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A Test Rig for the Experimental Investigation on the Non-Linear 
Dynamics in the Presence of Large Contact Interfaces and Numerical 
Models validation 
 
Christian Maria Firrone, Giuseppe Battiato  

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 
10129, Turin, Italy  
 

Abstract 

 
The simulation of the coupling between components modelled by Finite Elements (FE) plays an important 
role for the prediction of the forced response of the assembly in terms of resonant frequencies, vibration 
amplitudes and damping. This is particularly critical when the time-varying stress distribution must be limited 
for vibrating components with thin thickness coupled with large contacts. Typical examples can be found in 
aeronautical structures (plates, panels, bladed disk components) assembled with bolted flanges, riveted lap 
joints, or joints without hole discontinuities like rail-hook joints, lace wire sealings, strip dampers. In this 
paper a new test rig is introduced for the experimental validation of a Reduced Order Model (ROM) based 
on the Gram-Schmidt Interface (GSI) modes applied to a friction contact whose dimensions are not negligible 
with respect to the size of the substructures. In this case, classical approaches like Craig-Bampton technique 
might be not effective in reducing the size of the problem when many contact nodes subjected to nonlinear 
contact loads can not be omitted. The technique is implemented in a solution scheme in the frequency 
domain using penalty contact elements and the harmonic balance method. The preload on the joint is 
produced by permanent magnets to enhance the friction contact without introducing uncertainties due to 
bolting. Measurements are compared with the ROM simulations and with standard time domain integration 
of the full FE model. The advantage of using the GSI technique is shown in terms of time computation and 
accuracy of the simulation. 
 

1 Introduction 

 
Understanding the effects of dry friction at the interfaces of mechanical joints is a crucial task for the dynamic 
design of large and complex structures. Industrial applications usually involve the assembly of several 
components by means of either large or localized joints. The term ‘large’ is here used to define a contact 
interface that is distributed, i.e. its extension is not negligible with respect to the size of the structure where 
it is employed. In most of the applications the locking of large contact interfaces is produced by bolting (e.g., 
lap joints and flange joints, Fig.1a, or joints between half cases of gearbox), while for a smaller class of 
applications the preload at the contact interface is generated by the architecture of the system itself without 
extra parts (e.g., the rail-hook joint in stator vane segments of turbo-machinery in Fig.1b). 
Literature about the prediction of the mechanical behavior of bolted joints and how these affect the 

dynamics of mechanical systems is wide, since bolt connections remain one of the most common way to 

assemble structures. Bolts are easily removable and can produce very large locking pressure with a limited 

amount of effort during the tightening operation. However, the uncertainty that characterizes the bolted 

joint is currently a matter of study. The validation of the mathematical models and the methodologies that 

predict the influence of the contact parameters, constraints, excitation level, and time influence on the 

dynamic response of a jointed structure requires an extensive test campaign devoted to the measurement 

and control of the static loads distribution determined by the initial assembly and to the vibratory response 

during operation (transient and forced response). The reader is invited to look at the two literature reviews 

[1,2] for a wide state of the art on this topic. More recent literature on the topic can be found in terms of 

proceedings of IMAC Congress, Session ‘Joints, Friction & Damping’ and the database of the ASME Research 

Committee on the Mechanics of Jointed Structures available at the link http://joints.rice.edu/ and [3]. 
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                    (a)             (b) 

                                             
Fig.1 Example of an engine casing with lap and flange joints (a) and hook lap joints of stator 

vane segments (b) 
 

The fast improvement of the computer performance in the recent past years leads industries to build FE 

models with highly refined meshes for structural analysis [4]. Although this practice is suitable for 

conventional static analyses of specific parts, modal and mode superposition harmonic analyses do not 

require such ultra-refined meshes and the dynamics predictability benefits from the high performance 

computation when it is used to extend the study to large systems made by many components. The final result 

is a large structural problem having multiple wide contact areas that is difficult to solve when the nonlinear 

dynamic behavior is considered due to the presence of large contact interfaces [5, 6]. Modeling mechanical 

components with FE makes in fact convenient the choice of node-to-node contact elements [7] to simulate 

the mutual interaction of two surfaces in contact [8-11].  However, the same choice might lead to expensive 

or even unfeasible numerical simulations when the nonlinear equations of motion of a huge set of contact 

degrees of freedom are solved in a conventional way (e.g. by using commercial FE software). In the past few 

years the drawback of simulating contact on regions with a high density of DoFs has been faced by employing 

solution strategies involving interface reduction methods [12-14]. These usually allow a modal 

representation of the contact interface displacements by achieving a remarkable compression on the number 

of nonlinear DoFs, but still preserving the interface flexibility [15]. Similar methods falling in the class of 

Component mode synthesis (CMS) can also be applied in multibody analysis in order to consider the nonlinear 

behavior of a complex mechanical assembly in the presence of large frictional joints [16,17]. Recently, the 

Gram-Schmidt Interface (GSI) method [18] has been proved to be well suited for dynamical problems 

involving large contact interfaces with a high density of DoFs [19,20].  

In this paper a new, simple, test rig is presented to collect a database of nonlinear frequency response 

functions. The experimental test case consists of two rectangular beams held together by means of 

permanent magnets, choice that has been made to remove the experimental uncertainties typical for a 

mechanical assembly with boltings. Advantages and limitations of permanent magnets application are 

discussed, and a separate procedure to calibrate the magnet performance in terms of attractive force is 

presented.   

The GSI method is then combined with a node-to-node contact elements [7] to predict the experimental 

nonlinear behavior of the two-beams assembly. The performance of the GSI method is then discussed with 

respect to that of a conventional approach, i.e. a transient nonlinear analysis performed on commercial FE 

software. 
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2 Experimental test rig 
 
Simple structures have been already presented in literature as academic test rigs usually made by a set of 
beams coupled together aimed at highlighting the effect of bolted joints on the dynamics of the system [21-
25]. The purpose of the test rig presented in this paper aims at reproducing the phenomenon of nonlinear 
damping due to friction for large contacts in order to fulfill the following requirements: 

• The design of the test rig must be as simple as possible in order to clearly capture the isolated effect 

of friction contact in measurements and avoid high production costs.  
• The assembly of the test article (i.e., the structural parts producing the friction contact and the 

contact pre-load) must be the simplest as well in order to emphasize the effect of the friction contact 
with respect to other secondary interfaces, e.g. fixtures to the ground. 

• For educational and dissemination purposes, by means of the previous requirements, the complexity 
of the structure must be simple enough to be a transportable, academic, demonstrator of the effect 
of friction joints on the vibratory response of mechanical structures. 

 
The best compromise among these requirements led to the test article shown in Fig. 2. The test article is 
composed of two beams having a rectangular section (400 x 30 x 3 mm) made of aluminum kept in contact 
together by means of cylindrical permanent magnets (diameter 17 mm, height 10 mm) that are glued on the 
two aluminum beams. 
 

 
Fig.2 The test article geometry. 

 
In this way the presence of typical locking elements like bolting are avoided in order to prevent any 
uncertainty in the preload generated by tightening. Moreover, frictional dissipation produced by threads and 
contact between head/nut and the beams’ outer surfaces is avoided as well as the discontinuity on the 
beams’ surfaces represented by holes. Damping is produced by the friction contact of the two flat surfaces 
only. The choice of the permanent magnets is due to the good accuracy of the level of magnetization which 
corresponds to a given repulsive/attractive force produced by magnets of the same class (N52) and shape. 
Some drawbacks can be highlighted from this design: permanent magnets can not be placed too close each 
other due to their lateral mutual interaction. A distance of 50 mm between their axes is used for the 
assembly. Then, attention must be paid for the choice of the glue between magnets and beams: due to the 
low bending stiffness of the beams, glued magnets can accidentally disassemble from the beams during test 
bench set up. Since permanent magnets are made of brittle material, an uncontrolled release of the magnets 
can potentially break them likely, leading to an uncontrolled failure chain due to the strong mutual attractive 
forces. Lastly, the contact pressure that can be achieved using permanent magnets is much lower than that 
possible using bolts. 
The force produced by the magnets is measured by a purposely developed test rig shown in Fig. 3 which can 
measure both the attractive and repulsive force of two permanent magnets facing each other. Two load cells 
instrumented with strain gauge, Wheatstone bridges, measure the attractive force. One sliding plate moves 
the upper magnet along the vertical direction to measure the force at different air gaps, another sliding plate 
can move the lower magnet along the horizontal direction to compensate possible misalignment of the 
magnets. Figure 4 shows the attractive force by varying the air gap for the magnets that have been used.  
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Fig.3 test rig for the static force 
measurement produced by a couple of 

permanent magnets (circled in red). 

 
Fig.4 attractive force vs. gap diagram. 

 
As a preliminary experimental activity, hammer tests are performed on the single beam and on the 
assembled structure (Fig. 5 a and b, respectively), in free-free condition, in order to identify natural 
frequencies, modal damping and mode shapes.  
 

(a) 

 

(b) 

 
 

Fig.5 Hammer test, free-free condition: (a) single beam, (b) assembled system. Different rubber bands 
have been used to verify measurements do not depend on the constraints. 

 
Results of the two tests are shown in Fig.6 a and b where it is possible to see the first natural frequency of 
the first bending mode is around 67 Hz for the single beam, and around 127 Hz for the two-beams assembly. 
These results will be used for the model update in the simulation phase. The half-power method is used on 
the single beam to identify the modal damping ratio equal to 0.006 for the first mode, this value will be used 
later for the simulation. Low repeatability and noisy measurements for the assembly are mainly due to two 
reasons: (i) the excitation of the system by hammer is difficult in the presence of permanent magnets 
attracting the hammer (double hit can occur and the impact point is not precise) and (ii) the damping 
produced by the large coupling of the two beams at the contact interface results in a very fast decay of the 
transient vibration. 
In order to characterize the effect of friction damping on the dynamics of the system, the two-beam assembly 
is excited sinusoidally by means of a shaker as shown in Fig.7 (a). The shaker is used as a shaking table, the 
relative low weight of the assembly allows for the unusual use of the shaker without external constraints. In 
this way the test rig has no constraint to a fixed ground and the damping is only due to the contact surface 
between the beams. The effect of the small screw connecting the assembly to the shaker on the nonlinear 
dynamic response is considered negligible with respect to the effect of friction produced by the wide contact 
surface. Stepped sine testing is used to measure the Forced Response Function (FRF) in terms of inertance, 
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the acceleration is measured by means of an accelerometer placed close to the central constraint as shown 
in Fig.7 (b). 
 

(a) 
 

 

(b) 
 

 
Fig.6 Experimental forced response functions, hammer test, free-free condition: (a) single beam, (b) 

assembled system (two different averaged measurements are shown).  
 
Different excitation amplitudes are used (0.2 N to 10 N), the minimum value is chosen due to a limitation of 
the control system that does not allow for an accurate control when the excitation amplitude is too low, the 
maximum value is chosen to keep the structural integrity of the test article by limiting the vibration 
amplitudes. 
Results of the test campaign are shown in Fig.8 a and b. As expected, the typical behavior of frictionally 
damped structures is clearly visible: as the excitation amplitude increases the vibration amplitude at 
resonance decreases as well as the resonant frequency. 
 

(a) 

 

(b) 
 
 

 
 

 
Fig.7 Excitation system (a) and measurement system (b). A load cell is placed between the assembly and 

the shaker for force controlled, step sine measurements. 
 
Different trends are obtained in sweep up and sweep down tests in the region of the steep increase (sweep 
up) or steep decrease (sweep down) of the response for the two highest excitation amplitudes (8 N and 10 
N) while the resonant amplitude is the same. This phenomenon will require further study in the future since 
it seems not to be related to the jump phenomenon because the response is continuous, and the force is 
regularly controlled. Further investigations should consider the possibility of a step sine measurement 
dependence on previous steps (time delay between one step and the other before sample recording, 
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Proportional Integral Derivative force control strategy) and the reliability of the constraint of the system with 
the shaker for high excitation loads (bolt loosening after several test repetitions). 
 

(a) 

 

(b) 

 
Fig.8 FRFs for 0.2 N – 4 N excitation amplitudes (a) and FRFs for 6 N - 10 N excitation amplitudes. 

    
3 Reduction technique of large contact surfaces by means of GSI modes 
 
The GSI method solves the problem of giving a modal representation of an arbitrary set of physical DoFs by 
leaving all the others in the physical space. In other words, the GSI method is used to project a specific set of 
physical DoFs on a modal base, usually those at the interfaces, that can be later used to solve specific 
problems (substructures coupling, contact simulation in the case of joint interface). 
 
Let us assume to partition the generalized coordinate vector of a certain component as follows: 
 

𝒙 = {
𝒙𝑚
𝒒𝑠
}                                                                                        (1) 

where: 
 

• 𝒙𝑚 is the vector of the 𝑛𝑚  master DoFs, i.e. a set of physical DoFs used to perform the dynamic 
analysis. In this study, 𝒙𝑚 collects a set of 𝑛𝑖  interface DoFs 𝒙𝑖 and possibly some others 𝑛𝑜  physical 
DoFs 𝒙𝑜 (𝒙𝑚 = [𝒙𝑖

𝑇  𝒙𝑜
𝑇]𝑇 , so that 𝑛𝑚 = 𝑛𝑖 + 𝑛𝑜). Note that 𝒙𝑜 becomes an empty vector if no 

other physical DoFs are required to perform the analysis except the interface ones. 
 

• 𝒒𝑠 is the vector of the 𝑛𝑠 modal DoFs which exists just if a priori Component Mode Synthesis (CMS) 
scheme (e.g. Craig-Bampton, Rubin [26]) is applied to the FE matrices. 

 
According to the partitioning adopted in Eqn. 1, the undamped equations of motion (EQM) of the component 
can be written as: 
 

[
𝑴𝑚𝑚 𝑴𝑚𝑠

𝑴𝑠𝑚 𝑴𝑠𝑠
] {
𝒙̈𝑚
𝒒̈𝑠
} + [

𝑲𝑚𝑚 𝑲𝑚𝑠
𝑲𝑠𝑚 𝑲𝑠𝑠

] {
𝒙𝑚
𝒒𝑠
} = {

𝒇𝑚
𝒇𝑠
}                                             (2) 

 
By solving the eigenproblem defined by the partitions 𝑲𝑚𝑚  and 𝑴𝑚𝑚  a set of 𝑛𝑚  eigenvectors called 
Characteristic Constraint modes is obtained [27]. These can be arranged for increasing eigenvalues as the 
columns of the following modal matrix: 

     𝜱𝑚𝑚 = [𝝋1  ⋯ 𝝋𝑛𝑚]                                                                   (3) 

 

mailto:christian.firrone@polito.it


 
 Corresponding author: Christian Maria Firrone christian.firrone@polito.it                VIB-20-1263              7 
 

The modal matrix of Eqn. 3 would allow for a coordinate transformation of all the master DoFs. If a coordinate 
transformation is desired just for the subset 𝒙𝑖, 𝚽𝑚𝑚 has to be partitioned as follows: 
 

     {
𝒙𝑖
𝒙𝑜
} = [

𝜱𝑖𝑖 𝜱𝑖𝑜

𝜱𝑜𝑖 𝜱𝑜𝑜
] {
𝒒𝑖
𝒒𝑜
}                                                             (4)                                    

 

where 𝒒𝑖  and 𝒒𝑜 are two arbitrary set of modal coordinates with size 𝑛𝑖 and 𝑛𝑜 respectively. Previous studies 
on the GSI method proved that performing a Gram-Schmidt orthonormalization [28] on the columns of 𝚽𝑖𝑖 
produces a good reduction basis for the physical partition 𝒙𝑖 [18]. 
 
The nonlinear EQM of a structure with contact interfaces can be written as: 
 

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙(𝑡) = 𝒇𝑒(𝑡) − 𝒇𝑛𝑙(𝑥, 𝑥̇, 𝑡)                                     (5)                                    
 
where 𝑴, 𝑪 and 𝑲 are the reduced mass, damping and stiffness matrices, 𝒙 is the reduced vector of DoFs, 
𝒇𝑒 and 𝒇𝑛𝑙  the corresponding vectors of the external and nonlinear contact forces. When the steady state 
response is of interest, it is common to solve the former EQM in the frequency domain. Due to the periodicity 
of 𝒇𝑒, the displacements and nonlinear contact forces can be written according to the following Fourier 
series: 
 

𝒙(𝑡) = ℝ(∑𝑿(ℎ) ∙ 𝑒𝑖𝜔ℎ𝑡

𝑛ℎ

ℎ=0

) 

 

𝒇𝑛𝑙(𝑥, 𝑥̇, 𝑡) = ℝ(∑𝑭𝑛𝑙
(ℎ) ∙ 𝑒𝑖𝜔ℎ𝑡

𝑛ℎ

ℎ=0

)                                                  (6) 

 

where 𝑿(ℎ) and 𝑭𝑛𝑙
(ℎ) are the ℎ𝑡ℎ order Fourier coefficients of the displacements and contact forces 

respectively, 𝜔 is the circular frequency and 𝑛ℎ is the number of retained harmonics. Assuming the multi-
harmonic representation of Eqn. 6, Eqn. 5 can be turned into a set of nonlinear, complex, algebraic equations: 
 

𝑫(ℎ)𝑿(ℎ) = 𝑭𝑒
(ℎ) − 𝑭𝑛𝑙

(ℎ),           ∀ ℎ = 0,⋯, 𝑛ℎ                                     (7)    
 

where 𝑫(ℎ) = 𝑲+ 𝑖𝜔ℎ𝑪 − (𝜔ℎ)2𝑴 is the ℎ𝑡ℎ  order dynamic stiffness matrix. Note that Eqn. 7 can not 
be solved analytically due to its nonlinear nature but has to be solved iteratively for the multi-harmonic 

unknown amplitudes 𝑿(ℎ). 
Let us assume to consider a structure consisting of two substructures identified by the left superscript (1) 

and (2). Moreover, let the number of DoFs at the contact interfaces be the same, i.e. 𝑛𝑖
(1)
= 𝑛𝑖

(2)
= 𝑛𝑖. Under 

these assumptions, the global mass and stiffness matrices and the vectors of Eqn. 7 can be expressed as: 
 

𝑴 =

[
 
 
 
 
 𝑴𝑖𝑖
(1)

𝑴𝑖𝑜
(1)

𝑴𝑜𝑖
(1)

𝑴𝑜𝑜
(1)

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝑴𝑖𝑖
(2)

𝑴𝑖𝑜
(2)

𝑴𝑜𝑖
(2)

𝑴𝑜𝑜
(2)

]
 
 
 
 
 

          𝑲 =

[
 
 
 
 
 𝑲𝑖𝑖
(1)

𝑲𝑖𝑜
(1)

𝑲𝑜𝑖
(1)

𝑲𝑜𝑜
(1)

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝑲𝑖𝑖
(2)

𝑲𝑖𝑜
(2)

𝑲𝑜𝑖
(2)

𝑲𝑜𝑜
(2)

]
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𝑿(ℎ) =

{
 
 

 
 𝑿𝑖

(ℎ)(1)

𝑿𝑜
(ℎ)(1)

𝑿𝑖
(ℎ)(2)

𝑿𝑜
(ℎ)(2)
}
 
 

 
 

          𝑭𝑒
(ℎ) =

{
 
 

 
 

0

𝑭𝑒,𝑜
(ℎ)(1)

0

𝑭𝑒,𝑜
(ℎ)(2)

}
 
 

 
 

         𝑭𝑛𝑙
(ℎ) =

{
 
 

 
 𝑭𝑛𝑙,𝑖

(ℎ)(1)

0

𝑭𝑛𝑙,𝑖
(ℎ)(2)

0 }
 
 

 
 

                         (8) 

 

Since 𝑭𝑛𝑙
(ℎ) only depends on the relative displacements at the contact interface, the number of nonlinear 

algebraic equations corresponding to the interface DoFs can be halved by employing the coordinate 
transformation from absolute to relative displacements at the contact interface. By defining the relative 
displacement vector at the contact interface as: 
 

𝑿𝑖
(ℎ)(𝑟)

= 𝑿𝑖
(ℎ)(1)
− 𝑿𝑖

(ℎ)(2)
                                                                 (9) 

 

the vector 𝑿(ℎ) becomes: 

𝑿(ℎ) =

{
 
 

 
 𝑿𝑖

(ℎ)(1)

𝑿𝑜
(ℎ)(1)

𝑿𝑖
(ℎ)(2)

𝑿𝑜
(ℎ)(2)
}
 
 

 
 

= [

𝑰 𝟎

𝟎 𝑰

𝑰 𝟎

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎

𝑰 𝟎

𝟎 𝑰

]

{
 
 

 
 𝑿𝑖

(ℎ)(𝑟)

𝑿𝑜
(ℎ)(1)

𝑿𝑖
(ℎ)(2)

𝑿𝑜
(ℎ)(2)
}
 
 

 
 

= 𝑹𝑿𝑟
(ℎ)                               (10) 

 
where 𝑹 is the coordinate transformation matrix. By projecting Eqn. 7 onto the space spanned by the 
columns of 𝑹, the following system of equations is obtained:  
 

𝑹𝑇𝑫(ℎ)𝑹𝑿𝑟
(ℎ) = 𝑹𝑇𝑭𝑒

(ℎ)
−𝑹𝑇𝑭𝑛𝑙

(ℎ)
,           ∀ ℎ = 0,⋯, 𝑛ℎ                                (11) 

 

From Eqn. 11 it can be realized that 𝑭𝑒
(ℎ) remain unchanged despite the pre-multiplication by 𝑹𝑇, while 

𝑭𝑛𝑙
(ℎ) becomes: 

 

𝑭𝑛𝑙,𝑟
(ℎ) = 𝑹𝑇𝑭𝑛𝑙

(ℎ) = [

𝑰 𝟎
𝟎 𝑰

𝟎 𝟎
𝟎 𝟎

𝑰 𝟎
𝟎 𝟎

𝑰 𝟎
𝟎 𝑰

]

{
 
 

 
 𝑭𝑛𝑙,𝑖

(ℎ)(1)

𝟎

𝑭𝑛𝑙,𝑖
(ℎ)(2)

𝟎 }
 
 

 
 

=

{
 
 

 
 𝑭𝑛𝑙,𝑖

(ℎ)(1)

𝟎

𝑭𝑛𝑙,𝑖
(ℎ)(1)
+ 𝑭𝑛𝑙,𝑖

(ℎ)(2)

𝟎 }
 
 

 
 

= {

𝑭𝑛𝑙,𝑖
(ℎ)(1)

𝟎
𝟎
𝟎

}      (12) 

 

meaning that the Fourier coefficients of the contact forces 𝑭𝑛𝑙,𝑖
(ℎ)(1)

 and 𝑭𝑛𝑙,𝑖
(ℎ)(2)

 are equal in amplitude 

but opposite in sign. In this way the number of nonlinear EQM finally decreases from 2 × 𝑛𝑖  to 𝑛𝑖. 
 
Due to the large extension of the contact interfaces, a further reduction of the DoFs can be achieved by 
employing the GSI method. If 𝜱𝑖𝑤 is a 𝑛𝑖 × 𝑛𝑤  reduced basis of GSI interface modes with 𝑛𝑤 ≪ 𝑛𝑖 , the 

vector 𝑿𝑟
(ℎ) can be approximated as: 

 

{
 
 

 
 𝑿𝑖

(ℎ)(𝑟)

𝑿𝑜
(ℎ)(1)

𝑿𝑖
(ℎ)(2)

𝑿𝑜
(ℎ)(2)
}
 
 

 
 

= [

𝜱𝑖𝑤 𝟎
𝟎 𝑰

𝟎 𝟎
𝟎 𝟎

   𝟎   𝟎
   𝟎   𝟎

𝑰 𝟎
𝟎 𝑰

]

{
 
 

 
 𝑸𝑤

(ℎ)(𝑟)

𝑿𝑜
(ℎ)(1)

𝑿𝑖
(ℎ)(2)

𝑿𝑜
(ℎ)(2)
}
 
 

 
 

= 𝑮𝑿𝑟,𝐺𝑆𝐼
(ℎ)                                (13) 
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where 𝑸𝑤
(ℎ)(𝑟)

 is the vector of the complex amplitudes corresponding to the GSI modal coordinates 𝒒𝑤
(𝑟)

. 

By projecting each Eqn. 11 onto the space spanned by the columns of 𝑮, the following reduced order model 
is obtained: 
 

𝑮𝑇𝑹𝑇𝑫(ℎ)𝑹𝑮𝑿𝑟,𝐺𝑆𝐼
(ℎ) = 𝑮𝑇𝑹𝑇𝑭𝑒

(ℎ)
− 𝑮𝑇𝑹𝑇𝑭𝑛𝑙

(ℎ)
,           ∀ ℎ = 0,⋯, 𝑛ℎ               (14) 

 
with  
 

𝑮𝑇𝑹𝑇𝑭𝑛𝑙
(ℎ)

= {

𝜱𝑖𝑤
𝑇 𝑭𝑛𝑙,𝑖

(ℎ)(1)

0
0
0

}                                                                    (15) 

 

where the term 𝜱𝑖𝑤
𝑇 𝑭𝑛𝑙,𝑖

(ℎ)(1)
 represents the vector of modal contact forces in the GSI space.  Although 

the complex amplitudes 𝑭𝑛𝑙,𝑖
(ℎ)(1)

 are always computed in the space of the physical DoFs, these are 

introduced into the EQM in a reduced form. This procedure allows a faster solution of the nonlinear partition 
of Eqn. 14, that otherwise would be computationally expensive as in the case of Eqn. 11. 
 
The strategy used to build the reduced basis of 𝜱𝑖𝑤 is later discussed since it strictly depends on the physics 
behind the contact phenomena at the interfaces between the substructures.  
 

4 Application of the methodology and comparisons with measurements 
 
Simulations are performed with the FE model of the same system presented in the previous section for 
numerical/experimental comparison purposes. First, a mesh convergence study is performed. Since time 
domain analysis is one of the activities planned for the simulation of the effect of friction damping on the 
dynamics of the two beam assembly, a compromise between number of elements and mesh convergence is 
found. The final FE model is discretized with 20-node hexahedral elements with the following material 
properties: aluminum Young’s modulus E = 64.72 GPa, magnets Young’s modulus E = 6.472 GPa, aluminum 
density 2800 kg/m3, magnets density 8951 kg/m3, Poisson’s ratio 0.33. The single beam FE model has 52463 
elements and 89140 nodes, while the assembled system with merged nodes at the contact interface consists 
of 104926 elements and 172130 nodes. The total number of contact nodes is equal to 2080, which 
corresponds to 6240 DoFs. A model update is performed by using hammer tests previously carried out on 
the single beam in free-free condition. Table 1 shows the relative percentage error obtained in the two 
configurations. It is possible to see that the comparison for the full assembly shows a higher positive 
percentage error due to the partially separated contact surfaces in the physical assembly. 

 

Table 1 

 Natural frequency FEM Natural frequency exp. % error wrt experiments 

Single beam 68.2 Hz 66.7 Hz 2.2 % 

Assembled system 126.5 Hz 117 Hz 8.1 % 

 
In order to perform the nonlinear calculation in the presence of friction damping, a layer of uniformly 
distributed contact elements is defined. The choice of placing contact elements through all the nominal 
contact area comes from the following considerations: 
 

1) for a general application where also gaskets are inserted in a bolted flange, contact elements must 
be used through all the surface since local separations are, in this specific case, not expected to 
prevent leakage; 
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2) From a practical point of view, it is easier to uniformly distribute contact elements over the contact 
surface rather than select potential contact areas; 

3) An optical topography measurement of the contact surfaces is performed based on focus variation. 
Three regions (30 mm x 4 mm wide) covering an area which is partly directly subjected to the 
pressure of the magnet (under the circular area of the magnet) are selected (Fig.9, grey dashed 
rectangle). Nine paths, each 4-millimeter long, are selected inside the two areas (red lines of Fig.9) 
to measure the roughness and the actual percentage of contact surface according to EN ISO 
4287/4288. The average roughness is 1.14 μm (0.13 standard deviation) corresponding to a fine 
surface finishing. A typical Firestone-Abbott curve obtained by data processing is shown in Fig.10. 
The depth corresponding to Svk can be interpreted as the valley depth below the core material while 
the percentage of area defined by Rmr,2 indicates the area that will carry the load. The average value 
of Rmr,2 is 91%. 3D scan can be used to define specific contact models taking into account meso- 
and micro-scale properties of the surface as shown in [29] where tractions in the normal and 
tangential directions and corresponding stiffness are based on the equivalence of the asperities to 
the Hertzian contact. In this study, the morphology evaluation only indicated a pretty flat surface, 
potentially subjected to an almost complete contact under the preload. Furthermore, it showed the 
same properties both in the region directly involved in the contact and the rest of the area, 
unmodified by the tests due to the low amount of the preload and the low number of cycles produced 
during step sine tests.   
 

 
 
 
 
 
 
 
 

Fig.9 Regions involved in the topography measurement (grey areas) and paths for the roughness 
measurement (red segments). 

 

 
Fig.10 Example of the Firestone-Abbott curve measured for one segment measurement. 

 
 
 

4.1 Numerical simulation of the full FE model by Time Domain Analysis (TDA) 
 
Before applying the methodology introduced in this paper, a preliminary simulation of the forced response 
in the time domain by integrating the equation of motion is presented. Time Domain Analysis (TDA) is a 
standard approach that is possible to develop in a FE commercial software to simulate the nonlinear effects 
due to friction contacts during dynamic excitation. FE element commercial software offer simplified 
procedures and specific tools to deal with contact problems in order to help the user to correctly set up the 
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boundary conditions of the problem (pre-processing) and to monitor the outcomes of the simulation (post-
processing). A layer of surface-to-surface CONTA174-TARGE170 elements are used in Ansys to benefit of the 
specific tools available in the software dealing with contact problems. First, a static nonlinear analysis is 
performed in Ansys to calculate the initial preload on the contact surface produced by the application of the 
eight couples of permanent magnets. The FE model used to perform this analysis is that shown in Fig.15, 
where the   beams and magnets are meshed by using brick elements with the previously declared material 
properties. Lagrange multiplier formulation is applied on the contact surfaces. A value of 38 N compressive 
force is used for each couple of magnets as suggested by the measured map shown in Fig.3 (6 mm air gap) 
by dividing it by the number of nodes of the top circular area of the magnet and applying it in the same area 
as a set of equivalent nodal forces. It is possible to see from Fig.11 that the preload is far from a uniform 
distribution. In particular, a partially separated, receding, contact is clearly visible.  As defined in [30], a 
receding contact is a contact “where the application of a normal load causes a reduction in the size of the 
contact”. In this case, the large compliance of the beams induces separation in the contact regions that are 
not directly pressed by the permanent magnets.  
 

 
 

Fig.11 Contact pressure distribution and deformed shape at the contact showing the receding contact 
(values are in Pascal).  

 
Augmented Lagrange formulation is then used to solve the transient response contact problem since the 
pure Lagrange multiplier did not allow to achieve a converged solution. Although the Augmented Lagrange 
formulation allows for a more robust convergence of the solution, it requires the definition of several contact 
parameters, the most important among them are the penalty stiffness along the normal and tangential 
direction (respectively FKN and FKT coefficients). These values can be defined as absolute or relative values 
with respect to the core material properties, a sensitivity study was performed and shown in Fig.12 by 
applying a harmonic displacement in a group of nodes located in correspondence of the screw connecting 
the system to the shaker. The time response of a node located on the free end of the upper beam is plotted 
when FKN (upper plot) and FKT (lower plot) are varied. It is possible to see the difference of the amplitude of 
the steady solution varies less than 10%. 
A series of transient simulations are performed by exciting the system with a harmonic force in 
correspondence of the stinger that is connected to the beams for several excitation frequencies in order to 
reconstruct the forced responses. A damping factor proportional to the stiffness matrix is defined. Starting 

from the definition of the modal damping ratio associated to the r-th mode: 𝜁𝑟 = 𝛼
1

2𝜔𝑟
+ 𝛽

𝜔𝑟

2
  , 𝛼 is 

arbitrarily set to 0 and 𝛽 is calculated since 𝜁1 and 𝜔1 are known for the first mode. The choice for the friction 
coefficient is subjected to a sensitivity analysis (0.6 , 0.7 , 0.8) and a value of 0.7 is used for the results shown 
in this section. The same value will be used for the calculation in the frequency domain. 
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Fig. 12 sensitivity study of FKN and FKT penalty 
stiffness 

  
The order of magnitude of the time required for a single simulation at a given excitation frequency is 10 
hours. The comparison with the experimental measurements is shown in Fig.13 a) and b) for two excitation 
force amplitudes, 0.6N and 2N. The continuous line of the TDA plots connects dot markers that represent the 
steady state response amplitudes that were actually calculated. Although the simulated peak amplitudes 
agree well with the measured ones the resonant frequency is not predicted correctly. Further investigation 
on the effect of the number of contact elements, mesh refinement, different contact formulation, and 
variation of the contact parameters is suggested to understand the reason for this difference. The simulations 
presented here are not meant for a direct comparison with the simulations obtained in the frequency domain 
using the Reduced Order Model (ROM) described in the previous section. It only proves that the simulation 
of a wide friction contact with standard approaches allowed by FE software may be computationally 
prohibitive and not fully satisfactory in terms of predictability of the forced response.  
 

a) 

 

b) 

 

Fig.13 Comparison between TDA and experimental measurements: a) 0.6N and b) 2N excitation 
amplitudes. 
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4.2 Numerical simulation with reduced order modelling by Frequency Domain Analysis (FDA) 
 
The methodology introduced in this paper is now applied. Different steps of reduction are employed in order 
to achieve a significant discount on the expected computational costs. First, by looking at Fig.14 and 15, it 
can be noted the presence of a symmetry plane for the test case geometry and the mode shape under 
consideration.  
  

 
Fig.14 Schematic view of the experimental test rig.  

 

 
 

Fig.15 First mode shape of the assembly according to a modal analysis performed with Ansys  
 
By exploiting the mentioned symmetry, it can be easily realized that just half of the FE model is sufficient to 
perform the same dynamic analyses without losing accuracy in the results. In particular, the part of the FE 
model retained for the dynamic analyses goes from the location where the beams are excited by the shaker 
to one of their free ends. In order to satisfy the kinematic conditions required by the mode shape of Figure 
15, the removed part is replaced with a set of supports reacting along the y-axis (axis of the beams), applied 
at all the nodes belonging to the symmetry plane (Figure 16). The result of this process is exactly a 50% 
decrease on the number of nonlinear DoFs (i.e. from 6240 to 3120).  
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Fig.16 Symmetry plane used for the simulation 

 
Second, the two half-beams are reduced according to the CMS-Craig Bampton technique by using a standard 
procedure in Ansys APDL. For each half beam the retained master DoFs are those highlighted in Fig.17,  i.e. 
the set of 351 active DoFs lying on the symmetry plane that are used to apply the shaker excitation and 3120 
DoFs at the contact interface. 
 

 
Fig.17 Set of master nodes retained for CMS-Craig Bampton reduction. 

 
Third, the Craig-Bampton stiffness and mass matrices are imported in Matlab, constraints on the symmetry 
plane are included in order to prevent rigid body motion along the Y direction. A further reduction of the 
interface DoFs can be achieved by the GSI method and the nonlinear calculations in the frequency domain 
performed with the Harmonic Balance Method. 
Before showing the applications of the GSI method, some considerations on the contact state at the interface 
are needed in order to proceed with the choice of the GSI modal basis. 
 
4.2.1 GSI modal basis selection 
 
Depending on the nature of the external excitation, preload and contact parameters, the system’s response 
usually follows the typical trend of the slip-stick nonlinear phenomenon (Figure 18). 
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Fig.18 Stick-slip phenomenon in the frequency domain: for a fixed value of the normal preload an 

increase of the excitation amplitude F0 shifts the resonance towards the free response. 
 
For a fixed value of the static preload, an increase of the external load has the effect of shifting the resonant 
frequency towards lower values, moving from the full-stick condition (i.e. no sliding occurs during the whole 
vibration cycle) to the free condition (i.e. when contact occurs during the whole vibration cycle). Similarly, 
for a fixed value of the external load, the system response moves from the full-stick to the free condition 
when the static preload decreases. It is also quite crucial understanding the nature of the structure’s mode 
shapes for these two extreme conditions: in the free case, the mode shapes coincide to those of the isolated 
beam, while in the fully stuck case the mode shapes are those of the coupled structure.  
According to the previous observations, the contact DoFs might be approximated with a basis of GSI modes 
that has to well describe the interface motion for both the free and full-stick configurations. In [19-20] 
authors have found that a reliable approximation of the displacement field at the contact interface can be 
achieved by combining the GSI modes obtained for non-contacting (i.e. free, Fig.19 left) and stick conditions. 
In particular, the mentioned GSI basis is created by applying the mathematical procedure defining 𝜱𝑖𝑤 to 
two sets of linear matrices: 
 

• the free matrices 𝑴𝑟,𝑓𝑟  and 𝑲𝑟,𝑓𝑟 (Fig. 14 left) obtained by just applying the coordinate 

transformation of Eqn. 10 to the mass and stiffness matrix of Eqn. 8; 
 

• the full stick matrices 𝑴𝑟,𝑓𝑠  and 𝑲𝑟,𝑓𝑠 defined as: 

 

𝑴𝑟,𝑓𝑠 = 𝑴𝑟,𝑓𝑟           {
𝑲𝑓𝑠 = 𝑲+ 𝑲𝑙𝑖𝑛𝑘

𝑲𝑟,𝑓𝑠 = 𝑹
𝑇𝑲𝑓𝑠𝑹

                                                          (16) 

 

where 𝑲𝑙𝑖𝑛𝑘 performs the assembly of the matrices 𝑲
(1)

 and 𝑲
(2)

 by means of a set of node-to-node springs 

having the same stiffness values that are used for the contact elements (Fig. 19 right). In this way, two bases 

of non-GSI modes are obtained (𝜱𝑖𝑖 of Eqn. 4), i.e. 𝜱𝑖𝑖
𝑓𝑟  and 𝜱𝑖𝑖

𝑓𝑠 from the free and full-stick models 

respectively. The strategy adopted to accomplish the mentioned task is based on the definition of a reduction 

basis with 𝑛𝑤 ≪ 𝑛𝑖  modes kept from the bases 𝜱𝑖𝑖
𝑓𝑟  and 𝜱𝑖𝑖

𝑓𝑠: 

 

𝜱𝑖𝑤 = [𝜱𝑖𝑤𝑓𝑟

𝑓𝑟 𝜱𝑖𝑤𝑓𝑠

𝑓𝑠
]                                                                    (17) 
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where the subscripts 𝑤𝑓𝑟  and 𝑤𝑓𝑠 denote the number of modes (even unequal) retained from each basis, i.e. 

𝑛𝑤𝑓𝑟  and 𝑛𝑤𝑓𝑠 for 𝜱𝑖𝑤𝑓𝑟

𝑓𝑟
 and 𝜱𝑖𝑤𝑓𝑠

𝑓𝑠
 respectively. The final GSI reduction basis is therefore obtained by 

performing a Gram-Schmidt orthonormalization on the non-GSI basis 𝜱𝑖𝑤, which ensures linear 
independency for all the collected modes. In [19] it has been also proved that 𝜱𝑖𝑤 can properly represent 
the kinematics at the contact interface in the case of local separation which leads to the jump phenomenon 
in the forced response. 
A convergence analysis similar to that carried out in [19] assessed that 50 is the minimum number of GSI 
modes for a satisfactorily approximation of the kinematics at the contact interface between the beams. 25 
GSI modes were obtained assuming a free boundary condition at the contact interface, while the remaining 
25 correspond to the full-stick condition.  
 
 
 

 
Fig.19 Coupling is absent in the free condition (left figure) while contact stiffnesses link linearly the two 

beams in the full stick condition (right figure, links are also applied along the y direction but are not 
shown here for clarity). 

 
4.2.2 Nonlinear calculation and comparison with experimental measurements 
 
Two strategies can be implemented to take into account the friction effects at the surface: node-to-node 
contact elements like Jenkins contact elements used all over the surface as in [31], or purposely developed 
contact models (taking into account the particular kinematics of the assembly or the nature of the joint) in 
order to reduce the level of complexity in the simulation of the friction nonlinearity, see for instance [6], and 
[32] where the whole joint approach is presented. In this paper, the first strategy is used. The contact model 
is a node-to-node 2D contact element allowing for variable normal load and 1D tangential slipping [7]. The 
contact model's parameters are represented by the tangential and normal contact stiffnesses, kt and kn 
respectively, the friction coefficient 𝜇 and the normal preload 𝑓0. Two approaches for the definition of the 
contact stiffness can be used, they can be directly experimentally identified [33] or the values can be 
retrieved according to a global tuning with the dynamic response of the vibrating system. In this paper the 
second approach is used. The tangential and normal contact stiffness are here defined as kt = kn and their 
value is chosen in order to obtain the value of the first resonant frequency that is experimentally measured 
by means of the hammer test for very low excitation amplitudes (Fig. 6b, 117 Hz), a friction coefficient of 0.7 
as in TDA is used in this analysis. 
Two contact elements are placed orthogonally for the same couple of mating nodes in order to take into 
account 2D planar motion. However, bending vibrations along the length of the beams is expected due to 
the type of excitation and the frequency range of the tests. The analytical Jacobian including the partial 
derivatives of the contact forces with respect to the relative displacements is implemented [8]. The structural 
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damping matrix is defined, like in the TDA, as proportional to the stiffness matrix and the identified modal 
damping ratio for the first mode is used.  
Simulations are performed using the same excitation amplitudes that are used in the test campaign. The 
pressure distribution shown in Fig.11 is imported in the contact model as equivalent nodal forces (one per 
contact pair) for the dynamic nonlinear calculation of the FRF. In the region where separation occurs a 
negative value of preload equal to the gap multiplied by the normal contact stiffness is introduced. Nonlinear 
dynamic calculations are performed with a number of harmonics equal to 3. The order of magnitude of time 
requested by the presented methodology to calculate a single FRF is less than 10 minutes instead of 10 hours 
needed for the TDA, depending on the number of contact elements that are actually in a slip-stick alternating 
state and the frequency band-width where slipping phenomena occur within the selected frequency range. 
In Figures 20-a to 20-d, four comparisons are shown between simulations and experiments. In detail, low 
excitation amplitude (0.2N in (a) ), medium excitation amplitude (0.8N in (b) and 2N in (c) ), and large 
excitation amplitudes (10N in (d) ) are used. The separate contributions of the three harmonics are shown as 
well as the 0-peak response, calculated by applying the inverse Fourier transform to the solution in the 
frequency domain to obtain the time domain response and taking the half of the difference between the 
minimum and maximum response in one fundamental period. It is possible to see that, when low excitation 
amplitudes are used, the simulation tends to underestimate the effect of friction damping. As long as the 
excitation increases, the comparison improves.  
 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Fig.20 Numerical/experimental comparison for different excitation amplitudes: (a) 0.2N, (b) 0.8N, (c) 2N, 
(d) 10N. Numerical separate contributions for each h-th index and 0-peak (continuous lines) are plotted 

together with experimental responses (dashed lines). 

0,2 N Down 
0,2 N Up 
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It must be highlighted that the experimental responses for a low excitation amplitude like 0.2N are an average 
of multiple responses that give a noticeable dispersion. This is due to the difficulty to control such low values 
by the acquisition system. 
Another interesting result comes from the comparison at large excitation loads (see Fig. 20 (d), 10 N 
excitation amplitude): the simulation shows that the third order harmonic response participates to the global 
response in a visible way by increasing the 0-peak response for a frequency range higher than 85 Hz, i.e., far 
from the resonance response determined by the fundamental frequency. On the contrary, the shape of the 
calculated first order harmonic is close to the measured response. This result reminds that the mathematical 
process to obtain the experimental FRF is actually a linearization of the dynamic response. The simplest 
operation that a software does in a digital data processing to calculate the FRF is simply the ratio of the 
spectrum of the response and the spectrum of the excitation force, frequency by frequency. Therefore, only 
the harmonic component associated to the fundamental frequency is used to obtain the FRF while the other 
components are filtered out. 
The contact status is plotted in Fig. 21-22 in terms of separation, slipping and sticking status during one 
fundamental period of oscillation for the two resonant peaks of Fig.10a and d. The colormap indicates the 
amount of time in which the contact status remains within one fundamental period (scaled to 1). Only half 
of the contact surface is plotted, the symmetry plane is at Y = 0.2m . Some comments can be made by looking 
at the figures: a wide area is always in separation and this result does not depend on the excitation amplitude, 
in detail, only a circular area below the permanent magnet is in contact as in a receding contact. This result 
seems to be in contrast to what has been observed in [34] but it must be noted that the beams used in this 
test campaign are much more flexible than the assembly coupled by means of bolted joints in [34]. The slip 
state is mainly localized in correspondence of the outer boundary of the magnet, since it is a region where 
the normal preload is not large enough to cause sticking and at the same time no separation occurs. A limited 
number of contact elements are therefore actually dampening the structure for low excitation amplitudes. 
As long as the excitation force increases, the contact elements within the circular regions are subjected to an 
alternate stick/slip state. By looking at the circular shape, the amount of damping is larger when it occurs far 
from the central constraint located at y = 0.2 m. 
 

(a) separation 

 

(b) slipping 

 
(cc)ccccf 

(c) sticking 

 

Fig.21 Separation (a), slipping (b) and sticking (c) for the peak response, excitation amplitude 0.2N. 
Colormaps indicate the time fraction of each contact status within one fundamental period (scaled to 1). 
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(a) separation 

 

(b) slipping 

 
(cc)ccccf 

(c) sticking 

 

Fig.22 Separation (a), slipping (b) and sticking (c) for the peak response, excitation amplitude 10N. 
Colormaps indicate the time fraction of each contact status within one fundamental period (scaled to 1). 

 
 

5 Conclusions 

 
In this paper a reduction technique based on the Gram-Schmidt Interface method is applied to calculate the 
nonlinear forced response of a simple dynamic system made by two flexible beams coupled by means of 
permanent magnets and damped by a wide friction contact. The study aimed at producing friction damping 
due to large contact surfaces in order to highlight the convenience to use GSI mode shape instead of physical 
nodes at the interface in a full FE model. Contact elements based on penalty formulation and stick-slip-
separation behavior are used and proved to be effective when used for large contact surfaces by comparing 
simulations with experiments.  
Experimental test campaign is performed for validation purpose. The application of permanent magnets to 
couple the two beams prevented the presence of uncertainty due to bolted joints while keeping the receding 
contact. Nevertheless, the lack of holes led to an actual wide contact region that can still be considered wide 
with respect to the assembly.  
The experimental/numerical comparison shows a general agreement of the measured FRF with the simulated 
ones in spite of a very fast computation with respect to the full FE transient analysis which led to 
unsatisfactory results. In detail, simulations performed with GSI reduction technique and Harmonic Balance 
Method showed that a small circular area around the permanent magnet is responsible for the friction 
damping (particularly for low excitation amplitudes), therefore dedicated and refined contact modeling is 
suggested to better simulate the localization of the friction contact in spite of a loss of a general approach 
involving all the nominal contact area. 
The convenience of the GSI reduction technique will be better emphasized when multiple large contact 
interfaces are considered in a multi-component mechanical system. Despite the limited practical implications 
of the experimental setup in validating the methodology for engineering applications, it requires a simple 
hardware to collect a database of frictionally damped forced responses. Furthermore, this study has a 
valuable content from the educational point of view since it gave the possibility to students to graduate and 
enter for the first time to the world of friction nonlinearities. Acknowledgements go therefore to Massimo 
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Balvis, Mariacristina Caruso, Elisabetta Fogliasso, Claudio Gaglio, Gennaro Glionna, Luca Rossetti for 
participating with the authors in the development of this study. 
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