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Africa is largely influenced by fires, which play an important ecological role influencing
the distribution and structure of grassland, savanna and forest biomes. Here vegetation
strongly interacts with climate and other environmental factors, such as herbivory
and humans. Fire-enabled Dynamic Global Vegetation Models (DGVMs) display high
uncertainty in predicting the distribution of current tropical biomes and the associated
transitions, mainly due to the way they represent the main ecological processes and
feedbacks related to water and fire. The aim of this study is to evaluate the outcomes
of two state-of-the–art DGVMs, LPJ-GUESS and JSBACH, also currently used in two
Earth System Models (ESMs), in order to assess which key ecological processes need
to be included or improved to represent realistic interactions between vegetation cover,
precipitation and fires in sub-Saharan Africa. To this end, we compare models and
remote-sensing data, analyzing the relationships between tree and grass cover, mean
annual rainfall, average rainfall seasonality and average fire intervals, using generalized
linear models, and we compare the patterns of grasslands, savannas, and forests in
sub-Saharan Africa. Our analysis suggests that LPJ-GUESS (with a simple fire-model
and complex vegetation description) performs well in regions of low precipitation, while
in humid and mesic areas the representation of the fire process should probably be
improved to obtain more open savannas. JSBACH (with a complex fire-model and a
simple vegetation description) can simulate a vegetation-fire feedback that can maintain
open savannas at intermediate and high precipitation, although this feedback seems
to have stronger effects than observed, while at low precipitation JSBACH needs
improvements in the representation of tree-grass competition and drought effects. This
comparative process-based analysis permits to highlight the main factors that determine
the tropical vegetation distribution in models and observations in sub-Saharan Africa,
suggesting possible improvements in DGVMs and, consequently, in ESM simulations
for future projections. Given the need to use carbon storage in vegetation as a
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climate mitigation measure, these models represent a valuable tool to improve our
understanding of the sustainability of vegetation carbon pools as a carbon sink and
the vulnerability to disturbances such as fire.

Keywords: dynamic global vegetation models, sub-Saharan Africa, tree and grass cover, fire, precipitation,
tropical forest, savanna, tropical grassy biomes

INTRODUCTION

Understanding the ecological processes and feedbacks between
biotic and abiotic factors that determine vegetation distributions
and structure is essential for estimating vegetation responses to
climate and environmental changes. Dynamic global vegetation
models (DGVMs) aim at simulating the dynamical responses
of vegetation to past, present, and future climate through the
representation of several natural processes within terrestrial
ecosystems (including vegetation geography, physiology,
biochemistry, biophysics, dynamics) as well as the human
influence on land use (Prentice et al., 2007; Hurtt et al., 2011;
Bonan and Doney, 2018). Given the importance of vegetation
feedbacks for the dynamics of the climate system (Bonan, 2008;
Swann et al., 2018), DGVMs are more and more included in
state-of-the-art Earth System Models (ESMs), used for historical
simulations and climate projections, to represent the active
role of the biosphere in the Earth system (Bonan, 2008; Bonan
and Doney, 2018). Several DGVMs include a representation of
fire processes (Rabin et al., 2017), which are crucial in shaping
regional vegetation cover, but also have a strong influence on
carbon cycle and climate (Bowman et al., 2009). The level of
understanding and, consequently, implementation of wildfires
in Earth-system models is still limited with respect to the
many aspects in which fires influence the Earth system, for
instance the effects of aerosols, peatland fires, or vegetation traits
(Lasslop et al., 2019). Since anthropogenic land-use change is
an important forcing for the observed climate change (IPCC,
2013), especially for CO2 emissions, many DGVMs implement
not only natural ecosystems but also land-use change due to
human activity, such as pastoralism and agriculture. These
models are therefore a major tool to understand the relative
contributions of different drivers such as climate, vegetation,
and humans on fire occurrence and to quantify the effects of
fire on vegetation and on the carbon cycle. Results of such
models are useful to inform the general public but also policy
makers. However, many DGVMs display high uncertainties
in predicting the distribution of current tropical vegetation
biomes, and especially of grasslands and savannas, possibly due
to the way they represent the natural ecological mechanisms and
feedbacks between vegetation, climate and fire (Baudena et al.,
2015; Lasslop et al., 2018).

Climate-vegetation-fire relationships and vegetation
structure differ between continents (Lehmann et al.,
2014; Lasslop et al., 2018). We here focus on Africa
(following Baudena et al., 2015; D’Onofrio et al., 2018),
where most of the global annual burned area is observed
(about 68%, Roy et al., 2008) and most of the tropical

rainforest and many areas of savannas could be at risk of biome
changes (Staver et al., 2011b).

In Africa, tropical grasslands and savannas, so-called tropical
grassy biomes (TGBs), cover about one third of the land surface
(Parr et al., 2014). They are characterized by a continuous layer
of C4 grasses with possibly an overstory of shade-intolerant,
fire-tolerant trees with varying density (Ratnam et al., 2011;
Parr et al., 2014). At the wetter end of the TGB distribution
range savannas transition into tropical forests (TFs), which cover
about 11% of Africa (Parr et al., 2014) and are the world’s
second largest tropical forest after the Amazon (Malhi et al.,
2013). Tropical forests are characterized by a closed canopy with
shade-tolerant, fire-intolerant species (Ratnam et al., 2011). The
current ecological understanding identifies mean annual rainfall
(MAR) as the main factor determining the distributions of TGBs
and TFs and the transitions between them, followed by rainfall
seasonality: MAR drives vegetation processes directly, by limiting
the vegetation cover, and indirectly, by modulating the role of
other factors (Hirota et al., 2011; Lehmann et al., 2011; Staver
et al., 2011b; Case and Staver, 2018; D’Onofrio et al., 2018). Fire
has an important ecological role influencing tropical vegetation
(Bond et al., 2005; Higgins et al., 2007; Staver et al., 2011b). It is
especially relevant for mesic savannas, where C4 grasses promote
fires and maintain open canopies (Sankaran et al., 2005). In
areas with similar climatic conditions fire has been suggested to
maintain savannas and forests as alternative stable states through
a positive vegetation-fire feedback (Hirota et al., 2011; Staver
et al., 2011b; Staver and Levin, 2012). Furthermore, fire has
important effects not only on vegetation dynamics but also on
atmospheric composition, and Africa, along with South America,
provides the largest fire emissions (Ward et al., 2012; Voulgarakis
and Field, 2015; Veira et al., 2016). Since savannas are subject
to frequent fires, which are rare in forests, these two biomes
contribute differently to the emissions of carbon and aerosols
from the burning of biomass (Grace et al., 2006). TFs are well
known for their extremely high net primary productivity (NPP)
and carbon stock (worldwide, about a half of the world’s carbon
stored in terrestrial vegetation, e.g., Hubau et al., 2020). Although
less data are available for TGBs, globally they have especially large
carbon storage in their soils (up to a third of the world carbon in
soil; Grace et al., 2006).

Vegetation influences the climate through biogeophysical
fluxes (e.g., of water and energy) and biogeochemical fluxes
(e.g., of CO2) (Bonan, 2008; Brovkin et al., 2009; Bonan and
Doney, 2018). Changes in the ecosystem structure (e.g., due
to deforestation in tropical forests or woody encroachment in
savannas) or shifts between these biome states can alter the
exchanges between the ecosystems and the atmosphere and thus
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may impact the climate. The direction of these changes is unclear,
and predictions require accurate mechanistic modeling.

Furthermore, ongoing and expected increasing temperature
and CO2 levels, altered precipitation regimes, land-use change
(IPCC, 2013) and the observed decline in fire activity (Andela
et al., 2017) could have large impacts on vegetation ecosystems.
A complex set of interactions between these drivers could induce
changes in vegetation structure and function (Midgley and Bond,
2015), possibly leading to biome shifts (Gonzalez et al., 2010;
Hirota et al., 2011; Staver et al., 2011b). Shifts in vegetation
connected to changes in climate, CO2 or fires were observed over
the past 28,000 years in West Africa (Shanahan et al., 2016).
Over the past decades, woody encroachment was observed in
African savannas: one of the possible drivers is the increase of
atmospheric CO2, which can enhance C3 tree growth rate (and
regrowth after fire), decreasing the advantage of C4 grasses over
trees (Bond, 2008; Buitenwerf et al., 2012; Mitchard and Flintrop,
2013). At the same time deforestation of African forests was
observed in the 20th century (Aleman et al., 2018), and it is
continuing in the new century, although at a lower rate than in
other continents (Malhi et al., 2013 and references therein).

The inclusion in DGVMs of appropriate parameterizations
of natural ecological processes is essential for obtaining reliable
simulations and reducing the uncertainty of current and future
projections of vegetation and climate states (Baudena et al.,
2015; Bonan and Doney, 2018). In this study we analyze
and evaluate two state-of-the-art DGVMs: LPJ-GUESS (Smith
et al., 2001; Thonicke et al., 2001) and JSBACH (Lasslop
et al., 2014). These two models, currently implemented in the
EC-Earth ESM (Hazeleger et al., 2010, 2012) and the MPI
ESM (Mauritsen et al., 2019), respectively, are characterized by
different spatial resolutions (0.5◦ for LPJ-GUESS and 1.875◦ for
JSBACH in this study) and complexity of the representation
of vegetation and fire processes. LPJ-GUESS is a “second
generation” DGVM (Fisher et al., 2010) with representation
of vegetation demographics, coupled with the simple empirical
First Global Fire Model (Glob-FIRM; Thonicke et al., 2001),
which is commonly used in Earth system models (Kloster
and Lasslop, 2017). The JSBACH version used here includes a
simple representation of vegetation with grid-cell, areal-mean
plant functional types, coupled with the complex process-based,
rate-of-spread model SPITFIRE (Thonicke et al., 2010; Lasslop
et al., 2014). In contrast to the simple fire model of LPJ-GUESS,
this model includes for instance a representation of human
influences and differentiation of different fuel types. In this study,
LPJ-GUESS simulates only potential natural vegetation, while
JSBACH includes vegetation changes due to human land use and
land cover change.

The aims of this study are threefold: (1) to evaluate the
relationships and interactions between climate, vegetation and
fire from LPJ-GUESS and JSBACH in Sub-Saharan Africa, at
different spatial resolutions; (2) to assess for which changes
of environmental conditions the modeled results are reliable
and (3) to assess which key ecological mechanisms need to
be improved or included within these models, at different
levels of complexity. To this end, we compare the relationships
of tree and grass cover with MAR, rainfall seasonality and

fire and the patterns of TGB and TF from models against
remote-sensing data, building up on the DGVM evaluation
used in the studies of Baudena et al. (2015) and Lasslop
et al. (2018) and using the current knowledge of the main
factors and mechanisms determining the sub-Saharan African
vegetation distribution (Lehmann et al., 2011; Staver et al.,
2011a,b; D’Onofrio et al., 2018). Hereby we extend the existing
approaches by complementing the visual comparison of the
relationships with quantifications based on generalized linear
models (GLMs), and we deepen the analysis of Lasslop et al.
(2018), which analyzed the performance of JSBACH in all the
tropical areas, by including an evaluation of the model ability
to reproduce TGB and TF distributions and characteristics
following the observational analysis of D’Onofrio et al. (2018).

MATERIALS AND METHODS

We evaluate the model vegetation-climate-fire interactions in
sub-Saharan Africa (between 35◦ S and 15◦ N, comprising a
little area of Arabian peninsula) by analyzing and comparing
the relationships of percentages of tree (T) and grass cover
(G) with mean annual rainfall (MAR [mm year−1]), average
rainfall seasonality index (SI) (Walsh and Lawler, 1981) and
average fire intervals (AFI [year]). The analysis is performed for
both model data and observations. Additionally we investigate
the ability of models to simulate tropical grassy biomes (TGB)
and tropical forest biomes (TF) by comparing their modeled
and observed distributions and characteristics. The following
subsections report the model descriptions and simulation setup
(“DGVMs: Main Characteristics and Experimental Setup”), the
information about the observational datasets (“Observational
Datasets”), the descriptions of the variables, and the methods
applied to derive them for the comparison (“Variables for the
Comparison”) and the statistical analysis (“Statistical Analysis for
Model-Observation Comparison”).

DGVMs: Main Characteristics and
Experimental Setup
JSBACH
JSBACH [Jena Scheme for Biosphere–Atmosphere Coupling in
Hamburg (Raddatz et al., 2007)] includes the DYNVEG module
for natural vegetation dynamics (Brovkin et al., 2009; Reick et al.,
2013), a component for anthropogenic land use change (Reick
et al., 2013) based on the Harmonized Protocol by Hurtt et al.
(2011) and the SPITFIRE model for fire dynamics (Thonicke
et al., 2010) with modifications described in Lasslop et al.
(2016). Natural vegetation comprises eight plant functional types
(PTFs), five of which represent tropical vegetation: deciduous
and evergreen trees, C3 and C4 grasses, and raingreen shrub.
C3 grasses typically dominate the temperate regions, but there
can still be a mixture in tropical areas. The competition between
natural PFTs of the same group (i.e., woody or grass classes) is
based on NPP, whereas intergroup competition for uncolonized
habitable land is driven by disturbances (fire and windthrow). In
addition to natural PFTs JSBACH includes crops and pastures as
agricultural land cover PFTs, both with C3 and C4 photosynthetic
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pathways. The transitions between natural and anthropogenic
vegetation classes follow simple rules described in detail in Reick
et al. (2013). The interaction between fires and vegetation is
simulated by coupling the vegetation module with the complex
process-based fire model SPITFIRE. Using information about
vegetation composition, fuel amount of different fuel size classes
and characteristics (such as fuel bulk density and surface area
to volume ratio), and soil moisture from JSBACH, SPITFIRE
computes burnt area and plant mortality that reduce litter
carbon, vegetation biomass and cover fraction. Pasture PFTs
are handled as grassland by SPITFIRE but have a slightly
higher fuel bulk density with respect to natural grass, whereas
croplands are excluded from fire dynamics. Further details on the
implementation of the JSBACH-SPITFIRE coupling can be found
in Lasslop et al. (2014; 2016; 2018).

LPJ-GUESS
LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator;
Smith et al., 2001, to which we refer for a detailed description) is a
stand-alone 2nd generation DGVM that includes the Glob-FIRM
(Thonicke et al., 2001) module for fire dynamics. It simulates
vegetation distribution from plant specific environmental limits
and the competition for light, space, and soil resources. Global
natural plants are described by 12 PFTs, which include C4 grass,
a raingreen deciduous tree and two types of evergreen trees that
represent tropical vegetation. Only natural PFTs were considered
in this study. Vegetation dynamics are simulated within a
number of replicate patches representing cohorts of different
time-since-last-disturbance within each grid cell. These multiple
patches are simulated to account for variation in vegetation
dynamics due to stochastic processes such as establishment,
mortality and disturbance. In this study the model was run in
“cohort mode,” in which, for woody PFTs, individuals within
a cohort (age class) in the same patch are represented by a
single average individual. To estimate burned area and fire
effects on vegetation within LPJ-GUESS the fire-model Glob-
FIRM has been applied, which simulates fire occurrence based
on temperature, fuel load (litter), and moisture. In a fire both
live and litter biomass are consumed following a PFT-depending
mortality, where each PFT has a specific fire-resistance parameter
defining the minimum percentage of a cohort surviving a fire.

Experimental Setup and Model Outputs
JSBACH was run in offline mode, forced by climatological data
from a historical simulation of the MPI-ESM (version 1.1) over
the period 1850–2005, with a horizontal resolution of 1.875◦
× 1.875◦. The model was forced with climate model outputs,
because it is usually used in a coupled mode and therefore
vegetation parameters, for instance climatic limits, are not tuned
for observed meteorological forcing. The land-use transition data
were taken from Hurtt et al. (2011). The simulation used in this
study was the same as used in Lasslop et al. (2018) to which we
refer to for more detail.

LPJ-GUESS was run in the period 1901–2015, with a
horizontal resolution of 0.5◦ × 0.5◦. In this run 25 replicate
patches were simulated in each grid cell. Since our aim is
to evaluate the ability of models in simulating the main

ecological natural processes, which is crucial for studying,
e.g., the effects of climate-change mitigation solutions (e.g.,
Bastin et al., 2019), only natural (potential) vegetation was
simulated by LPJ-GUESS (i.e., no anthropogenic land use). The
CRU-NCEP5 dataset (Wei et al., 2014) was used as input of daily
meteorological data. The simulation (1901–2015) was performed
after 500 years of spin-up.

For the comparison with the observations, model variables
were obtained from the model outputs (variables T, G, and
AFI) and inputs (variables MAR and SI). These were computed
over the period 2000–2010 for LPJ-GUESS (as the observational
data, see below) and 1996–2005 for JSBACH. The simulations of
JSBACH adopted the CMIP5 protocol, where for instance land
use forcing ended in the year 2005, therefore the reference period
was a compromise between having the same reference period and
sufficient years to achieve robust mean values.

Observational Datasets
We compared the inputs/outputs of model simulations with
observational variables derived from remote sensing datasets
within the period 2000–2010. We use the rainfall product of the
tropical rainfall measuring mission (TRMM 3B42), with 0.25◦
original resolution, to derive MAR and SI. AFI was derived
from the monthly MCD45A1 (Collection 5.1) burnt area satellite
product, with original 500 m resolution, available from April 2000
(Roy et al., 2002, 2005, 2008). T and G were obtained from the
products “percent tree cover,” “percent non-tree vegetation” and
“percent non-vegetated” of MODIS vegetation continuous fields
(MOD44B VCF, version 051), with original 250 m resolution
(Townshend et al., 2011). Notice that for year 2000 we substituted
the original non-vegetated cover data with 100% – “non-tree
vegetation cover” – “tree cover” of the same year, following the
VCF layer definition, because of the presence of anomalous values
of the non-vegetated product in the African western part. To
identify tropical grassy and forest biomes we used the ESA global
land cover map (ESA CCI-LC, v 1.6.1; 5-year-averaged dataset
centered in 2010, with original 300 m resolution). These are the
same observational data described in D’Onofrio et al. (2018),
to which we refer to for more details. Observational data were
aggregated in space to the resolution of LPJ-GUESS (0.5◦) and of
JSBACH (1.875◦).

Variables for the Comparison
Rainfall Seasonality Index
The variable SI is the rainfall seasonality index proposed by
Walsh and Lawler (1981), which we obtained as the averages over

the years of the annual index defined as SIi = 1
Ri

12∑
n=1
|xn,i −

Ri
12 |

for year i, where xn,i is the rainfall of month n, and Ri is the
annual rainfall. This index can vary from 0, when annual rainfall
is uniformly distributed within the year, to 1.83, when annual
rainfall occurs in 1 month.

Average Fire Intervals
As fire variable we used the average fire intervals (AFI), which is
the expected return time of fire at any point in a grid cell (Johnson
and Van Wagner, 1985). This was obtained as the inverse of the
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average annual burnt area fraction (BA [year−1]) in each grid cell
(AFI = 1/BA). For the observational dataset, BA was computed as
in D’Onofrio et al. (2018) (using a method derived from Lehsten
et al., 2010). First, we converted the monthly maps to annual
maps setting to one all the 500 m pixels classified as burned one
or more times during the year, and to zero valid pixels that did
not experience any fire. Then, for each year we computed the
annual burned area fraction as the mean of the “burned” pixels
within each large-scale grid cell (0.5◦ and 1.875◦). Finally, we
averaged over the years. For both models AFI was obtained using
the annual burnt area outputs.

In the analysis we used the decadal logarithm of AFI,
log10(AFI), which corresponds to −log10(BA), because AFI
values covered different orders of magnitude. In order to avoid
infinite values when BA = 0, we added to modeled and observed
BA a small constant (i.e., AFI = −log10(BA+a), where a = 0.0001
year−1), such that maximum AFI is equal to 10000 years.

Vegetation Cover
For the observational datasets, we derived T and G averaging
in time and space the yearly percentage of tree and non-tree
vegetation cover MODIS products. Since MODIS does not detect
tree cover in the presence of trees smaller than 5 m (Bucini
and Hanan, 2007), assuming that these are mostly shrubs, we
used the ESA global land cover map (ESA CCI-LC, v 1.6.1;
5-year-averaged dataset centered in 2010) to remove grid cells
with equal or more than 50% of the area occupied by shrubland
(ESA CCI-LC codes 120, 122) (D’Onofrio et al., 2018). In this way
we assumed that the non-tree vegetation cover was representative
mostly of the grass cover.

Since LPJ-GUESS was set to simulate only natural vegetation,
and in order to mainly focalize on potential vegetation, we used
the same procedure to remove grid cells with more than 33%
of the areas affected by human activity, such as croplands and
urban areas, and/or also covered by inland and coastal water,
permanent snow or ice (ESA CCI-LC codes ≤40, 190, 210, 220)
to have reliable vegetation cover and fire values. Since our aim is
to evaluate the relationships between biotic and abiotic variables,
and not the spatial distributions of these variables, we did not
seek to have an exact correspondence between observational and
model data locations. However, in order to compare datasets with
approximately the same number of grid cells (and approximately
the same areas), we filtered out from the model datasets the same
grid cells excluded from the observation datasets based on the
ESA CCI-LC map. We also removed grid cells with MAR larger
than 2500 mm year−1 following D’Onofrio et al. (2018) from
the observational and model data, as in the observations at 0.5◦
resolution few grid cells (22 out of the selected 3156) had larger
precipitation values.

In order to have comparable vegetation cover between models
and observations we rescaled the observed tree cover (Tresc)
and consequently the observed grass cover (Gresc). In fact, in
the MODIS data the percentage of tree cover represents the
percentage of a grid cell covered by canopy, which refers to
the fraction of light obstructed by tree canopies equal to or
greater than 5 m in height, and reaches a maximum around 80%
(Hansen et al., 2003). In JSBACH percent tree cover represents

the crown cover which can reach 100%, while in LPJ-GUESS
it represents the annual maximum foliar projective cover that
can exceed 100% because of individual tree overlap. Thus, for
rescaling the observations, given that the MOD44B non-tree
vegetation layer (grass) is derived from tree and bare cover (B, the
percent non-vegetated product of MOD44B) as G = 100%-T-B,
we maintained the bare fraction and required that also the
rescaled tree and grass covers satisfy Tresc+B+Gresc = 100%, where
Tresc = αT is the tree cover rescaled by a factor α. Notice that in
this expression we require Tresc to be between 0 and 100%. We
can thus write that for all grid cells Tresc = αT ≤ 100%-B, from
which we can find α = min [(100%-B)/T], where the minimum is
computed over all the observational data analyzed. The rescaled
grass cover is then simply derived as Gresc = 100% – Tresc – B. In
the selected grid cells, α was equal to 1.2152 for the data at 1.875◦
resolution and to 1.1809 for the data at 0.5◦ resolution. In the
following, for the observations, T and G refer to Tresc and Gresc.

For the models, T and G were computed as the sum of
the mean cover of tree PFTs and grass PFTs, respectively. For
JSBACH we included shrub PFTs in the tree cover because,
since shrubs are woody vegetation, they are physiologically more
similar to trees than to grasses. In order to exclude croplands
as in the observations, for JSBACH we did not include the
cropland PFTs in the grass cover. Consequently, we rescaled
JSBACH average vegetation cover and average annual burnt area
dividing by the area not occupied by croplands, and we removed
grid cells where the area occupied by croplands was greater
than 1/3. Notice that, although pasture PFTs are anthropogenic
land cover types, we included them in the JSBACH grass cover
because they are part of real TGBs (Hempson et al., 2017).
In LPJ-GUESS, since total vegetation cover can exceed 100%,
for each year we rescaled the vegetation cover in each grid
cell when this occurred dividing it by the total vegetation (i.e.,
the sum of all PFT covers) in order to have values between
0 and 100%. With this rescaling we maintain the tree-grass
ratio in the grid cell, although there would be grass overlapped
by trees (when tree cover exceeds 100%). We argue that this
method is more appropriate than setting G = 0 when T ≥ 100%,
which, while appropriate for studies involving albedo, would lead
to a systematic underestimation of grass cover. However, this
approach can potentially lead to an overestimation of the grass
cover with respect to observations, since MODIS plausibly cannot
detect grass cover below the tree canopy.

The final observational datasets consisted in 3134 grid cells
at 0.5◦ resolution and 209 at 1.875◦ resolution. Hereafter these
two datasets are also called Obs. 0.5◦ and Obs. 1.875◦. The
final model datasets consisted in 3141 grid cells for LPJ-GUESS
and 208 grid cells for JSBACH. Hereafter we refer to input and
output data of the two DGVMs as the LPJ-GUESS dataset and
the JSBACH dataset.

Tropical Grassy Biome and Tropical Forest
For the observational datasets we identified grid cells with
major presence of TGBs and TFs using the ESA-CCI-LC map.
Following D’Onofrio et al., 2018, we classified a grid cell as
TGB when ≥50% of its area was covered by deciduous trees
and grassland classes (ESA CCI-LC codes 60–62, 130) and TF
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when covered by evergreen and flooded tree classes (ESA CCI-LC
codes 50, 160, 170).

For the model outputs, we classified a grid cell as TGB when
the sum of the covers of broadleaved raingreen tree PFTs and
of the C4 grass PTF in LPJ-GUESS, and of tropical broadleaved
deciduous tree PFT, C4 grass PFT and C4 pasture PFT in JSBACH
was ≥50% of the total vegetation in the grid cell. Grid cells
were identified as TF in both models when the total cover of
tropical broadleaved evergreen tree PFTs was ≥50% of the total
vegetation in the grid cell. This step was performed after the
rescaling of the data (see above). Notice that LPJ-GUESS has
two different PFTs for the tropical broadleaved evergreen trees
which differ in the shade tolerance trait and in longevity, which
we included in the TF definition because, although forest trees are
broadly characterized by shade tolerant trees, forest tree pioneer
species typically have a short life and are light demanding, thus
shade-intolerant (although not necessarily evergreen) (Ratnam
et al., 2011; Gignoux et al., 2016).

Statistical Analysis for
Model-Observation Comparison
We analyzed the dependences of T and G on MAR, SI and
log10(AFI) using Generalized Linear Models (GLMs) (McCullagh
and Nelder, 1989). In order to understand the importance of
each abiotic factor separately and to avoid combinations of
collinear variables, we computed only univariate GLMs with
terms up to the third order. We used a binomial error distribution
with a logit link function for fitting tree and grass cover
fractions (Dobson, 2002; Schwarz and Zimmermann, 2005).
GLMs were classified based on the Akaike information criterion
(AIC, Akaike, 1974), such that the best model had the lowest
AIC score. We selected only GLMs with AIC smaller than
the intercept-only model, while GLMs with AIC larger than
the intercept-only GLM were considered not significant. The
goodness-of-fit was evaluated with the fraction of deviance
explained, R2 (also named D2; Guisan and Zimmermann, 2000;
Schwarz and Zimmermann, 2005).

The prevalent mechanisms determining observed biome
occurrence and distribution change with MAR (Sankaran et al.,
2005; Lehmann et al., 2011) and in particular they vary
in three mean annual rainfall ranges (Accatino et al., 2010;
D’Onofrio et al., 2018). We thus performed the GLM analysis
also separately for three intervals of MAR, recalculated from
the observational datasets following the approach of D’Onofrio
et al., 2018: low (R1: MAR ≤ 590 mm year−1), intermediate
(R2: 590 mm year−1 < MAR < 1200 mm year−1) and high
(R3: MAR ≥ 1200 mm year−1) annual rainfall. The ranges
were identified from the changes of the relative tree-grass
dominance (represented by T-G) in its dependence on MAR
in the observational data (see Supplementary Figure S1A,C,
in Supplementary Material also for details on the threshold
selection). We found these thresholds to be quite similar for
the observational datasets at both resolutions and to be fairly
close to those of D’Onofrio et al. (2018). In order to evaluate
the DGVM performances with respect to the observations (that
we assumed to represent reality), we used the same intervals

for both observed and model data. In the analyses within
each of the three ranges, we computed univariate GLMs with
terms only at the first order. The GLM analysis performed
separately for the three MAR ranges was complemented with
the comparison of the variable distributions through box plots
and of the correlations between the abiotic variables (using
Pearson’s r coefficient).

In R1 there were 1247 grid cells for Obs. 0.5◦, 82 for Obs
1.875◦, 1186 for LPJ-GUESS and 58 for JSBACH; in R2 there were
953 grid cells for Obs. 0.5◦, 64 for Obs 1.875◦, 699 for LPJ-GUESS
and 52 for JSBACH; in R3 there were 934 grid cells, Obs. 0.5◦; 63
grid cells for Obs 1.875◦,1256 grid cells for LPJ-GUESS and 98
grid cells for JSBACH.

RESULTS

Overall Dependence of Vegetation Cover
Overall, the best predictor for observed T was MAR (as in
D’Onofrio et al., 2018), and this was captured by both JSBACH
and LPJ-GUESS (Figure 1 and Table 1). However, modeled T
grew over the entire MAR domain, although with a reduced
steepness at higher MAR (Figures 1B,D), where closed forest was
attained, while the fit for observed T reached a saturation at lower
rainfall values (around ca. 1700–2000 mm year−1, Figures 1A,C),
probably due to the larger spread of observed tree cover values
above these rainfall levels with respect to the models.

The best predictor for observed G was log10(AFI) (as in
D’Onofrio et al., 2018), at all resolutions, and overall G decreased
with fire intervals, i.e., it increased with fire frequency, and this
relationship had a predictive power (deviance explained) of 55%
(Figures 2A,C and Table 1). JSBACH data display the same
decrease, although steeper and with narrower spread with respect
to the observations (Figures 2C,D), and this GLM explained
90% of the deviance. In LPJ-GUESS data the best predictor
for G was MAR, whereas MAR was the least important factor
explaining G in the observations (Table S4), albeit with a similar
relationship (Figures 3A,B). In this model log10(AFI) was the
second-best predictor for G (Supplementary Table S4): modeled
G decreased with log10(AFI) up to about 100 years, with a steeper
slope than in the observations (Figures 2A,B). Furthermore, the
climatological average of fire intervals in LPJ-GUESS did not
present fires with average intervals smaller than ca. 3 year (i.e.,
with average burned area greater than ca. 0.33 year−1), but it
also had few grid cells with AFI greater than 1000 years. Still, we
verified that in individual years also lower or higher values of fire
intervals could be found.

Mean annual rainfall was the best predictor for the total
vegetation cover (i.e., T+G) in all datasets and both models
simulated the observed sigmoidal-like relationship (Figure 4
and Table 1 and D’Onofrio et al., 2018). Especially the
JSBACH relationship was in good agreement with observations
(Figures 4C,D). Total vegetation cover from LPJ-GUESS grew
with MAR with larger spread than the observations, especially
above ca. 500 mm year−1 (Figures 4A,B). Furthermore, it
showed a marked upper bound, which was noisier in the
observations (Figures 4A,B).
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FIGURE 1 | Percentage tree cover as a function of mean annual rainfall (MAR): (A) obs. 0.5◦, (B) LPJ GUESS, (C) obs. 1.875◦, and (D) JSBACH. Dashed vertical
lines delimit the ranges of low MAR (R1: MAR ≤ 590 mm year−1), intermediate MAR (R2: 590 mm year−1 < MAR < 1200 mm year−1) and high MAR (R3:
MAR ≥ 1200 mm year−1). Black lines are the GLM fit of tree cover with MAR (Table 2 and Supplementary Figures S6–S8). Lilac lines represent the GLM fit
performed over all data (Table 1). Lines are continuous when the fits are the best GLMs explaining tree cover variation within the MAR range (i.e., with minimum AIC).
If no fits are shown in a MAR range it means that there was no significant dependence of tree cover on MAR in that range. Green circles are grid cells with
predominance of forest (TF), red circles with predominance of tropical grassy biome (TGB). Blue circles are grid cells with other or no predominant PFTs/biome.

In the following, we report the results of the analysis
performed in the three MAR ranges separately. As explained
in the methods section, we used the MAR thresholds obtained
from the observational datasets. This choice was reasonable
as in the models the relative tree-grass dominance showed
qualitatively similar changes in the dependence on MAR
occurring at similar MAR thresholds as in the observations
(Supplementary Figure S1).

Low Mean Annual Rainfall
At low annual precipitation (MAR ≤ 590 mm year−1) in the
observations grasses always dominated over trees (i.e., G > T),
and in most of the grid cells on average rainfall seasonality was
marked with a long dry season and fires were rare (Figure 5; see
also D’Onofrio et al., 2018). There was a fairly good agreement
especially between LPJ-GUESS data and observations, and this
model was generally able to simulate the main relationships

of increasing tree and grass cover with MAR (Figures 1A,B,
3A,B, 6, 7), although it overestimated fire frequency. Overall,
JSBACH underestimated grass cover and overestimated tree
cover (Figure 5), but it was able to simulate the observed increase
of grass cover with MAR, although the best predictor for modeled
grass cover was fire (Figures 7C,D).

For the grid cells in this MAR range, observed grass cover was
larger than tree cover, which was very low. This was simulated
reasonably well by both models (Figures 5A–D). However, in
the models, the medians and ranges of grass distributions were
generally underestimated, while those of tree cover distributions
were overestimated with respect to the observations. These
discrepancies were stronger for JSBACH data, whose grass and
tree cover medians were very close to each other, and in some
grid cells, T was even larger than G (Supplementary Figure S1D).
For both the observations and the models the grid cells in this
precipitation range had the highest rainfall seasonality indices
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TABLE 1 | Results of GLM analyses for obs. 0.5◦, LPJ-GUESS, obs. 1.875◦ and JSBACH datasets.

Vegetation cover
fraction (y)

Dataset Best predictor (x) Best GLM R2

G Obs. 0.5◦ Log10(AFI) Logit(y) = 0.94−0.59x+0.2x2
−0.05x3 0.55

LPJ-GUESS MAR Logit(y) = −2.24+9.34·10−3x−9.97·10−6x2 + 2.55·10−9x3 0.62

Obs. 1.875◦ Log10(AFI) Logit(y) = 1.03−0.61x 0.55

JSBACH Log10(AFI) Logit(y) = 2.16−1.70x 0.90

T Obs. 0.5◦ MAR Logit(y) = −5.80+6.44·10−3x−1.60·10−6x2 0.66

LPJ-GUESS MAR Logit(y) = −5.04+6.26·10−3x−1.40·10−6x2 0.89

Obs. 1.875◦ MAR Logit(y) = −6.16+7.04·10−3x−1.82·10−6x2 0.70

JSBACH MAR Logit(y) = −2.66 +1.98·10−3x 0.54

T+G Obs. 0.5◦ MAR Logit(y) = −2.64+9.05·10−3x−5.20·10−6x2+9.69·10−10x3 0.80

LPJ-GUESS MAR Logit(y) = −2.13+8.19·10−3x−5.55·10−6x2+1.29·10−9x3 0.76

Obs. 1.875◦ MAR Logit(y) = −2.04+6.28·10−3x−2.07·10−6x2 0.84

JSBACH MAR Logit(y) = −2.09+5.5·10−3x 0.95

The independent variables are tree (T), grass (G) and total vegetation (T+G) cover. Predictors are MAR, average rainfall seasonality index (SI) and the logarithm of average
fire intervals (log10(AFI)). Only the best GLMs (i.e., with smaller Akaike information criterion (AIC), see Supplementary Tables S3–S5) are reported. The explained deviance
(R2) is reported for each case. See section “Materials and Methods” in the main text for a detailed description of the statistical models and selection procedures.

and generally rare fires (Figures 5E–H). In LPJ-GUESS, fires
were generally more frequent than in the observations for most
of the grid cells (Figure 5G). With respect to the observations,
average rainfall seasonality index was overestimated in JSBACH
data (Figure 5F), while SI from LPJ-GUESS dataset compared
relatively well (Figure 5E).

There was a quite good agreement between the correlation
coefficients between MAR, SI and log10(AFI) of model and
observational datasets, except for the correlation between
log10(AFI) and SI that was not significant for the observations
(r = 0.01, p-value > 0.05), but significant for JSBACH data
(r = 0.35, p-value < 0.05) (Supplementary Table S2).

When comparing the land cover type of grid cells, TGBs were
largely present in the observations and in the models, but in
JSBACH some grid cell had vegetation with predominance of
evergreen trees (Figure 1).

For the observations at 0.5◦ resolution, G and T mainly
depended on MAR, and increased with it (Figures 1A, 3A,
6A, 7A and Table 2; D’Onofrio et al., 2018). G and T also
decreased with SI and log10(AFI) (Figures 6A, 7A), whereas
at 1.875◦ resolution only the relationships for grass cover were
significant (Table 2 and Figures 3C, 7C). LPJ-GUESS simulated
the main relationships of increasing tree and grass cover with
annual rainfall, but for modeled T this increase was steeper and
explained higher deviance (R2 = 0.51) than in the observations
(R2 = 0.35; Figures 1, 6 and Table 2). LPJ-GUESS also simulated
the observed decrease of T with log10(AFI) and of G with
log10(AFI) and SI (although with much less predictive power than
in the observations), but it did not capture the observed decrease
of T with rainfall seasonality, whose GLM in the observations
explained a deviance of 0.24. In JSBACH the best predictor for G
was log10(AFI): grass cover decreased with fire intervals, and this
fit had a very large explanatory power (R2 = 0.91) (Figures 3D,
7D). Although MAR was the second factor determining JSBACH
grass cover variation (Figure 7D), it explained a large deviance
of G (R2 = 0.78), even larger than found in the observations

(R2 = 0.49). As for the observations at 1.875◦, T in JSBACH did
not depend significantly on any abiotic variable (Figure 6D).

Intermediate Mean Annual Rainfall
At intermediate annual rainfall (590 mm year−1 <
MAR < 1200 mm year−1), in the observations TGB was
the predominant vegetation type and most of the grid cells
had frequent fires (see also D’Onofrio et al., 2018). In the
observations at 0.5◦ resolution, according to the best GLMs,
trees depended weakly on MAR and grasses depended weakly
on fire (Table 2 and D’Onofrio et al., 2018) and there were
no significant dependencies in the observations at 1.875◦
resolution (Figures 6, 7). In LPJ-GUESS data, fire was the
most important factor for grasses and trees, explaining a
large deviance (R2 = 0.73 for grass and 0.78 for trees), but
high-frequency fires were underestimated and annual rainfall
had stronger importance than in the observations for both trees
and grasses (Figures 6A,B, 7A,B). JSBACH simulated the fire
occurrence better than LPJ-GUESS, but both tree and grass cover
depended too strongly on fire compared to the observations
(Figures 6C,D, 7C,D).

In the observations, at both resolutions grass cover still was
mostly larger than tree cover (Figures 5A–D, Supplementary
Figures S1A,C). While there was quite a good agreement
between vegetation cover distributions from the observations
and JSBACH (Figures 5B,D, but notice the broader modeled
G distribution with respect to the observations), vegetation
cover distributions from LPJ-GUESS were very different from
the observations at 0.5◦: modeled T and G had larger spread
in values, modeled T and G medians were higher and
lower, respectively, and closer to each other (Figures 5A,C),
and there was a larger number of grid cells with T > G
(Supplementary Figures S1A,B).

In the observations, in most of the grid cells fires occurred
more frequently than in the other MAR ranges (Figures 5G,H).
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FIGURE 2 | Grass cover as a function of average fire intervals (in logarithmic scale): (A) obs. 0.5◦, (B) LPJ-GUESS, (C) obs. 1.875◦, and (D) JSBACH. Green circles:
grid cells in R1 (MAR ≤ 590 mm year−1); Light blue circles: grid cells in R2 (590 mm year−1 < MAR < 1200 mm year−1); blue circles: grid cell in R3
(MAR ≥ 1200 mm year−1). Lines are the GLM fits of grass cover with log10(AFI) within the three MAR ranges (with the same colors as the circles) and over all data
(lilac line). Only significant fits are shown. Lines are continuous when the fits are the best GLMs explaining grass cover variation (i.e., with minimum AIC, Table 2).

Overall, both model datasets displayed this feature. However,
in LPJ-GUESS data, the log10(AFI) distribution was shifted
toward higher values of AFI, thus fires were mostly rarer
than in the observations, although the range of modeled
log10(AFI) distribution was narrower than in the observations
(Figure 5G). SI between the models and the observations were
quite comparable (Figures 5E,F).

In this MAR range, the explanatory variables from the
observations displayed very small correlation (Supplementary
Table S1). The correlation coefficients from the observation
and LPJ-GUESS datasets disagreed (Supplementary Table S1):
in LPJ-GUESS there was a positive and large correlation
between log10(AFI) and MAR (r = 0.69), which had a smaller
absolute value (although significant, p < 0.05) and was negative
in the observations (r = −0.16). The Pearson’s r between
abiotic variables from JSBACH data were smaller than in
the other MAR ranges, as in the observations. However, in
JSBACH log10(AFI) was negatively correlated significantly with

SI (with quite a large absolute value, r = −0.41, whereas this
correlation was not significant in the observations, p > 0.05;
Supplementary Table S2).

Analyzing the biome types, most of the grid cells from the
observational datasets were identified as TGBs (85% at 0.5◦
resolution and 78% at 1.875◦). The TGB predominance was
quite well simulated by LPJ-GUESS, with 75% of the grid cells
classified as TGB, whereas in JSBACH data this percentage
was lower (48%).

In the observations at 0.5◦, T depended mainly on MAR
and G on log10(AFI) (Table 2 and D’Onofrio et al., 2018):
T increased with annual rainfall and G decreased with fire
intervals, but these relationships had very low explanatory power
(R2 = 0.15 for G and R2 = 0.16 for T best GLMs, Figures 6A,
7A) especially if compared with the best GLMs in the other MAR
ranges. G also slightly decreased with MAR, but the fit had very
low explained deviance (Figure 7A, R2 = 0.05), and the 1AIC
between this GLM and the intercept-only model was smaller
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FIGURE 3 | Same as Figure 1 but for grass cover. The colors of the circles indicate the average fire intervals (AFI, see legend for values). Panels: (A) obs. 0.5◦,
(B) LPJ-GUESS, (C) obs. 1.875◦, and (D) JSBACH.

than 1 (1AIC = 0.27, Supplementary Table S6): therefore,
this dependence could be considered negligible (Burnham and
Anderson, 2002). In the observations at 1.875◦, G and T didn’t
depend on any of the factors which we considered (Figures 6C,
7C and Table 2). The best predictor for both G and T from
LPJ-GUESS was log10(AFI), followed by MAR. However, the
increase of T and decrease of G with these MAR and log10(AFI),
respectively, were steeper than in the observations (Figures 1A,B,
2A,B), and the explained deviances of these GLMs, especially for
T, were larger (Figures 6B,7B). Differently from the observations,
G and T depended significantly on SI in LPJ-GUESS (although
weakly) and on log10(AFI) in JSBACH, where this was the best
and only predictor (Table 2 and Figures 6D, 7D).

High Mean Annual Rainfall
At high precipitation (MAR ≥ 1200 mm year−1), in the
observations both TGB and TF occurred, with dominance of
TFs. The latter were characterized by higher tree cover, lower
grass cover, lower rainfall seasonality and rare fires than TGBs.
Considering all the grid cells in the range, tree and grass

cover were highly determined by rainfall seasonality and fire
intervals (Figures 6A,C, 7A,C; D’Onofrio et al., 2018). For
LPJ-GUESS data, fires and rainfall seasonality seemed to have
a strong impact on grass cover, but a weak impact on tree
cover. However, modeled tree and grass cover had narrower
spread in values than in the observations: the number of grid
cells with closed TFs was overestimated and with open TGBs
underestimated, while TFs and TGBs were not associated to
really different AFI as in the observations (Supplementary
Figure S5). JSBACH was able to simulate the presence of closed
TF and open TGB with both different rainfall seasonality and
fire intervals. However, compared to the observations, fire had
a greater importance in determining the variation of both tree
and grass cover, while rainfall seasonality had a lower predictive
power (Figures 6, 7) in JSBACH; in the presence of frequent
fires the values for grass cover and tree cover were generally
overestimated and underestimated, respectively (Figures 2C,D
and Supplementary Figures S2C,D).

Overall, in the observations tree cover dominated over grasses,
although there were many grid cells with more grass cover than
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FIGURE 4 | Total vegetation cover (tree cover+grass cover) as a function of MAR: (A) obs. 0.5◦, (B) LPJ-GUESS, (C) obs. 1.875◦, and (D) JSBACH. Continuous
lines are the best GLM fits of total vegetation cover with MAR (that was the best predictors for all datasets, see Table 1). Note that for Obs 1.875◦ we show the fit
with MAR at third order (the second best fit after the one with MAR at the second order, 1AIC = 1.55), because they have similar predictive power but the fit with
MAR3 looks better in agreement with the observations (Supplementary Table S5). Green circles are grid cells with predominance of tropical forest (TF), red circles
with predominance of tropical grassy biome (TGB). Blue circles are grid cells with other or no predominant PFT/biome.

tree cover (Figures 5A–D and Supplementary Figures S1A,C,
see also D’Onofrio et al., 2018). There was a quite good agreement
between JSBACH and observed vegetation cover distributions,
although maximum values of modeled grass cover were
overestimated (Figure 5B). Conversely, in LPJ-GUESS tree cover
was generally overestimated and grass cover underestimated,
and their distributions were narrower than in the observations
(Figures 5A,C and Supplementary Figure S1B).

For grid cells in this MAR range, the rainfall regime was less
seasonal than in the other MAR ranges for the observations
as well as for the forcing used in LPJ-GUESS and JSBACH
(Figure 5E), although for the latter the seasonality index
distribution was shifted toward greater values than in the
observations, i.e., toward more seasonal rainfall regimes
[notice that, on the contrary, when using daily metrics
of seasonality, precipitation in MPI-ESM was found to
underestimate seasonality of precipitation on average for all

tropical areas for high precipitation (Lasslop et al., 2018)]. As
in the first MAR range, fires were mostly rare, but frequent
fires occurred (Figures 5G,H), except for LPJ-GUESS. The
correlation coefficients between explanatory variables showed
a quite good agreement between observed and model datasets,
although in both JSBACH and LPJ-GUESS the absolute
values of the correlation coefficients between log10(AFI) and
MAR and SI and MAR are greater than in the observations
(Supplementary Tables S1, S2).

In the observations, the threshold of 1200 mm year−1

represented the transition to the forest biome, and the grid
cells classified as TF had typically more tree cover than
grass cover, whereas TGB grid cells had the opposite features
(Supplementary Figures S5A–D and D’Onofrio et al., 2018).
TF grid cells were also characterized by a less seasonal rainfall
regime and less frequent fires with respect to TGB grid cells
(Supplementary Figures S5E–H). The limit of 1200 mm year−1
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FIGURE 5 | Box plots of vegetation cover and abiotic variables in the three
mean annual rainfall ranges: (A,B) percentage tree cover, (C,D) percentage
grass cover, (E,F) rainfall seasonality index, (G,H) average fire intervals (in
logarithmic scale) from obs. 0.5◦ and LPJ-GUESS (left column) and from obs.
1.875◦ and JSBACH (right column). Vertical lines delimit the ranges of low
MAR (R1: MAR ≤ 590 mm year−1), intermediate MAR (R2: 590 mm
year−1 < MAR < 1200 mm year−1) and high MAR (R3: MAR ≥ 1200 mm
year−1). Red lines are the medians. The top and bottom of each box are the
25th and 75th percentiles, respectively. The extremes of the whiskers
correspond to the highest and lowest values within a range defined by the
75th and 25th quartiles +/–, respectively, 1.5 times their interquartile range.
Red symbols are outliers.

represented reasonably well the transition to TFs also for JSBACH
datasets (Figure 1D), whereas for LPJ-GUESS data this threshold
seemed to occur at lower annual rainfall, around 1000 mm

year−1, a value in line with other analyses of tree cover from
remote sensing datasets (Staver et al., 2011b). JSBACH was
somewhat able to simulate the main characteristics of observed
TFs and TGBs, although modeled T and G in TGB grid cells
varied more (Figures S5B,D). Indeed, some modeled TGB grid
cells had T larger than G (Figure 1D). Overall, LPJ-GUESS was
able to simulate quite well the tree and grass cover distributions
of observed TFs, but not of TGBs, which had lower grass
cover and higher tree cover compared to the observations
(Supplementary Figures S5A,C). This model also overestimated
the percentage of TF grid cells (82% versus 61% in obs. 0.5◦)
and underestimated that of TGB grid cells (16% versus 23% in
obs. 0.5◦). Furthermore, fire intervals in modeled TGB grid cells
were generally overestimated (Supplementary Figure S5G) and
TF fires were less rare than in the observations.

The results of the GLM analysis were somehow expected
given the analysis of the characteristics of TGB and TF grid
cells: according to the best GLMs for observed vegetation cover,
log10(AFI) and SI were the most important predictors (Table 2
and Supplementary Table S8). SI and log10(AFI), which were
highly anticorrelated in these high rainfall grid cells (r = −0.74
for obs. 0.5◦ and r = −0.77 for obs. 1.875◦, Supplementary
Tables S1, S2), and the GLMs with these variables had similar
predictive power for both observed T and G (Figures 6, 7).
Specifically, G decreased with log10(AFI) (Figure 2B) and
increased with SI, and the opposite dependences occurred for T
(Figures 6, 7). Notice that MAR had a really small role for the
observations at 0.5◦ and was not significant for the observations
at 1.875◦ (Figures 6A,C, 7A,C). The same dependencies were
simulated by LPJ-GUESS and JSBACH (Figures 6, 7). However,
with respect to the observations, in LPJ-GUESS log10(AFI)
and SI had a smaller effect on T while MAR had a greater
importance for both T and G (although small) (Figures 1B,
6B, 7B and Supplementary Table S8). Conversely, in JSBACH
data log10(AFI) had a stronger impact than SI in determining
G and T variations. When fires were frequent, modeled G had
higher values than in the observations (Figures 2, 3). Unlike
the observations at 1.875◦, in JSBACH data the dependencies of
T and G on MAR were significant, albeit with small predictive
power (Figures 6D, 7D).

DISCUSSION

In this study, we evaluated and validated the outcomes of
the DGVM LPJ-GUESS and JSBACH in sub-Saharan Africa,
using the approach of an observational analysis of the
climate-vegetation-fire relationships in this region (D’Onofrio
et al., 2018), which includes both grass and tree cover, unlike
previous similar analyses that considered only tree cover (e.g.,
Staver et al., 2011a,b).

Overall, both models were able to simulate the main factors
determining the vegetation cover, i.e., the general decrease of
grass cover with fire intervals and the general increase of tree
cover and total vegetation cover with MAR, with the exception
of grass cover in LPJ-GUESS that was found to mainly depend
on MAR. In general, the models were able to simulate the
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FIGURE 6 | Deviance explained (R2; color scale) of the GLMs of tree cover with the three abiotic predictors at low mean annual rainfall (MAR) (R1: MAR ≤ 590 mm
year−1), intermediate MAR (R2: 590 mm year−1 < MAR < 1200 mm year−1) and high MAR (R3: MAR ≥ 1200 mm year−1): (A) obs. 0.5◦, (B) LPJ-GUESS, (C) obs.
1.875◦, (D) JSBACH. Arrows indicate the tendencies of the relationships between tree cover and abiotic factors (increasing or decreasing). White grid cells indicate
that there were no significant relationships.

distribution of TGB and TF along MAR. However, by analyzing
the importance of the different predictors by MAR intervals,
we found differences between the observations and the models,
which are likely to reflect differences in the main ecological
mechanisms at play in model and reality.

At low annual precipitation (MAR ≤ 590 mm year−1),
where water availability is the most important factor regulating
the vegetation, the eco-hydrological processes are the main
mechanisms at play and LPJ-GUESS, which has a more complex
representation of vegetation dynamics than JSBACH, showed
the best agreement with the observations. In mesic and humid
areas (MAR > 590 mm year−1), fire processes became more
relevant and are important for maintaining open TGB and
for regulating the transition between TGB and TF. At high
precipitation (MAR ≥ 1200 mm year−1), JSBACH, which
has a more complex representation of fire processes than
LPJ-GUESS, was the best model in simulating the observed

marked differences in vegetation cover and average fire intervals
between TGB and TF.

At low annual precipitation (MAR ≤ 590 mm year−1),
grasses dominated over trees, and both vegetation types increased
mainly with MAR (only grasses at 1.875◦ resolution), indicating
that their growth was mainly water limited (Scholes et al.,
2002; Sankaran et al., 2005; D’Onofrio et al., 2018). In these
areas, where fires are generally rare and rainfall seasonality
is strong, trees and grasses compete mainly for water, and
grasses can be favored because, compared to trees, their roots
are closer to the surface, where most of the water is (Ward
et al., 2013 and references therein); furthermore, grasses can
have a strong competitive impact on tree seedlings (Baudena
et al., 2010; February et al., 2013; D’Onofrio et al., 2015). In
this MAR range, in general, LPJ-GUESS was able to simulate
the predominance of grasses (Figures 7A,B) and the water
limitation of vegetation growth (Figures 3A,B), although model
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FIGURE 7 | Same as Figure 6 but for grass cover.

data showed a clear MAR-controlled upper bound for grasses
that was not as evident in the observations. This represents
the optimum between growth-efficiency/death and actual water
availability, which depends only on rainfall in the model. This
difference between the model and the observations may be
partially due to only natural grass being simulated in LPJ-GUESS.
In JSBACH, grass cover, which was underestimated by this model,
increased with MAR as in the observations below 590 mm year−1,
but had a more important relationship with fire than in the
observations, whereas tree cover was overestimated [as already
reported by Baudena et al. (2015) and Lasslop et al. (2018)]. In
JSBACH, trees can be replaced by natural grass only after the
occurrence of a fire or of a wind throw, thanks to the faster rate
of establishment of natural grass with respect to shrubs and trees
(Reick et al., 2013). Trees can also have a disadvantage compared
to grass due to the climatological limits to their establishment
due to physiological constraints (Reick et al., 2013). However,
dry savannas do not strictly depend on fire, as this disturbance
can only influence the tree-grass ratio (Sankaran et al., 2005;
Accatino et al., 2010). Thus, JSBACH should be revised in order

to: (1) weaken the role of fire at low precipitation, for example
by explicitly including other mechanisms, related to demography
and eco-hydrology, that permit grasses to outcompete trees, such
as tree-grass competition for soil water (see also Lasslop et al.,
2018), similarly to what represented in e.g., LPJ-GUESS (see
below) and/or (2) improve the limitation of tree establishment
in very dry regions based on climatological limits (such as
precipitation thresholds or drought indices) or related to net
primary production. Nevertheless, we must note that the MODIS
vegetation cover product displays limitations at low tree cover
(Staver and Hansen, 2015). In order to interpret the JSBACH
results, we must also consider the mechanisms of land use change:
although we removed croplands from observations and JSBACH,
we kept pastures in JSBACH, since rangelands are part of African
savannas and grasslands (Hanotte, 2002; Hempson et al., 2017).
Indeed, in this range the modeled grass cover was mainly
composed of pastures (see Supplementary Figure S6), which are
included as anthropogenic land-cover change (Reick et al., 2013):
pastures first replace natural grasslands, and subsequently, once
no natural grasslands are left, the areas covered by trees.
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TABLE 2 | Results of the GLM analyses in the three mean annual rainfall (MAR) ranges: low MAR (R1, MAR ≤ 630 mm year−1), intermediate MAR (R2, 630 mm
year−1 < MAR < 1200 mm year−1) and high MAR (R3, MAR ≥ 1200 mm year−1) for obs. 0.5◦, LPJ-GUESS, obs. 1.875◦ and JSBACH datasets.

MAR Range Vegetation cover
fraction (y)

Dataset Best predictor (x) Best GLM R2

R1 G Obs. 0.5◦ MAR Logit(y) = −2.08+5.17 10−3x 0.46

LPJ-GUESS MAR Logit(y) = −1.53+3.72 10−3x 0.41

Obs. 1.875◦ MAR Logit(y) = −1.92+4.8 10−3x 0.49

JSBACH Log10(AFI) Logit(y) = 1.92−1.62x 0.91

T Obs. 0.5◦ MAR Logit(y) = −6.20+6.28 10−3x 0.35

LPJ-GUESS MAR Logit(y) = −4.82+5.21 10−3x 0.51

Obs. 1.875◦ – – –

JSBACH – – –

R2 G Obs. 0.5◦ Log10(AFI) Logit(y) = 0.81-0.29x 0.16

LPJ-GUESS Log10(AFI) Logit(y) = 3.51-3.25x 0.73

Obs. 1.875◦ – – –

JSBACH Log10(AFI) Logit(y) = 2.08−1.52x 0.56

T Obs. 0.5◦ MAR Logit(y) = −2.84+1.80 10−3x 0.15

LPJ-GUESS Log10(AFI) Logit(y) = −4.07+3.17x 0.78

Obs. 1.875◦ – – –

JSBACH Log10(AFI) Logit(y) = −2.87+1.87x 0.64

R3 G Obs. 0.5◦ Log10(AFI) Logit(y) = 1.32−0.76x 0.69

LPJ-GUESS Log10(AFI) Logit(y) = 2.49−2.51x 0.67

Obs. 1.875◦ Log10(AFI) Logit(y) = 1.32−0.91x 0.74

JSBACH Log10(AFI) Logit(y) = 2.12−1.69x 0.90

T Obs. 0.5◦ Log10(AFI) Logit(y) = −1.94+0.83x 0.66

LPJ-GUESS Log10(AFI) Logit(y) = −1.38+1.39x 0.33

Obs. 1.875◦ SI Logit(y) = 4.62−7.36x 0.74

JSBACH Log10(AFI) Logit(y) = −2.17+1.71x 0.91

The indipendent variables are tree (T) or grass (G) cover. Predictors are MAR, average rainfall seasonality index (SI) and the logarithm of average fire intervals (log10(AFI)).
Only the best GLM (i.e., with smaller Akaike information criterion (AIC), see Supplementary Table S6–S8) are reported. The explained deviance (R2) is reported for each
case. See section “Materials and Methods” in the main text for a detailed description of the statistical models and selection procedures.

Pastures are treated as grassland by SPITFIRE: fire reduces the
carbon content of biomass and litter in pastures (according to the
combustion completeness, which depends on the moisture) while
the pasture cover fraction remains unchanged. Land-use change
can modify the relative dominance between trees and grasses.
In general, at low precipitation without land-use change (both
pastoralism and agriculture), modeled tree cover would be higher
than with land-use change, as shown in the paper by Lasslop
et al. (2018) with a simulation performed using the land use of
1850 (with low anthropogenic vegetation cover) for the whole
simulation. A negative effect of pastoralism on tree cover is in
agreement with an observational analysis in sub-Saharan Africa
(Aleman et al., 2016).

At intermediate annual rainfall (590 mm
year−1 < MAR < 1200 mm year−1), TGBs with predominance
of grasses over trees were the main biome and fires were frequent.
At the spatial resolutions considered in this study, closed canopy
was not observed at these precipitation values, even though it
can occur at local scale (Sankaran et al., 2005), and tree cover
increased with MAR (at least at 0.5◦ resolution) indicating that
tree cover could be still water limited (Hirota et al., 2011; Staver
et al., 2011b; D’Onofrio et al., 2018). Conversely, grass cover was
no longer water limited and depended on fire intervals at 0.5◦,
although really weakly. These relationships were not significant

at 1.875◦ resolution (Figures 6, 7). Within this range the seasonal
rainfall regimes can enhance C4 grass-fuel availability in the dry
season favoring the occurrence of fires (Archibald et al., 2009;
Lehmann et al., 2011), which can maintain open TGBs through a
positive vegetation-fire feedback (Beckage et al., 2009) in which
savanna trees are also well adapted to fire (Ratnam et al., 2011).
In LPJ-GUESS, tree and grass cover were very different from the
observations: they had more variations, grasses didn’t dominate
over trees, and both varied more steeply with mean annual
rainfall (Figures 1, 3). Although fire had an important role in
determining modeled tree and grass variation in this MAR range,
these patterns could suggest that the grass-fire feedback is not
strong enough to keep grass cover as high as in the observations
for most of the grid cells. Therefore, one of the main ecological
mechanisms regulating the relative modeled tree-grass presence
can be related to the dynamics of soil water availability and,
for example, to the different water use of the two vegetation
forms. Indeed, in LPJ-GUESS grasses are shallow-rooted, with
90% of their roots in the soil layer closest to the surface (0.5 m),
whereas trees have a large proportion of their roots in the lower
soil layer (40%). Therefore, grasses could take advantage over
trees when annual rainfall is low, and soil water can be larger
in the shallow soil layer compared to the deeper one (Ward
et al., 2013 and references therein), with the opposite possibly
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occurring at higher annual precipitation. Modeled grass cover
can be positively related to fire frequency because it is itself
related, in this MAR range, to lower soil-moisture in the first
layer, which is the key driver of fire occurrence in GlobFIRM
and, moreover, the fire resistance of grasses is higher than that
of trees. Yet, our analysis suggests that fires were too rare to
have a strong effect on vegetation and to maintain it in a state
with more grasses than trees. A possible explanation is that
in GlobFIRM the percentage of killed individuals does not
consider whether the tree is small or high, which could allow
too many trees to grow to a safe height and, thus, avoid the
maintenance of open canopies when fire-resistant (deciduous)
trees are present. Furthermore, it is important to highlight that
the overestimation of modeled tree cover in this intermediate
MAR range may also be related to the lack of a representation of
pastures in LPJ-GUESS simulations. Pastoralism was observed
to negatively correlate with tree cover in sub-Saharan Africa
(Aleman et al., 2016) and a large abundance of livestock in
sub-Saharan Africa is present in this MAR range (Hempson
et al., 2015). However, livestock herbivores may also favor tree
cover mainly through suppression of fire (Hempson et al., 2017).
Conversely to LPJ-GUESS, JSBACH simulated the occurrence of
frequent fires that could maintain low tree cover and high grass
cover in most of the grid cells, probably thanks to the modeled
positive grass-fire feedback, although fire frequency was a little
underestimated in the model with respect to the observations.
However, we must note that in JSBACH, in this intermediate
MAR range, grass cover, average fire intervals and especially tree
cover would show a higher variability if the filtering of the data
based on ESA-CCI LC map had not been applied (we used this
filtering to have a number of grid cells and locations comparable
to the observations); still, this did not qualitatively change the
main patterns and conclusions (Supplementary Figure S8).
Note that in the observations at 1.875◦ resolution we can only
associate high grass cover with high fire frequency (Figure 5),
but we did not find any significant relationship of vegetation
cover with precipitation or fire explanatory variables.

The low explanatory power of the GLMs at 0.5◦, which became
not significant at 1.875◦, suggests that the ecological processes
shaping the vegetation, such as the vegetation-fire feedback, may
operate at a finer scale, as discussed by Pausas and de Dantas
(2017). The issue of scale and upscaling in ecology is not resolved
(e.g., Staver, 2018) and, thus, may have led to a mismatch between
the ecological scale of the fire processes and the spatial resolution
of both models, especially in JSBACH. Furthermore, the weak
or not significant relationships might also indicate that there
are other discarded factors explaining the tree and grass cover
variability, such as intra-seasonal rainfall variability (Good and
Caylor, 2011; Xu et al., 2018; D’Onofrio et al., 2019) related also to
soil texture (Case and Staver, 2018) or herbivores (both livestock
and wildlife), which are common in Africa and can have an effect
on vegetation comparable to fire and can themselves negatively
affect fire occurrence (Hempson et al., 2017).

At high precipitation (MAR ≥ 1200 mm year−1), both
forests and savannas occur in the observations and both rainfall
seasonality and fires play an important role in determining tree
and grass cover (Table 2 and Supplementary Table S8) and, thus,

the transition between these two biomes (D’Onofrio et al., 2018).
Furthermore, many studies indicate that TGB can occur under
similar climatic conditions as TF thanks to the vegetation-fire
feedback (Hirota et al., 2011; Staver et al., 2011b; D’Onofrio
et al., 2018), which avoids forest formation because forest trees
are fire-intolerant (Beckage et al., 2009; Ratnam et al., 2011;
Gignoux et al., 2016). By identifying forest and savanna states
using the grass and tree PFTs (D’Onofrio et al., 2018), we found
that LPJ-GUESS was able to simulate the presence of both TF and
TGB biomes at high precipitation, but they were characterized by
less marked differences in the distributions of fire frequency, tree
cover and grass cover than in the observations (Supplementary
Figure S5). Indeed, in this MAR range, in LPJ-GUESS fire
frequency was underestimated in TGBs and overestimated in
TFs, and, analogously to what we found in the intermediate
MAR range, the occurrence of grid cells with open TGBs was
underestimated, and vice versa for closed TF. However, we must
note that, although in tropical rainforests fires indeed have very
low frequency (Cochrane, 2003), satellite products are often not
able to detect them, because forest fires in the tropics are usually
understory fires and are covered by the canopy (Morton et al.,
2011). For tree cover, rainfall seasonality and fire had a low
explanatory power, probably due to the much lower variation
compared to the observations. Modeled grass cover depended
mainly on fire as in the observations, but the fact that there are
only few grid cells with high grass cover suggests again that the
grass-fire feedback is not strong enough. Indeed, fire is the main
factor maintaining open TGBs in humid areas (Bond et al., 2005),
whose occurrence is enhanced by rainfall seasonality (Archibald
et al., 2009). Thus, although part of the disagreement between the
model and the observations may also be related to the pastures
not being simulated in LPJ-GUESS, our analysis suggests that
changing the fire model in LPJ-GUESS is crucial.

Glob-FIRM is a first-generation fire model, developed before
the availability of global-scale satellite fire information data
(Hantson et al., 2016), it is based on empirical schemes and it
is only driven by soil moisture and vegetation characteristics.
Despite its simplicity, Glob-FIRM was able to simulate the
positive relationship between grass cover and average fire
frequency (in the second and third MAR ranges), but it presented
a narrower distribution of the fire variable, with values of average
fire intervals never smaller than 3 years and few times greater than
1000 years (Figure 2B).

In contrast, JSBACH simulated the presence of closed TF
and open TGB linked to both different rainfall seasonality and
fire intervals. In contrast to Glob-FIRM, SPITFIRE includes
the main mechanisms and factors permitting the savanna-forest
transition in humid areas (Lasslop et al., 2018): as shown by
sensitivity simulations with JSBACH-SPITFIRE, the fuel amount
and properties are key factors for obtaining the contrast of fire
regimes between forests and grasslands in Africa (Figure 8 in
Lasslop et al., 2014). However, in the third MAR range, fire
had a greater importance and effect than rainfall seasonality
in determining the variation of both tree and grass cover in
JSBACH compared to the observations. This was reflected in a
general overestimation of grass cover and underestimation of
tree cover in presence of frequent fires (Lasslop et al., 2018).
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Thus, in JSBACH, the grass-fire feedback was seemingly stronger
than necessary, and it would be even stronger without land
use change (Lasslop et al., 2018). We showed that grid cells
with higher grass cover, that corresponded to lower average fire
intervals, were characterized by lower pasture cover, i.e., the grass
cover was mainly composed of natural grass (Supplementary
Figure S6). In JSBACH, pastures have a higher fuel bulk
density, which reduces the burned area. This is supported by
analyses of global datasets that show that pastoralism negatively
affects fire occurrence in savannas and grasslands (Andela et al.,
2017). As already put forward by Lasslop et al. (2018), many
possible solutions for improving the fire-vegetation interactions
in JSBACH are possible, such as the amelioration of the
fire-tolerance/intolerance of savanna/forest trees, related to the
bark thickness, which could decrease the advantage of grass in
the presence of fires.

The analysis of sub-Saharan Africa permitted us to identify
areas of TGB as grid cells dominated by C4 grass and deciduous
trees, and areas of TF as grid cells dominated by evergreen
trees, which is a reliable assumption at the spatial resolution
which we considered (D’Onofrio et al., 2018). Both models
simulated the observed pattern of these biomes in relation to
MAR (Figure 1), with TGBs occurring along the entire MAR
gradient and TFs appearing above 1000 mm year−1 (Staver et al.,
2011b). However, in JSBACH some grid cells with very low
precipitation (below ca. 450 mm year−1) had a vegetation cover
composed mainly of evergreen trees (with tree cover lower than
25%). In general, it is well-established that evergreen species
dominate the humid tropical forest with high rainfall and low
seasonality (Walter, 1973; Bowman and Prior, 2005; Murphy and
Bowman, 2012). In Africa TGBs are broadly characterized by
deciduous trees and evergreen species can occur locally (Scholes
et al., 2002), thus, they are not expected to predominate at
the JSBACH grid-cell scale. This suggests that in JSBACH the
physiological constraints of the evergreen tree PFT, probably
related to water stress, should be revised and improved. However,
in other continents this may be different than in Africa, as
savanna trees may also be evergreen (Scholes and Archer, 1997;
Bowman and Prior, 2005). Savanna trees are also typically fire
tolerant and shade-intolerant, while forest trees have the opposite
characteristics (Ratnam et al., 2011). The tropical raingreen trees
included in LPJ-GUESS have these characteristics. However,
looking at the predominant type of tropical tree in TGB tree cover
(Supplementary Figure S7), we observed that many TGB grid
cells in the low and intermediate MAR ranges, where rainfall is
seasonal, have more evergreen than deciduous tree cover. Most of
these grid cells have very low tree cover, so this mismatch could be
also related to variability in the model. This mismatch occurred
also in JSBACH (Supplementary Figure S7) and this suggests
that also in LPJ-GUESS the characteristics of evergreen trees
related to water stress should be revised for the African continent.

CONCLUSION

The analysis of the two state-of-the-art DGVMs, one
including a complex vegetation description but with a

simple fire model (LPJ-GUESS), and one with the opposite
complexity characteristics (JSBACH), highlighted that a
detailed description of either vegetation or fire processes
alone is not sufficient to properly simulate the sub-Saharan
African vegetation, and that an accurate description of both
processes is necessary. Furthermore, our analysis suggests that
the importance of the processes depended, as expected,
on the MAR level, but also, more interestingly, on the
scale, indicating that an increase of resolution, especially
for JSBACH, might lead to a better representation of the
vegetation-fire feedback.

By identifying the crucial role of vegetation-fire processes and
their potential for improving the accuracy of numerical models,
our results may provide also added value to inform economists,
policy practitioners or decision makers:

Since both LPJ-GUESS and JSBACH are included in Earth
System Models, our analysis permits to suggest possible
improvements in DGVMs and, consequently, in ESMs for
future projections. This is of utmost importance for future
land use management under climate change, since DGVMs are
already used as support for policy making (e.g., Lee et al.,
2015; Daioglou et al., 2017; Sonntag et al., 2018). Finally,
several studies propose afforestation in savannas in Africa
(Sonntag et al., 2018; Bastin et al., 2019, compare also with
Griffith et al., 2017) as a measure to increase carbon stock to
remediate anthropogenic carbon emissions. As we showed here,
the distribution of vegetation is strongly connected to fire, and
thus we maintain that such plans crucially should represent
the effects of fires (Bond et al., 2019). The complex dynamics
connecting vegetation and fires should be thoroughly evaluated
before afforestation is recommended.
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