussian width parameter δχ0

(red circle curve). In (b), two horizontal lines denote the maximum and minimum value of mode
frequency shown in (d). The eigenvalue obtained by isotropic model is also presented (dashed curves
in (c) and (d)). In the non-adiabatic parts, only the precessional resonance from trapped fast ions
is included.

It is pointed out that, here, a decrease of δχ0 (keeping fast ion pressure as done in Fig.2)
implies an increase in the fraction of trapped fast ions, and roughly corresponds to the increase
of fast ion pressure with the fixed δχ0. Hence, when δχ0 decreases, the fishbone growth rate is
enhanced. The mode frequency also increases with increasing driving (i.e. a decrease of δχ0).
The order of mode frequency is mainly determined by the resonance condition ωr = ωd, here,
since no plasma rotation is assumed. The mode frequency is comparable to ωd in the core
region (Fig.2 (b)). Here, the dominant component for fishbone is m/n = 1/1. Furthermore,
we find the amplitude of fishbone growth rate is comparable with the mode frequency. The
above results are consistent with the results predicted by NIMROD code [38].

C. Effect of q profile and qmin on fishbone instability

Recent analytical results show that the fishbone (FB) instability driven by passing fast ions
is sensitive to the safety factor profile. The higher the magnetic shear, the larger threshold of
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fast ion pressure required to drive the fishbone [33]. In this work we numerically study the
dependence of the fishbone on the q profile using the non-perturbative approach. Figure 3
compares results for the fishbone and internal kink mode. Four cases with different q profiles
are considered as shown in Fig.3(a). For the magnetic shear, the main difference exists in
the region

√
ψp < 0.3 (Fig.3(b)). In order to exclude the influence of fishbone eigenvalue by

plasma pressure we have set the normalized plasma beta to be the same in these cases.
Here, for the convenient of discussing the numerical results, the perturbed kinetic energy

from particles δWK is introduced and written as δWK =
∑

j=i,e,h δW
a,j
K + αDδW

na,NTD,h
K ,

with αD a multiplier for the non-adiabatic contribution from the precession resonance of
trapped fast ions. The subscript j = i, e, and h denote thermal ions, thermal electrons
and fast ions, respectively. The superscript ‘a’ and ‘na’ denote the adiabatic and non-
adiabatic contribution (also called kinetic effect) from each kind of species. The superscript
’NTD’ stands for Non-adiabatic contribution from the Toroidal precession Drift resonance of
trapped particle. Figure 3(c) shows that the internal kink (IK) instability is fully stabilized
as αD exceeds a critical value. Meanwhile, when αD is larger than a threshold αD,c, fishbone
instability is excited. For the studied four cases, αD,c is equal to 0.15, 0.2, 0.22, and 0.59,
respectively. Comparison between cases 2 and 4 shows that the threshold value αD,c is
insensitive to magnetic shear in the core region. Comparisons of cases 1, 2 and 3 indicate
that the αD,c value is sensitive to the number of q = 1 surfaces. Comparison between cases
1 and 3 shows that, for the case without q = 1 surface, the αD,c value is much larger than
that including two q = 1 surfaces. The possible reason may be that the resonance between
the mode and particles increases with an increasing number of resonant surfaces.

Figure 3(d) indicates that the fishbone real frequency is basically much larger than that
of the internal kink. For case 3, however, there is a narrow region (0.15 < αD < 0.2), where
both the fishbone and internal kink coexist, and the internal kink real frequency is very close
to that of the fishbone. The branch bifurcation and mode transform occurs near the cross
point as discussed in Ref. [47].

It is known (see in Refs. [48] and [49]) that reversed-shear q profiles of the type considered
in this article can be ideal MHD unstable to m/n = 1 internal kink modes, even with zero
plasma beta. The relevant threshold condition depends on the actual value of qmin and on
details of the q profile. However, the m/n = 1 fishbone destabilized by energetic ions and the
m/n = 1 internal kink,leading to sawtooth crashes (we shall refer to this branch of the m/n
= 1 dispersion relation simply as sawtooth mode), are two different modes, their differences
being reflected in their mode structures and threshold conditions. In this article, we focus our
attention on the fishbone mode, while a detailed comparison between our numerical results
and the theory of m/n = 1 sawtooth mode in plasmas with weak or reversed shear [48, 49]
is beyond the scope of the present work.

In addition, the unstable n/m=1/1 sawtooth mode is almost static in plasma frame and
has very small real frequency when the kinetic effect from particles is included. However,
the fishbone is triggered by the wave-particle resonance, with its frequency being comparable

6

Page 6 of 21AUTHOR SUBMITTED MANUSCRIPT - NF-103812.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



0 0.2 0.4 0.6 0.8 1

p
1/2

1

1.5

2

2.5

3
q

0 0.2 0.4 0.6 0.8 1

p
1/2

-1

0

1

2

3

4

5

6

7

m
ag

ne
tic

 s
he

ar

0 0.2 0.4
0.9

1

1.1

0 0.1 0.2 0.3
-0.05

0

0.05

0.1

(a) (b)

0 0.2 0.4 0.6 0.8 1

D

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

/
A

0 0.2 0.4 0.6 0.8 1

D

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

r/
A

(c) (d)

FIG. 3. Comparison of fishbone and internal kink frequency and growth rate for reversed-shear
and monotonic q profiles. Radial profiles of (a) non-monotonic (reversed) and monotonic safety
factor and (b) the corresponding magnetic shear. Plots (c) and (d) show the growth rate and
real frequency of fishbone and internal kink instabilities for different q profiles, respectively. As a
function of scaling factor αD for non-adiabatic contribution of trapped particles (see main text).
Here, isotropic model for fast ions is used.

with the precession drift frequency of trapped fast ions in this work. It is also known that
fast ions can destabilize the fishbone mode, but they can also suppress the sawtooth mode.
As we pointed out, the two modes have different stability thresholds. In our simulations, the
regimes and equilibrium profiles of interest are such that the sawtooth mode is stable, while
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FIG. 4. Comparison of fishbone and internal kink displacements. Panels (a) and (b) plot the
displacement of fishbone and internal kink instabilities for the two chosen q profiles (i.e. cases 3
and 4 respectively in Fig.3) (a). Panels (c) and (d) show real and imaginary parts of contour plot
of perturbed temperature induced by the fishbone in the non-monotonic q profile. Here, δTe is
estimated based on the formula δTe = ξ ·∇Te. Panels (e) and (f) present the 2D plot of δTe induced
by the internal kink.

the fishbone mode is driven unstable by the energetic ions. Clearly, in a real experiment, as
core plasma profiles evolve in time, the sawtooth mode may become unstable.

Figure 4 shows the mode structure of internal kink and fishbone instabilities for cases 3
and 4 shown in Fig.3. Clearly, the profile of radial displacement (ξ · ∇s) of the fishbone
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differs to that of the internal kink: Im(ξ · ∇s) of the internal kink is sharper near the
rational surface, while Re(ξ · ∇s) of the fishbone is larger than that of internal kink, due
to the kinetic contribution of fast ions. In addition, for the internal kink, Im(ξ · ∇s) has
a drop near the axis for the reversed shear case, as expected. For the reversed shear case,
the mode structures (in term of δTe) of the fishbone and internal kink are contour plotted
in the (R,Z) plane in Figs.4 (c)-(d) and (e)-(f), respectively. The fishbone mode structure
is twisted and has a tail in the poloidal direction. This twist is induced by wave-particle
resonance Ref. [37, 38]. However, the internal kink mode structure is not twisted. Here,
2D contour plot of δTe supplies the possibility of direct comparison between computations
and experimental measurements obtained by Electron Cyclotron Emission Image (ECEI)
diagnostics.

Fishbone instabilities are experimentally observed in discharges with reversed magnetic
shear and qmin >∼ 1 in various devices, such as HL-2A [50], MAST [51] and NSTX [52]. In
addition, for the 9MA steady state ITER scenario, the magnetic shear is reversed in the core
region and has a broad low value in the middle region [2, 53]. This motivates a study of the
dependence of the fishbone on qmin for the reversed magnetic shear equilibrium.
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FIG. 5. Normalized growth rate (a) and real frequency (b) of fishbone and internal kink instabilities
versus qmin. Blue (square) and red (circle) curves denote the cases of isotropic and anisotropic (with
δχ0 = 0.4) fast ion models, respectively. Green (triangle) and Yellow (pentagram) curves display
the cases of internal kink and peeling mode, respectively. During the scan of qmin value, the q profile
and plasma pressure are fixed as given in Sec.3 A

.

Figure 5 presents the dependence of the fishbone eigenvalue on qmin. Figure 5 (a) shows
two kink instabilities (internal kink and peeling mode) and two fishbone instabilities. As
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expected, the m/n = 1/1 internal kink is unstable when qmin < 1. Here, the ideal internal
kink with qmin < 1 in a toroidal plasma is driven by the poloidal beta [54]. During the
scan of qmin, an unstable peeling mode with dominant m/n = 3/1 appears in the window
1.03 < qmin < 1.07, in which the safety factor at edge varies from 2.86 to 2.98. The internal
kink is fully stabilized as the kinetic contribution of trapped fast ions is included. In contrast,
the fishbone is excited by trapped fast ions.

For both isotropic and anisotropic cases, the fishbone growth rate decreases as qmin in-
creases. The growth rate has a large variation near qmin ∼ 1.03, which is related to the onset
of unstable peeling modes. For the isotropic case, a fishbone mode is found for values of q in
the interval 1 < qmin < 1.05. For the anisotropic case, the fishbone growth rate is strongly
enhanced in the whole qmin region. Meanwhile, the fishbone can exist in the qmin > 1 region,
and the dependence of the fishbone growth rate on qmin is similar to that obtained by M3D-K
code [40]. Figure 5 (b) indicates that the mode frequency (ωr/ωA) decreases from ∼ 0.09

to ∼ 0.04 as qmin decreases from 1.1 to 0.92. Hence, the variation of the fishbone frequency
may be an indicator of the evolution of qmin. However, it should be noted that we did not
consider the ion diamagnetic effect in our model. The ’diamagnetic’ fishbone is thought to
be related to the long-lived mode observed in experiments [55].

D. Effect of various drift energy components on fishbone instability

In MARS-K, the contribution induced by different kinds of particle motions ( toroidal preces-
sion drift (NTD), bounce (NTB) and transit motions (NP)) can also be separately controlled.
This allows MARS-K to investigate the combined effects of various kinds of kinetic contri-
butions on the instabilities [2].

In this section, we mainly study the effect of thermal ions on fishbone instability. Two
groups are considered as shown in Fig.6. One group only includes fast ion kinetic contribution.
The other one includes both fast ions and thermal particles. In these two groups, the adiabatic
part of both fast ions and thermal particles is included.

For the group without thermal particles, the transit and bounce resonances from passing
and trapped fast ions, respectively, enhance the fishbone instability which is initially triggered
by toroidal precession drift resonance from trapped fast ions. The fishbone growth rate
increases from 0.05 for NTD to 0.104 for NTD+NP+NTB (Fig.6(a)). The real frequency
increases as more fast ion kinetic contributions are included.

When all the thermal particle kinetic effects are added, the fishbone growth rate generally
decreases. Especially, for the case labeled by NTD, the fishbone is almost fully suppressed
by thermal particles.

For the case of NTD+NP and NTD+NP+NTB, the fishbone growth rate decreases from
0.08 to 0.06 and from 0.10 to 0.08, respectively, after including thermal particle kinetic
effect. The stabilization of the fishbone by thermal particles is explained as the enhancement
of Landau damping induced by the thermal particles.
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FIG. 6. Fishbone growth rate (a) and frequency (b) versus different kinetic contributions from fast
ions (FIs) and thermal particles (TH), for the equilibrium given in Fig.1. Here, anisotropic model
is adopted with δχ0 = 0.4. The terms NTD, NTB and NP stand for the non-adiabatic contribution
from the Toroidal precession Drift resonance of trapped fast ions; the Non-adiabatic effect from
Bounce resonance of Trapped particles and the Non-adiabatic contribution from transit resonances
of passing particles, respectively.

Thermal particles slightly affect the fishbone real frequency (ωr/ωA). For the NTD case,
ωr/ωA slightly decreases. While for the other two cases, ωr/ωA increases. However, thermal
particle kinetic contributions do not change the trend of the dependence of ωr/ωA on the
terms of fast ion kinetic contribution.

Figure 7 shows the mode structures corresponding to the eigenvalues shown in Fig.6. For
the cases without thermal particle kinetic contributions (Fig.7 (a)-(c)), the peak position of
the imaginary part of radial displacement (ξ · ∇s) moves outwards from

√
ψp = 0.08 for

the NTD case to
√
ψp = 0.25 for the NTD+NP+NTB case. The real part Re(ξ · ∇s) also

depends on the terms of fast ion kinetic contributions.

For the case of NTD, Fig.7 (d) shows a significant modification of the fishbone mode
structure by thermal particle kinetic effect, compared with that in Fig.7 (a). The mode
tends to be localized in the q ∼ 1 region. Figures 7 (e)-(f) indicate that the thermal particle
kinetic contribution almost does not affect the mode structure which is mainly determined
by fast ions, for the cases of NTD+NP and NTD+NP+NTB. Figures 6 and 7 reveal that
thermal particle kinetic contributions not only affect the mode eigenvalue, but also have the
remarkable influence on the mode structures when the mode eigenvalue has a large change.

It is interesting to note that the fishbone instability, obtained by the non-perturbative
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(c)
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FIG. 7. Radial displacement of fishbone instabilities corresponding to the cases studied in Fig.6.
Left column (i.e. (a) (b) and (c)) and right column(i.e. (d), (e) and (f)) denote the group without
and with thermal particle kinetic effect, respectively. Real and imaginary parts of displacement are
plotted by solid and dashed curves, respectively. For each case, ξ · ∇s is separately normalized by
the maximum in [Re(ξ · ∇s), Im(ξ · ∇s)].

approach, satisfies the general variation principle below.

δI + δWMHD + δWK = 0, (3)

where δI = 1
2
(γ − iωr)

2
∫
d3xρ|ξ⊥|2 presents the inertial energy component, δWMHD and

δWK refer to the perturbed MHD potential energy and the contributions from particles,
respectively.

The dispersion relation in eq. (3) differs from the standard dispersion relation presented
in Refs. [7, 8]. Indeed, in [7, 8], one finds −iω ∝ −δW , while in our case (−iω)2 ∝ −δW
with ω = ωr+ iγ. The reason is that we considered in our simulations plasma equilibria with
q profiles that are nearly flat, with very low and weakly reversed magnetic shear. For these
profiles, the fishbone instability acquires nonstandard features. In particular, a transition
layer at the q = 1 surface is no longer apparent in our numerical simulations, in the sense that
the perturbed radial displacement, determined self-consistently including the modification
by particle kinetic effects, does not look like the flat-top function that is typical of standard
internal kink perturbations (note that, in the analytic works of Refs. [7, 8], the flat-top
displacement is assumed, which implies that the plasma inertial term is mainly determined
by the q = 1 transition layer, not present in our simulations). As far as we are aware,
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these nonstandard fishbone scenarios were first discussed in numerical simulation published
in Ref. [56], while analytic work in support of the simulation of Ref. [56] was proposed, for
instance, in Ref. [57].

The normalized version of Eq.(3) (by 1
2

∫
d3xρ|ξ⊥|2), is rewritten as,

ω2
r − γ2 = Re

(
δŴMHD + δŴK

)
, (4)

2ωrγ = Im
(
δŴMHD + δŴK

)
. (5)

Near the marginal point (ωr >> γ >∼ 0), Eqs. (4) and (5) imply a relation ωr ∼ ωd ≃√
Re

(
δŴMHD + δŴK

)
, which determines a precessional fishbone with frequency (ωr/ωA ≃

0.03) being comparable with that observed on HL-2A [58]. Further computations show that
the fishbone driven by pure passing fast ions has a relatively larger frequency (ωr/ωA ≃ 0.08)
determined by the transiting resonance (ωr ∼ ωt) as expected. When the fishbone mode
frequency is comparable with its growth rate (i.e. cases shown in Fig.6), the mode growth
rate and real frequency is self-consistently determined by the general dispersion relation.
For the ’diamagnetic’ fishbone, its frequency satisfies ωr ∼ ω∗i ∼ ωd with ω∗i being the
ion diamagnetic frequency, which is not considered in this work. Equations (4) and (5) are
clearly verified by the MARS-K numerical simulation as shown in Fig.8, which shows the
components. The term ω2

r − γ2 is exactly linearly propositional to Re
(
δŴMHD + δŴK

)
.

Similarly, 2ωrγ linearly depends on Im
(
δŴMHD + δŴK

)
.

(a) (b)

FIG. 8. The dependence of (ω2
r − γ2)(a) and (2γωr)(b) on the real and imaginary part of δŴtotal ≡

δŴMHD + δŴK , corresponding to the results in Fig.6.
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(a)

(b)

(c)

(d)

FIG. 9. Detailed perturbed energy components induced by particles for the perturbed energy
δŴK . Top row (i.e. (a) and (b)) and bottom row (i.e. (c) and (d)) correspond to the group without
and with kinetic contributions from thermal particles, respectively. In each panel, integers along
x-axis label the kind of contribution of the particles as described below. 1-3: adiabatic part of
passing thermal ions, electrons, fast ions; 4-6: adiabatic part of trapped thermal ions, electrons,
fast ions; 7-9: non-adiabatic contribution from precession drift resonance of trapped thermal ions,
electrons, fast ions (NTD); 10-12: non-adiabatic contribution from transit resonance of passing
thermal ions, electrons, fast ions (NP); 13-15: non-adiabatic contribution from bounce resonance
of trapped thermal ions, electrons, fast ions (NTB); 16: summation over all the components.
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The components of δŴK are plotted in Fig. 9 for the two groups studied in Fig.6. For
the group without thermal particles, Figs. 9 (a) and (b) show that the real part of δŴK is
mainly induced by the adiabatic contributions from particles, i.e.Re(δŴK) ≃

∑
j Re(δŴ

a,j
K ).

For Re(δŴK), the adiabatic contributions from passing particles (all the three species) and
trapped fast ions are dominant. Whilst the imaginary part Im(δŴK) mainly comes from the
non-adiabatic contributions of fast ions, i.e. Im(δŴK) ≃ Im(δŴ na,h

K ). The contribution from
transit resonance of passing fast ions or from the bounce resonance of trapped fast ions can
significantly enhance the total Im(δŴK). The above two resonances are even stronger than
the precession drift resonance. The study on the fishbone driven by pure transit resonance
or pure bounce resonance will be carried out in future.

For the group including thermal particles, Re(δŴK) is mainly determined by adiabatic
contribution of trapped fast ions and by the non-adiabatic effect of transit resonance of
passing thermal ions and bounce resonance of trapped fast ions as shown in Fig.9(c). For
the NTD case, the adiabatic contribution from particles is relatively reduced, compared with
those shown in Fig.9 (a). It may be due to that the width of mode structure becomes
narrower as the thermal particle kinetic effect is added (Fig.7 (d)), which significantly affects
the adiabatic parts. Comparing with the group without thermal particles, for Im(δŴK),
the contribution from transit resonance of passing thermal ions is remarkably enhanced and
partly cancels the amplitude of kinetic contribution from fast ions. Finally, the passing
thermal ions induces a remarkable decrease of total Im(δŴK). However, the FB frequency
is insensitive to the thermal particle kinetic effect (Fig.6(b)), which implies γ ∝ Im(δŴK)

based on Eq.(5). Hence, the Landau damping induced by passing thermal ions plays the
stabilizing role on the FB. For a direct comparison between modeling results and experimental
observations, the careful inclusion of Landau damping is important.

E. Effect of plasma resistivity on fishbone

The experiments on ASDEX-U [59] show that m/n = 1/1 fishbones initiate m/n =

3/2, 2/2 neoclassical tearing mode (NTM) reconnection, which implies that the plasma re-
sistivity plays a role in this phenomenon. An analytical model for resistive fishbone was
derived in Ref. [60], including resistive layer inertia. However, in Ref. [60], only one rational
(q = 1) surface is assumed and the continuum damping is ignored. Recent numerical results
confirm that the resistivity stabilizes/destabilizes fishbone/internal-kink instabilities [61], re-
spectively, in which only one rational surface is considered. In this section, we study the
effect of resistivity on fishbone for the equilibrium with two rational surfaces given by ’case
4’ in Fig.3(a).

For the chosen equilibrium, the estimated value of magnetic Reynolds number is S ∼ 5×
107 (S−1/3 = 2.7×10−3) based on the parameters given in Sec. 3(A). The normalized electron
skin depth de/r1 and ion Larmor radius ρs/r1 are 1.5 × 10−3 and 5.5 × 10−2, respectively.
Here, r1 ∼ 0.1 m is the radial position of q = 1 surface. The parameters satisfy inequalities
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FIG. 10. Fishbone (a) growth rate and (b) real frequency as function of magnetic Reynolds number
S. The equilibrium as case 4 in Fig. 3 and αD = 0.3 are adopted.

de/r1 < S−1/3 < ρs/r1. Hence, for the magnetic reconnection near the critical point of
instability, the collisional resistivity is much more important than the electron inertial term
[62], and the resistive-MHD model as used here is appropriate. Here, we scan S value from
2.5× 105 to 1010 to study the effect of plasma resistivity on the fishbone as shown in Fig.10.

The plasma resistivity has a strong stabilization effect on fishbone near the marginal
point (α(D,c)=0.22) when S < 107 (Fig.10). Mode growth rate reduces from 2.58 × 10−3

to 1.81 × 10−4 as the S changes from 107 to 2.5 × 105, in which S1/3γ/ωA <∼ 1 being
consistent with the results in Ref. [60, 61]. However, when the fishbone growth rate is large
(S1/3γ/ωA > 1), the resistivity effect is negligible. For the studied case (case 4 in Fig. 3),
S ∼ 5 × 107 slightly enhances the threshold value from αD,c ∼ 0.22 to ∼ 0.23. It is pointed
out that the Finite Larmor Radius (FLR) effect is not included in the model. However, FLR
is an important effect to determine reconnection layer and qualitatively induces damping on
fishbone onset [62]. Hence, FLR may further enhance the threshold value αD,c for driving
fishbone.

More interesting, the resistivity indeed affects the mode structure, including the plasma
radial displacement and radial perturbed magnetic field as shown in Fig.11, as expected. The
resistivity induces slight smoothing of the peaks (singularities) of imaginary part of m = 1

radial displacement (Fig.11(a)). Here, the singularities are induced by the resonance between
precessional fishbone and shear Alfvén wave. For m = 2 poloidal harmonic, the resistivity
clearly induces a tearing mode like structure, which implies a generation of reconnection at
the q = 2 surface. Figure 11(c) indicates that the resistivity induces the finite m component
of radial perturbed magnetic field at q = m/n rational surface. While for the ideal case, the
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FIG. 11. The profiles of radial displacement for (a) m = 1 and (b) m = 2 harmonics. Here,
for different harmonics, the maximum value of displacement components is normalized to unity,
respectively. (c) shows the radial profile of real part of perturbed radial magnetic field for m = 1

and m = 2. Vertical lines denote the locations of rational surfaces.

radial perturbed field harmonic vanishes at the corresponding rational surface. It is implied
that the m/n = 1/1 resistive fishbone or its higher harmonics can provide a seed island at
an adjacent (e.g. q = 2) rational surface to initiate a reconnection.

However, the NTM initiated by fishbone may be related to not only the nonlinear interac-
tion between resistive fishbone and continuum waves, but also the wave-particle nonlinearity
as reviewed in Ref.[55]. It is still challenging to fully self-consistently nonlinear description
of resistive fishbone, which also exceeds the scope of this work.

4. SUMMARY AND DISCUSSION

In this work, we apply MARS-K code to study the fishbone driven by trapped fast ions in
a toroidal plasma, based on the non-perturbative approach. The influence of q profile, fast
ion distribution, thermal ions and plasma resistivity on fishbone instability are investigated.
The q profiles with very low and weakly reversed magnetic shear are considered in this work,
as listed in table 1.

The main results are summarized below.

i. The fishbone in an equilibrium with qmin > 1 can be excited by isotropic or anisotropic
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fast ions, while the latter strongly enhances the mode. The mode frequency decreases
as decreasing of qmin, which is a candidate explanation for the observed decrease of
fishbone onset frequency in experiment as discussed in Ref.[55]. In addition, fishbone
is much easier destabilised in an equilibrium with two q = 1 surfaces, compared with
the case with one or without q = 1 surface. The possible reason may be that the reso-
nance between the mode and particles increases with an increasing number of resonant
surfaces.

ii. Kinetic contributions from transit resonance of passing fast ions and from bounce
resonance of trapped fast ions strongly enhance the fishbone instability, due to the
remarkable resonance between the mode and the above particles for the chosen fast
ion distribution function. For the studied fishbone instabilities here, there is strong
Landau damping induced by the transit resonance of passing thermal ions.

iii. Furthermore, in such a weak or even reversed magnetic shear plasma, the radial mode
structure of the fishbone mode smoothly decreases to zero, without the abrupt tran-
sition layer at the q = 1 flux surface that is typical of a standard internal kink mode
found at finite magnetic shear. Also, in our simulations, the radial displacement is
found to depend self-consistently on the kinetic particle contributions. In theory, the
modification of mode structure by particle kinetic effect is possibly caused by anti-
Hermitian contributions due to wave-particle resonance [37]. As a consequence, while,
for standard fishbones, one finds −iω ∝ −δW , in our case (−iω)2 ∝ −δW .

iv. Plasma resistivity has a strong stabilization effect on the fishbone near the marginally
unstable point (i.e. in the regime S1/3γ/ωA <∼ 1). Plasma resistivity slightly affects
the mode structure and results in the finite m component of radial perturbed field at
q = m/n surface, which may supply a seed island to initiate NTM.

Here, the used fast ion distribution function is relatively simple compared with the exper-
imental one. In addition, here, we assumed that the birth energy of fast ions is about 45 keV
in the whole region and ion temperature is about 1.5 keV at the axis. The change of fast
ion birth energy and/or ion temperature may affect the strength of the thermal ion Landau
damping. Landau damping depends on both the fishbone frequency and the passing thermal
ion transit frequency in the studied case, which are related to the fast ion birth energy and ion
temperature, respectively. In order to predict of thermal ion Landau damping on fishbone
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for the experiments, the realistic fast ion distribution and equilibrium profiles, including the
thermal particle density and temperature profiles, should be used for the specific discharge.

It is noted that the self-consistent treatment of the fast ion kinetic effect on fishbone and
internal kink was studied by NOVA-KN code. Some of our results are similar to those reported
in Ref. [63]. For example, the trapped fast ion has a stabilization effect on internal kink,
and drives a fishbone as fast ion pressure exceeds a threshold value. Fast ion kinetic effect
has a modification effect on the fishbone mode structure. However, we present new results
which are not reported in Ref. [63], such as the thermal ion effects on fishbone, dependence
of fishbone on q = 1 surfaces and the effect of resistivity on fishbone as discussed in the text.

Fast ion transport induced by fishbone may depend on the mode structure. However, at
present, an internal kink mode structure is often adopted to study the fast ion transport
induced by fishbone instabilities [20–23]. It is interesting to study the sensitivity of the
dependence of fast ion transport on the mode structure, which may have the contribution to
build the reduced model to predict fast ion transport induced by fishbone instability.

We study the dependence of m/n=1/1 FB on the number of q = 1 surfaces and the
magnetic shear in the core region. However, for the 9MA steady state ITER scenario, the
q-profile has a wide weak shear region, and two q = 2 surfaces [2, 53]. The possibility of
driving n = 2 fishbone-like instabilities in the reversed q-profile and its dependence on the
q-profile are worthy to be investigated for the above ITER scenario.
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