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Abstract— The use of second-level testing to reduce Type II
errors in RNG validation was suggested from the very beginning
though rarely employed in real-world cases. Yet, as security
requirements become more critical and the availability of even
faster RNG more commonplace, second-level testing will be key
to distinguishing RNGs based on the quality of very large chunks
of their output. This paper addresses some principles governing
the proper design of second-level tests (i.e. how to divide available
data into chunks and how to compute second-level p-values) as
well as its implications on the design of the underlying basic
tests.

I. INTRODUCTION

Being able to test and validate a random number generator
(RNG) is a complex and extremely important task, especially
in applications like cryptography where RNGs represent a
critical point for security [1]. Many tests have been developed
in recent years for determining if a sequence can be considered
randomly generated or not. In this paper we focus on the
class of tests known as statistical tests for randomness [2],
[3], which represent the most used and the most studied tests
in literature.

Statistical tests are based on the standard statistical hy-
pothesis testing approach. Given the hypothesis H0 that the
sequence has been randomly generated, they compute a p-
value, that is a probability measure indicating the strength
of the evidence provided by the data against the hypothesis
of a random sequence. More detailed, a test looks at some
statistical features of the sequence, expresses them as a nu-
merical quantity and compares it with the quantity expected
if the sequence were coming from an ideal random number
generator. The p-value pv is computed in a way that pv =
1 means that the observed statistical feature is exactly the
expected one from a random sequence, while pv = 0 means
that the feature is completely different from what expected.
Furthermore, the p-values coming from all possible sequences
generated by a perfect RNG are uniformly distributed in the
interval [0, 1].

The interpretation of a test is the following: having chosen
the number α, H0 is rejected (i.e. the test is considered failed)
if pv < α, while H0 is accepted if pv ≥ α. With this statistical
approach, two errors can be committed:

• reject H0 when the sequence is generated by a perfect
random generator (Type I error)

• accept H0 when the sequence is generated by a generator
that is non random (Type II error).

As far as the Type I error is concerned, its probability
is α; for this reason, α is also called level of significance.
However, the computation of the probability of a Type II error
is not possible because it would require the characterization
all possible non-random generators.

We can notice that if the significance level α is chosen too
high, then the test may reject many sequences that were, in
fact, random. On the other hand, if α is too low, then there is
the danger that the test may accept plenty of sequences even
though they were not randomly produced. A typical value is
α = 0.01 that is the value suggested by US National Institute
of Standard and Technology (NIST) in its test suite [2].

In this paper we discuss the two concepts of reliability
and accuracy of a random test. We define a test as not
reliable when, due to errors or approximations in the p-
value computation, the distribution of p-values for sequences
generated by a perfect RNG is not uniform; in this way the
probability of a Type I error can be very different from α
(and also much higher). Instead, we refer to accuracy looking
at Type II errors. Even if the natural definition of accuracy
is linked to Type II error probability, we relate accuracy to
the ability, given a non-random generator, of recognizing its
sequences as non-random. This is a practical definition due to
the impossibility of computing Type II error probability.

As reliability is a fundamental requirement for any statistical
test, accuracy can be used to compare different tests: the higher
the accuracy, the better the test.

A typical way to increase the accuracy of a statistical test is
to consider a meta-test composed by a number T of different
basic tests that look for different statistical features, and to
apply them to the same sequence. In other words, the meta-test
is now sensitive to deviation from ideality in all the statistical
features observed by the basic tests.

In the following we consider another, complementary kind
of meta-test that we address as second-level testing. Instead of
considering several results from different tests over the same
sequence, we take into account several results from the same
test over different sequences. It has already been shown in [4]
that this approach produces more accurate results; it also been
shown that the number of basic tests involved in a second-
level test must be limited in order to get reliable results. In
this paper some different ways to aggregate basic test results
into a single second-level test are analyzed, with the aim to
identifying which method provides the highest accuracy. We
also provide some considerations about the design of a basic
test, to get the most reliable results from the second-level
testing approach. In this paper we consider tests coming from
the SP 800-22 test suite from NIST. The main reason we focus
our attention on this suite is that, from an engineering point of
view, it has several appealing properties. First, it is uniform:
it is composed of several different tests, each of which are
applied to the same sequence of n bits (the NIST suggests
n = 106). Second, even if some flaws still exist [5], for all tests
in the suite an exhaustive mathematical treatment is available
and well documented.
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The paper is organized as follows. In section II, we analyze
a real test as a case study with an aim to identifying any
error in the computation of pv. In section III, we describe
some methods to aggregate several tests into a single second-
level test, and make some considerations about accuracy and
reliability of the approaches based on the results of the former
section.

As a final remark, in this paper we address two pseudoran-
dom generators. The first one is the 32 bits version of the KISS
[6], which is a very simple but effective generator designed
by G. Marsaglia; this generator will be used for checking the
accuracy of the test, looking for a test capable of recognizing
this generator as non random. The second one is used for
checking the reliability, and it is the BBS generator. This is a
computationally very heavy generator, but which is proven to
be cryptographically secure (i.e. it passes al polynomial-time
tests [7]). The code used for the testing comes directly from
the NIST website1 [8]; all additional mathematical code comes
from [9].

II. BASIC TEST: A CASE STUDY

The Binary Matrix Rank Test is included both in the NIST
suite and in Marsaglia Die-Hard suite [3]. It works as follows.

Divide the input sequence Xi = {+1,−1}, i = 0 . . . n− 1,
into M contiguous non-overlapping strings of P ·Q bits, with
n = M ·P ·Q. With each string build a binary P ×Q matrix
and compute its rank r, 0 ≤ r ≤ min (P,Q). Note that this
has to be computed using the binary algebra based only on
the symbols {−1,+1}. The probability that such a matrix has
rank r is given by [2]

pr = 2r(P+Q−r)−PQ
r−1∏

i=0

(
1− 2i−P

) (
1− 2i−Q

)

(1− 2i−r)
(1)

In the NIST version of this test, P = Q = 32; for these values
we get

p32 � 0.289
p31 � 0.578
p30 � 0.128

(2)

while all other probabilities are negligible. The rank of all M
matrices is computed; the observed distribution is compared
with the expected one by means of chi-square goodness-of-fit
test, using k = 3 bins, one counting matrices with rank 32,
one rank 31 and the last all other matrices. Given that the
chi-square test is a statistical test, its output is a p-value; this
is used directly as the output of the test.

Regrettably, this test (as any other basic test in the NIST
suite) is not accurate enough for our purpose, as can be ob-
served in the first column of Table I. Regarding its reliability,
let us try to estimate the error in the p-value computation.
Under the assumption of random input sequences, an error
can arise due to approximations in the computation of the
reference distribution, or approximations in the comparison of
the observed distribution with the reference one.

First of all, Equation (1) comes in a closed form: this
test has an exact mathematical background, and this is the
main reason we use the rank test as a case study. So, any
error in the test comes from the chi-square test employed. As
proven by Pearson in [10], if the deviation of the observed
frequencies from the expected values are normal (here, the
deviation of the observed ratio of the rank of the matrices from

1At the time of this paper the latest version available is 1.8, March 2005.
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Fig. 1. Comparison between expected deviation from uniformity and
measured deviation in the distribution of N = 10, 000 p-values generated
by the modified rank test with different numbers k of bins.

(2)), the chi-square test is also exact. The problem is that this
hypothesis is not usually satisfied: the deviations are normal
when considering a very large number M of matrices (this
result is given by the central limit theorem), and the speed of
convergence is given by the Berry and Esseén inequality [11].
Regrettably, a formulation for the error that this approximation
introduces in the chi-square test has not yet been found.

To get at least an intuitive idea if the introduced error
is negligible or not, we have performed a simulation using
the BBS generator. We have considered the distribution of
N = 10, 000 p-values from a rank test, looking for deviation
from the uniformity in the distribution of the p-values in 10
intervals. Ideally, we have an expected deviation of σ = 0.03;
a comparison with this value is shown in Figure 1.

In addition to the standard rank test we have also considered
a modified version, in which the chi-square test used for testing
the distribution of the observed rank is done in a number of
bins ranging from k = 6 to k = 2. We notice that when
the number of bins is too high, the observed deviation is
significantly higher than the expected, proving a not-negligible
error in the p-value computation. As the number of bins used
decreases to k = 4 or to k = 3, the observed deviation
decreases to the expected value. So, it seems that, the lower
k is, the lower the error introduced.

However, when the number of bins is reduced to k = 2
(in this case the chi-square test degenerates into a binomial
test, like the Frequency Test already analyzed in [4]) the test
is again not reliable. This goes against the common intuition,
because one would think that, with the binomial test being the
simplest test, with the simplest hypotheses, this test would be
the most reliable. One could argue from this observation that
the chi-square test produces incorrect results. However, at this
point it is not possible to prove this.

Let us consider the binomial case in the modified rank test.
In this the basic event is that the matrix has rank r, and since
all matrices are independent, it is regulated by the stochastic
process

Xi =

{
1, with probability p
0, with probability q (3)

where p = pr; q = 1 − pr is also used for simplicity of
notation. We have considered three variants, where the event
Xi corresponds to have a matrix with rank r = 32, r = 31
and r = 30.

The error introduced in the p-value computation by this
normal approximation can be now bounded by the Berry
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Fig. 2. Value of β in relation to the value of p in equation (4)

and Esseén inequality. Actually, this inequality needs a zero-
average random variable Zi = Xi − p. The random variable
s =

∑M−1
i=0 Zi/σi

√
M has a cumulative distribution Fs and

has a standard normal distribution Φ as a limit distribution
for large M . The error of this approximation is bound by the
Berry and Esseén inequality

sup
x

|Fs (x)− Φ (x)| = C
E
[
|Zi|3

]

σ3
i

√
M

with σ2
i and E

[
|Zi|3

]
the second and third order moment of

all Zi, and C � 0.8.
Since the p-value of a binomial test is computed as pv =

2− 2Φ (|s|), the maximum error in the p-value computation ε
is twice the above error.

We can also compute

β =
E
[
|Zi|3

]

σ3
=

p2 + q2√
pq

(4)

Figures 2 shows the value of β in relation to the probability
p: the nearer p is to 0.5, the lower the introduced error. This
is confirmed by Figure 1: the case p = p31 presents the lowest
deviation from uniformity, while the case p = p30 presents the
highest deviation.

Note that, with the parameters used the maximum p-value
error in all three cases is at least one order of magnitude
smaller than α, so the test itself can be considered reliable.
However in the next section we analyze how this error
propagates in a second level test, making it sometimes not
reliable.

III. SECOND-LEVEL TESTING APPROACH

We define a second-level test as a test involving a number
N of results from the same basic test applied to a number
N of non-overlapping generated sequences. The basic idea
underlying this approach is that, while it is very easy to design
a pseudorandom generator capable of generating sequences
that always pass a basic test, at the same time an ideal RNG
has a certain probability to fail the same test. If all generated
sequences pass a basic test, the generator being tested cannot
be considered random.

Second-level tests are already present in the NIST document
[2, Section 4]. However, up to now they have been employed
rarely in real cases, due to the high number of bits (that is n·N
instead of n) and the high computational power required. The
NIST addresses two second level tests:

• if a generator is ideal, a generated sequence has a prob-
ability equal to 1−α to pass a basic test with the above
described methodology. Furthermore, since all generated
sequences are non-overlapping, their associated p-values
are independent. The event of passing a basic test is a
binary random variable as (3) with p = 1− α. The ratio
of sequences passing a basic test s =

∑N−1
i=0 Xi/N is

binomial; for large N it can be assumed normal with
the mean value µ = p and variance σ2 = pq/N . NIST
suggests to apply a 3σ criterion, and consider this second
level passed if the ratio of sequences passing the basic
test pertains in [µ− 3σ, µ+ 3σ].

• for an ideal generator, p-values are uniformly distributed
in [0, 1]; the observed distribution is compared with the
uniform distribution with a goodness-of-fit test, which
NIST suggests to be the Pearson chi-square test. Since
we are comparing two continuous distributions, a dis-
cretization is necessary; let us use k here for indicating
the number of intervals (i.e. the bins) in which [0, 1] is
divided for the comparison; the value suggested by NIST
is k = 10. This test is again a statistical test, and gives a
p-value (in this case, a second-level p-value). However in
this case NIST suggests to consider a level of significance
α = 0.0001.

Let us briefly comment on these approaches. The first one
comes in the form of an on/off test; however, it is indeed a
statistical test, with a probability of Type I error that is about
1% (i.e. the probability that a normal variable is out of the 3σ
interval). We suggest to use it in its p-value form: a second-
level p-value can be computed from s as

pv = 2− 2Φ

( |s− µ|
σ

)
= erfc

( |s− µ|√
2σ

)
(5)

To compare these two different approaches, we have used
them to test the KISS generator. Results from a basic test and
these two different second-level tests for different values of N
are shown in Table I. In the example, for all tests we have con-
sidered a level of significance α = 0.01, thus making possible
a direct comparison between all the different methodologies.
All p-values smaller than this level of significance are stressed
in bold.

We notice that a second-level test may be accurate enough
to recognize the KISS as a non random generator. Accordingly,
the example confirms the two following intuitive ideas. (a) The
3σ test looks only at the distribution of the p-values in a very
small interval, and this is less accurate than checking for the
distribution of p-values in the whole [0, 1]. In fact, the 3σ test,
like a basic test, always fails in identifying the KISS as a non
random generator. (b) In chi-square approach, the larger N is,
the more accurate the test. Roughly speaking, if N is small,
deviations from uniformity in the distribution of p-values can
be hidden by statistical errors in the distribution. For example,
in the distribution of N uniformly distributed objects in k bins,
the ratio of p-values in a bin has σ2 = (k − 1) /Nk2. As N
grows, σ decreases, and small deviations from uniformity can
be more easily observed.

Note that results from the secure BBS generator (not
reported here) do not present any failure, so reliability is
assumed. However, let us make a more detailed analysis on
the reliability of a chi-square based second-level test.

Assuming a maximum error ε in the computation of a p-
value in a basic test, a p-value that should belong to a bin
can be found in the nearby one only if the distance from the



5

This is the author’s version of the article that has been presented at IEEE ECCTD2007
The editorial version of the paper is available at http://dx.doi.org/10.1109/ECCTD.2007.4529674

For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org
Copyright (C) 2007 IEEE. Personal use is permitted.

2nd level test on 2nd level test on 2nd level test on
N=1,000 p-values N=5,000 p-values N=10,000 p-values

SP800-22 test basic test ±3σ chi-square ±3σ chi-square ±3σ chi-square
Frequency
Block Frequency
Cumulative Sums
Runs
Longest Run of Ones
Matrix Rank
Spectral (DFT)
NOT Matching
OT Matching
Universal
Approx. Entropy
Random Excursion
Random Exc. Variant
Serial
Linear Complexity

0.713479
0.129962
0.833869
0.768154
0.736930
0.224896
0.060580
0.085400
0.105840
0.711080
0.029426
0.692131
0.280164
0.870041
0.998535

0.340356
0.112037
0.203628
0.203628
0.203628
0.525010
0.750621
0.750621
0.525010
0.056530
0.750621
0.197527
0.743512
0.056530
0.750621

0.126946
0.035124
0.730660
0.475509
0.862417
0.869123
0.666313
0.602290
0.026010
0.172742
0.293897
0.304499
0.716543
0.812929
0.841301

0.319767
0.088082
0.117942
0.033006
0.477289
0.064640
0.010515
0.776205
0.046605
1.000000
0.477289
0.274259
0.226180
0.886974
0.088082

0.005546
0.717492
0.001288
0.318464
0.263704
0.697236
0.000027
0.627274
0.606187
0.172263
0.757106
0.773039
0.175516
0.494979
0.932385

0.421380
0.840693
0.687673
0.011985
0.687673
0.027030
0.011985
0.763025
0.015861
0.027030
0.546494
0.027706
0.346918
0.421380
0.481728

0.000220
0.003014
0.000196
0.118078
0.161804
0.277894
0.015227
0.341393
0.006872
0.061237
0.195730
0.219808
0.466767
0.797496
0.781680

TABLE I
RESULTS OF RANDOMNESS TEST FOR THE KISS GENERATOR.

endpoint of the bin is less than ε. Since we are using the
interval [0, 1], ε is also the ratio of p-values that can be found
in the wrong bin. This is independent of the number of bins.
Since all bins (but the first and last), have two neighbors, the
maximum propagated deviation ∆ = 2ε; for a binomial test

∆ = 4β
C√
M

Having this bound, we can express a reliability condition
for a second-level test employing a chi-square test. If we
look at the distribution of p-values in bins, the expected
statistical deviation of the ratio a p-values found in a bin
is σ =

√
(k − 1) /Nk2. If there is an error in the p-value

computation, we are expecting that this error propagates into
an additional deviation. If this propagated deviation is small
with respect to the expected statistical deviation, the second-
level test is reliable.

In all the three cases of the previous section, a second level
test would not be reliable; in fact, if we impose ∆ ≤ σ, we
get

M ≥ 16NC2k2

k − 1
β2 (6)

With the parameters used, and considering β = 1, we get about
M ≥ 106; in the test of the example we have M � 1, 000.

To confirm these results, we have repeated the modified
rank test with M = 106, increasing n to n = 256 · 106 and
reducing P = Q = 8. Results of the simulations (not reported
here) confirm that with the original parameters, a second-level
testing on the binomial rank test is not reliable; with these
new parameters the test is now reliable.

Note that Equation (6) links reliability of the test to the
parameter k used in the chi-square. One can think to substitute
the chi-square test with other goodness of fit tests, such as
the Kolmogorov-Smirnov (KS) test, which do net require any
parameters. A closed form for the reliability of a second-level
KS test is currently under investigation by authors.

IV. CONCLUSION

We have shown that the second-level approach in testing a
RNG provides the best results in terms of accuracy. However,
it may presents some flaws due to reliability problems. In this
paper, starting from a case study that is the Binary Matrix
Rank Test, we have found some guidelines to minimize the

error on the p-value computation and ensure the reliability of
the second level test employing a chi-square test:

• the basic test used should be based on a binary random
event; in this case we are able to express the maximum
error in the p-value computation;

• this random variable should describe two events with a
probability as near as possible to 0.5; this probability
value (as in Figure 2) introduces the minimum error in
the p-value computation;

• the number of random binary events observed must
satisfy condition (6). This condition can also be used,
based on the number of acquired bits from the RNG being
tested, to determine the ratio between n (the bits used in
the basic test) and N (the number of basic test performed)
when trying to get the maximum accuracy from the test.
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