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Dimensioning renewable energy systems
to power Mobile Networks

Daniela Renga, Member, IEEE, and Michela Meo, Member, IEEE

Abstract—To face the huge increase in the mobile
traffic demand, denser cellular access networks are
extensively deployed by Mobile Operators, entailing
high cost for energy supply. Hence, Renewable Energy
(RE) sources are often adopted to power base stations
(BSs), in order to make them more self-sufficient and
reduce the energy bill. Nevertheless, sizing a RE gen-
eration system is a critical task, and the dimensioning
methods available in the literature are based on simu-
lation or optimization approaches, hence resulting time
consuming or computationally complex. This paper
proposes and validates a simple still effective analytical
method that, based on the location dependent mean
value and variance of RE production, allows to find
feasible combinations of photovoltaic (PV) panel and
battery sizes, suitable to power a BS and decrease the
storage depletion probability below a target threshold.
Furthermore, the application of this method highlights
the role of RE production variance. Higher values of the
variance require larger PV panels, almost doubled with
respect to locations with low variance. However, only
locations with higher variance benefit from increasing
the battery size and relaxing the constraint on energy
self-sufficiency, with the scope of reducing the required
PV panel capacity and the capital expenditures.

NOWADAYS, Mobile Network Operators are en-
forced to deploy denser mobile access networks, due

to the staggering increase of the mobile traffic observed
in the recent years, and that is bound to further grow
at remarkable pace in the next future. According to 2017
Cisco forecast [1], by 2021 there will be nearly 4.6 billion
Internet users worldwide, accounting for almost 60% of
the global population, 27 billion of networked devices and
connections are expected by the same year, with up to 13
connected devices per capita in North America and West-
ern Europe. By 2021 smartphone traffic will exceed PC
traffic, showing a seven-fold increase in the period 2016-
2021, with mobile data traffic growing twice as fast as fixed
IP traffic This substantial raise in the cellular traffic entails
the need to deploy properly dimensioned cellular networks,
allowing to make Internet access available everywhere and
providing the high bandwidth capacity required for the
increasing number of mobile users and for the introduction
of applications that result more and more demanding in
terms of bandwidth requirements. More than 4 billion base
station installations could be counted worldwide back in
2012, and this number is bound to remarkably increase
due to the aforementioned reasons [2]. Considering that
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the access segment is responsible of up to 80% of the total
network consumption, it appears evident how the energy
demand to operate cellular networks is rapidly growing
and Mobile Operators are facing huge operational costs
due to power supply [3]. Hence, several research efforts are
devoted to the deployment of effective solutions to make
mobile networks more energy efficient, with the twofold
objective of reducing costs and improving sustainability.
The integration of renewable energy (RE) sources in mo-
bile networks to power Base Stations (BSs) is becoming an
attractive solution to reduce the Mobile Operator energy
bill and, also, a promising approach to make them more
independent from the electric grid. The installation of a
local generator to produce solar energy for the cellular
network operation is a solution widely deployed in real
implementations. Indeed, according to estimates from [4],
almost 43,000 solar powered BSs could be counted world-
wide in 2014, and more than 390,000 renewable powered
BSs are expected to be newly installed in the period 2012-
2020, at a rate that will grow up to 84,000 per year in 2020,
6 times higher with respect to 2012 [2]. This approach
is typically adopted in some remote regions or emerging
countries in order to guarantee the mobile service continu-
ity, with the main driver being the provisioning of energy
supply where the traditional power grid is unreliable, due
for instance to frequent power outages, or it is not available
at all. Furthermore, this solution may provide economical
benefits in some rural areas where the connection of the
BSs to the electric grid may result more expensive than
the installation of a local RE generator.

A relevant issue to be tackled in case of solar energy
powering is represented by the intermittent nature of
the renewable energy generation, leading to erratic and
rather unpredictable production patterns. Hence, some
kind of storage must be envisioned in order to harvest
any extra amount of renewable energy that is not imme-
diately used, and to make it available for future usage
when no renewable energy is currently produced. This
may lead to higher initial investment for providing the
required infrastructure, i.e., photovoltaic (PV) panels and
a storage system to harvest extra amounts of produced
renewable energy. Nonetheless, the capital expenditure
(CAPEX) can actually be compensated on the medium
term by lower operational expenditure (OPEX), thanks
to the decrease in the amount of energy bought from
the grid [5]. The increasing relevance of renewable en-
ergy sources in mobile communication networks motivated
several research groups to investigate the topic, focusing
on the potentiality of RE as power supply in a setup
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where the [6]–[9]. However, one of the most critical tasks
to cope with when designing a green mobile network is
the dimensioning of the PV panels and the storage, a
process that entails a trading off between energy self-
sufficiency, service continuity and feasibility constraints.
The process of dimensioning a RE generation system
suitable for mobile networks is not deeply investigated
in the literature, and the available methods for sizing a
RE system are based either on simulation or optimization
approaches. This study aims at providing an analytical
tool to dimension the RE generation system, balancing
between the need for satisfying the network energy de-
mand and the target degree of network independence from
the power grid. The advantage of the analytical tool with
respect to the other approaches is that it allows us to
study the relationship among the fundamental parameters
of the system and it facilitates, by being extremely fast to
compute, the derivation of feasibility regions that relate
these parameters. The main contributions of our work are
the following:

• Further validation of the stochastic model of the
RE production proposed in our previous paper [10],
which is based on a random variable, characterized
by a mean value and a variance, that represents
the daily RE production. The model is validated by
considering various additional types of probability
distributions of the daily RE generation (Gamma,
Beta and Weibull distribution), besides the Normal
and Uniform distribution. Results are compared with
respect to those obtained under the empirical distri-
bution of RE production, as derived from real profiles
of solar energy production in the city of Turin.
• Design of a 3-state Markovian model to represent the
level of battery charge at the beginning of the day
in a scenario where a BS is powered by PV panels
and by the grid, and where some energy storage is
envisioned to harvest extra amounts of energy that
are not immediately used. This model basically aims
at evaluating the probability of battery depletion.
• Based on the proposed 3-state Markovian model,
derivation of an easy-to-use analytical formula to
dimension the RE power supply system. Given a
location with a specific mean value and variance of the
daily RE production, and given a target value of the
maximum battery depletion probability, this formula
allows to define feasibility regions that include all
the possible combinations of PV panel and battery
capacity that respect the desired constraint on the
BS self-sufficiency.

The proposed tool keeps into account the local pattern
of the RE generation at the specific latitude and the
impact that the variability of the solar energy production
may have in the system sizing. Finally, some consider-
ations about investment costs and feasibility issues are
introduced to refine the application of this method in order
to find the proper system dimensioning capable to balance
the desired performance targets and the feasibility and

cost constraints. The rest of the paper is organized as
follows. Sec. I presents the related work and highlights the
contribution of our work. Sec. II describes the scenario of
the green mobile access network considered in this work,
while Sec. III details how the RE generation has been
modeled. The Markovian model deployed to investigate
the operation of the renewable powered mobile network
is introduced in Sec. IV and validated in Sec. V. The
analytical formula derived from this model to dimension
the RE generation system is presented in Sec. VI, whereas
Sec. VII investigates the feasibility regions for system
dimensioning, based on the application of the proposed
formula. Sec. VIII provides some considerations about cost
and feasibility issues related to the system sizing process.
Finally, Sec. IX concludes the paper.

I. Related work
The dimensioning of a renewable energy system to

power mobile networks is a challenging process, since
several factors should be taken into account and traded off
in order to achieve a proper sizing. The identification of ad-
equate capacity values for the photovoltaic panels and for
the storage must deal with the renewable energy produc-
tion intermittence, the traffic variability, the desired level
of self-sufficiency with respect to the traditional power
grid, the physical feasibility constraints, while satisfying
the need to guarantee a continuous service availability.

A. Characterizing the renewable energy generation
A proper RE system dimensioning strictly relies upon an

adequate characterization of RE production. The profiles
of solar energy production from PV panels show huge
variability not only over seasons, but even from day to day
and within the same day, also depending on the location
and the varying weather conditions. Various approaches
can be found in the literature to represent the solar energy
generation. Some of them are simulation models based on
data-sets of the real solar radiation in a given location,
that are exploited to perform simulation studies allowing
to dimension a RE generation system based on the energy
demand either of a single BS [11]–[13] or of a portion
of a mobile access network [5]. However, the simulation
approach is typically time consuming, and it necessarily
requires the availability of huge data-sets to accurately
represent the solar energy production. Stochastic models
typically are more efficient than simulation based meth-
ods, although they may result in a high computational
complexity. The solar energy production profile from PV
panels is sometimes modeled by using Markov chains. In
[14] a two-state Markov model is proposed to determine
the proper storage size of a photovoltaic system allowing
to reduce the number of insufficient supply days to an
acceptable level. Authors in [15] design a Markov model
for the solar radiation and deploy various techniques to
define the best sizing of the storage. Some models take into
account finer time scale variations of RE production within
the day. The analytical model for solar power shaping
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proposed in [16] characterizes both the short-term (of
the order of few minutes) and long-term (of the order
of minutes-hours) scale variations in daily solar power,
besides the diurnal variations due to the succession of the
daylight period and the nighttime. Authors in [17] build a
theoretical framework based on stochastic power network
calculus for analyzing the performance of power networks
with RE generators and storage. Explicit formulas are
derived to compute performance metrics for investigating
the power system reliability and for the dimensioning
process. Nevertheless, these approaches do not provide
tools of easy application for dimensioning a RE generation
system based on the network energy demand, due to the
high computational complexity that may be entailed by
similar models, also in view of the fine granularity of
the considered time scales. In this work we propose a
simple stochastic model for characterizing the daily RE
production, aiming at trading off accuracy and complexity
when dimensioning a RE system to power mobile base
stations in a given location.

B. Renewable energy system dimensioning in mobile net-
works

Various studies in the literature investigate algorithms
aiming at efficiently managing the locally produced renew-
able energy and at properly exploiting the energy storage
or the application of Resource on Demand techniques, in
order to make the green mobile network more independent
from the electric grid and to improve the capability of
facing possible power outages, sometimes providing cost
analysis [5], [18]–[23].
In some paper studying the application of energy manage-
ment strategies in green mobile networks connected to the
Smart Grid, performance evaluations are conducted under
variable combinations of PV panels and battery sizing [24].
Authors in [25] propose a stochastic model to represent the
photovoltaic energy produced to power BSs. The model
is applied considering different locations and solar panel
sizes. In [26] a green mobile network is powered by locally
produced RE, that can be shared among the BSs. The
paper proposes a method to jointly optimize the BS oper-
ation and the power distribution, in order to minimize the
network on-grid power consumption. Nevertheless, only
few studies explicitly focus on the system dimensioning is-
sue and thoroughly evaluate the impact of variable system
sizing on the renewable powered network performance, in
order to derive a proper system dimensioning [5], [12], [13],
[27]–[32]. Authors in [27] aim at achieving a feasible system
dimensioning by proposing an algorithm to dynamically
adapt the mobile service of a renewable powered base
station, based on the current energy available at the
storage, the weather forecast and the historical pattern
of base station consumption. [12] and [28] analyze, via
simulation, the problem of properly sizing a PV generator
and the energy storage in order to provide adequate power
supply for a single BS, providing cost analysis and battery
lifetime evaluation. Authors in [13] deploy a model to

derive the optimal combination of PV panel and storage
size for powering a BS, subject to the predefined constraint
on the worst month outage probability. [29] adopts a multi-
state Markov model representing the hourly harvested
solar energy to find the optimal system dimension allowing
to minimize cost, given the limit on the maximum allowed
battery depletion probability at a solar powered BS. The
analytic model proposed in [30] is applied to evaluate
the outage probability of a renewable powered BS, and a
discrete time Markov process is adopted to represent the
battery charge level. In [31] a green energy provisioning
method is proposed, in order to address the system sizing
issue when deploying a green energy system to power base
stations. The presented solution applies a traffic load bal-
ancing algorithm with the aim of minimizing the CAPEX,
still satisfying the constraints on the Quality of Service.
In [5] a renewable powered mobile network is studied
via simulation under different combinations of PV panel
and system sizes, with possible application of Resource
on Demand (RoD) strategies, and trading off the battery
depletion probability, the feasibility constraints and the
capital expenditures. [32] investigates the introduction
of RoD and WiFi offloading techniques to improve the
interaction of a green mobile network with the Smart
Grid, in a Demand Response context. The impact of the
system dimensioning on the capability of responding to the
Smart Grid requests of increasing or decreasing the energy
consumption is evaluated via simulation. [33] proposes a
methodology for sizing the capacity of a RE generator
system to power stand-alone base stations. Unlike most
studies that usually base the prediction of RE production
on the irradiation data observed during the Typical Meteo-
rological Year (TMY), [33] employs series-of-worst-months
(SWM) meteorological data, making the technique more
accurate in obtaining a proper dimensioning.
The papers available in the literature typically address
the dimensioning issue proposing simulation or optimiza-
tion methods. However, the process of dimensioning a
renewable generation system to power BSs by means of
simulations or optimization models may be computation-
ally complex and require long computational time. The
study presented in our paper rather aims at providing a
simple analytical method for properly sizing a renewable
system in a green mobile network, based on the local RE
production profile. To the best of our knowledge, this is
the first work proposing an analytical formula allowing to
determine the capacity of PV panels and batteries required
to power BSs in a given location, in order to guarantee the
satisfaction of a given constraint on the maximum allowed
storage depletion probability.

II. The renewable powered mobile network
As depicted in Fig. 1, the scenario analyzed in this study

consists of a single LTE BS that is powered by locally
produced RE and by the electric grid. In order to tackle
the typical intermittent nature and unpredictable pattern
of RE generation, the BS is equipped with a storage
system in which any extra amount of RE that is currently
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produced but not immediately used for the BS operation
is stored. The previously stored RE can be drained from
the battery to power the BSs in those periods in which
the RE cannot be generated or its production level is not
enough to fully satisfy the network need. A constant power
demand of 1 kW is assumed, given the limited variability
observed with traffic load [34]. The energy management

  

POWER GRID

STORAGE

PV PANELS

Fig. 1: Scenario where a base station is powered by
renewable energy and the traditional power grid.

strategy works as follows. The energy required for normal
network operation is first satisfied by the current produc-
tion of RE. As an alternative, if the current generation
is not sufficient or no RE is being produced at all at the
moment, the required energy is drawn from the storage
system, as long as it is not discharged. Finally, if neither
of these options is viable or a residual need still remains
to be satisfied, the amount of required energy is supplied
by the electric grid.

The purpose of this strategy is to improve the indepen-
dence of the mobile network from the power grid, hence
reducing the operational cost. Whereas a full energy self-
sufficiency is hard to be achieved without a very huge
initial investment for the RE generator system and the
storage, a rather slight relaxation on the network energy
independence constraint allows to attain feasible system
dimensions [5]. To achieve this objective, a proper system
dimensioning should be performed and this, in its turn,
should be obtained keeping into account the location
dependent RE production level and its variability over
time.

III. Modeling the RE generation
The variability of RE production entails considerable

issues in terms of system dimensioning: due to the in-
termittent provisioning of RE, the PV panel should be
over-sized with respect to the average network power
need, in order to feature sufficient capacity to guarantee
high RE production level, hence satisfying the current
operation need, and producing extra amounts of RE large
enough to accomplish future power demand during period
of null production. In addition, also the storage capacity

should be properly sized to harvest extra amounts of
energy required for operating the network. The approaches
currently available in the literature do not provide easy-
to-use tools to properly dimension a RE generation system
capable to satisfy the mobile network energy demand. This
work proposes a simple stochastic model for characterizing
the daily RE production, that is represented by a random
variable, as often observed in the literature [20], [35]–
[37]. According to the model proposed in our study, it is
sufficient to know the average value of daily solar energy
production registered in the considered location along with
its variance to characterize the local RE production. Based
on this pair of parameters, it is then possible to dimension
the RE generation system so as to respect predefined
constraints on the target level of the BS self-sustainability
and on the system feasibility, as it will be detailed in
Sec. IV. Hereafter, the PV system powering the BSs is
first described, whereas the stochastic model adopted to
model the RE generation is detailed afterwards.

A. The PV system
In this work we assume that a single BS is equipped

with a set of PV panels, made up by multiple modules,
that enable the sun radiation conversion into electricity,
with an efficiency that depends on the technology adopted.
The efficiency of currently available commercial modules,
built with traditional technologies (crystalline silicon),
typically ranges between 15-20%. Emerging technologies,
like Concentrating Photovoltaics (CPV), allow to more
than double these values (up to 38.9% in laboratory tests),
but they are not yet available for commercial products
[38]–[40]. The nominal capacity of a PV module is the
maximum DC output power obtained by the PV device
under standardized environmental conditions, including
a light intensity of 1000 W/m2 and a temperature of
25 ◦C, and it is measured in peak Watt [Wp]. The nominal
capacity is commonly used to express the size of the PV
panel, hence of the PV modules composing it, regardless
the adopted PV technology.
The feasibility of the PV system should be kept into
account when implementing a RE powered system, both
in terms of required deployment area and in terms of cost.
Considering some among the most efficient PV modules
currently available on the market and built with crystalline
silicon technologies, an efficiency as high as 20% [38] can
be assumed and an area of 1.63 m2 is observed for PV
modules with a nominal capacity of 0.333 kWp [12]. This
results in a PV panel surface of about 4.9 m2 per each
kWp of PV panel capacity. In relation to cost, the capital
expenditures (CAPEX) amount to 750 e/kWp, with a
typical lifetime duration of about 25 years [5], [12].

B. The RE production model
In this study the daily production of RE in a given

location is considered. The profiles of RE generation are
derived from real location based data, obtained from the
tool PVWatts [41]. These profiles take into account the
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intra-day variability of renewable energy production due
to the daily variations of solar radiation, the temperature
variations, the presence of clouds, and the settings of both
Tilt and Azimuth angles. In our case, a Tilt angle of
20 ◦and an Azimuth angle of 180 ◦were assumed. The RE
production profiles considered in this work refer to the city
of Torino. In order to perform our study in the worst case
conditions, the RE production during the cold months only
(November, December and January) is modeled. Indeed,
these months feature the lowest levels of average daily RE
production, along with the shortest duration of daily RE
generation, due to the typically shorter daylight length.
Based on the stochastic model proposed in our previous
work [10], we denote as REd the random variable repre-
senting the amount of RE generated in a day assuming a
PV panel with capacity 1 kWp. REd is characterized by a
mean value and a variance, which depend on the location,
and features a uniform probability distribution. Of course,
the actual total amount of energy that is produced per
day during the daylight period, denoted as RED, depends
on the actual PV panel capacity, denoted as SPV . It can
hence be derived as:

RED = REd · SPV (1)

According to [10], the use of the uniform distribution to
represent the REd can model the real system operation
better than the normal distribution. In order to further
validate the application of a uniform probability distri-
bution to represent the random variable REd, additional
types of probability distributions have been tested with
respect to [10], where only the normal (ND) and uniform
(UD) distributions were studied. The RE generation level
is strictly dependent on the solar irradiance. In the lit-
erature, the solar irradiance is commonly modeled as a
random variable, and different types of functions can be
adopted to represent its probability distribution [35]–[37],
[42], [43]. Besides Normal and Uniform distributions, other
common distribution types adopted to characterize the
solar irradiance are represented by the Weibull, Gamma,
and Beta distribution [35]–[37]. Fewer studies are available
modeling solar irradiance with Exponential, Geometric,
Logistic, Lognormal and Loglogistic distributions [35],
[37]. In our work, among the various distributions that
are typically adopted in the literature to model the solar
irradiance, the Gamma (GD), Beta (BD) and Weibull
(WD) distributions have been selected to characterize
the RE generation. The model performance obtained un-
der these distributions has hence been compared against
the Empirical distribution (ED), that is considered as a
reference, and against the results derived in [10] under
ND and UD. The ED of REd allows to test the system
behavior in a realistic setting, since it is derived from
real data of RE production in Torino in the worst-case 3-
month period. For all the distribution types that have been
tested, the same mean value (E[REd]) and variance (vR) of
REd obtained from the empirical data have been applied:
E[REd]=1.005 kWh, vR = 439.152 Wh2, with coefficient
of variation CV = 43.7%. The average probability of

storage depletion, denoted as PD, and the average amount
of daily on-grid energy demand, denoted as G, have been
analyzed. Fig. 2 reports the values of PD and G under the
various types of REd distribution, compared against the
ED, for increasing PV panel sizes, SPV , and two different
battery capacities (18 kWh and 26 kWh), denoted as B.
The results derived using a real location-based distribution
of REd are consistent with results derived from the model
using a more general REd distribution. In general, PD and
G tend to decrease as SPV becomes larger. For PV panel
capacity higher than 26 kWp, ND, GD and WD tend to
slightly underestimate the daily energy demand from the
grid G with respect to ED, whereas the depletion probabil-
ity PD is overestimated under these distributions for any
PV panel size. Under UD and BD, the estimation of PD is
very close to the real values for any PV panel size and the
obtained values of G are mostly completely overlapping
with those derived under ED. These results confirm that
other types of distributions typically used to model the
RE generation, like GD and WD, do not outperform the
UD in modeling the operation of the RE powered Radio
Access Network. Furthermore, the Beta distribution shows
a behavior similar to the uniform distribution in predicting
the real system performance. Hence, the selection of the
UD is further confirmed as appropriate to model the daily
RE production by these results. Moreover, although the
system behavior under UD and BD is rather similar, the
first distribution is preferred to the latter due to the lower
computational complexity required during the analysis
process.

IV. Markovian model for the storage
As previously mentioned, the BSs are equipped with

a storage system to harvest the extra amount of unused
RE for future usage. Markovian models are often adopted
to analyze the operation of green mobile networks [24],
[29], [30], [44]–[46]. Hence, based on the model of the
location dependent RE production deployed in Sec. III,
we design a 3-state Discrete Time Markov Chain model to
represent the charge level of the battery that is employed
to harvest the extra RE produced by a PV panel powering
a base station. From this Markovian model, we thus derive
a simple analytical formula from which, based on the
mean value and variance of the RE generation and on
the maximum allowed probability of battery depletion, the
proper dimensioning of the capacity of the PV panel and
the storage can easily be obtained. The storage system
is now detailed and, afterwards, the Markovian model
proposed in this work to characterize the mobile network
storage system is presented.

A. Harvesting RE
The extra RE that is produced but not immediately

used to power the BS can be harvested into a storage for
future utilization. In our scenario, the storage consists of
a set of lead-acid batteries, which represent a technology
commonly adopted for harvesting purposes in RE systems
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Fig. 2: Depletion probability (PD) and grid demand (G) normal (ND), uniform (UD), Gamma (GD), Weibull (WD),
Beta (BD) distribution of REd, compared against empirical distribution (ED), with B=18kWh and B=26kWh.

[47]. Each storage element features a voltage of 12 V
with capacity 200 Ah. Although each storage unit can
theoretically store an amount of energy as high as 2.4
kWh, the available battery capacity that can actually be
exploited is lower. Indeed, a maximum Depth of Discharge
(DOD) ≤50-70% should be assumed in order to assure
a battery lifetime duration of up to 1000 cycles [48],
[49], since values of DOD as high as 80% would halve
the service time [50]. Irregular charging and discharging
patterns, typically observed in renewable powered systems,
also affect the battery efficiency, which results variable
over time and highly dependent on the battery State of
Charge (SOC) [51]. The best performance in terms of
charge efficiency is obtained for SOC around 60%, whereas
for SOC>80%, that may represent a typical operating
regime in RE systems for batteries with DOD=50%, the
efficiency decreases below 60% [52], [53]. Hence, although
operating at high SOC level contributes to slow down the
battery aging and the capacity loss processes [47], [54], the
related drop in efficiency results in storage losses that may
account for a significant energy waste, with a deep impact
on the battery and PV panel dimensioning [53]. An overall
average charge efficiency of 85% is commonly assumed
for lead-acid batteries [53]. When considering also the
discharging process, the total energy efficiency is estimated
to be 75% [48], meaning that for each energy unit (1 kWh)
drawn from the storage and actually available to power the
BS, around 1.33 kWh of RE must have been produced.
In order to maximize the lifetime duration and optimize
the battery energy output, a charge control system should
be envisioned to take care of limiting the maximum DOD
and avoiding other events that may damage the battery,
like for example overcharge and over-discharge conditions
[55]–[57]. Factors such as DOD and charge rate have an

impact on battery charge efficiency [56], whereas battery
age shows a limited effect on reducing the efficiency over
time [58]. In our scenario the storage consists of NB
battery units, each with capacity 2.4 kWh. We denote
with B the total capacity of the entire battery set. The
actual available capacity, denoted as CB , is derived as
CB = B ·DOD.
As the RE is produced, it is utilized to power the BS,
assuming that the solar energy is first used to power the
BS, whereas only the extra amounts of RE that are not
immediately used for powering the BS are harvested into
the storage afterwards, as long as there is still enough
space. This behavior follows a principle that is similar to
the Harvest-Use-Store (HUS) paradigm that is adopted
in wireless networks [59], [60]. Following this principle,
charging/discharging losses can be minimized with respect
to the case in which the battery is first charged and then
the energy is drawn from the storage to satisfy the BS
demand. When no RE is currently being generated or if
its production is not sufficient to satisfy the BS demand,
energy can be drawn from the storage. Only in case the
battery results empty, the energy required is taken from
the power grid.

B. The 3-state Markovian model for the storage
We consider CB as the actual capacity of the storage

to be modeled. A 3-state Markov chain is defined, where
each state, denoted as S, corresponds to a possible battery
charge level that is observed at the beginning of the day,
i.e. at the beginning of the daytime period, when RE starts
being produced. The battery charge level is hence observed
at the most critical time of the day, in terms of BS self-
sufficiency, since during the night RE is not produced and
the BS has drawn the needed energy from the battery, that
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might hence result depleted. The Markov chain model is
represented in Fig. 3 and the 3 states are here defined:
• state E (Empty): no energy is available in the battery

and the storage charge is null (E = 0 kWh).
• state L (maximum Level at the beginning of the day):

this state represents the maximum charge level that
might be observed at the beginning of the day after a
night of normal BS operation, assuming that, at the
beginning of the previous night period (i.e. after the
last hour of RE generation on the day before), the
battery was at full charge (i.e. the battery charge was
equal to CB). Let us denote as Dn the BS energy
demand during the night hours. Considering that
during the night-time no RE is produced, L is defined
as follows: L = CB −Dn kWh.

• state M (Intermediate): the battery charge is at an
intermediate level, defined as M = L

2 kWh.
The transition from current state Si to state Sj occurs
with a time step of 24 hour. To define how transition
probabilities have been computed, let us denote by Dd the
BS energy demand during the daytime, whereas Dn rep-
resents the nightly demand. Since the BS energy demand
is very little load proportional, with rather high power
consumption also in those periods during which the traffic
is very low, BS consumption is assumed to be constant.
The variable H denotes the amount of energy that can
be harvested daily in the battery, in case the BS daily
consumption is lower than the total RE produced:

H = RED −Dd −Dn (2)

Finally, assuming that the current state Si may be E, M
or L, the transition probability from state Si to state Sj ,
denoted as pi,j , can be computed as follows:

1) Case Sj = E: pi,j = pSi +H ≤ 0
2) Case Sj = I: pi,j = p0 < Si +H ≤ L
3) Case Sj = L: pi,j = pSi +H ≥ L

In the computation of transition probabilities, charging
and discharging losses are kept into account, and the
constraint on the maximum charging/discharging rate has
been respected.

  

NIGHT DISCHARGE DEPTH 
(starting from full battery)

E M L

STATE E STATE M STATE L

Empty 
battery

E M L

P
E,E

p
E,M

p
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p
M,M

p
L,L

p
M,L

p
L,M

C
B

STORAGE LEVEL [kWh]

p
E,L

p
L,E

Fig. 3: Markovian 3-state model for the storage.

V. Storage model validation
The Markovian model proposed to analyze the RE gen-

eration for powering a mobile system has been validated
by comparing the performance results obtained under the
model against the results derived by investigating the
same scenario via simulation. Furthermore, the model has
been tested under different traffic profiles and BS power
consumption configurations.

A. Comparing the model performance against simulation
results

The simulations have been performed assuming the city
of Turin as location for the renewable powered BS. A
software tool deployed in our research group is used to
simulate the charging level of the battery of a renewable
powered BS at the beginning of each day. Simulations
last for a period of three months. In the trace-driven
simulation, the values of the daily RE production during
the three coldest months of the Typical Meteorological
Year are derived from the tool PVWatts, considering the
city of Torino. In the model, the daily RE generation
per kWp, REd, has a uniform distribution, with mean
value E[REd]=1.005 kWh, variance vR = 439.152 Wh2,
and coefficient of variation CV = 43.7%, as derived from
the empirical distribution of RE production in the same
location. Since the system is analyzed during the coldest
months, the average light-time duration is 9 hours, hence
the daytime energy demand, Dd, corresponds to 9·Dh.
RED represents the average daily renewable energy that
can be obtained in a given location where a PV system of
size SPV is present. The local solar radiation determines
the mean value of REd, i.e. the daily energy production
per unitary PV panel capacity, whereas the PV system
size SPV is a factor that scales up the renewable power
generation to its actual value RED.
The BS power consumption is assumed to be constant,
with an hourly energy demand, denoted as Dh, of 1 kWh.
The model has been validated under several combinations
of system sizing (SPV ,CB). At the initial conditions, the
battery is assumed to be fully charged. Losses due to PV
panel efficiency and environmental conditions are consid-
ered. Charging and discharging losses are kept into account
as well. The main parameter settings of the simulation are
summarized in Table I.
Let us denote as pD the battery depletion probability

at the beginning of the daytime. pDSim
represents the

value of pD obtained by simulation, assuming a time step
granularity of 24 hours. pDMod

is the estimated value of
pDSim

, predicted by the Markovian model, assuming the
same time step granularity. pDMod

actually corresponds to
the steady state probability π0 for the three-state Markov
chain. Fig. 4 reports the values of pDSim

and pDMod
for

increasing levels of average daily RE production and under
different values of CV. A fixed value of CB is assumed (26
kWh). The values of pD obtained by simulation or under
the model tend to decrease sharply for RED around 26-
30 kWh in case of lower values of CV (2-10%). Conversely,



TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. , NO. , MONTH YEAR 8

TABLE I: Simulation settings.
Location Turin*

EREd 1.005 kWh
CV of REd 42.7%
RED range 23-29 kWh

B 18, 22, 26 kWh
Dh 1 kWh

Simulation period 3 months
Simulation time step 1 day
*The empirical distribution of the RE daily production is obtained based on real profiles derived from PVWatts,
considering data of 3 months during the cold season and assuming a uniform probability distribution.
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Fig. 4: Battery depletion probability, pD, obtained via simulation and from the Markovian model.
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Fig. 5: Difference between pDSim
and pDMod

(∆pD) versus RE production level.

when the variance is higher, pD is below 1 even for very
low RED and it decreases gradually as the RE gener-
ation increases. The curve representing pDMod

is almost
overlapping with the pattern of the depletion probability
derived from the simulation for any SPV , given a fixed
location or, alternatively, for any value of REd, given a
fixed SPV . Indeed, the difference between the depletion

probability obtained from the simulation and its model
predicted value, denoted as ∆pD = |pDSim

− pDMod
|, is

always negligible and it is almost null under most sets
of values of mean RE production and CV, as shown
in Fig. 5. Higher differences between the simulated and
predicted values of pD can be found in the range of RED
values that correspond to the window during which the
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switch between two operating regimes occurs: the regime
of insufficient production and the regime of production
sufficient for BS operation. The width of this window
is larger as the CV becomes higher, but the maximum
difference between simulated and predicted value is much
lower than in case of smaller CV. ∆pD is often negligible,
anyhow resulting ≤0.05 in almost all cases.
Fig. 6 shows the values of pDSim

and pDMod
for increasing

values of RED, considering a location where the CV of
REd is 20%. For small RE generation, there is a larger
∆pD in case of larger battery size, whereas a small battery
allows to limit this difference. Nevertheless, ∆pD is always
below 0.05 and, for RED > 9 kWh, it is negligible. When
RED is lower, the model results to be very accurate in
predicting the simulated value of pD, since the battery is
so small with respect to the average RE generation level
that it will result empty most of the time at the beginning
of the day both in the simulation and under the model,
with no significant effect on the average battery level due
to RE generation variability. When the size of the battery
is larger, the model results just slightly less accurate within
the RED window of transition between the two regimes
of operation, due to lower estimation accuracy registered
when the daily RE production is smaller with respect to
the daily BS demand.

-0.05
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 20  30  40  50  60  70

∆
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D
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B=18 kWh

B=22 kWh

B=26 kWh

Fig. 6: Difference between pDSim
and pDMod

(∆pD) under
different values of battery capacity.

The model can be easily extended and applied to other
locations featuring different RE generation profiles, by
simply considering the corresponding mean value of REd
and its variability. The value of CV is adopted instead
of the variance, since it allows to immediately compare
the variability degree of REd between different locations,
regardless the actual mean value.

B. Testing different BS consumption and traffic profiles
In order to further validate the proposed model, we test

additional scenarios considering the power consumption
models of a micro and a macro BS, and two different
mobile traffic profiles, from a residential area (RA) and a
business area (BA). The computation of the consumption
depends on some real traces provided by an Italian mobile
operator, both in a business and in a residential area [5].
We consider a macro LTE BS with Radio Remote Head

(RRH) technology, that consumes 840 W at full load, and
a micro BS that consumes 145 W at full load.
Fig. 7 reports the depletion probability, PD, for increasing
values of daily RE production, for a micro and a macro BS,
both in a RA and in a BA, compared against the case in
which a constant power consumption of 1 kW is assumed
for the BS. The battery capacity is either 18 kWh (Fig. 7a)
or 30 kWh (Fig. 7b). The value of PD decreases as the RE
production increases, with a sharper descent for the micro
BS. A larger battery allows to obtain a higher reduction
of PD for the same value of RE production. In the case
of the macro BS, a higher RE production is required to
reduce the value of PD to the same extent. Furthermore,
the curves representing the depletion probability in a RA
and in a BA do not result overlapped like in the case of
the micro BS. However, the difference is limited and it is
due to the slightly different consumption patterns derived
from the different traffic profiles.
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Fig. 7: Depletion probability for daily RE production
in various scenarios, assuming CV=20% and a battery
capacity of 18 kWh and 30 kWh.

Figs. 8-9 show the values of PD under the same
scenarios considered in Fig. 7, for increasing values of the
daily RE production normalized with respect to the daily
BS consumption (which is almost 3 kWh for the micro
BS, about 15 kWh for the macro BS and 24 kWh for the
baseline case). Various CV values are considered and the
battery capacity is either 0.75 (Fig. 8) or 1.25 (Fig. 9)
the daily BS consumption. As the CV increases, larger
levels of daily RE production are required to achieve
very low values of PD. This is even more evident when
the battery is smaller. Interestingly, in all the scenarios,
the curves result overlapped. This means that, although
the depletion probability is clearly affected by the CV
of the daily RE production, it does not depend on the
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Fig. 8: Depletion probability for normalized daily RE production, assuming a battery capacity that is 0.75 the BS
consumption.
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Fig. 9: Depletion probability for normalized daily RE production, assuming a battery capacity that is 1.25 the BS
consumption.

traffic profile or on the considered BS consumption
model, but rather on the ratio between the daily RE
production or the battery capacity and the daily BS
consumption. Hence, the proposed Markovian model can
be easily generalized and applied to represent different
scenarios both in terms of mobile traffic profiles and
mobile technology adopted for the BS.

VI. Dimensioning of the RE generation-storage
system

We now describe how the proposed Markovian model
representing the energy storage level of a renewable pow-
ered BS can be applied to dimension the system. Further-
more, based on the 3-state Markovian model, an analytical
formula is derived to provide a simple tool to properly
dimension the total required RE system capacity, in terms
of SPV and CB , based on the location and on the target
level of energy self-sufficiency with respect to the electric
grid.

A. Estimating depletion probability pD
Given a location with specific average and variance

of daily RE production REd, different combinations of
system dimensioning pairs (SPV , CB) lead to different
values of battery depletion probability, pD. For a fixed
combination of (SPV , CB), the expected value of storage
depletion probability can be estimated by applying the
Markovian model proposed, a fast method that provides
reliable results, showing sufficient accuracy with respect
to those derived via simulation. Fig. 10 reports the val-
ues of pD obtained from the Markovian model, pDMod

,
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Fig. 10: Example of system dimensioning based on simu-
lation, for CV = 16%.

for increasing values of daily RE production RED, in a
location with CV of REd 16%. The average level of RED
is normalized on the x axis with respect to the daily BS
demand, CBS · 24, i.e. 24 kWh. Each curve in the plot
represents a different size of the storage. Similarly to the
RE production levels, the values of the battery capacity
CB are normalized with respect to the daily BS demand.
The results can hence be easily extended to BSs showing a
different power consumption, scaling them up by a factor
corresponding to the daily BS consumption. The curves
plotted in the graph are exponential functions obtained
by interpolation of the points obtained from the model,
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with a coefficient of determination R2 ≥ 0.95 in all cases.
The storage depletion probability sharply decreases as the
RED grows larger, becoming null for high RE production.
As the storage capacity becomes larger, the curves tends
to shift left, meaning that smaller PV panels are sufficient
to provide the same value of storage depletion probability.
Let us assume a location with mean REd of about 2 kWh
and CV=16%. To proper dimension the RE system for the
considered location, we set the constraint on the maximum
value of PD as 0.15, that defines an upper-bound limit
on pD (red horizontal line in Fig. 10). According to this
constraint, we can move on any battery curve, as long
as we move on the curve portion below the upper limit
of pD. Furthermore, the battery size must be larger than
the minimum battery capacity required to guarantee the
energy supply needed during the night (i.e., Minimum CB ,
blue curve in Fig. 10). Keeping into account the duration
of the night-time (15 hours) and the charging losses, the
battery should allow to store an amount of energy corre-
sponding at least to 75% the daily BS consumption. In our
scenario, a battery with capacity CB=18 kWh must hence
be selected. To respect the constraint on the maximum
pD, the minimum admitted value of RED depends on
the selected storage size (the range of possible values is
highlighted by the green vertical rectangle). Assuming
CB=26kWh (8% higher than the daily BS energy demand)
in order to minimize the panel size, the normalized RED
must be at least 1.27 fold the daily demand (green vertical
line). This means that the PV panel size must be at least:

SPV ≥
1.27 · CBS · 24

EREd

Assuming an average REd =2 kWh, for example, we need
at least SPV =15.24 kWp, corresponding to an area of
about 76 m2, which may result to be feasible in absence
of strict physical constraints. Given fixed battery, we can
further reduce pD by using larger PV panels. If a smaller
PV panel size is required due to feasibility and cost
constraints, a larger CB can be considered, in order to
achieve a better trade-off between the storage size and
the PV panel capacity. When feasibility issues force the
use of rather small PV panels, slightly larger batteries
allow to highly reduce the storage depletion probability.
However, when larger PV panel capacities are adopted,
increasing the battery size does not have a relevant impact
on decreasing the pD.
This method allows not only to derive the storage deple-
tion probability for specific combinations of PV panel and
storage sizes in a given location, but, most importantly,
it theoretically allows to dimension the RE generation
system in a specific location providing the average value of
REd and its CV, in order to guarantee a target maximum
depletion probability. Nevertheless, the method is time
consuming due to the high number of combinations of pair
(SPV ,CB) that must be tested in order to increase the
accuracy and several interpolation operations that must
be performed afterwards. Furthermore, this process must
be repeated for any location showing a different variability

of RE generation, or for evaluating the dimensioning that
is required depending on the considered season. Hence,
as it will be better described in the next subsection, this
paper aims at deploying an analytical formula allowing
to provide a proper system dimensioning to reduce the
probability of storage depletion pD below a target thresh-
old, based on the RE production level (mean value and
variance) in a given location. Finally, a slightly modi-
fied version of the same analytical formula can be easily
adopted to define feasibility regions that take into account
not only the battery depletion probability, but also other
feasibility constraints, like those on the maximum area
occupancy (for the PV panels) and the maximum capital
expenditures based on the available budget.

B. Deriving an analytical formula for system sizing

An analytical formula is here proposed, based on the
Markovian model, to dimension the RE generation system
in order to obtain a value of the probability of storage
depletion pD lower than a target threshold. Given a loca-
tion with mean value and CV of the RE generation and
the constraint on the maximum pD, this formula allows
to easily identify a set of feasible combinations of values
for the PV panel size and the storage capacity. Within
this feasibility region of possible solutions, the decision
of adopting a specific combination of values can then
be taken based on additional parameters, like costs, for
example, considering either the capital expenditures and
the system operation.
Let us consider a generic location with mean value of
renewable energy generation EREd and coefficient of vari-
ation CV , and denoting as pD∗ the constraint set on the
maximum allowed storage depletion probability. The PV
panel size SPV and the storage capacity CB represents
the unknown parameters whose (sets of) feasible values
must be found to properly dimension the system. Based on
the Markovian model, the relations between the transition
probabilities and the steady state probabilities (denoted
as πi for each state i) can be expressed in a closed form
from the transition matrix P, where pi,j represents the
transition probability from state i ∈ {0,M,L} to state
j ∈ {0,M,L}.
The relations between the parameters provided as inputs
(i.e., mean value and CV of the RE generation, the
constraint on the maximum depletion probability allowed
pD∗) and the system size parameters, searched as output,
can hence be derived as reported hereafter. Let us denote
as URED

x the probability density function of the random
variable RED having a uniform distribution, such that
URED

x = UREd
x · SPV . Remember that UREd

x =
1

2σ
√

3 for REmin ≤ x ≤ REmax, where σ is the standard
deviation of REd, whereas REmin and REmax are the
extremes of the support of UREd

x.

π0 = π0 · a2
a1 URED

x + πM · b2
b1
URED

x + πL · c2
c1 URED

x (3)
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where:
a1 = b1 = c1 = REmin · SPV
a2 = Dd +Dn

b2 = −
M

1− lf
+Dd +Dn = −

L

2 · 1− lf
+Dd +Dn

c2 = −
L

1− lf
+Dd +Dn

REmin = EREd − 2σ
√

3 = EREd · 1− 2
√

3 · CV
L = CB −Dn

lf denotes the loss factor due to energy losses occurring
during the charging or discharging process, and
corresponds to 15%, whereas REmin represents the
minimum possible value of daily RE production per 1
kWp PV panel capacity. EREd is the mean value of REd.

πL = π0 · d2
d1 URED

x + πM · e2
e1 URED

x + πL · f2
f1
URED

x (4)

where:

d1 = Dd +Dn +
L

1− lf

e1 = Dd +Dn +
M

1− lf
= Dd +Dn +

L

2 · 1− lf
f1 = Dd +Dn

d2 = e2 = f2 = REmax · SPV
REmax = EREd + 2σ

√
3 = EREd · 1 + 2

√
3 · CV

REmax represents the maximum possible value of daily
RE production per 1 kWp PV panel capacity.

πM = π0 ·
[
1− a2

a1 URED
x− d2

d1
URED

x
]

+πM ·
[
1− b2

b1
URED

x− e2
e1 URED

x
]

+πL ·
[
1− c2

c1 URED
x− f2

f1
URED

x
] (5)

Based on these algebraic relations, the PV panel size
SPV and the battery size CB can be expressed by means
of analytical formulas as functions of the mean value of
REd, its CV and π0. These formulas can then be used to
dimension the system, deriving the set of feasible values of
the unknown variables SPV and CB allowing to provide
π0 ≤ pD∗, given the mean value and CV of REd in the
considered location. No additional constraints are set on
the values of πM and πL, except π0 + πM + πL = 1. Note
that the variable CB represents the portion of the storage
corresponding to the maximum DOD of the whole battery,
B. The real size of the battery should therefore be derived
by increasing CB by a fraction such that B = CB

DOD .

VII. Analytical tool application
The analytical formulas introduced in the previous sec-

tion have been applied for dimensioning the system, in or-
der to identify the feasibility regions for the PV panel and
the storage sizes, based on the local RE production and
the objective storage depletion probability. Furthermore,
the impact of the RE generation variance on the system
dimensioning has been investigated.

A. Feasibility regions for system dimensioning
The proper combinations of PV panel and battery sizes

allowing to reduce the storage depletion probability below
a target threshold can be identified by deriving the formu-
lations of the steady state probabilities from the transition
matrix M , that can be solved to find the values of SPV
and CB , subject to the constraints:

π0 + πM + πL = 1
π0 ≤ pD∗

Fig. 11 reports the values of the target battery depletion
probability at the steady state, π0, in relation to the
combination of battery capacity and RE generation levels
that, according to the Markovian model, allow to achieve
the desired value of π0, for different values of CV. In
each plot, the first horizontal axis represent the average
daily amount of produced RE, denoted as ERED; the
latter horizontal axis corresponds to the storage capacity
CB ; the vertical axis reports the value of the depletion
probability at the steady state, π0. In general, for any CV,
π0 tends to be higher for combinations with low values of
CB and SPV , whereas for very large values of storage and
PV panel capacity π0 becomes null. However, the shape
of the transition between these two extremes varies a lot
depending on the variance of RE production. For locations
where the RE production is rather constant over time
(CV=2%), π0 is equal to 1 if the PV panel and the storage
are low, but it rapidly decrease by slightly increasing the
size of both the PV panel and the storage. As the variance
of the RE production increases, the maximum values of
depletion probability becomes lower, up to less than 0.4 in
case of CV=30% even with the smallest system size. Fur-
thermore, the transition from size combinations providing
high depletion probability to combinations assuring π0 = 0
becomes more gradual as the variance in the RE produc-
tion becomes larger. This means that in those locations
where the variance, hence the CV, is low, small system
sizes are sufficient to obtain a null depletion probability.
However, even a slightly underdimensioned system may
give raise to a steep increase of the depletion probability.
For larger variances, small to intermediate system sizes are
sufficient to obtain depletion probability values lower than
0.25, but larger system sizes are required for improving the
system performance in terms of depletion probability, up
to values below 0.05. When the CV is high, increasing the
PV panel size alone is not sufficient to deeply decrease
π0 if the battery is very small, but combining a larger
PV panel and a battery with higher capacity may highly
decrease the battery depletion probability.
Let us consider a location where the average daily RE pro-
duction per kWp, EREd, is equal to n kWh and CV=30%
(Fig. 11c). Setting a target threshold pD∗ for the depletion
probability on the z axis, the feasible combinations of PV
panel and storage sizes can easily been derived from the
set of pairs ERED, CB on the x and y axes, respectively,
corresponding to values of π0 ≤ pD∗. Considering that
ERED = EREd · SPV , the required PV panel size for the
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Fig. 11: Battery depletion probability at the steady state, π0, for multiple combinations of RE generation levels and
battery size, under increasing values of CV.

considered location is obtained as SPV = RED
n . Finally,

the total required capacity for the battery is derived as
B = CB

DOD .

B. Impact of RE generation variance
Fig. 12 shows the feasibility regions in terms of combina-

tions of battery size CB and average daily RE production
RED for various values of CV, both normalized with
respect to the average daily consumption of a macro
BS, assumed to be 24 kWh. Since the average daily RE
generation RED is proportional to the PV panel size SPV ,
for a given average daily RE generation per kWp, REd,
observed in the considered location, the various regions
correspond to different sets of combinations of PV panel
size SPV and storage capacity CB allowing to achieve dif-
ferent target depletion probabilities, hence π0: π0 < 0.005
(blue squares); 0.005 ≤ π0 < 0.01 (light blue asterisks);
0.01 ≤ π0 < 0.05 (orange circles); 0.05 ≤ π0 < 0.1 (yellow
triangles). Furthermore, the graphs highlight the impact
of the variance of RE generation on the distribution of the
feasibility regions.
The minimum sizing required to achieve values of π0 as
low as 0.005 or less highly depend on the CV. For fix
REd, a PV panel size capable to provide 1.3 the BS daily
consumption may be sufficient if the variance of the RE
production is low; moreover, the battery size shows no
significant impact, hence a small storage with capacity of
less than 4 fold the BS daily need is enough to guarantee
very low depletion probabilities. Conversely, when the CV
is higher, the minimum PV panel size assuring π0 < 0.005
must be capable of providing a RED that is up to more
than 2.5 the BS daily need. However, when the CV is
higher, the impact of the battery size is higher. For exam-
ple, in case CV=30%, increasing CB by up to 40% allow
to reduce SPV by up to 11.8%, still maintaining the same
target on the battery depletion probability. This aspect is
relevant when feasibility issues are considered, since PV
panels with lower capacity require a smaller physical area
to be installed, besides having lower capital costs.
When the variance of RED is high, although the system
size is generally larger, a slight relaxation on the constraint
on the target depletion probability -for example by moving
to the feasibility region where π0 is between 0.005% and
0.01%- allows to reduce the system dimensioning. This
becomes more evident by shifting to the next feasibility

region, where π0 = 0.01−0.05%. Furthermore, an increase
in the battery capacity from 0.75 up to 1.05 the daily
BS need leads to a reduction of the PV panel size of
almost 30%. Conversely, in case the variance is low, it
is not convenient to relax the constraint on the target
depletion probability, since the gain in terms of PV panel
and battery size reduction would be negligible and there
would be the risk of sharply shifting to a region with very
high battery depletion probability.

VIII. Considerations on cost and feasibility
In the process of system dimensioning based on the

definition of a target battery depletion probability in a
given location, costs may play a relevant role. In partic-
ular, capital expenditures can be taken into account in
order to refine the identification of the proper system size,
hence selecting the best combination of PV panel size and
storage capacity within the feasibility region identified by
applying the proposed analytical method. A cost of 750
e/kWp can be assumed for the panels, whereas the cost
per kWh of battery capacity can be as high as 58.33 e [5].
Considering the range of sizes for PV panels and storage
observed within the feasibility regions in our results, the
cost of the PV panel is definitely dominant with respect
to the cost of the battery. This means that, in locations
with high variability of the RE generation a small increase
in the battery size will allow to decrease the battery
depletion probability at the price of a small raise in the
cost; furthermore, it will be possible to decrease the PV
panel size, still maintaining the same target depletion
probability, and significantly reduce cost. For instance,
let us assume a location where the average daily RE
generation REd is 2 kWh, its CV is 30% and the target
battery depletion probability is between 0.001 and 0.05. A
system with CB = 17 kWh (hence B = 34 kWh, assuming
a DOD=50%) and SPV = 28.2 kWp is capable to meet
the target constraint on the battery depletion probability.
Nevertheless, by increasing the battery size by 40%, the
PV panel size SPV can be reduced by 30%, leading to
a cost reduction of about 26.5%. Conversely, in those
locations showing low variability in the RE generation, an
increase in the battery size does not have a relevant impact
on the PV panel capacity reduction. Hence, once the
minimum PV panel size allowing to meet the constraint
on pD is identified, it is advisable to rather select a smaller
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Fig. 12: Feasibility regions in terms of target of battery depletion probability at the steady state, π0, for multiple
combinations of RE generation levels and battery size, under increasing values of CV.

battery, although the total CAPEX will result only slightly
decreased with respect to the case of a larger storage.
On the one hand, the selection of a larger battery may
reduce the PV panel size, hence CAPEX, in locations
where the variability of RE production is higher. On the
other hand, this results also in an improvement of the
system feasibility, since the area of the surface required
to install the PV panel is reduced as well. Assuming an
efficiency of the PV panel of around 19%, an area of about
5 m2 is needed per each kWp of PV panel capacity [5]. In
the aforementioned case (location with EREd =2 kWh,
CV=30%, pD between 0.001 and 0.05) the PV panel size
SPV is reduced by 30%, and the area needed for the
installation shrinks from more than 140 m2 to less than
99 m2.
Further studies should be performed to deploy an an-
alytical tool for system dimensioning that embeds also
constraints on CAPEX and area required for installation.
Moreover, as future work, OPEX should be taken into
account, by including in the method a parameter to evalu-
ate the impact of the battery charging/discharging process
on the storage lifetime duration, that in turn affects the
frequency of battery replacement.

IX. conclusion
Due to the staggering increase in mobile traffic, Mobile

Operators are enforced to deploy denser mobile access
network, with consequent huge cost for power supply. Re-
newable energy represents a promising solution to power
BSs, in order to reduce the energy bill and increasing
sustainability. Nevertheless, due to the intermittence of
RE production and its variability observed over time and
at different latitudes, a proper dimensioning of RE systems
to power mobile network is crucial to make the network
more self-sustainable and guarantee the mobile service

continuity. In this work we propose a simple analytical tool
to dimension the RE system to power a BS, that trades
off accuracy and computational complexity.
Based on a 3-state Markovian model representing the
storage charging level of a renewable powered BS, an
analytical formulation is derived to dimension the pho-
tovoltaic panel and battery capacity in order to reduce
the probability of storage depletion, pD, below a target
threshold. The RE generation is represented as a random
variable with uniform distribution. For a given location,
the analytical tool receives as input the mean value and
variance of the location dependent RE production, and
it allows to easily identify a feasibility region of possible
combinations of values for the PV panel size and the
storage capacity. Within this set of possible solutions,
the proper combination can then be selected based on
additional parameters, like costs or area of the required
installation surface.
Our results show that the uniform distribution is as much
or even more accurate in representing the distribution
of daily RE production than other types of distributions
adopted in the literature, and it can hence be preferred due
to the lower computational complexity entailed. Simula-
tion results prove that the Markovian model, despite being
simple, is very reliable in representing the RE powered BS
operation and predicting the battery depletion probability,
with an estimation error that results negligible in most
cases. The proposed analytical tool is very effective in
dimensioning the PV panel and battery size, based on
the target threshold defined for the battery depletion
probability pD. In addition, our results demonstrate that
whereas a PV panel size capable of providing 1.3 fold
the BS daily energy need is sufficient to reduce pD below
0.005 in locations where the variance of RE production
is low, an almost doubled PV panel capacity is required
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in case of higher RE production variability. Nevertheless,
while an increased battery size does not improve the
performance where the RE production variability is low,
in locations showing high variance of the RE production it
is convenient to increase the battery size to reduce the PV
panel size, still obtaining the same depletion probability.
Although a 40% larger battery allows to reduce the PV
panel size by just 12%, this provides a twofold benefit,
both in terms of smaller PV panel surface occupancy and
of CAPEX reduction, since the costs for PV panel capacity
dominates on the storage costs. Finally, locations with
high variability of RE production may benefit from a slight
relaxation on the depletion probability constraint, that can
be conveniently applied to significantly reduce the system
dimensioning.
Future work is required to deploy an analytical tool
for system dimensioning that embeds also constraints on
CAPEX, area of the physical surface required for installa-
tion and frequency of battery replacement.
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