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Abstract—Though compressive sensing hinges on extracting
linear measurements from the signals to acquire, actual imple-
mentations introduce nonlinearities whose effect can be far from
negligible. We here address the problem of saturation in the
circuit blocks needed by a Random Modulation Pre-Integration
architecture.

To allow a fair a comparison with previous analysis, we rely
on a model capturing the essentials of saturations in actual
implementations while being able to reproduce more abstract
settings considered in the literature.

Based on this, we analyze some methods already proposed to
cope with simplified saturation mechanisms, briefly discussing
their underlying principles. Finally, we introduce a novel ap-
proach that takes into account the more realistic model and, at
the cost of an almost negligible hardware overhead, is extremely
effective in countering saturation effects.

I. INTRODUCTION

Compressive Sensing (CS) [1] is a set of techniques exploit-
ing the intrinsic structure of some signals to allow their ac-
quisition by means of a number of measurements significantly
lower than what would be needed in conventional Analog to
Digital Converters (ADC).

Though it is sometimes considered in conjunction with other
properties (see e.g. [2, 3]), the cardinal assumption allowing
CS is that every instance of the signal can be expressed as the
linear combination of an extremely limited number of known
waveforms, i.e., the signal is sparse.

Sparsity tells us that, once expressed in a basis containing
those waveforms, every instance of the signal can be identified
by a vector of coefficients α with a very small number of non-
zero entries.

If m measurements are taken by means of linear operations
on the signal (other proposals do exist but are, by now, a
strict minority [4]) and collected in the vector y, we may write
y = Aα from some matrix A.

CS hinges on that fact that, even if m is much less than the
number of waveforms needed for the expression of all signal
instances, such an equality can be solved for α exploiting its
sparsity and some conditions on A that are surprisingly easy
to meet.

Since in physical implementations a signal can be only
accessed through its time-domain values, measurements must
ultimately be linear combinations of the signal samples, i.e.
projections of the vector of signal samples onto sequences
designed to extract the information needed for signal recon-
struction. Hence, the design of projection blocks (multiply and
accumulate) is a cornerstone of the implementation of most CS
systems.

This is particularly true for the straightforward translation of
the above general concepts into an acquisition architecture, i.e.,
the Random Modulation and Pre-Integration (RMPI) scheme
[5]. The incoming waveform is multiplied by a possibly high-
frequency Pulse Amplitude Modulated (PAM) signal and then

Fig. 1. A switched-capacitor implementation of the block yielding the j-th
measurement in an RMPI architecture. The signal is modulated by a PAM with
symbols pj,k (produced by a Random Number Generator) and accumulated
at the speed of the clock CK. Once every n ticks of CK the accumulation
is sampled and converted and then reset to start a new measurement. The
working ranges of the OpAmp and of the ADC are limited implying two
separate causes of possible saturation.

integrated over a certain interval of time T to arrive at a
measurement to be sampled and converted into a digital word.
Different sequences of PAM symbols characterize different
measurements.

In the following, we analyze how saturations, that are
unavoidable in real implementations, affect the “quality” of
RMPI measurements, i.e., the accuracy with which the original
signal can be reconstructed based on the information we
collect from a projection mechanism in which sums may
saturate the range available for circuit operation.

A projection-block that can be used in an RMPI architecture
is modeled in Section II taking into account saturations.
Recently proposed methods to cope with saturation in less
implementation-oriented settings [6] are then analyzed in
Section III to show that real-world saturation prevents abstract
properties like democracy [6] from exercising its beneficial
effects. In Section IV we describe a novel technique that
considers the full saturation mechanism and tries to squeeze
as much information as possible from each projection.

II. SYSTEM MODEL

The projection-with-saturation model that we introduce is
quite close to the actual behavior of an RMPI implementa-
tion, though it is general enough to comprise more abstract
models of saturation like [6] and thus allow a straightforward
comparison between different approaches.

To exemplify it, consider a switched-capacitor scheme for
the implementation of a projection block as reported in
Figure 1 whose aim is to highlight the cascade between an
OpAmp and an ADC and not to suggest any optimized design.
The front switches operate at the frequency of the modulating
PAM which is n times faster than the ADC which produces a
measurement every T seconds.

In this scheme, two saturation effects has to be considered.
The first one is due to the ADC, and it has already been
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considered in [6]. The second one is due ti the limited output
swing of the OpAmp. By indicating with pj,k the value at
the k-th switching instant of the PAM signal used for the
j-th measurement, we get that the output of the OpAmp
(whose delay is assumed to be negligible) at time kT/n for
k = 1, . . . , n is

yj,k = Jyj,k−1 + KINTpj,kxkKV sat
INT

(1)

where, KINT = CS/CF (in the following we will assume
KINT = 1), xk =

(
k T

n

)
for k = 1, . . . , n, the capacitor reset

at the beginning of each measurement implies yj,0 = 0 and,
for simplicity’s sake, we model the symmetric saturation of
the OpAmp at ±V sat

INT by means of the function

JvKV =





V if v > V

v if |v| ≤ V

−V if v < −V

that approximates the real saturating trend in which the dif-
ferential gain continuously decreases from 1 to 0.

With the same notation, the ADC then produces the j-th
measurement as

yj = Jyj,nKV sat
ADC

(2)

where we have neglected the effect of quantization that we
assume fine enough not to perturb the substance of our
considerations. Actually, the two saturations are enough to
make us deviate from the ideal setting in which measurement
are a linear function of the signal to acquire.

Note that, though we derived our model from a specific
scheme, any implementation of a projection block will imply
an analogous two-saturation mechanism as a consequence of
the unavoidable cascade of a real-world summing stage and a
real-world conversion stage.

To approximate a globally linear behavior, the design of the
two levels V sat

INT and V sat
ADC is commonly done in relation to

the expected range of the quantities involved that we assume
to be centered in 0. Hence, by defining the ideal unsaturated
projection as ŷj =

∑n
k=1 pj,kxk and ŷrms =

√
E

[
ŷ2

j

]
we

will set V sat
INT = γINTŷrms and V sat

ADC = γADCŷrms for two
suitably designed numbers γINT ≥ γADC > 0. Values of
γINT ≥ γADC ≥ 2 are commonly employed based on the
fact that ŷj/

√
n is usually well approximated by a Gaussian

random variable. From the point of view of maximally ex-
ploiting the actual range of physical quantities it is preferable
to have γINT as close as possible to γADC while, clearly, the
ideal condition γINT = γADC = ∞ cannot be achieved, and
its approximations imply an inadmissible waste of resources in
terms of power consumption, hardware complexity, conversion
time, etc.

In principle, the information extracted by the m projection
blocks is contained in the numbers yj,k in (1). Yet, since the
ADC is operated only after n integration steps the only values
that can be passed to the reconstruction algorithm are the yj

in (2).
Actually, any strategy that aims at coping with saturation

must at least recognize when saturation is reached by implicit
or explicit comparison with the saturation thresholds (in both
cases an operation entailing an almost negligible hardware
overhead).

For what concerns the saturation of the ADC, the recon-
struction algorithm can be informed of the occurrence of either
yj,n > V sat

ADC or yj,n < −V sat
ADC.

For what concerns the saturation in the summing stage,
when computing the j-th measurement, the reconstruction
algorithm can rely on the knowledge of the two corruption
time instants κ+

j and κ−
j , defined as

κ±
j =





k if
yj,k = ±V sat

INT

|yj,l| < V sat
INT l = 1, . . . , k − 1

∞ otherwise

Note that if either κ+
j or κ−

j is finite, it indicates that at
that point in time, and not before, the summing stage has
reached saturation so that, if the sum continues, the result
will be corrupted. Hence, the three events “yj,n is a valid
projection”, “κ+

j is finite”, and “κ−
j is finite” are mutually

exclusive. Because of this, even considering corruption times,
the amount of data passed to the reconstruction algorithm is
still made of a single piece of information for each projection.

Moreover, since feeding the PAM signal into the projection
block is a clocked operation, the same synchronous counter
triggering the ADC can be read to provide the values of κ+

j

and κ−
j when they are finite.

Overall, at time n, the outcome of the operations of the
block computing the j-th projection can be encoded in a
certain number of inequalities in terms of the values of the
PAM signals pj,k and of the signal xk = x(kT/n).

First, the corruption times give us

−V sat
INT <

l∑

k=1

pj,kxk < V sat
INT (3)

that holds for l = 1, . . . , min{κ+
j , κ−

j , n}−1. Then, depending
on saturations, we may also say that

• when κ±
j = ∞ and |yj,n| ≤ V sat

ADC, then
n∑

k=1

pj,kxk = yj (4)

• when κ±
j = ∞ and yj,n > +V sat

ADC, then

V sat
ADC <

n∑

k=1

pj,kxk < V sat
INT (5)

• when κ±
j = ∞ and yj,n < −V sat

ADC, then

−V sat
INT <

n∑

k=1

pj,kxk < −V sat
ADC (6)

• when κ+
j < ∞ and κ−

j = ∞, then

κ+
j∑

k=1

pj,kxk ≃ +V sat
INT (7)

• when κ+
j = ∞ and κ−

j < ∞, then

κ−
j∑

k=1

pj,kxk ≃ −V sat
INT (8)

Note that (4) is the equality holding in non-saturating
systems (i.e., the only one employed in classical CS theory)
that here holds only when saturations do not occur.
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The possibility of ADC saturation is taken into account by
(5) and (6), while (7) and (8) (that hold only approximatively
since they are written for a time instant at which the signal
is already slightly corrupted) collect information from projec-
tions that saturate the range of intermediate sums.

In addition to these mutually exclusive inequalities, (3)
encodes the fact that everything runs fine until corruption.

In any case, (3)-(8) are all linear equalities or inequalities
and this allows us to plug the information coming from
saturation-prone projections into a straightforward generaliza-
tion of a celebrated reconstruction algorithm, i.e., of one of
the procedures used to reproduce the original signal from the
measurements [1].

To describe it, say that any instance of the signal x(t) can
be expressed as a linear combination

∑
j αjsj(t) for some

coefficients collected in a vector α and some waveforms whose
samples are arranged as the columns of the matrix S. The n
samples xk = x(kT/n) for k = 1, . . . , n are collected in the
vector x = Sα.

In an ideal linear setting, the vector y containing the
measurements can be obtained as y = Px = PSα if P is
the m × n matrix whose rows list the values pj,k of the PAM
waveforms used for projections. It can be proved [7, 8] that,
under suitable conditions on the matrix A = PS, one is able
to retrieve the most sparse vector α in agreement with the
projections by minimizing the L1 norm of α subject to the
constraints y = Aα.

Though no analogous formal guarantee exists, it is sensible
to extend such a method to the case in which the information
that can be extracted from the projections comes also in the
form of inequalities. In particular, since x = Sα, one can
rewrite (3)-(8) in terms of the variables α and try to solve

min
∑

j |αj |
s.t. some choices from (3)-(8) (9)

where the actual choices distinguish various approaches.
The analysis of the performance of some of these ap-

proaches, two known and one introduced here, will be done
by simulation in a normalized setting, analogous to others
commonly employed to test CS systems.

In particular we set n = 256 and build S with samples
of sinusoids and cosinusoids with frequencies from 1/T to
127/T plus a bias term, all scaled to achieve unit energy. The
vector α has 6 non-zero entries drawn at random according to
a uniform distribution in [0, 1], and then scaled so that the sam-
ple vector x has unit energy. The sample vector is perturbed by
additive white Gaussian noise to yield a system input vector
with a finite intrinsic Signal-to-Noise Ratio (SNR) of 25 dB.
The PAM waveforms are obtained by modulating rectangular
pulses of duration T/256 by a stream of independent random
variables taking values in {−1, 1} each with equal probability.
The number of measurements is m = 64.

To evaluate the system performance, the result of the recon-
struction algorithm is matched against the original noiseless
vector Sα and the energy of the error is compared to the
energy of the signal to get a Reconstruction SNR (RSNR).

Performance are established by computing the Probability
of Correct Reconstruction (PCR), i.e., the probability that the
RSNR is within 10 dB from the RSNR of an ideal system with
γINT = γADC = ∞, and with the Average RSNR (ARSNR).

III. DROPPING OR BOUNDING ALLEGEDLY DEMOCRATIC
PROJECTIONS

In [6] systems with γINT = ∞ are addressed in which
only the ADC saturation may affect otherwise fully linear
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Fig. 2. PCR as a function of γADC and γINT/γADC (good implementations
should be close to γINT/γADC = 1) for SPD (a), and SPB (b).
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Fig. 3. Comparison between the ARSNR of two systems as a function
of the number of projections entering the reconstruction algorithm: an ideal
system (upper curve) and a system with γINT = ∞ and γADC = 2.2 in
which m = 64 projections are computed SPD is adopted and only the non
saturating ones are used for reconstruction (lower curve).

measurements y = Aα.
As a first option, the simple Saturated Projection Dropping

approach (SPD) is analyzed, i.e., the use of (9) with equalities
like (4) only for the non-saturated projections.

Since it is sensible to assume that randomized measurement
matrices A exhibit a substantial degree of “democracy” (i.e.
the ability of behaving almost equally well as an approximate
isometry for sparse vectors when some rows are deleted [6]),
it is expected that the non-saturated projections deliver just as
much information about the signal as any other projection, thus
implying a small and very smooth degradation of performance
as saturation takes place.

Instead of dropping, Saturated Projection Bounding (SPB)
is also proposed, a method that plugs (5) or (6) into (9) in
addition to (4) whenever appropriate.

Figure 2 reports the contour plot of the relationship between
PCR and the two parameters γADC and γINT/γADC (darker
colors correspond to lower PCRs) for both SPD (a) and SPB
(b).

Note that, even for very high values of γINT/γADC for
which the probability of an undetected corruption at the
summing stage vanishes, performance degradation is always
substantial and is only mildly countered by SPB: in both SPD
and SPB, a system aiming at 99% of PCR, while keeping the
two saturation thresholds as close as possible, should reserve
a dynamic range > 3ŷrms for the ADC and > 1.5 × 3ŷrms =
4.5ŷrms for the summing stage (the highlighted point in Figure
2-(a) and (b)).

Democracy does not seem to unfold its beneficial effect
as shown in Figure 3 in which we analyze what happens
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Fig. 4. PCR as a function of γADC and γINT/γADC (good implementations
should be close to γINT/γADC = 1) for SHC (a), and SFC (b)
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when m = 64 projections are computed and the saturated
ones discarded to plot (lower curve) the ARSNR as a function
of the number of the non-discarded projections that enter the
reconstruction algorithm. In the same Figure, the upper curve
shows the ARSNR for an ideal system working on an equal
number of projections.

Clearly, democracy cannot be advocated as a guideline
to cope with saturation even in the γINT = ∞ case. This
is because dropping saturated projections means discarding
the measurements that carry most energy and thus more
information on the signal to acquire. In fact, performance
degrades even when no saturation takes place since a finite
γADC limits the maximum energy of the projection used for
reconstruction.

IV. CHECKING SATURATION HISTORY

What we propose, as in the old common saying, is to exploit
“everything but the Oink!”, i.e., to suffer the almost negligible
hardware overhead implicit in corruption checking and be able
to plug into (9) whatever equality or inequality from (3)-(8)
agrees with the measurement outcomes. Let us indicate this
approach as Saturation History Checking (SHC).

Note that considering (3) implies that the number of con-
straints introduced in (9) is of the order of m × n. Yet, espe-
cially for small values of l, (3) materializes slack constraints
since corruption is highly improbable when only few samples
are summed.

Then, we may choose to avoid (3) and select one among
(4)-(8) for each projection thus reducing to Saturation Final
Checking (SFC).

Figure 4 shows how, despite the relevant difference in
computational effort, SHC and SFC offer substantially the

same performance thus making SFC the best approach. When
corruption is properly handled, a 99% PCR can be easily
reached for γINT/γADC ≃ 1 and for very small values of
γADC, thus allowing an extremely effective implementation.
The approach suffers from a small drawback only for γINT

large and γADC small, i.e. when many equations like (5) and
(6) are used in (9), as only a limited amount of information
can be achieved from them.

Actually, the reason for both the poor performance of
SPD/SPB and for the superior and equivalent performance of
SHC/SFC is quite simple. In fact, note that Figure 4-(a) con-
cerns a system in which all pieces of information are exploited.
This keeps the PCR very high but for large γINT/γADC and
small γADC, i.e., for systems in which the most probable
outcome of a projection is a saturation of the ADC without
previous corruption. For these systems, most of the constraints
in (9) are of the kind (3), (5) and (6), i.e., inequalities. This
suggests the somehow trivial conclusion that performance is
directly related to the number of equalities introduced into (9)
whose number is increased neither by SPD nor by SPB and
is the same in SHC and in SFC.

V. CONCLUSION

Based on a model describing the saturations that must
be taken into account when designing projections blocks for
RMPI architectures, as well as on extensive simulations we
have compared the performance of some methods dealing with
saturated measurements.

Two of these methods (SPD and SPB) have been recently
proposed while the other two (SHC and SFC) are novel and
rely on a negligible hardware overhead to monitor saturation
and maximize the amount of information (in terms of equali-
ties) that is available at the signal reconstruction phase.

Figure 5 compares SPD, SPB and SFC in terms of ARSNR
for reasonable sizing of the working ranges of the circuit
(namely for γINT/γADC = 1.2 and γADC from 1 to 3) using
as a reference the performance of a system with no saturation.
The improvement of the newly proposed method is evident
from straightforward visual inspection.
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