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Poissonian Distributions in Physics: Counting Electrons and Photons 

Amelia Carolina Sparavigna

Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy

Abstract: Here  we  discuss  physics  containing  Poissonian  distributions.  Among  the
phenomena, we find thermoionic emission of electrons,  photodetection and  Poisson
noise.  After a description of the Hanbury Brown - Twiss  effect,  we will consider the
second order correlation of intensity and Poissonian, super- and sub-Poissonian lights.
The quadrature and squeezed states will be also considered.

Keywords:  Optics,  Quantum Optics,  Photons, Coherent Photons, Hanbury Brown  -
Twiss   effect,  Poissonian  Light,  Super-Poissonian  Light,  Sub-Poissonian  light,
Squeezed States.

Introduction

Poisson distribution is a distribution used in probability theory, statistics, and physics.
It is a discrete distribution that gives the probability of a number of events. Poisson
distribution  is  used as  a  model  to  have the number of  times an event  occurs  in  an
interval of time or space.

A discrete random variable is said to have a Poisson distribution with parameter λ > 0,
for n = 0, 1, 2, ..., if its probability mass function is given by:

f (n ;λ )=λn e−λ

n !

where e is Euler's number,  n is the number of occurrences, and n! is the factorial of n.
The positive real number λ is equal to the expected value of n and also to its variance.
The Poisson distribution can be applied to systems  having a large number of possible
events, each of which is rare. The number of such events that occur during a fixed time
interval is, under the right circumstances, a random number with a Poisson distribution.

The Poisson distribution may be useful to model events such as the radioactive decays
[1] for instance. Also the number of laser photons hitting a detector in a particular time
interval is described by a Poisson distribution.

The distribution is based on the following assumptions: 1) an event is described by



integers n; 2) occurrence of an event does not affect the probability that a second event
will occur, and this means that events are occurring independently; 3) the average rate at
which events occur is independent of any occurrences. 

If these conditions are true, then n is a Poisson random variable, and the distribution of
n is Poissonian. The Poisson distribution is also the limit of a binomial distribution (see
Appendix), for which the probability of success for each trial equals λ divided by the
number of trials, as the number of trials approaches infinity.

Here we discuss the presence of Poissonian distribution in the physics of electrons and
photons, in particular in their counting. 

 

A calculus on the thermoionic emission of electrons

In [2], we can find the following problem.

During thermoionic emission, electrons leave the surface of a metal or a semiconductor.
Assuming that 1) emissions of electrons are statistically independent event and 2) the
probability of emission of an electron in a small time interval  dt  is equal to   λ dt  (λ
being a constant), determine the probability of emissions of electrons in a time interval
t.

Pn(t) = probability of emission of electrons in time t

P0(t) = probability of no emission in the same time t

Assuming 1), let us use the rule of the probability for two consecutive events. There are
two ways of having n events in the time from 0 to t+Δ t . One way is that of having n
events from 0 to  t  ,  and none from t  to  t+Δ t . The other way is that of having
n−1 events from 0 to  t  and one event from  t  to t+Δ t . Then:

Pn(t+dt)=Pn−1(t)P1+Pn(t)(1−P1)

P0(t+dt)=P0(t)(1−P1)

P1=λ dt    probability of emission of one electron in the time dt.

After expansion:

 Pn(t)+
dPn
dt

dt=Pn−1P1+Pn−PnP1

P0(t)+
dP0

dt
dt=−P0P1+P0

Then:



dPn
dt

dt=Pn−1P1−PnP1=P1(Pn−1−Pn)=λ dt (Pn−1−Pn)

dP0

dt
dt=−λ dt P0

Pose initial conditions: Pn(0)=1,n=0 , Pn(0)=0 , n≠0 . The solution is;

Pn(t)=
(λ t)n

n!
exp(−λ t)

In fact:

d Pn(t)
dt

=λ n (λ t)
n−1

n !
exp(−λ t)−λ (λ t)

n

n!
exp(−λ t ) =

λ (λ t )
n−1

(n−1)!
exp(−λ t)−λ (λ t )

n

n !
exp(−λ t )

d Pn(t)
dt

=λ Pn−1(t)−λ Pn(t)

Let us evaluate  ⟨Δn2⟩=⟨(n−⟨n ⟩)2⟩ , if on the average n0  electrons are emitted in

a second. First, let us calculate ⟨n⟩ .

∑
n=0

∞
n
(λ t)n e−λ t

n !
=∑
n=1

∞
n
(λ t )ne−λ t

n!
=λ t exp(−λ )∑

n=1

∞ (λ t)n−1

(n−1) !

that is:  ∑
n=0

∞
n
(λ t)n e−λ t

n !
=λ t exp(−λ t)∑

n=0

∞ (λ t)n

(n)!

∑
n=0

∞
n
(λ t)n e−λ t

n !
=λ t exp(−λ t)exp(λ t)=λ t

Actually: ∑
n=0

∞ (λ t)n

n !
=exp(λ t) . 



⟨Δ n2⟩=∑
n=0

∞
n2Pn(t)−[∑

n=0

∞
n Pn(t)]

2
= ∑

n=0

∞
n2 (λ t)n e−λ t

n !
−λ 2 t2

= ∑
n=0

∞
n(n−1)

(λ t )ne−λ t

n!
+∑
n=0

∞
n
(λ t)ne−λ t

n!
−λ2 t2

= ∑
n=2

∞
n(n−1)

(λ t)n e−λ t

n !
+λ t−λ2 t2

⟨Δn2⟩=⟨(n−⟨n⟩)2⟩=λ 2 t 2exp(−λ t )exp(λ t)+λ t−λ2 t2=λ t

We have that: λ t=∑
n=0

∞
n Pn(t)=⟨n⟩=n0 t ,  so ⟨Δn2⟩=n0 t .

Photodetection

In Ref.3 it is discussed the semi-classical theory of the photo-detection. Let us consider
a photon-counting detector such as a photomultiplier illuminated by a faint light beam.
Let us assume the light beam described by a classical electromagnetic wave of intensity
I.

Let us suppose: 1) The probability of the emission of a photo-electron in a short time
interval being proportional to I, to A the illuminated area, and to time interval Δ t . 2)
If  Δ t is  sufficiently  small,  the  probability  of  emitting  two  photo-electrons  is
negligible.  3)  The  events  of  photoemission  which  are  registered  in  different  time
intervals are statistically independent of each other.

In [3], the approach to probability is the same as given before for the discussion of the

thermoionic emission. Let us consider  P1=ξ I ( t)dt , where  ξ is proportional to

the illuminated area. The probability is given as:

Pn(t)=
[∫0

t
ξ I (t ' )dt ' ]n

n !
exp(−∫0

t
ξ I( t ')dt ')

Let us suppose I ( t)  constant, so that ξ I (t)=C .  As we have previously seen:

dPn(t )
dt

+C Pn( t)=C Pn−1(t)

For n = 0 ,  Pn−1( t)=0 .

dP0(t )
dt

=−C P0(t)  ; P0(0)=1



Multiplying by eCt ,  we have that:

eCt
dPn( t)
dt

+eCtC Pn(t)=e
CtC Pn−1(t )

For n≥1 :

d
dt (e

Ct Pn(t))=eCtC Pn−1(t )

Pn(t)=e
−Ct∫0

t
C eCt 'Pn−1(t ')dt '

The recurrence is the following:

P1( t)=e
−Ct∫0

t
CeCt ' P0(t ')dt '=(Ct)e

−Ct

P2( t)=e
−Ct∫0

t
CeCt ' P1(t ' )dt '=

(Ct )2

2 !
e−Ct

Then: Pn(t)=
(Ct )n

n!
e−Ct .

We have: ⟨n⟩=ξ I T≡Ct . Therefore

Pn(t)=
⟨n⟩
n !

e−⟨n ⟩

Let us stress that I ( t) must be a constant.

Poisson noise

Poisson (shot) noises are an important set of Poissonian models with a wide range of
applications  [4-7].  For  an  input  random  variable   X≥0   the  Poisson  noise  is
described by the  conditional probability mass function PMF  of the output random
variable Y  [4-7]:

PY |X ( y | x )= 1
y !
(ax+λ) yexp−(ax+λ) , x≥0, y=0,1,. ..

where a>0  is a scaling factor and λ≥0  is a constant. Moreover, the convention

00=1 is assumed. As explained by A, Dytso, at www.princeton.edu, this constant is
called the dark current parameter.  Conditioned by a non-negative input X=x , , the
output of the Poisson channel is a non-negative integer-valued random variable Y, with
a Poissonian distribution.   



The random transformation  of  the  input  random variable   X  to  an  output  random

variable  Y   will be denoted by Y=O(aX+λ) .  It is important to note that operator

O  is not linear. Using the language of lasers, the term aX represents the intensity of a
laser beam and  Y   represents the number of photons that arrive at the receiver with a
particle counter, that is a photodetector. The dark current parameter λ  represents the
intensity of an additional source of noise or interference, which produces extra  photons
at a particle counter.

A dark current is a relatively small electric current that is flowing in  photosensitive
devices (photomultiplier tubes, photodiodes, charge-coupled devices CCDs) even when
no  photons  are  entering  them.  The  current  is  due  to  charges  generated  inside  the
detector,  when outside  radiation is  absent.   Dark current  is  originated by a  random
generation of electrons and holes within the depletion region of the device. 

Oscillators and quanta

Let  us  consider  a  particle,  described  by  canonical  variable q , p ,  in  a  parabolic
potential. Its Hamiltonian is:

H= p2

2m
+mω

2

2
q2   

where p=−i ℏ∂q and [q , p ]=i ℏ . ω is the angular frequency.

The ground state width can be found by minimizing energy:

⟨H ⟩= ℏ2

2mλ
+mω

2λ 2

2
→min  

which  gives λ=(ℏ/mω )1 /2 ..  It  will  be  convenient  to  use  dimensionless  variables
~q , ~p . In this manner the classical phase volume is scaled by ћ. Thus we obtain:

H=ℏω
2
(~p2+~q2) ,  where ~p=−i∂~q  and [~q ,~p]=i .

The canonical creation and annihilation operators are defined as

â= 1

√2
(~q+i~p) , â+= 1

√2
(~q−i~p)

They can be used to express q, p and H as follows:

q̂= λ
√2

(â+ â+) , p̂=i ℏ
√2λ

(â+−â) , H=ℏω (â+ â+ 1
2
)

Operators  â  and  â+  obey the commutation relation  [ â , â+]=1 ,  as we can

easily  see.  By  means  of operators   â  and   â+ ,  we  can  study  the  harmonic



oscillator  quantum  mechanics.  Let  us  just  remember  that  the  normalized  oscillator
eigenstates are:

|n>= 1

√n !
( â+)n | 0 >

These eigenstates are forming an orthonormal complete set of functions, providing a
basis in the oscillator Hilbert space. The ground state  |0  〉 is also known as the vacuum
state. 

The operators  â  and  â+  given as matrices in the basis of states have nonzero
matrix elements only between the states  |n> and |n±1> ,   and they are used to

have the number operator n̂= â+ â  . This operator is counting the number of energy
quanta. In the energy basis |n〉, the number operator is diagonal:

n̂ |n>=â+ â |n>=n |n> , H=ℏω (n̂+ 1
2
)

Definition of coherent states

The coherent states are defined as eigenstates of operator â :  â |v >=v |v > , where
v is a complex parameter. That is, they are the eigenstates of the annihilation operator.
Let us expand in the basis (Fock states):

|v >=∑
n=0

∞
cn |n>

where |n>  are energy (number) eigenvectors of the Hamiltonian (number and energy
operators commute).

 Properties of the states are:

<n |m>=δ n ,m  ;  |n>=
(â+)n

√n!
| 0 >

â+ |n>=√n+1 |n+1> ;  â |n>=√n |n−1 >

The coherent state can be reconstructed from recurrence:

â |v >=∑
n=0

∞
cn√n |n−1>=∑

n=0

∞
v cn |n>

Comparing the coefficients, we obtain a recursion relation cn=(v /√n)cn−1 ,  leading

to coefficients:

cn=
vn

√n !
c0



The coefficient c0 is determined from normalization:

1=∑
n=0

∞
|cn |2=∑

n=0

∞ | v |2n

n !
|c0 |2=exp( |v |2)|c0 |2

Finally: |v >=exp(−|v |2/2)∑
n=0

∞ vn

√n!
|n> . We have also:

|v >=exp(−|v |2/2)exp (ν â+) exp(−v* â)| 0 >

Using the Baker–Campbell–Hausdorff  formula,  we can see that this  is  in agreement
with the expression of the unitary displacement operator: 

|ν >=exp(ν â+−ν * â)| 0>=D (ν ) | 0>

As an example, consider the distribution of the number of quanta n̂= â+ â  in a 
coherent state. Since n̂ |n>=n |n> , the distribution is given by

pn=|cn |2=| v |2n

n!
e−|v |2

which is a Poisson distribution having ⟨n⟩=|v |2 . Photons emitted by lasers possess a

Poissonian distribution. 

As told previously, a coherent state  is defined to be an eigenstate of the annihilation
operator according to  â |v >=v |v > .  Operator  â  is not  hermitian, and  v is a

complex  number.  We  can  also  write  ν=|ν |e iθ ,  where  |ν | and θ are   the
amplitude and phase of the state |v > .

Physically,  â |v >=v |v >  means  that  a  coherent  state  remains  unchanged  by  the
annihilation  of  field  excitation  or,  say,  a  particle.  An eigenstate  of  the  annihilation
operator  has  a  Poissonian  number distribution  when expressed  in  a  basis  of  energy
eigenstates,  as  shown  below.  A  Poisson  distribution  is  a  necessary  and  sufficient
condition that all detections are statistically independent. 

Coherent states are obtained from the vacuum by application of a unitary displacement
operator: 

|ν >=exp(ν â+−ν * â)| 0>=D(ν ) | 0>

Let us consider also the uncertainty principle. In the case of an oscillator or optical field,
we can use two dimensionless operators  X , P. With these operators, the Hamiltonian of
either system becomes

Ĥ=ℏω (P2+X2)   with  [X ,P ]= i
2
I

The quantum state of the harmonic oscillator that minimizes the uncertainty relation



with uncertainty equally distributed between X and P satisfies the equation:

(X−< X>)> |ν >=−i(P−<P>)|ν >

or, equivalently, 

(X+iP) |ν >=<(X+iP)> |ν >

Therefore:

<ν |(X−< X >)2+(P−<P>)2 |ν >=1/2

Schrödinger  found  that  the  minimum  uncertainty  states  for  the  linear  harmonic

oscillator are the eigenstates of (X+iP) , therefore are the eigenstates of â , which

is the operator we used to define the coherent state. The uncertainty is minimized, but
this does not mean that we must have only equally balanced between X and P, . We can
have also  unbalanced  states, which are called the squeezed coherent states. We will see
them at the end of the discussion.

Photon counting: Poissonian, super-Poissonian, sub-Poissonian

In [3] we find the following approach to the Poissonian photon statistics.

Let us start from the probability P(n) of finding  n  photons within a beam of length

L containing N sub-segments.  It is the probability of finding n sub-segments containing

one photon and (N−n) containing no photons, in any possible order. This probability

is described  by the binomial distribution:

P(n)= N !
n !(N−n)!

pnqN−n

where q=1− p . Using p=⟨n⟩ /N , we have:

P(n)= N !
n !(N−n)! (⟨n⟩N )

n(1−⟨n ⟩
N )

N−n

By means of the approximation given in Appendix, we find again:

P(n)= ⟨n⟩n

n !
e−⟨n ⟩ ,   n=0,1,2, ...

For a coherent source (lasers), the probability to measure  n photons when the mean

number of photons is ⟨n⟩  can be given by the Poisson law. The standard deviation of

the distribution is  Δn=√⟨n ⟩ .

For a chaotic light source the numbers of detected photons are distributed according to
the probability: 



              P(n)= ⟨n⟩n

(⟨n⟩+1)n+1
.

The standard deviation is larger  than that of the Poisson distribution (super Poisson
distribution):

                Δn=√⟨n ⟩+(⟨n⟩)2 .

Then, a light governed by super-Poissonian statistics exhibits a statistical distribution

with  variance   (Δn)2>⟨n ⟩  [14].  A light  that  exhibits  super-Poissonian  statistics  is

thermal light. 

Light can be also governed by sub-Poissonian statistics, but it cannot be described by

classical electromagnetic theory. It is defined by (Δn)2<⟨n ⟩  [3]. An example of light

exhibiting sub-Poissonian statistics is the squeezed light. 

Thermal light (super-Poissonian)

The electromagnetic  radiation emitted by a thermal  light is considered a black-body
radiation [3]. It is governed by the laws of statistical mechanics concerning an enclosed
cavity at a temperature T.

The  energy density  within  the  angular  frequency range ω to  ω + dω  is  given  by
Planck’s law (c is the speed of light):

ρ (ω ,T )= ℏω3

π 2 c3

1
exp (ℏω /kBT )−1

dω

The derivation of this equation is requiring the quantization of energy, so that: 

En=(n+1/2)ℏω .

Let us consider a single radiation mode with frequency ω. The probability of having  n 
photons in this mode is:  

Pω (n)=
exp(−En /kBT )

∑n=0

∞
exp(−En /kBT )

Substituting the value of  energy:

Pω (n)=
exp(−nℏω /kBT )

∑n=0

∞
exp(−nℏω /kBT )

Let us define x=exp(−nℏω /kBT ) .



            Pω (n)=
xn

∑n=0

∞
xn

We have that [3]: ∑i=1

k
ri−1≡∑ j=0

k−1
r j=1−rk

1−r
and then ∑ j=0

∞
r j= 1

1−r
, if  r < 1.

As a consequence [3]:

             Pω (n)=x
n(1−x)=(1−exp (−nℏω /kBT ))exp(−nℏω /kBT )

We can calculate the mean number:  ∑n=0

∞
n Pω (n)=

x
1−x

 and then we obtain the

Planck formula:

⟨n⟩= 1
exp (ℏω /kBT )−1

However, x=
⟨n⟩
⟨n ⟩+1

  so we have:

Pω (n)=
1

⟨n ⟩+1( ⟨n⟩
⟨n ⟩+1)

n

The variance of the distribution is:  (Δn)2=⟨n⟩+⟨n ⟩2 . It shows that the variance of

the Bose–Einstein distribution is always larger than that of a Poisson distribution. The
thermal light is a super-Poissonian light [3].

According to [3], the single-mode variance can be interpreted in an interesting way, in
the case that we refer to Einstein’s analysis of the energy fluctuations of back-body
radiation,  as  originally  given  in  1909.   Einstein  realized  that  the  first  term  of  the
variance has origin from the particle nature of the light.  The second term originates
from the  thermal  fluctuations  of  the  energy  of  the  electromagnetic  radiation,  being
therefore of classical origin. It is called the wave noise [3].

HBT effect

The vast  majority  of  light  sources  produce photons by means of  random processes.
Therefore, when these photons, for instance from a star, arrive at the Earth, they are
randomly spaced. The number of photons counted in a short time interval will vary,
even if the long-term mean number of photons is constant. This variation is known as
shot (Poisson) noise. It represents the irreducible minimum level of noise present in an
astronomical observation. However, some effects exist about the counting of photons in
intensity interferometry, such as the Hanbury Brown - Twiss (HBT) effect.

HBT  effect  is  including  phenomena  concerning  a  variety  of  correlation  and  anti-



correlation effects in the intensities received by two detectors from a beam of particles.
Devices which use the effect are commonly called intensity interferometers. Originally
used in astronomy, these interferometers were applied in the field of quantum optics.

It  was  in  1954  that  Robert  Hanbury  Brown  and  Richard  Q.  Twiss  introduced  the
intensity interferometry.  In 1956, they published results from an experimental set-up
which was using a mercury vapor lamp. Later they applied the technique to measure the
size of Sirius. Two photomultiplier tubes, separated by a few meters, were aimed at the
star by means of telescopes. A correlation was observed between the two fluctuating
intensities. Just as in the radio studies, the correlation dropped away as they increased
the separation. They used this information to determine the apparent angular size of
Sirius [8-11]. 

In [3], a classical description of the time-dependent intensity fluctuations in a light beam
is given for the HBT effect.  From this effect we have naturally   the concept of the

second-order correlation function, G(2)(τ ) that we can evaluate for different types of

light.  For this study, it is possible to use a semi-classical approach, in which the light is
treated classically and quantum theory in introduced in the photodetection process.  

The  quantum description  of   HBT effect  is  given  in  the  Nobel  Lecture  by  Roy J.
Glauber [12]. Again, we can find that he started from Poissonian distribution [13]. 

From Glauber's Nobel Lecture

Let us start from a real field and split it into two complex conjugate terms:

E=E (+)+E (-) , (E(+))*=E (-)

Let us define the correlation function:

G(1)(r1 t1r2 t2)=<E (-)(r 1 t1)E
(+)(r2 t 2)>

In the two-pinhole Young experiment, light passing through a pinhole in the first screen
falls on two closely spaced pinholes in a second screen. The superposition of the waves
radiated by those pinholes at r1 and r2 leads to interference fringes seen at points r on
the third screen.

Let us note that the average intensity of the field at a given point is then just: 

G(1)(r t r t)=< E(-)(r t)E (+)(r t)>

The Young experiment measures:

G(1)(r1 t1r1 t1)+G
(1)(r2 t2 r2 t2)+G

(1)(r1 t1r 2 t2)+G
(1)(r 2 t2r1 t1)

The  first  two  terms  are  the  separate  contributions  of  the  two  pinholes,  that  is  the



intensities  as  they  would  contribute  individually.  These  intensity  distributions  are
supplemented by two other terms which are the  interference effects. 

Interference fringes have the greatest possible contrast and therefore the visibility when

the cross correlation terms G(1)(r1 t1r2 t2),G
(1)(r2 t2r1 t1)  are as large in magnitude

as possible. A limitation imposed on the magnitude of such correlations by the Schwarz

inequality. Let us indicate x=(r ,t ) . The measure given above becomes:

G(1)(x1 x1)+G
(1)(x2 x2)+G

(1)(x1 x2)+G
(1)(x2 x1)

with Schwarz  inequality telling:

|G(1)(x1 x2)|
2≤G(1)(x1 x1)G

(1)(x2 x2)

The upper bound  is attained if we have:

|G(1)(x1 x2)|
2=G(1)(x1 x1)G

(1)(x2 x2)

and with it we achieve maximum fringe contrast. The fields at x1 and x2 are optically
coherent with one another. This is the definition of relative  coherence. 

The  ordinary  (amplitude)  interferometry  measures G(1)(r1 t1r2 t2) ,  but  intensity

interferometry  measures  another  correlation.  Let  us define  a  higher  order coherence
(e.g. second order):

G(2)(r t r ' t ' r ' t ' r t)=< E(-)(r t)E(-)(r ' t ' )E (+)(r ' t ')E(+)(r t )>

In the case of a factorization:

G(2)(r t r ' t ' r ' t ' r t)=G(1)(r t r t)G(1)(r ' t ' r ' t ' )

In this case, we have the product of two average intensities measured separately, but this
is not observed in the Hanbury Brown - Twiss experiment.  As told by Roy Glauber,
ordinary  light  beams,  that  is,  light  from  ordinary  sources,  even  extremely
monochromatic ones as in the Hanbury Brown - Twiss experiment, do not have any
such second order coherence.

Degree of coherence

Correlation  functions  can  be  used  to  characterize  the  coherence  properties  of  an
electromagnetic field. The degree of coherence is given by the normalized correlation of

electric fields, that is G(1) . As we have previously seen,  it is useful for the coherence
as measured in a Michelson  interferometer.  The correlation between pairs of fields,

G(2) ,  is  used to  find the statistical  character  of  intensity  fluctuations.  First  order



correlation  is  actually  the  amplitude-amplitude  correlation  and  the  second  order
correlation is the intensity-intensity correlation. 

Photon bunching

The determination of the photon statistics of a light source is not simple to obtain. A
manner to investigate the statistics is the measurement of the second order correlation
function,  as  illustrated  before.   The  correlation  function  is  obtained  from  the
probabilities that photons arrive in coincidence at two photon detectors as a function of
the arrival time difference τ and can be defined also in the following manner [3,14]:

g(2)(τ )=
⟨I ( t )I ( t+τ )⟩
⟨ I ( t )⟩⟨ I ( t+ τ )⟩

.

In the correlation function, we find the intensity  I as a function of time. For coherent

radiation,  g(2)(τ )=1  for all  τ , For a thermal source, there is an augmentation of the

coincidence  rate  when  the  coincidence  (observation)  time  ( τ )  is  smaller  than  the

coherence time ( τc ). For all classical light sources g(2)(τ=0)≥1  and g(2)(0)>g(2)(τ )

for all  τ . 

The  augmentation can  be  interpreted  by  the  fact  that  photons  emitted  by  a  chaotic
source have the tendency to arrive in packets (bunches) to the detector  whereas the
photon emission by a laser is always regular. Bunched light is generated by chaotic light
sources  [15].  The  clumping  of  photons  can  be  observed  if  the  observation  time  is

smaller than the time of coherence ( τ <τ c ). At longer time of exposure ( τ >τ c ),

the bunching of photons becomes negligible and the photons arrive regularly [15]. 

Second order correlation function

To  explain  HBT  effect  in  classical  theory,  it  is  useful  to  introduce  the  intensity
correlations [3]: 

g(2)(τ )= ⟨E*(t )E*(t+τ )E (t+τ )E(t)⟩
⟨E*(t)E (t)⟩ ⟨E*(t+τ )E( t+τ )⟩

where E is the electric field, or, as we have previously seen:

g(2)(τ )= ⟨I (t) I ( t+τ )⟩
⟨ I( t )⟩ ⟨I (t+τ )⟩

where  I(t)  is the intensity of the light beam at time t. The brackets indicate the time
average computed by integrating over a long time period.



Let us consider a constant average intensity such that ⟨I (t)⟩=⟨ I (t+τ )⟩ . The second-

order correlation function investigates the temporal coherence of the source. As told in
[3],  the time-scale of the intensity  fluctuations  is  determined by the coherence time

τ c of the source. If  τ ≫τ c , the intensity fluctuations at times  t  and  t+τ

will be completely uncorrelated with each other. Therefore:

⟨I (t) I (t+τ )⟩τ ≫τ c=⟨ I ⟩
2

As a consequence g(2)(τ ≫τ c)=1 .  If τ ≪τ c , there will be correlations between

the  fluctuations  at  the  two  times.  In  particular,  if  τ =0 ,  the  chaotic  light  has

g(2)(0)≥1 [3]. It can also be shown that  g(2)(0)≥g(2)(τ ) . As a consequence we

have a different behaviour of chaotic (thermal) and coherent light.

Fig.1 - Second-order correlation function g(2)(τ )  for chaotic and  coherent light plotted on

the same time-scale, as shown in [3]. 

We have seen previously the  classification of light according to whether the statistics
were  sub-Poissonian,  Poissonian,  or  super–Poissonian.  We  can  also  use  a  different

classification  according  to  the  second-order  correlation  function g(2)(τ ) ,

classification based on its value. 

Bunched light: g(2)(0)>1 ; Coherent light: g(2)(0)=1 ; Antibunched light:

g(2)(0)<1

Fig.2 - Comparison of the photon detection for antibunched light, coherent light, and bunched
light. For the case of coherent light, the Poissonian photon statistics correspond to random time

intervals between the photons.(Image Courtesy Ajbura)



In antibunched light, the photons come out with regular gaps between them, rather than
with a random spacing. This is illustrated schematically before. If the flow of photons is
regular,  then  there  will  be  long  time  intervals  between  observing  photon  counting

events. Antibunched light has g(2)(0)<g(2)(τ ) , g(2)(0)<1 . This is in violation of

the  relations  which  apply  to  classical  light.  Hence  the  observation  of  photon
antibunching is a purely quantum effect with no classical counterpart. 

Classification of light according to statistics

In [3], we can find the following classification. Super-Poissonian: Classical equivalent
are the partially coherent (chaotic), incoherent or thermal light.  Poissonian: Perfectly
coherent light. Sub-Poissonian: None (non classical). 

Examples of chaotic lights are the  Lorentzian chaotic light (e.g. collision broadened)
and the Gaussian chaotic light (e.g.  Doppler broadened).  Then, what is in general a
"chaotic light source"? Sometimes we can find that it is the blackbody radiation which
is also called "chaotic radiation". However, it is also defined as the light coming from a
spectral lamp. In [3], Fox writes that: "The light emitted by a mercury lamp originates
from many different atoms. This leads to fluctuations  in the light intensity on time-
scales comparable  to the coherence time.  These light  intensity  fluctuations  originate
from fluctuations in the number of atoms emitting at a given time, and also from jumps
and discontinuities in the phase emitted by the individual atoms. The partially coherent
light  emitted  from  such  a  source  is  called  chaotic  to  emphasize  the  underlying
randomness of the emission process at the microscopic level".

In any case, it is possible to characterize the light by means of the degree of coherence.
For  instance,  we  can  use  optical  interferometers  (Michelson  interferometer,  Mach–
Zehnder interferometer, or Sagnac interferometer), where an electric field is split into
two components. In this manner, a time delay between the components is introduced.
Then, the two beams are recombines. The intensity of resulting field is measured as a

function of the time delay. Let us use G(1) .

For the light having a single frequency (laser): 

G(1)(τ )=exp (−iω oτ )

For a Lorentzian chaotic light (collision broadened light): 

G(1)(τ )=exp (−iω oτ −|τ |/τ c)

For a Gaussian chaotic light (Doppler broadened light): 



G(1)(τ )=exp (−iω oτ −|τ |/τ c)

ω o  is the central frequency of the light and τ c  is the coherence time of the light.

Fig.3 - Absolute value of G(1)
as a function of the delay normalized to the coherence length

τ /τ c . The blue curve is for a coherent state. The red curve is for Lorentzian chaotic light.

The green curve is for Gaussian chaotic light. (Image courtesy Ajbura ). 

 Fig.4 - G(2)
as a function of the delay normalized to the coherence length τ /τ c . The

blue curve is for a coherent state. The red curve is for Lorentzian chaotic light. The green curve
is for Gaussian chaotic light. The chaotic light is super-Poissonian and bunched.(Image courtesy

Ajbura ). 

We can also use G(2) . For the chaotic light of all kinds: 

G(2)(τ )=1+|G(1)(τ ) |2



The Hanbury Brown - Twiss effect uses G(2)  to find G(1) .

Light of a single frequency: G(2)(τ )=1 .

Antibunching experiments

The first successful experiment showing of photon antibunching was made by Kimble
et al. in 1977 [3,16]. They used the light emitted by sodium atoms. "The basic principle
of  an  antibunching  experiment  is  to  isolate  an  individual  emitting  species  (i.e.  an
individual atom, molecule, quantum dot, or colour centre) and regulate the rate at which
the photons are emitted by fluorescence". A laser is used to excite the emissive species
to emit a photon. After a photon has been emitted - Ref.3 explains - it will take a time

approximately equal to the radiative lifetime of the transition,  τ R ,  before the next

photon can be emitted. In this manner,  time gaps between the photons appear creating
an antibunched light.

Abstract of [16] tells:  "The phenomenon of antibunching of photoelectric counts has
been  observed  in  resonance  fluorescence  experiments  in  which  sodium  atoms  are
continuously excited by a dye-laser beam. It is pointed out that, unlike photoelectric
bunching,  which  can  be  given  a  semiclassical  interpretation,  antibunching  is
understandable only in terms of a quantized electromagnetic field.  The measurement
also provides rather direct evidence for an atom undergoing a quantum jump".

Squeezing and sub-Poissonian

In Ref.17, we find told by its abstract that it is better to distinguish the sub-Poissonian
statistics form the squeezing of light.  "It is pointed out that, although squeezing and
sub-Poissonian  photon  statistics  need  not  go  together,  in  the  sense  that  an
electromagnetic field may exhibit  one but not the other, the method that is normally
used to detect a squeezed state automatically generates sub-Poissonian photon statistics.
However, when these considerations are applied to the fluorescence from a coherently
driven atom, which exhibits both squeezing and sub-Poisson fluctuations, one finds that
the statistics of the emitted photons show even larger departures from classical field
theory than the squeezing". Then, let us see what are the squeezed photons.

Wave quadrature and squeezed states

Let us consider the phase space used in optics.   In the quantum theory of light,  an
electromagnetic oscillator is involved to describe an oscillation of the electric field. The
magnetic field too oscillates.



Let u(x ,t) be a vector describing a single mode of an electromagnetic oscillator.  An

example is the plane wave given by :

u(x ,t)=u0 e
i(k⋅x−ω t)

where  u0  is  the  polarization  vector,  k is  the  wave  vector,  ω  the  angular

frequency. This is a plane wave describing an electromagnetic oscillator, with a single
mode  of  oscillation.  Such  an  oscillator,  when  it  is  quantized,  produces  a  quantum

oscillator described by means of creation and annihilation operators â+ , â . Physical
quantities,  such  as  the  electric  field  strength,  then  become  quantum  operators.
Therefore, the field is given as [18]:

Êi=ui
*(x , t) â++ui (x , t) â

Index i indicates a component of the field. The Hamiltonian is given by:

Ĥ=ℏω (â+ â+1/2)

The canonical commutation relation  is [ â , â+]=1 as before. Let us consider operators

as given in [19]:

q̂=1
2
(â++â) , p̂=1

2
( â+−â)

There operators are the "quadratures", representing the real and imaginary parts of the
complex amplitude. The commutation relation between the two quadratures can easily
be calculated [19]: 

[ q̂ , p̂ ]= i
2

The "quadratures" obey Heisenberg Uncertainty Principle given by: 

Δq Δ p≥1/2  

where  Δq ,Δ p  are  the  variances  of  the  distributions  of  q and  p,  respectively.
Therefore, we have expressed in quantum optics the uncertainty principle.  

Let us conclude proposing  the squeezing of photons. 

A general form of a squeezed coherent state for a quantum harmonic oscillator is given
by:

|ν ,ζ >=D(ν )S (ζ )| 0 >

where  | 0 >  is the vacuum state, D  is the displacement operator and S  the squeeze
operator, given by:



D(ν )=exp(ν â+−ν * â)    and    S(ζ )=exp[ 1
2
(ζ * â2−ζ â+ 2)]

where â , â+ are annihilation and creation operators, respectively.

For  a  quantum harmonic  oscillator  of  angular  frequency  ω ,  we can  write  these
operators as:

â+=√mω2ℏ (x− ip
mω ) ,  â=√mω2ℏ (x+ ip

mω )
For a real ζ  the uncertainties for  x  and  p  are: 

(Δ x )2= ℏ
2mω

exp(−2ζ )  and  (Δ p)2=m ℏω
2

exp(2ζ )

Therefore,  a  squeezed  coherent  state  saturates  the  Heisenberg  uncertainty  principle
Δ xΔ p=ℏ/2 ,  with  reduced uncertainty  in  one  of  its  quadrature  components  and

increased uncertainty in the other.

Conclusion

We have discussed the Poissonian distributions  that  we can find in the thermoionic
emission of electrons  and in the photodetection.  After a description of the Hanbury
Brown - Twiss  effect,  we have considered the second order correlation of intensity and
Poissonian, super- and sub-Poissonian lights. The quadrature and squeezed states have
been  considered  too.  The  discussion  was  proposed  in  the  framework  of  teaching
purposes.

Appendix

Poisson distribution  can be obtained from the binomial  distribution.   If  the  random
variable  X follows the binomial distribution with parameters  n  ∈ ℕ and p  [0,1], we∈
tell that  X ~ B(n,  p). The probability of getting exactly  k successes in  n independent
Bernoulli trials is given by the probability mass function ( q=1−p ):

P(k )=(nk)pk qn−k= n !
k ! (n−k)!

pkqn−k

Let us define constant λ=np and use it in the formula:

P(k )= n !
k !(n−k )!( λn )

k

(1−λ
n )

n−k

For n→∞ :



P(k )= lim
n→∞

n!
k !(n−k )! (λn )

k

(1−λ
n )

n−k

P(k )=λ k

k!
lim
n→∞

n!
(n−k ) !(1

n)
k

(1−λ
n )

n

(1−λ
n )

−k

P(k )=λ k

k!
lim
n→∞

n(n−1)(n−2)...(n−k+1)(n−k )!
(n−k )! (1

n)
k

(1−λ
n )

n

(1−λ
n )

−k

P(k )=λ k

k!
lim
n→∞

n(n−1)(n−2)...(n−k+1)
nk (1−λ

n )
n

(1−λ
n )

−k

In the limit, the numerator becomes composed by k factors of n :

 P(k )=λ k

k !
lim
n→∞

nk

nk (1−
λ
n )

n

(1−λ
n )

−k

P(k )=λ k

k!
lim
n→∞(1−

λ
n )

n

(1−λ
n )

−k

Let us consider λ /n→0 :  P(k )=λ k

k!
lim
n→∞(1−

λ
n )

n

But: e−λ= lim
n→∞ (1−

λ
n )

n
, so we have: P(k )=λ k

k !
e−λ .
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