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Abstract A new discretization approach is presented for the simulation of flow
in complex poro-fractured media described by means of the Discrete Fracture and
Matrix Model. The method is based on the numerical optimization of a properly
defined cost-functional and allows to solve the problem without any constraint on
mesh generation, thus overcoming one of the main complexities related to efficient
and effective simulations in realistic DFMs.
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1 Introduction

The present work deals with the simulation of the flow in the subsoil, modelled
by means of the Discrete Fracture and Matrix (DFM) model. According to this
model, underground fractures are represented as planar polygons arbitrarily ori-
ented in a three dimensional porous matrix. The flows considered here are governed
by the Darcy law in the three dimensional matrix and by an averaged Darcy law
on each fracture plane, with suitable matching conditions at fracture-matrix in-
terfaces and at fracture intersections. The quantity of interest is the hydraulic
head, given by the sum of the pressure head and elevation. Single phase station-
ary flow is considered, with the assumption of continuity of the hydraulic head
at both fracture-matrix interfaces and at fracture-fracture intersections and no
longitudinal flow is allowed along fracture intersections. This is a simplified model
with respect to other DFM approaches, described, for example in [28] or, more
recently, in [14], but still representative of realistic configurations, characterized,
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e.g., by highly permeable fractures. The main focus of the present work is on ge-
ometrical complexity aspects, proposing a problem formulation and a numerical
approach suitable for complex and randomly generated networks. The described
approach can however be extended to different flow models and different coupling
conditions. The geometrical complexity of DFM models mainly arises from the
multi-scale nature of the resulting domains and from the presence of multiple
intersecting interfaces, where the solution displays an irregular behavior. DFM
models are proposed as an alternative to homogenization techniques [33], dual
and multy-porosity models [17], or embedded discrete fracture matrix (EDFM)
models [26,29,23], and are characterized by the explicit representation of the un-
derground fractures, dimensionally reduced to planar interfaces into the porous
matrix. As a consequence of the random orientation, fractures usually form an
intricate system of intersections, with the presence of fractures with very different
sizes spanning several orders of magnitude that generate intersections with huge
geometrical complexities as, for example, 2D and 3D geometrical objects with very
different dimension and objects with enormous aspect ratios. The research on ef-
fective numerical tools for DFM simulations is particularly active, see e.g. [3,1,
15,32,12,31,4,18]. One of the key aspects is the meshing of the domain, with a
mesh conforming to the interfaces, suitable for standard approaches for the im-
position of interface conditions. The generation of a conforming mesh for realistic
fracture networks might, in fact, result in an impossible task, for the extremely
high number of geometrical constraints. The mesh conformity constraint at the
interfaces can be relaxed by using extended finite elements as suggested, e.g., by
[24,21]. Different approaches are based on the Mimetic Finite Difference method
(MFD) [27], as described, for example, in [2,32], or on Hybrid High Order (HHO)
methods as proposed by [16], where a partial non-conformity is allowed between
the mesh of the porous medium and of the fractures, or also on Discontinuous
Galerkin discretizations, as in [4]. Two or multi-point flux approximation based
techniques are described in [34,20] and gradient schemes in [15]. Virtual Element
(VEM) based discretizations have also been recently investigated to ease the mesh
generation process in complex DFMs, as in [6] where the VEM is coupled to the
Boundary Element method, and in [22], in [19] for poro-elasticity problems, or in
[5] where an arbitrary order mixed VEM formulation is proposed.

This work presents a development of an optimization-based approach, first
proposed for Discrete Fracture Networks [10,11,7,13,8] and recently extended to
DFM problems in [12]. This approach avoids any mesh conformity requirement
for the imposition of interface conditions, which are instead enforced through the
minimization of a properly defined cost functional. The computation of the quan-
tities involved in functional definition does not require any constraint on the mesh.
Further, the resolution of the optimization problem via a gradient-based scheme
allows to de-couple the problems on each fracture and the problem on the porous
matrix, thus paving the way for an efficient parallel implementation of the numer-
ical scheme, similarly to what done in [13,9]. The discretization scheme described
in [12] relies on the Boundary Element Method for the discretization of the prob-
lem on three dimensional matrix blocks, thus requiring the splitting of the original
three dimensional domain into sub-domains not crossing the fractures, and thus im-
plying a partial mesh conformity at the fracture-matrix interfaces. Here, the three
dimensional domain is not split into sub-domains and Finite Elements are used for
the discretization of the matrix, on tetrahedral elements that can arbitrarily cross
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Fig. 1 Nomenclature exemplification

the fractures. Finite elements on triangular meshes are used for the fractures, with
elements not conforming to the tetrahedral mesh and also arbitrarily placed with
respect to fracture-fracture intersections. The proposed discretization approach
thus greatly improves the usability of the method to general DFM geometries,
allowing a trivial meshing process of extremely complex domains, thanks to the
complete independence of the mesh from all the interfaces.

The structure of the manuscript is the following: Section 2 describes both the
classical and the optimization based formulation of the flow problem in a DFM; the
following Section 3 describes the derivation of the discrete problem and the proof of
its well posedness; Section 4 shows how an equivalent unconstrained optimization
problem is derived, and the gradient based scheme used for problem resolution;
Section 5 reports some numerical results and finally some conclusions are proposed
in Section 6.

2 Problem description

This section is devoted to a brief description of the problem of interest, referring
to [12] for a more detailed exposition and well posedness results. Let us consider a
polyhedral block of porous material, denoted as D, crossed by a fracture network
Ω given by the union of planar polygonal fractures Fi, i = 1, . . . , NF in the three-
dimensional space, i.e. Ω =

⋃NF
i=1 Fi. We further denote by F the set of all fracture

indexes. Fractures might intersect, and fracture intersections, also called traces,
are indicated as Sm, m = 1, . . . , NS . We assume, for simplicity, that each trace
is given by the intersection of exactly two fractures, such that an injective map
σ : [1, . . . , NS ] 7→ [1, . . . , NF ]× [1, . . . , NF ] can be defined between a trace index and
a couple of fracture indexes, as σ(m) = {i, j} being Sm = F̄i ∩ F̄j . Further, Si is
the set of indexes of all the traces on fracture Fi and S the set of indexes of all the
traces in the network. Let us introduce the domain D̃ = D \ Ω̄, thus given by the
original block D without the internal fractures. Calling ∂D̃ the boundary of D̃, let
us denote by Γ±i the portion of ∂D̃ that matches fracture Fi, for i = 1, . . . , NF , the
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superscript “+” or “−” referring to one of the two sides of the boundary “around”
the fracture (see Figure 1); the unit normal vector to Γ±i is n±Γi , always pointing

outward from D̃. A jump operator is introduced for any sufficiently regular vector
function v on D̃, defined as the jump of v along the normal direction to the faces
Γ±i :

[[v · n]]Γi :=
(
v|Γ+

i
· nΓ+

i

)
−
(
v|Γ−i

· nΓ+
i

)
.

Similarly, for i = 1, . . . , NF we denote by F̃i the fracture Fi without traces, i.e.
F̃i = Fi \

⋃
m∈Si Sm, and for each trace Sm, m ∈ Si, for any sufficiently regular

vector function wi on Fi, the jump of the normal component of wi across trace
Sm on Fi is denoted as:

[[wi · n]]Sm :=
(
wi|S+

m
· niSm

)
−
(
wi|S−m · n

i
Sm

)
,

with S±m the two sides of the portion of the boundary of F̃i lying on Sm and niSm
the normal unit vector to Sm with a fixed orientation on Fi. These jump operators
are easily extended to functions defined on the whole 3D domain D and on the
whole fractures Fi, i = 1, . . . , NF , with the ± superscripts still denoting the two
sides of the interface Γi ≡ Fi, ∀i = 1, . . . , NF , or Sm, ∀m = 1, . . . , NS .

The portion of ∂D̃ not matching any fracture is split in a Dirichlet part ΓD
and a Neumann part ΓN , ΓD ∩ ΓN = ∅, where, for simplicity of exposition, we
assume homogeneous Dirichlet and Neumann boundary conditions are enforced.
Similarly, the boundary of each fracture ∂Fi, i = 1, . . . , NF , is split in a Dirichlet
and Neumann part, γiD and γiN , respectively. If fracture Fi lies in the interior
of D, then we set γiD = ∅, and homogeneous Neumann boundary conditions are
prescribed on γiN ≡ ∂Fi. If NF = 1, we assume that |γ1D| > 0, whereas, if there
is more than one fracture in the network, we allow γiD = ∅ for i = 1, . . . , NF . The
problem of the equilibrium distribution of the hydraulic head in D can be then
stated in strong formulation as:

−∇ · (KD∇HD) = f in D̃ (1)

−∇i · (Ki∇iHi) = − [[KD∇HD · n]]Γi in F̃i, i = 1, . . . , NF (2)

(HD)|Γ±i
= Hi, i = 1, . . . , NF (3)

Hi = Hj , on Sm, m = 1, . . . , NS , i, j = σ(m) (4)

[[Ki∇iHi · n]]Sm = − [[Kj∇jHj · n]]Sm , m = 1, . . . , NS , i, j = σ(m) (5)

HD = 0 on ΓD (6)

KD∇HD · nΓN = 0 on ΓN (7)

Hi = 0 on γiD, i = 1, . . . , NF (8)

Ki∇iHi · nγiN = 0 on γiN , i = 1, . . . , NF (9)

where HD is the hydraulic head in D̃, Hi the hydraulic head on Fi, i = 1, . . . , NF
and f is a volumetric source term. The operator∇ represents the three-dimensional
gradient in D̃, ∇i is the two-dimensional gradient on the plane containing fracture
Fi, whereas KD(x) ∈ R3×3, for x ⊂ D̃ is a symmetric positive definite matrix
representing the transmissivity of the porous matrix and Ki(x) ∈ R2×2, x ⊂ Fi is
a symmetric positive definite matrix representing the tangential transmissivity of
the fracture Fi on its tangential plane. Finally, nΓN is the outward unit normal
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vector to ΓN , and for a given index i = 1, . . . , NF , nγiN the outward unit normal
vector γiN on the plane of fracture Fi.

Here, for simplicity, we have considered only the source term on the fractures
deriving from the exchange with the porous matrix and homogeneous boundary
conditions, but the extension to a more general case is immediate. Conditions (3)
and (4) express the continuity of the solution at fracture-matrix interfaces and at
fracture intersections, respectively, whereas Equation (5) enforces the balance of
fluxes at the traces.

Let us now introduce the following functional spaces: first, on each fracture Fi,
i = 1, . . . , NF , we define the function space Vi as Vi = H1

D(Fi) =
{
v ∈ H1(Fi) : v|γiD=0

}
;

then on the whole three dimensional domain D, the space H1
Ω(D) is defined as the

space of functions in H1
0(D) whose trace on each interface Γ±i i = 1, . . . , NF is a

function in Vi, i.e.:

H1
Ω(D) =

{
v ∈ H1

0(D) : v|ΓD=0, v|Γ±i
∈ Vi, i = 1, . . . , NF

}
.

Also, on each trace Sm, m = 1, . . . , NS we set the spaces Um = H−
1
2 (Sm) and

Hm = H
1
2 (Sm). We introduce the following variables: Umi ∈ U

m defined on trace
Sm of fracture Fi as

Umi = [[Ki∇iHi · n]]Sm + αHi|Sm , ∀i = 1, . . . , NF , ∀m ∈ Si, (10)

thus representing a sort of internal Robin boundary condition on the traces; and,
for all i = 1, . . . , NF , Qi ∈ V ′i , with

Qi := [[KD∇HD · n]]Γi + βHD|Γi , (11)

thus again being a linear combination of the jump of the co-normal derivative of
HD across interface Γi and the trace of HD on Γi, and V′i the dual of Vi. We
remark that, as HD ∈ H1

Ω(D) the hydraulic head is continuous across interfaces
Γi ≡ Fi ⊂ D.

We also define the bilinear forms: aD : H1
Ω(D)×H1

Ω(D) 7→ R,

aD (v, w) =

∫
D

KD∇v∇w dD + β

NF∑
i=1

∫
Γi

v|Γiw|Γi dΓ ;

for all i = 1, . . . , NF , bilinear forms aFi : Vi ×Vi 7→ R,

aFi (vi, wi) =

∫
Fi

Ki∇ivi∇iwi dFi + α
∑
m∈Si

∫
Sm

vi|Smwi|Sm dS;

bi : V′i ×Vi 7→ R
bi (q, v) = 〈q, v〉V′i,Vi

and, for m = 1, . . . , NS , form cm : Um ×Hm 7→ R,

cm (um, v) =
〈
um, v

〉
Um,Hm .
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Then, problem (1)-(9) can be written in weak formulation as: find HD ∈ H1
Ω(D),

Hi ∈ Vi, Qi ∈ V′i, U
m
i ∈ U

m
i , m ∈ Si, such that, for all v ∈ H1

Ω(D), for all wi ∈ Vi,
i = 1, . . . , NF :

aD (HD, v)−
NF∑
i=1

bi
(
Qi, v|Γi

)
= 〈f, v〉(H1

Ω)′,H1
Ω

(12)

aFi (Hi, wi)− β
(
HD|Fi , wi

)
Fi
−
∑
m∈Si

cm
(
Umi , wi|Sm

)
= −bi (Qi, wi), (13)

being (v, w)ω the scalar product in L2(ω). The coupling conditions in weak form
are given by: for all i = 1, . . . , NF , and for all m = 1, . . . , NS

bi
(
HD|Fi −Hi, µi

)
= 0, ∀µi ∈ V′i, (14)

cm
(
ηm, Hi|Sm −Hj|Sm

)
= 0, ∀ηm ∈ Um, i, j = σ(m) (15)

cm
(
Umi + Umj , ν

m) = 0, ∀νm ∈ Hm, i, j = σ(m). (16)

Parameters α > 0 and β > 0 ensure stability of the problems written independently
on each fracture and on the three dimensional domain. This is required to obtain
a discrete formulation suitable for parallel computing. Moreover, the choice α > 0
and β > 0 allows to have Dirichlet boundary conditions alternatively on the three
dimensional domain or on the fracture network, i.e. we can have ΓD = ∅ if γiD 6= ∅
for at least one fracture index i = 1, . . . , NF , or γiD = ∅ for all the fractures if
ΓD 6= ∅.

Problem (12)-(16) is well posed. To show this, let us introduce the function
space H1

Ω+(D) defined as:

H1
Ω+(D) =

{
v ∈ H1

0(D) : vi := v|Fi ∈ Vi, ∀i = 1, . . . , NF ,

vi|Sm = vj|Sm , ∀m = 1, . . . , NS , i, j = σ(m)
}

and thus incorporating the matching conditions at the interfaces. Let us then write
the following problem: find H ∈ H1

Ω+(D) such that, for all v ∈ H1
Ω+(D)

(K∇H,∇v)D +

NF∑
i=1

(Ki∇iHi,∇ivi)Fi = 〈q, v〉 . (17)

Problem (17) is well posed, as it can be easily seen that H1
Ω+(D) is an Hilbert

space with the scalar product, [12]:

(v, w)H1
Ω+

:= (K∇v,∇w)D̃ +

NF∑
i=1

(Ki∇iwi,∇ivi)Fi .

Problem (12)-(16) is equivalent to problem (17); indeed, recalling that, for v ∈
H1
Ω+(D), conditions (14)-(15) are satisfied by construction. Moreover summing

(13) for i = 1, . . . , NF and (12), using (16) and the definition of Umi and Qi, for
i = 1, . . . , NF , m ∈ Si, we get (17). We propose a reformulation of problem (12)-(16)
well suited for discretization on non conforming meshes and parallel computing,
based on a PDE constrained optimization approach. To this end, we introduce a
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Table 1 Labels used for the dimension of discrete variables

Label Description Definition
NhD Number of dofs for hD
Nhi Number of dofs for hi on T iδFi
Nqi Number of dofs for qi on T iδΓi
Nmui Number of dofs for umi on T iδSm,i
NhF Number of dofs for hF

∑NF
i=1Nhi

Nq Number of dofs for q
∑NF
i=1Nqi

Nui Number of dofs for ui
∑
m∈Si N

m
ui

N+
ui Number of dofs for u+

∑
m∈Si

∑
k∈σ(m)Nmui

Nu Number of dofs for u
∑NS
m=1

∑
k∈σ(m)Nmui

Nh Number of dofs for h NhF +NhD

cost functional expressing the error in the fulfilment of the interface conditions as
continuity and flux conservation:

J(HD, HF , US) :=

NF∑
i=1

(
‖HD|Fi −Hi‖

2
Vi

)
+

NS∑
m=1

(
‖Hi|Sm −Hj|Sm‖

2
Hm + ‖Umi + Umj − α

(
Hi|Sm +Hj|Sm

)
‖2Um

)
,

being HF :=
∏NF
i=1Hi and US =

∏NS
m=1

∏
i∈σ(m) U

m
i . Setting, finally, QF :=∏NF

i=1Qi, the solution to problem (12)-(16) is obtained as the minimum of func-
tional J(HD, HF , US) constrained by the PDE equations on the 3D domain and
on the fractures:

min
QF ,US

J(HD, HF , US) (18)

constrained by (12) (19)

and by (13) ∀i = 1, . . . , NF . (20)

3 Discrete formulation

The PDE constrained optimization formulation is specifically designed to allow
for an easy discretization of the problem using non conforming meshes and to
obtain a discrete problem suitable for effective resolution using parallel comput-
ing resources. The imposition of the interface constraints expressed by equations
(14)-(16) with a standard approach requires some sort of mesh conformity at the
interfaces: either a perfect matching of the nodes on the meshes to enforce condi-
tions by means of degrees of freedom equality constraints, or the weaker condition
of alignment of mesh edges with the interfaces, to use mortaring techniques. In con-
trast, the imposition of interface conditions through the functional only requires
the computation of integrals on the traces, as shown below, and thus meshes can
be arbitrarily placed with respect to the interfaces, see Figure 2 for an example
of non-conforming meshes in the rock matrix and on the fractures. Further, the
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minimization process allows to decouple the problems on the fractures and on the
three-dimensional domain, for parallel computing.

The discretization strategy proposed in this work is based on the use of stan-
dard finite elements on tetrahedra for the three dimensional domain and finite
elements on triangles for the fractures. Let us then denote by T DδD the tetrahedral

mesh on D, characterized by a mesh parameter δD, by T iδFi a triangular mesh on Fi,

i = 1, . . . , NF , with mesh parameter δFi , and by T iδΓi a possibly different triangular

mesh on Fi, with mesh parameter δΓi . We further introduce a discretization of the
one-dimensional traces, different on each fracture, denoted by T iδSm,i , with mesh
parameter δSm,i, i = 1, . . . , NF , m ∈ Si. We denote by hD the finite dimensional ap-

proximation of HD on T DδD , hD =
∑NhD
k=1 hD,kφk, with NhD the number of degrees

of freedom (dofs) and φk a finite element basis function in 3D; for i = 1, . . . , NF ,

we further call hi the approximation of Hi on T iδFi , hi =
∑Nhi
k=1 hi,kψi,k, with Nhi

the number of dofs and ψi,k a 2D basis function; qi the approximation of Qi on

T iδΓi , qi =
∑Nqi
k=1 qi,kϕi,k having Nqi dofs, and ϕi,k one basis function; umi the ap-

proximation of Umi on T iδSm,i , u
m
i =

∑Nmui
k=1 u

m
i,k%

m
i,k, with Nmui dofs and %mi,k a basis

function. Tables 1-2 summarize the labels used for the dimensions of the discrete
variables, the name used to denote the basis functions and the notation used, in
the following, for the matrices collecting integrals of these basis functions. We
build arrays of dofs by collecting column-wise the dofs of each discrete function
and with abuse of notation we denote the dof array with the same symbol of the
corresponding function, thus having arrays hD ∈ RNhD , hi ∈ RNhi , qi ∈ RNqi ,
i = 1, . . . , NF , and umi ∈ RN

m
ui , m ∈ Si. We define arrays um, m = 1, . . . , NS , as

um = [(umi )T (umj )T ]T for i, j = σ(m) with i < j, and we further collect column
wise arrays hi, qi, u

m
i and um forming:

hF =

 h1
...

hNF

 , q =

 q1
...

qNF

 , ui =

 um1

i
...

u
m]Si
i

 , u+i =

 um1

...
um]Si

 , u =



u1

...
um

...

uNS

 ,

where m1, . . . ,m]Si are the indexes in Si ordered increasingly.

The discrete version of functional J is the following:

J (hD, hF , u) =

NF∑
i=1

‖hD|Fi − hi‖
2
L2(Fi) +

NS∑
m=1

(
‖hi − hj‖2L2(Sm) + ‖umi + umj − α(hi + hj)‖2L2(Sm)

)
(21)

obtained replacing the discretized variables and using L2 norms. The discrete
functional can be written in matrix form, computing the integrals of the basis
functions and collecting the values into matrices. Considering the first norm in J ,
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Table 2 Summary of nomenclature used for the discrete matrices: involved discrete function
names and basis functions

Matrix letter function(s) basis functions Integration domain
AD hD φ D
Ai hi ψi Fi
Bmij hi,u

m
i ψi, %

m
j Sm

Cmij umi , umj %mi , %mj Sm
Di hi, q ψi, ϕi Fi
Ei hD, q φ, ϕi Fi
Gi

D hD φ Fi
Gi
F hi ψi Fi

Gi
DF hD, hi φ, ψi Fi

Gm
ij hi, hj ψi, ψj Sm

we have:

‖hD|Fi − hi‖
2
L2(Fi) =

∫
Fi

NhD∑
k=1

hD,kφk|Fi −
Nhi∑
j=1

hi,jψi,j

2

dFi

and we can define three matrices as follows, for each i = 1, . . . , NF , Gi
D ∈ RNhD×NhD ,

Gi
DF ∈ RNhD×Nhi , Gi

F ∈ RNhi×Nhi :

(Gi
D)k,` =

∫
Fi

φk|Fiφk|Fi , (Gi
DF )k,` =

∫
Fi

φk|Fiψi,`, (Gi
F )k,` =

∫
Fi

ψi,kψi,`

such that

‖hD|Fi − hi‖
2
L2(Fi) =

[
hTD hTi

] [ Gi
D −Gi

DF
−(Gi

DF )T Gi
F

] [
hD
hi

]
.

The computation of matrix Gi
DF is not straightforward, as the two involved vari-

ables are defined on different meshes. In particular, the intersection of the three
dimensional tetrahedral mesh with the fracture plane needs to be computed. This
operation defines a polygonal tessellation of Fi which is then sub-triangulated,
thus generating a triangular interface mesh. This sub-triangulation process can be
performed without any mesh quality requirement, as the resulting mesh is used
only for quadrature purposes. The computation of the elements in Gi

DF is finally
performed first computing the intersection of the elements of the interface mesh
with the elements in T iδFi , and subsequently the required integral on the inter-

section region. Element neighbourhood information is used to efficiently perform
the task. The computation of the interface mesh is a quite complex and expensive
task. Also in this case element neighbourhood information is used for efficiency,
and further can be performed independently fracture by fracture and thus in par-
allel, which is of paramount importance for the applicability of the method to
complex geometries.

We can proceed similarly with the remaining terms of the functional J ; to this
end, for m = 1, . . . , NS , and all the possible couples of indexes i, j such that i, j =

σ(m), we define matrices Gm
ij ∈ RNhi×NFj , Bm

ij ∈ RNhi×N
m
j , Cm

ij ∈ RN
m
ui
×Nmj :

(Gm
ij )k,` =

∫
Sm

ψi,k|Smψj,`|Sm , (Bm
ij )k,` =

∫
Sm

ψi,k|Sm%
m
j,`, (Cm

ij )k,` =

∫
Sm

%mi,k%
m
j,`
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Fig. 2 Polygonal tessellation on a sample fracture given by the intersection of a tetrahedral
mesh with the fracture plane (blue in the right panel) overlapped with the fracture triangular
mesh (red in the right panel)

such that

‖hi − hj‖2L2(Sm) =
[
hTi hTj

] [ Gm
ii −Gm

ij

−Gm
ji Gm

jj

] [
hi
hj

]
,

and

‖umi + umj − α (hi + hj) ‖2L2(Sm) =([
(umi )T (umj )T

] [Cm
ii Cm

ij

Cm
ji Cm

jj

]
− 2α

[
hTi hTj

] [Bm
ii Bm

ij

Bm
ji Bm

jj

])[
umi
umj

]
+α2 [

hTi hTj
] [Gm

ii Gm
ij

Gm
ji Gm

jj

] [
hi
hj

]
.

We can collect these matrices, defined locally at the various interfaces into global
matrices to derive a compact form of the functional. Let us define matrix GS ∈
RNhF×NhF , NhF =

∑NF
i=1Nhi , as a NF × NF block matrix, with diagonal blocks

in positions i-i are given by (1 + α2)
∑
m∈Si Gm

ii , i = 1, . . . , NF . Extra diagonal

blocks in positions i-j (i 6= j) are instead equal to (α2 − 1)Gm
ij , if i, j = σ(m), or a

zero block otherwise. Further let us define matrix GFD =
∑NF
i=1 Gi

D, and matrices

GFDF ∈ RNhD×NhF and GFF ∈ RNhF×NhF respectively as

GFDF =
[
G1
DF · · ·G

i
DF · · ·G

NF
DF
]
, GFF = diag

(
G1
F , . . . ,G

i
F , . . . ,G

NF
F

)
Matrix G ∈ RNh×Nh , Nh = NhF +NhD , is finally set as

G =

[
GFD GFDF

(GFDF )T GFF + GS

]
.

For all i = 1, . . . , NF , let us assemble matrices B+
i ∈ RNhi×N

+
ui ,N+

ui =
∑
m∈Si

∑
k∈σ(m)N

m
k ,

collecting row-wise matrices [Bm
ij Bm

ik] , for increasing values of m ∈ Si and
j, k = σ(m), j < k, i.e.:

B+
i =

[
Bm1

ij Bm1

ik · · · B
m]Si
ip B

m]Si
iz

]
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with p, z = σ(m]Si), p < z. Let us introduce matrices R+
i ∈ RN

+
ui
×Nu , with Nu =∑NS

m=1

∑
k∈σ(m)N

m
k , defined such that u+i = R+

i u. Matrix B+ ∈ RNhF×Nu is

finally obtained collecting column wise matrices B+
i R+

i . Matrix C ∈ RNu×Nu , is
a block diagonal matrix with NS × NS diagonal blocks, each diagonal block in
position m-m being equal to[

Cm
ii Cm

ij

Cm
ji Cm

jj

]
, i, j = σ(m), i < j

The matrix formulation of J then reads as:

J =
[
hTD hTF

]
G

[
hD
hF

]
+ uTCu− αhTFB+u− αuTB+ThF .

We can re-write also the discrete constraint equations in matrix form. We follow
a standard procedure and we define matrix AD ∈ RNhD×NhD as

(AD)k` =

∫
D

KD∇φk∇φ` + β

NF∑
i=1

∫
Fi

φk|Fiφ`|Fi ,

where the integral on Fi is performed on the interface mesh, generated by the
intersection of the tetrahedral mesh with each fracture. Matrices Ai ∈ RNhF×NhF ,
for i = 1, . . . , NF are defined by

(Ai)k` =

∫
Fi

Ki∇iψi,k∇iψi,` + α
∑
m∈Si

∫
Sm

ψi,k|Smψi,`|Sm

which form the diagonal blocks of block diagonal matrix AF ∈ RNhF×NhF , AF =
diag(A1, . . . ,ANF ). We introduce, for each fracture Fi, i = 1, . . . , NF matrices Ri ∈
RNui×Nu , Nui =

∑
m∈Si N

m
ui , defined such that ui = Riu, and Bi ∈ RNhi×Nui

obtained collecting row-wise matrices Bm
ii for all m ∈ Si. These matrices are used

for the definition of matrix B ∈ RNhF×Nu , defined grouping column-wise matrices
Bi, for i = 1, . . . , NF . Matrix D ∈ RNhF ×Nq is built as follows:

D =
[
D1 · · · DNF

]
, (Di)k` =

∫
Fi

ψi,kϕi,`

with integrals computed on the intersection of the mesh T iδΓi for variable qi with

the mesh T iδFi for hi. We finally introduce matrix E ∈ RNhD×Nq , Nq =
∑NF
i=1Nqi

as

E =
[
E1 · · · ENF

]
, (Ei)k` =

∫
Fi

φk|Fiϕi,`.

where integrals are computed intersecting the mesh T iδΓi for variable qi with the

triangulated interface mesh given by the intersection between the tetrahedral mesh
with the fracture Fi.
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Setting hT = [hTD h
T
F ], the discrete formulation of the constrained minimization

process is:

min
(
hTGh+ uTCu− αhTFB+u− αuTB+ThF

)
(22)

constrained by

ADhD −Eq = bD (23)

AFhF − β(GFDF )ThD −Bu+ Dq = 0 (24)

being bD ∈ RNhD the array resulting from the forcing term.
Let us now introduce the following matrices:

A =

[
AD O

−β(GDF )T AF

]
, B =

[
E O

−D B

]
, B+ =

[
O O

O −αB+

]
, C =

[
O O

O C

]
(25)

and let us collect column-wise variables q, u into variable w, then optimality con-
ditions for problem (22)-(24) are given by the following linear system:

M =

 G B+ AT

B+T C −BT
A −B O

 , M

hw
λ

 =

0
0
b

 (26)

with bT = [bTD OT ]. Well posedness of problem (22)-(24) derives from non singu-
larity of the saddle point matrix M.

Lemma 1 Let matrices A, B be defined as in (25). Let A be full rank, let L = [A −B],
and let Z be a matrix obtained collecting row-wise column vectors zk, k = 1, . . . ,Nw,

Nw = Nu +Nq forming a basis of ker(L), then matrix ZTGZ is positive definite.

Proof We start observing that matrix A is full rank as both matrices AD and AF
are full rank under the assumption that α, β > 0. Then dim(ker(L)) = Nw. To
construct a basis of ker(L), let us take ek, the k-th vector of the canonical basis
of RNw , and let us set zk = (A−1Bek, ek). According to the index k, ek might
correspond to a non-null function qi for some i = 1, . . . , NF or a non-null function
umi for some i = 1, . . . , NF , m ∈ Si. In both cases will show that zTk Gzk > 0.

Non-null function qi
Let us start considering the first case and in particular let us assume that qi = ϕi,j
for a certain index j = 1, . . . ,Nqi . Let us consider two different scenarios: the case
NF = 1, i.e. a porous medium with a single fracture and the more general case
NF > 1.

– NF = 1
As q1 6= 0, for the non singularity of AD, it is hD 6= 0, and in particular it can
be either hD = const or hD 6= const.
• hD = const 6= 0

As we assumed homogeneous Dirichlet conditions, hD = const 6= 0 is pos-
sible only if ΓD = ∅. In virtue of definition (11), for the consistency and
conformity of the method, we have βhD|F1

= q1, which is possible only if
q1 is constant on F1. By (13), being |γ1D| > 0, it is:

aF1
(h1, ψ1,`) = −b1(q1 − βhD|F1

, ψ1,`) = 0, ∀` = 1, . . . ,Nh1

and thus h1 = 0, and in particular ‖hD|F1
− h1‖L2(F1) > 0.
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• hD 6= const
Let us set s1 := q1 − βhD|F1

, and let us consider equations (12) and (13),
that become:

(KD∇hD,∇φ`)D = b1(s1, φ`|F1
), ∀` = 1, . . . ,NhD(

Ki∇ihi,∇iψ1,`

)
F1

= −b1(s1, ψ1,`), ∀` = 1, . . . ,Nh1

where the source term s1 appears with opposite sign. We thus have ‖hD|F1
−

h1‖L2(F1) > 0.
– NF > 1

If hD = const 6= 0, proceeding similarly to the case NF = 1, we have βhD|Fi =
qi 6= 0 and ‖hD|Fi − hi‖L2(Fi) > 0.
If instead hD 6= const, we proceed in the following way: since qi 6= 0 we have
hi 6= 0, whereas it is hj = 0, for all j = 1, . . . , NF , j 6= i. Choosing, in particular,
one index j? such that fracture Fi and Fj? intersect in a trace Sm, we have
‖hi − hj?‖L2(Sm) > 0.

Non-null function umi
Let us now consider umi = %mi,j for some i = 1, . . . , NF , m ∈ Si, and for an index
j = 1, . . . ,Nmui , depending on the value of k. Also in this case it can be easily shown
that we have hi 6= 0, whereas we have hD = 0 and hp = 0 for all p = 1, . . . , NF ,
p 6= i, thus having again a non null functional value and thus zTk Gzk > 0.

Being G positive semi-definite by definition, it is xTGx ≥ 0 and xTGx = 0 if and
only if x ∈ ker(G), [25] and being zTk Gzk > 0, zk 6∈ ker (G) for z = 1, . . . ,Nw. The
space Z = span{z1, . . . , zNw} is thus a subspace of Im(G), and each vector y ∈ Z
can be written as y = Zv, for a vector v ∈ RNw , v 6= 0. Then vTZTGZv > 0.

Theorem 1 Problem (26) has a unique solution h? = [(h?D)T , (h?F )T ]T , w? = [(q?)T , (u?)T ]T ,

λ?, such that h?D, h
?
F , q

?, u? correspond to the constrained minimum of problem (22)-

(24).

The proof follows from Lemma 1 applying a classical argument of quadratic pro-
gramming (see Theorem 16.2 in [30]).

4 Unconstrained optimization problem

We can proceed formally, replacing the constraint equations into the functional, to
obtain an unconstrained minimization problem. We have h = A−1(Bw + b), from
which we obtain:

J ?(w) = wT
(
BTA−TGA−1B + C − BTA−TB+ − αB+TA−1B

)
w

+ 2
(
bTA−TGA−1B − bTA−TB

)
w + bTA−TGA−1b

:= wTGw + 2gw + const

The unconstrained minimization problem then reads

min
w

wTGw + 2gTw (27)
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or equivalently Gw + g = 0. Matrix G is symmetric positive definite, given the
equivalence of (27) with (22)-(24). The unconstrained minimization problem can
thus be solved with a gradient based iterative method, such as the conjugate
gradient method. The steps of the method are as follows:

guess w0

compute γ0 = (Gw0 + g) and set d0 = −γ0
set k = 0
while γk 6= 0

compute step size ζk =
γTk γk
dTk Gdk

set wk+1 = wk + ζkdk
set γk+1 = γk + ζkGdk
compute θk+1 =

γTk+1γk+1

γTk γk
set dk+1 = −γk+1 + θk+1dk
set k = k + 1

end

The computation of quantity yk = Gdk, at each step k can be performed as follows:

setting h̄k = A−1(Bdk) and λk = A−T (Gh̄k−B+dk), it is yk = BTλk+Cdk−B+
T
h̄k.

If β = 0, which is possible as long as there is a non empty portion of the Dirich-
let boundary for the three dimensional domain, i.e. |ΓD| > 0, the computation
of h̄k, λk at each step can be performed independently and in parallel on each
fracture and on the three dimensional domain, thus easily allowing to use paral-
lel computing resources for efficient resolution of the scheme, thanks to the block
diagonal structure of A and AF . If β > 0 then problems on the fractures can be
decoupled from the problem in the bulk domain as follows: at step k > 0, being
h̄k = [h̄TD,k h̄TF,k]T and splitting dk = [dTq,k dTu,k]T , we compute

h̄D,k = A−1
D
(
Edq,k

)
h̄F,k = A−1

F
(
Bdu,k − β(GDF )T h̄D,k−1 −Ddq,k

)
,

and similarly for λk.

5 Numerical results

In this section we provide some numerical results in order to show the applicability
of the present approach to flow simulations in porous media crossed by arbitrarily
complex networks of fractures. All the simulations are performed using linear La-
grangian finite elements on T DδD for hD, linear Lagrangian finite elements on T iδFi
for hi, piecewise constant basis functions on T iδΓi for qi and piece-wise constant ba-

sis functions on T iδSm,i for umi on each trace Sm, on each fracture Fi, i = 1, . . . , NF ,
m ∈ Si. In all cases we set β = 1 and, if S 6= ∅, α = 1, even if other choices
of α, β > 0 could be equivalently used. Indeed we remark that the value of such
parameters does not play any relevant role on the quality of the computed solution
and values of α, β > 0 are only needed for well posedness of local problems.
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5.1 Problems with known solution

We first propose two simple problems with known analytical solutions, labelled
Problem 1 and Problem 2, having the same domain and type of boundary con-
ditions. A cubic domain with unitary edge length is considered; the bottom face
is on the plane z = −1

2 with respect to a reference system Oxyz, and the cube is
crossed by a single fracture F1 placed on the plane z = 0, see Figure 3, left. The
problems are set as follows:

aD (HD, v)− b1
(
Q1, v|Γi

)
= (f, v)

a1 (H1, w1) +
(
HD|F1

, w1

)
F1

= −b1 (Q1, w1)

b1
(
HD|F1

−H1, µ1
)

= 0, ∀µ1 ∈ V′1

with f = −1 for Problem 1 and f = 0 for Problem 2, KD = K1 = 1 for both
problems. Dirichlet boundary conditions are set on cube faces on planes z = −1

2 ,
z = 1

2 , x = 0, x = 1, Neumann boundary conditions on cube faces on planes y = 0
and y = 1. Boundary conditions on fracture edges are prescribed accordingly to the
boundary conditions on cube edges. Dirichlet and Neumann boundary conditions
are derived from the analytical solution, which is h = 1

4 (x2+y2)+ 1
2 |z| for Problem

1 and h = 1
2 (x2−y2)+z for Problem 2. The two problems here considered also share

the same meshes. In Figures 3, right and 4, we display the colormap of the solution
of Problem 1. The mesh for the three dimensional domain is non conforming with
the fracture plane and independent from the mesh on the fracture, as shown in
Figure 3, right. In Figure 5 we report the behaviour of the error with respect to the
mesh size both in L2 and in H1 norm for Problem 1. The three dimensional mesh
parameter ranges between 0.02 and 4×10−5, the mesh on the fracture between 0.3
and 5×10−3. Due to the non conformity of the mesh and to the irregular behaviour
of the solution across the interface, sub-optimal convergence trends are obtained.
The obtained slopes for the error are compatible with the bounded regularity of
the solution h 6∈ H2(D). The absolute value of the relative error for Problem 1 on
the finest mesh is reported in Figure 6, showing that the error in the 3D solution
is mainly located near the interface, where the solution is irregular and the mesh
is not conforming with the irregularity interface. The error for the 2D solution
appears, instead, almost equally distributed in the domain, going to zero towards
the edges with Dirichlet boundary conditions. Optimal convergence curves are
however recovered if the solution across the interface is smooth. In fact, if we
consider Problem 2, having a smooth solution, optimal convergence trends are
recovered, as reported in Figure 7. In this case, the error is smoothly distributed
in both the 3D and 2D domains, as shown in Figure 8, where the absolute value
of the relative residual is reported for the 3D and 2D solutions of Problem 2.

5.2 Simple DFN problem

The second example proposes a validation of the method on a more general DFN
configuration through a qualitative comparison of the obtained solution with the
solution given by a method based on conforming meshes.
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O

D

F1

Fig. 3 Problem 1: domain description (left) and detail of the non conforming mesh at the
interface (right)

Fig. 4 Problem 1: solution on the three dimensional domain (left) and solution on the fracture
(right)
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Fig. 5 Problem 1: convergence curves against mesh refinement
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Fig. 6 Problem 1: Distribution of the absolute value of the relative error for the 3D and 2D
solution on the finest mesh
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Fig. 7 Problem 2: convergence curves against mesh refinement for a problem with smooth
solution across interface

Let us consider a unitary edge cubic block of porous material, crossed by a net-
work of 10 fractures forming 14 traces, as shown in Figure 9. A Dirichlet boundary
condition equal to 1 is imposed on the bottom face of the cubic domain, whereas
homogeneous Dirichlet boundary conditions are imposed on the edges of the frac-
tures lying on the top face of the domain, being instead the top face and all other
block faces and fracture edges insulated. The hydraulic trasmissivity is set to one
for matrix and fractures. The same problem is solved with a VEM based approach
on a polygonal/polyhedral conforming mesh, following the approach described in
[6], and with the proposed FEM based optimization method. A fine mesh is used
for the VEM based reference solution and for the optimization based solution, with
elements of maximum size of about 1.5×10−5, shown again in Figure 9. The solu-
tion obtained with the two approaches is reported in Figure 10 on three different
planes, placed at z = 0.25, z = 0.5, and z = 0.75, on the left for the VEM based
approach on the conforming mesh and on the right for the FEM based optimiza-
tion approach on non conforming meshes. We can see that the two solutions are in
very good agreement, despite the irregularities of the solution are not reproduced
on the non conforming mesh as sharply as it is done on the conforming mesh.
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Fig. 8 Problem 2: Distribution of the absolute value of the relative error for the 3D and 2D
solution on the finest mesh

Fig. 9 Problem 3: Computational domain, mesh and solution with the VEM on conforming
meshes (left) and with the FEM based optimization method on non conforming meshes (right)

On the other hand, the optimization approach allows an easy and robust meshing
process, that ensures the generation of good shaped elements independently of the
complexity of the geometry.

5.3 DFN problem

In the last example, a more complex and realistic DFN is considered, embedded
in a cubic domain, with barycentre in the origin of a reference system Oxyz and
edge length equal to two, as shown in Figure 11, on the left. The embedded DFN
consists of 20 randomly placed fractures, forming 62 traces, with a number of
traces per fracture ranging between 4 and 10. Traces intersect, forming angles as
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Conforming
     (VEM)

Non Conforming
        (FEM)

z=0.25

z=0.5

z=0.75

Fig. 10 Problem 3: Qualitative comparison of the solution obtained with the VEM on con-
forming meshes (left) and with the FEM based optimization method on non conforming meshes
(right)

narrow as 11.5 degrees, whereas the minimum angle between the normals of couples
of intersecting fractures is 17.3 degrees. A unitary pressure Dirichlet boundary
condition is imposed on fracture edges lying on the planes z = 1, and a zero
pressure Dirichlet boundary condition is imposed on the cube face on the plane
z = 0, all other fracture edges and cube faces being insulated. An inflow is thus
obtained through some fracture edges, and outflow occurs through the bottom
face of the cube. Figure 11, on the right, shows the computed solution on the 3D
domain and on the fractures, through a section of the three dimensional domain,
along with the used mesh, characterized by a mesh parameter equal to δD = 0.001
for the tetrahedral mesh and to δFi = 0.05, i = 1, . . . , 20 for the triangular mesh
on all the fractures. On this mesh, the total number of unknowns, Nh +Nq +Nu
is 5541, and the minimization problem is solved using 90 iterations to reach a
relative residual of 10−8, resulting in a functional value of 0.069. Considering a
refined mesh, with mesh parameter 1.25 × 10−4 for the tetrahedral mesh and
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Fig. 11 DFN problem: domain (left) and a section of the computed solution (right)

1.25× 10−2 for the triangular mesh, the total number of unknowns rises to 28686
and the number of iterations to reach the same relative residual is 125 and the
functional value is reduced to 0.057. We remark that the minimum of the discrete
functional is greater than zero, as a consequence of the non conformity of the
mesh. These results show the viability of the proposed approach in dealing with
complex domains.

6 Conclusions

A new discretization strategy for the simulation of the flow in arbitrarily com-
plex DFM geometries has been presented and validated. The method is based on
standard finite element discretizations for both the three dimensional domain and
the fractures, and the meshing can be performed independently on each geometri-
cal entity, thus actually overcoming any mesh related issue for DFM simulations.
The resulting discrete problem is well posed and can be efficiently solved via a
gradient scheme. The proposed numerical tests validate the method and show its
applicability to realistic DFM configurations. Although the proposed method can
be easily implemented for parallel solution, optimal parallel solver and suitable
well balanced partitioning strategies, yielding to efficient parallel solvers, should
be investigated but are out of the scope of the present work.
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putation of steady-state fluid flow in discrete fracture-matrix models: FEM–BEM and
VEM–VEM fracture-block coupling. GEM - International Journal on Geomathematics
9(2), 377–399 (2018). DOI 10.1007/s13137-018-0105-3
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