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Abstract

Two-tier city logistics systems are playing a very important role nowadays in the management
of urban freight activities. Although several city authorities have promoted different measures to
foster the implementation of small urban consolidation centers in a two-tier system, only a few
authors have addressed the joint problem of operating these facilities and providing services to
customers. We show how the problem can be modeled as a new variant of the bin packing, for
which we provide a mixed integer programming formulation and two heuristics that are shown
to be quite effective in solving efficiently and to near optimality the problem. The application
of our approach on real data from the city of Turin puts into highlight the superiority of the
consolidation approach, including the bundle of goods from different providers, stockholding
and other value-added logistics services, over the classical single-tier approach. In addition, the
paper provides a thorough analysis of some emerging aspects of the on-demand economy, as the
consideration of customers’ preferences and the integration of multiple delivery options. The
managerial insights coming from this work will be part of the new Logistics and Mobility Plan
to be activated in 2022 in the Piedmont region.

Keywords: Last-Mile delivery, Urban Delivery, Bin Packing, On-Demand Economy

1. Introduction

The paradigms of the on-demand economy and e-commerce let emerge new business
models, challenging the success of non-digital native companies. This shift has dramatically
affected several business processes, from marketing to production. The logistic sector has been
completely reshaped by this change: the delivery options are no longer driven by the supplier,
but more and more influenced by the customers’ preferences, with a consequent disruptive
impact on the delivery process, and the urban distribution in particular (Perboli and Rosano,
2019). Customers have become increasingly connected, informed and empowered, continually
demanding more choice and flexibility in delivery options, raising their expectations for fast
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(usually within very limited timeslots as 2 hours), and cheap deliveries of purchased goods. To
address their needs and provide a faster service, enterprises and e-commerce giant platforms are
moving from a push-driven supply to a pull-driven approach (i.e., demand-driven logistics),
completely reshaping the logistic chain and in particular, its last leg, known as the last-mile.

The last-mile delivery is currently regarded as the most expensive, least efficient and most
challenging section of the entire logistic chain. Bad design and management of the last-mile
freight distribution may bring negative effects, threatening the quality of life, triggering traffic
jams and increasing the level of emissions of associated pollutants. In the last few years, in
the field of city logistics, a growing number of studies have investigated the competitiveness of
alternative distribution systems architectures. A particularly promising solution is the adoption
of a two-tier system. In the first level of this two-layered distribution network, trucks perform
deliveries from distribution centers (generally logistic platforms located in a strategic node of
the city) to Urban Consolidation Centers (UCCs), also called satellites (generally transshipment
points situated in the proximity of a city center). At the second level, customers’ orders are
consolidated into small vehicles (also called city-freighters) that can travel along any street in
the city center area such as minivans, electric vans and cargo bikes, and delivered to the final
customers. Each city freighter performs the route serving the designated customers and then
travels back to the satellite for its next cycle of operations.

Although in principle satellite-based consolidation approaches aim at enhancing the
efficiency of last-mile distribution, still operational issues remain to be addressed. The limited
capacity of city freighters and the presence of regulatory measures to reduce traffic during peak
hours, like restrictions on the times when freight activity can take place, are some noteworthy
examples. The promotion of these more and more popular initiatives is a promising strategy for
offsetting the traffic impacts of urban freights, but prompts the inclusion of time-dependent
parameters into the system optimization, raising significant challenges to policy and
decision-makers. Setting up the coordination of this complex system, that involves multiple
stakeholders, such as the courier company, the satellite manager and the local authority, is not a
trivial task.

To the best of our knowledge, the literature lacks in terms of joint models for satellite
management in last-mile and urban delivery. Moreover, one of the distinguishing aspects of the
problem is the time-dependent structure of the costs. The latter aspect becomes more and more
influential due to the increasing importance of on-demand economy and e-commerce, that
fostered the switch from the offer-driven logistics to the demand-driven one.

This paper provides a broad perspective on the problem, namely the Shared Satellite-based
Last-Mile Delivery problem (SS-LM-D), tackling the tactical issues involved in last-mile
delivery with heterogeneous vehicle fleet and investigating the efficiency and the viability of the
underlying business model. The SS-LM-D is modeled as a new variant of the Bin Packing
Problem (BPP) with time-dependent costs, namely the Variable Costs and Size Bin Packing
Problem with Time-Dependent Costs (VCSBPP-TD), enriching the vast literature on variants of
the BPP. Our approach can guide the decision-maker strategies to reduce the costs and to better
control the whole process, offering practical insights to manage the last-mile delivery, while
taking into account some specific features of the on-demand economy and e-commerce as, for
instance, the effects of the customers’ preferences. The problem setting and the data used in the
paper come directly from the analysis of a real case study of the city Turin conducted by
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CARS@Polito1, and the ICELab@polito 2, with the collaboration of the Torino Living Lab
project and the Amazon Innovation Award, while the managerial insights coming from this
work will be part of the new Logistics and Mobility Plan to be activated in 2022 in the Piedmont
region.

The paper is organized as follows. The relevant literature is analyzed in section 2. The
problem setting and the model are defined in section 3, where two constructive heuristics, able
to tackle large-sized instances, are also described. The heuristic performance is discussed in
section 4. In section 5 an analysis of the impact of the application of the VCSBPP-TD to the
on-demand economy, and e-commerce in particular, is performed and managerial insights are
thoroughly discussed. Finally, section 6 concludes the paper and sheds light on possible future
research directions.
2. Literature review

In recent years, with the increasing interest in Last-mile Logistics and City Logistics,
different linear programming models have been proposed to deal with several issues and
inefficiencies in the last-mile segment of the supply chain. These models do not consider, or
only partially, the usage of shared spaces (e.g., shared satellites). The reason lies in the current
practices in this industry imposing the adoption of proprietary warehouses and consolidation
centers. However, changes in the regulatory assets at the national and international level, are
moving toward the sharing of logistics resources. Also, new and recent paradigms, as
crowdsourcing and dynamic access policies, are emerging to deal with the complexities of the
sharing economy (Fadda et al., 2019; Rosano et al., 2018). These two factors combined with the
double-digit growth of e-commerce make needed some simplifications of routing and the
complex functional costs. In this direction, several attempts have been proposed in the literature,
belonging in two main categories: BBPs and service network design. The latter is unsuitable for
the large-scale problems that characterize the urban context. The former is gaining interest in
describing logistics processes, showing how complex real situations can be modeled as BPPs
(Baldi et al., 2019; Crainic et al., 2016; Hemmelmayr et al., 2012). However, to the best of our
knowledge, no bin packing model has been formulated to address our problem. We choose a bin
packing formulation because it maintains the complex functional costs related to the business
model with a compact mathematical structure able to efficiently work with realistic instances in
urban parcel delivery. Following this literature trend, we propose to model the SS-LM-D as a
new variant of the BPP with time-dependent costs. Friesen and Langston first introduced the
Variable Sized Bin Packing (VSBPP), i.e., a variant of the BPP where several bin types are
present and the bin cost is directly proportional (or equal) to the bin volume (Friesen and
Langston, 1986). They introduced the model and one online and two off-line algorithms with
their worst-case ratios. An algorithm with upper bounds for some fixed size bin is presented in
Seiden et al. (2003) and Monaci (2002). Heuristic and exact solution methods are designed for
the case of correlated bin volume and cost. The variant of the problem where bin cost is not
directly correlated to the bin volume is introduced by (Crainic et al., 2011), namely the Variable
Cost and Size Bin Packing (VCSBPP). The authors introduce both lower and upper bounds and
can solve realistic instances. Several studies have been dedicated to the VCSBPP, assuming that
the cost of the unit size of each bin does not increase linearly as the bin size increases (see for
instance Hemmelmayr et al. (2012)), but no one considered the time-dependent case. A variant

1The automotive and mobility center of Politecnico di Torino
2ICT center for City Logistics and Enterprises
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of the BPP in which bins of different types have different costs and capacities and each bin has
to be filled at least to a certain level, depending on the bin size, is discussed in Bettinelli et al.
(2010). In this paper, the authors consider an additional constraint named the minimum filling
constraint, which imposes that the volume of each bin is at least equal to a certain percentage of
the total volume. For the sake of brevity, we omit the details of this constraint, but the interested
reader can refer to Bettinelli et al. (2010). Fazi et al. (2012) considered time constraints related
to the availability of the bins as well as service deadlines. Crainic et al. (2016) introduced a
stochastic formulation considering the unavailability of the orders over time and presented a
first study of the impact of some time-dependent demand distributions on long-haul
transportation. Other related problems in the literature to SS-LM-D are the variants of the BPP
with delay, and the batch scheduling problem. In the BPP with delay, the costs for the bins are
reduced whenever some delay occurs. The batch scheduling problem is quite similar in its
structure to the BPP with delay. Indeed, the cost for the batch is reduced with respect to time
delays. Moreover, the setting is online (the items arrive with no knowledge of the future) and
the cost is unique for all the batches (Dobson and Nambimadom, 2001; Li et al., 2019). Another
important stream related to our setting is the on-line version of the BPP (Dosa et al., 2013;
Epstein, 2019). In an online setting, no information about the item arrivals is available meaning
that the management is done when the event occurs (Ahlroth et al., 2013; Epstein, 2019).
Conversely, in our case, the delivery timeslots of the customers are known before the starting of
the daily operations. Moreover, in our case, the cost structure is much more complex, differing
the bins both in costs and sizes. This prevents a straightforward adaptation of the results of the
online counterparts of (Dosa et al., 2013), as already proven for the basic variable costs and size
BPP (Baldi et al., 2013). In addition, from an industrial point of view, using an on-line approach
might not be a good modeling approach, since the information on the delivery timeslots is
known in advance and can be incorporated in the decision process for deriving better solutions.

The literature on urban logistics problems is vast, but the great part of contributions is focused
on the operational models (e.g., the routing), while few papers deal with the sharing of satellites.
Indeed, our problem setting is quite new and no specific model or method of the literature copes
with it. However, due to the adoption of multiple delivery modes and non-professional drivers,
the costs structure of this system becomes complex enough that our problem setting cannot be
ignored.
3. Problem setting, model formulation and heuristics algorithms

In this section, we describe the SS-LM-D problem, formally define the mathematical model,
and propose heuristic methods able to solve large size instances within a limited computational
time. We focus our attention on the problem of a decision-maker represented by a courier
company operating a satellite-based consolidation policy in the second layer of a two-tier
distribution system. This courier company has to perform a set of customers’ deliveries with a
limited and heterogeneous fleet of vehicles within one day. Even if order consolidation can be
cost-efficient (since it increases the vehicle loafing factor and reduces the number of deliveries
to be made) it challenges an efficient use of the satellite storage capacity. Satellites are usually
located in existing urban areas and are characterized by different available space, yielding
different capacities. In this paper, we assume that the location of the satellites, which is a
strategic decision, is pre-defined. The satellites can offer a wide range of value-added logistics
activities, including off-site stockholding, inventory management, unpacking, and waste
collection services. To offer these services the satellite operator requires a payment (in the
foregoing called tariff), typically related to the volume of the stocks. As the satellite capacity
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can be freed up for other more profitable activities, such as retailing, during the day, it is
important to smooth out the demand accordingly. One way to reach this goal is to define
incentives like time-varying tariffs. More precisely cheaper rates can be charged at certain times
of day or night, when demand is low, and higher rates can be defined at peak times. Peak and
off-peak timeslots may be a few hours long, but typically not too short. The fleet is composed of
private or, more often, contracted couriers using a mix of traditional vehicles and
low-environmental vehicles (i.e., electric vans and cargo bikes). A vehicle (or an entire vehicle
type) may be unavailable in certain hours due to access restrictions in some city areas.
Moreover, due to the possible unavailability of the driver, a vehicle type can be used only in a
specific timeslot of a day. The driver’s unavailability is mainly due to crowdsourced delivery.
Crowdsourcing, also called Uberization of the last-mile, is an emerging application in the urban
context that outsources the parcels delivery to crowd drivers. They are a network of local and
non-professional drivers who are willing to temporarily work for delivery companies and to
provide their own assets (e.g., the vehicle) to perform the parcel delivery (Arslan et al., 2018)
Thus, this emerging method leverages networks of crowd drivers to manage deliveries,
sometimes in less than an hour. The orders arrive the day before the planning process; indeed,
customers might express time delivery restrictions, requiring parcel delivery in a particular
timeslot of the day. Since vehicle and satellite capacities cannot be exceeded, and all the orders
must be delivered, reflecting the current practices in the market, we assume that if needed,
additional capacity can be bought on the spot market at a higher price (Crainic et al., 2016; De
Marco et al., 2017).

3.1. Model formulation
The management of the SS-LM-D logistic system, with shared satellites, limited vehicle

capacities and explicit time-related decisions exhibits inherent complexity. In this section, we
model it as a new variant of the bin packing problem with time-dependent costs, namely the
VCSBPP-TD. Let I be the set of orders. We denote by di the demand associated to the order
i ∈ I. A fleet K of different vehicles is available. The time horizon is split in different timeslots,
where a specific timeslot is h ∈ H . We assume that the operations related to the loading,
unloading and handling of the freight can be ended in one timeslot. This is a classical
assumption made by time-sensitive delivery services (e.g., Amazon Prime Now, Uber Freight,
e-grocery). Let Ξ be the set of pairs (i, h) such that the order i cannot be delivered in timeslot h
and Υ the set of pairs (k, h) such that the vehicle k is unavailable in timeslot h. While the set Υ

depends on the mix of vehicles available to the courier, Ξ is affected by the customers’ choices.
For each vehicle k ∈ K , let Vh

k and δh
k be, respectively, the capacity and the cost of the vehicle k

at the timeslot h and ce be the cost for the express delivery in the spot market. The capacity of
the satellite and the unitary tariff at time slot h are denoted by Dh, T h, respectively. While it is
possible to quantify the costs associated with the satellite and vehicle use (accounting for
renting, environmental impact (Perboli et al., 2018b)) in different timeslots (accounting for
driver availability and working hours), considerably more difficult is the quantification of
routing cost. Moreover, in this tactical problem, the routing becomes less relevant (Tadei et al.,
2016) and the adoption of simplified approaches is beneficial to retain the computational
tractability of the optimization problem. Considering these aspects, we surrogate the routing
cost of each delivery of vehicle k at the timeslot h between the satellite and the customers in the
surrounding area with a generalized cost-per-stop ch

k . Although this might seem a limiting
assumption, we remark that this costing scheme is adopted in practice by parcel delivery
companies to evaluate their performances and to plan their activities (Brotcorne et al., 2019;
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Perboli and Rosano, 2019). Moreover, if the route size is limited and a proper process of route
evaluation is performed, the cost-per-stop can to a great extent approximate the real routing cost
(Rosano et al., 2018; Tadei et al., 2016).

We assume that the customers’ locations, their orders, the vehicles, and the drivers’
availability are known, while other sources of uncertainty (e.g., the traveling and the service
times) can be properly approximated with a deterministic counterpart (Baldi et al., 2012; Tadei
et al., 2017). The last assumption is motivated by the behaviour of several e-commerce and
green logistics companies, that have, up to now, quite limited knowledge of the single
customer’s behaviours. Moreover, before considering a stochastic model it is important to
analyze the structure of its deterministic counterpart.

Defining the decision variables as:

• xh
ik is equal to 1 if an order i ∈ I is delivered at timeslot h ∈ H by vehicle k ∈ K , and 0

otherwise;

• yh
k is equal to 1 if vehicle k ∈ K is used at timeslot h ∈ H , and 0 otherwise;

• Xi is equal to 1 if order i ∈ I is delivered as express delivery, and 0 otherwise

the VCSBPP-TD can be formulated as follows:

min
∑
k∈K

∑
i∈I

∑
h∈H

(diT h)xh
ik +
∑
k∈K

∑
i∈I

∑
h∈H

(ch
k xh

ik) +
∑
k∈K

∑
h∈H

(δh
kyh

k) +
∑
i∈I

(ceXi) (1)

s.t.
∑
i∈I

∑
k∈K

(dixh
ik) ≤ Dh, ∀ h ∈ H , (2)∑

i∈I

(dixh
ik) ≤ Vh

k yh
k ∀ h ∈ H , k ∈ K , (3)∑

k∈K

∑
h∈H

xh
ik + Xi = 1 ∀ i ∈ I, (4)∑

k∈K

xh
ik = 0 ∀(i, h) ∈ Ξ, (5)

yh
k = 0 ∀(k, h) ∈ Υ, (6)

xh
ik ∈ {0, 1} ∀ i ∈ I, h ∈ H , k ∈ K , (7)

yh
k ∈ {0, 1} ∀ h ∈ H , k ∈ K , (8)

Xi ∈ {0, 1} ∀ i ∈ I. (9)

We consider the satellite manager’s objective function. According to the literature on
synchromodality (Giusti et al., 2019), it considers both the costs for the satellite management
and the cost of delivery. More in detail, the objective function (1) minimizes the total cost as the
sum of the tariff for using the satellite, the surrogate routing costs, the cost of the vehicles, and
the cost of the express delivery. This objective function is suitable for the industrial settings in
urban parcel delivery that have the following features: (i) surrogate part of the routing between
the satellite and the customers; (ii) costs affected by time-dependency (e.g., in case of air drones
or land drones); (iii) usage of two-levels fleets managed, even partially, with crowdsourcing
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contracts, increasingly adopted in current business models. Constraints (2) and (3) ensure that at
each timeslot, the capacity of the depot and the vehicle, respectively, are not exceeded.
Constraint (4) ensures that each order is delivered. Notice that, the decision variable xh

ik
combined with constraint (4) generates inter-dependency among timeslots, making them not
separable. It means that we do not know a priori the assignment order-timeslot and thus, a
certain order could be delivered in any timeslot. Constraints (5) and (6) fix to 0 the variables xh

ik
and yh

k belonging to the sets Ξ and Υ, respectively. Indeed, by properly fixing the pairs (i, h) and
(k, h), we can model several situations including time windows restrictions to the delivery,
desiderata of the customers, as well as unavailability of certain vehicles (single vehicle or group
of them) due to policies or accidents. Finally, constraints (7) to (9) are the integrality
requirements.

3.2. Heuristics
The VCSBPP-TD is NP-hard. It can be trivially shown that the bin packing problem (which is

a well-known NP-hard problem) is a special case of this problem. The piecewise time-dependent
structure of the objective function greatly increases the complexity of this difficult combinatorial
optimization model. To efficiently solve the problem, we propose to extend the well-known
First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) heuristics taking into account the
specificity of VCSBPP-TD. In addition to the orders and the vehicles’ characteristics, we also
consider the time dimension, which brings additional complexity not only in the cost structure
but also in the satellite and vehicles capacity constraints.

In the classical FFD and BFD heuristics, the orders are sorted by their volume and are
loaded in the first available vehicles (FFD) or the best available vehicle (BFD) with smallest
sufficient residual capacity (see Algorithm 1 and 2 for the pseudocode of the two algorithms).
For the VCSBPP-TD the orders are assigned to timeslots and then to a vehicle if it is possible
(feasible). The orders, the timeslots and the vehicles are sorted according to specific ordering
criteria: (i) the orders are sorted in non-increasing order of size (breaking ties by first considering
orders that can be delivered in fewer timeslots) ; (ii) timeslots are sorted in ascending order of
the sum of cost per stop of the vehicles; (iii) vehicles are ordered in each timeslot, by non-
decreasing order of their unit cost per capacity ratio (δh

k/Vk), breaking ties considering
∑

h∈H ch
k .

Each order is assigned to a timeslot, if enough satellite capacity is available and if in that timeslot
vehicles have enough residual capacity. If one of the two conditions above is not satisfied, the
next timeslot or the next vehicle, respectively, is selected and the process is repeated. The order
is assigned to the first vehicle with enough residual capacity, in the FFD, or to the vehicle with
the smallest non-negative residual capacity after assigning the order, in the BFD.

If it is not possible to deliver the order, it is assigned to the express delivery service.
To further improve the solution, a simple iterative local search procedure is applied (see

Algorithm 3). In particular, the local search aims to relocate the entire content of a bin in a
different bin whose volume allows to load all items. In more detail, adapting the iterative
procedure proposed in Baldi et al. (2012), the content of the bin is placed in a bin of a different
type (same or different timeslot) or the same bin type, but in a different timeslot and the
objective function is updated. If the new solution is improving in terms of the objective function
and it is feasible for all the other constraints (capacity of the satellite in the given timeslot, bins
of a certain bin type availability, constraints on the delivery of an order in a given timeslot), the
bin swap is applied. The First-improving policy is considered (the Best-improving one was
considered too, but no relevant improvements of the solution quality were found)(Gendreau and
Potvin, 2019). The local search stops when no improving solution is found.
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Algorithm 1: FFD-based heuristic

1 Input: Set of orders I sorted in descending order by di, breaking ties by first
considering orders that can be delivered in less timeslots

2 Set of timeslotsH sorted by
∑

k∈K ch
k

3 Set of vehicles K sorted for each h ∈ H by (δh/Vh) and breaking ties considering∑
h∈H ch

k
4 Initialization: S atcaph := Dh ∀h ∈ H , Vehcaph

k := Vh
k ,∀k ∈ K ,∀h ∈ H, BestOF := 0.

5 for i ∈ I do
6 h̃ := −1, k̃ := −1
7 for h ∈ H do
8 if S atcaph ≥ di and {(i, h)} < Ξ then
9 for k ∈ K do

10 if {(k, h)} < Υ and Vehcaph
k − di ≥ 0 then

11 k̃ := k, h̃ := h
12 BestOF+ = diT h̃ + ch̃

k̃

13 if Vehcaph̃
k̃

= V h̃
k̃

then
14 BestOF+ = δh̃

k̃
15 end
16 Vehcaph̃

k̃
− = di

17 S atcaph̃− = di

18 end
19 end
20 end
21 end
22 if h̃ = −1 and k̃ = −1 then
23 BestOF+ = ce

24 end
25 end
26 Call Local Search on the current solution (see Algorithm 3)
27 return BestOF
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Algorithm 2: BFD-based heuristic

1 Input: Set of orders I sorted in descending order by di, breaking ties by first
considering orders that can be delivered in less timeslots

2 Set of timeslotsH sorted by
∑

k∈K ch
k

3 Set of vehicles K sorted for each h ∈ H by (δh/Vh) and breaking ties considering∑
h∈H ch

k
4 Initialization: S atcaph := Dh ∀h ∈ H , Vehcaph

k := Vh
k ,∀k ∈ K ,∀h ∈ H, BestOF := 0.

5 for i ∈ I do
6 H*:= -1 ,K*:= -1
7 for h ∈ H do
8 Min := ∞ if S atcaph > di and {(i, h)} < Ξ then
9 for k ∈ K do

10 if {(k, h)} < Υ and Vehcaph
k − di < Min then

11 Min := Vehcaph
k − di,K∗ = k,H∗ := h

12 end
13 end
14 end
15 end
16 if K∗ , −1 and H∗ , −1 then
17 BestOF+ = diT H∗ + cH∗

K∗
18 if VehcapH∗

K∗ = VH∗
K∗ then

19 BestOF+ = δH∗
K∗

20 end
21 VehcapH∗

K∗− = di

22 S atcapH∗− = di

23 else
24 BestOF+ = ce

25 end
26 end
27 Call Local Search on the current solution (see Algorithm 3)
28 return BestOF

4. Computational results

In the previous section 3, we presented the model and the heuristics. In this section, we
conduct an experimental campaign to assess and validate our model and solution strategy in a
realistic parcel delivery application, characterized by the adoption of satellites and by multiple
delivery options. In particular, we highlight that the proposed model can be used to support the
decision-makers in the last-mile in reducing the costs and in better controlling the whole process,
providing useful practical insights.
Since the existing data sets for the BPP in the literature are not suitable to represent a City
Logistics setting, we generated new test sets from several real case studies, arising from the
analysis of the city of Turin conducted by CARS@Polito (CARS@Polito, 2017;
ICELAb@Polito, 2017; Municipality of Turin, 2018). These data are gathered from and the
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Algorithm 3: Local Search

1 Input: Set of orders I
2 Set of timeslotsH
3 Set of vehicles K
4 Current Solution with the objective function equal to BestOF
5 Continue = true
6 while Continue do
7 Continue = false
8 for k1 ∈ K in use in the current solution do
9 for k2 ∈ K of different type than k1 do

10 for h ∈ H do
11 Vh

k1
=
∑

i di where i is loaded into k1

12 if Vh
k2
≥ Vh

k1
and δh

k2
≤ δh

k1
then

13 Move all the items from k1 to k2
14 BestOF = BestOF − δh

k1
+δh

k2

15 Continue = true
16 end
17 end
18 end
19 end
20 for k1 ∈ K in use in the current solution do
21 Let be h(k1) the slot to which k1 is assigned in the current solution
22 for h ∈ H | h , h(k1) do
23 if δh

k1
≤ δh(k1)

k1
then

24 Move the bin k1 to slot h
25 BestOF = BestOF − δh(k1)

k1
+δh

k1

26 Continue = True
27 end
28 end
29 end
30 end
31 return Updated solution and BestOF
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analysis of the costs of the different vehicles presented in Perboli and Rosano (2019) and
Perboli et al. (2018b).

4.1. Experimental setting
With the aim of deriving instances with different characteristics from real data, we have

considered different ranges for the problem parameters. We would like to note that all the
parameters have been generated in agreement with the real distribution of the e-commerce
parcels in an urban area (Perboli and Rosano, 2019). More precisely, the instances are generated
according to the following parameters:

• The number of orders has been considered in the set 200, 500, 1000, 2000. We do not
consider larger instances since in practice the maximum number of orders per satellite
lies between 1000 and 2000 (Perboli et al., 2018b). The number of orders that fit into a
bin can vary, depending on the different parameters considered in the instance generation.
According to (Brotcorne et al., 2019; Perboli and Rosano, 2019), the most relevant
parameters are the bin type (e.g., bike or van) and the capacity (Brotcorne et al., 2019;
Perboli and Rosano, 2019).

• Order volumes have been randomly generated according to a discrete uniform distribution
in the range {1, ..., 20}. More precisely, they are split into two sets: small orders, with
demand di ∈ {1, ..., 15}, and medium orders, with demand di ∈ {16, ..., 20}. We disregard
larger size as not common in the considered industrial application (Perboli et al., 2018b).
Small and medium orders are then mixed in the following combinations: T1: 50% Orders
are small and 50% are medium; T2: 75% are small and 25% medium. These combinations
represent the present and the near future real mix of volumes in parcel delivery (De Marco
et al., 2017). The maximum size of the orders demand, the vehicles demand, and the
vehicles costs are normalized such that they respect the real distribution of the e-commerce
parcels in an urban area (Perboli and Rosano, 2019).

• The number of timeslots in one day has been considered equal to three and five. More
than five timeslots are unlikely to be used. In fact, the standard for timeslots in time-
sensitive urban delivery is presently two hours in many services (e.g., Amazon Prime Now,
Uber Freight, e-grocery services by Brick&Mortar companies as Carrefour, Startup as
Supermercato24). Moreover, we noticed that even using higher values, the results were
similar to the five timeslots ones.

• The fleet is composed of three types of vehicles: cargo bikes (with capacity 100 in all the
timeslots), electric vans (with capacity 200 in all the timeslots), and fossil-fueled light-
duty (with capacity 300 in all the timeslots) Perboli et al. (2018b). Also the case with a
homogeneous fleet of cargo bikes has been considered.

• The cost of the usage of a vehicle δh
k is computed as the mean delivery cost obtained from

Brotcorne et al. (2019) normalized with respect to the other quantities in the instances for
obfuscating industrial data.

• The Cost-per-stop ch
k has been set to ckρh, where ck is obtained, following Crainic et al.

(2011), by multiplying by 100 the square root of the vehicle capacity, and ρh is a time-
dependent cost modifier assuming values [1.0, 0.3, 0.7] when three timeslots are considered
and [1.0, 0.1, 0.3, 0.5, 0.7] if the timeslots are five. The oscillation of the cost function of
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the satellite would be justified by the willingness of the municipality to push the freight
transportation out of the rush hours.

• The satellite tariff T h has been set to Tφh, where T = maxhT h and φh is a time-dependent
parameter. In details, φh = [0.7, 1.0, 0.3] for three timeslots and φh = [0.7, 0.8, 1.0, 0.5, 0.3]
for five timeslots.

Notice that, some data being confidential, all the values have been anonymized and
normalized.

The model (1)-(9) is solved by Cplex 12.8, while the heuristics are coded in Java. All the tests
were performed on an Intel I7700 workstation with 16 Gb of RAM. The instances are publicly
available in a BitBucked repository (Perboli, 2019).

4.2. Model and heuristic performance analysis

This section is devoted to the discussion of the computational results carried out to qualify
the model (1)-(9) and the heuristic presented in section 3.2.

In Table 1 columns 1, 2, and 3 report the number of customers orders (header ORD), the
number of vehicle types (header VT), and the number of timeslots (header TS), respectively.
Notice that, given a combination of the three parameters, a total of 20 instances are considered
(two different orders volume mix, namely T1 and T2, and the generation of 10 randomly
generated instances). The statistics of the solutions found by Cplex after 180 and 3600 seconds
of computation time are reported. Columns 4-6 and 7-9 report the number of instances solved to
optimality (#OPT) the MIP optimality gap in percentage (% Gap) and the average
computational time in seconds (Time). Finally, columns 10-13 report the percentage deviation
(∆%) from the best-known solution (which might not be the optimal one in case the column
Gap reports a percentage greater than zero) for the FFD and the BFD heuristics without the
Local Search (FFD and BFD) and when the local search procedure is applied (FFD+LS and
BFD+LS), respectively. We do not report the computational time of the heuristics, since it can
be considered negligible (less than 0.1 seconds for the constructive heuristics and less than 1
second for the versions incorporating the local search in the largest instances) for each instance.

The results highlight that Cplex can optimally solve all the instances with 200 orders within
180 seconds. If at least one hour of computational time is given, also all the instances with 500
orders can be solved. In this case, the average computational time is around 530 seconds. Even
if Cplex fails to solve to optimality larger instances, the MIP optimality gap of the best solutions
found within the allotted time limit is still limited and up to 5%. The instances with five timeslots
are the hardest to solve. This is confirmed by both the optimality gaps and the time to find the
best solution. In fact, for these instances, the best solution provided by Cplex is generally found
after 1800 seconds, resulting in a larger computational time to reach a good optimality gap. We
do not report the results of instances with more than 2000 orders because Cplex goes out of
memory for a large part of them.

Concerning the performance of the heuristics, the BFD performs much better than the FFD.
Even if the results are quite satisfactory, we should mention that the heuristics are unable to find
the optimal solution in several small-sized instances. As for the solution of the MIP with Cplex,
the instances with five timeslots appear to be more challenging, presenting a higher percentage
deviation. The very short computational effort, as well as the good performances of the BFD
make the latter quite interesting whenever implementable solutions should be obtained fairly
quickly. This enables the usage of the model for short-term planning or when the process must
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be repeated several times, as in the setting of the heuristic solution of stochastic programming
models by a progressive hedging algorithm (Crainic et al., 2016) or in dynamic tariff creation
by heuristic bilevel programming (Brotcorne et al., 2012). We also observe that BFD + LS
and FFD + LS perform better than BFD and FFD. Indeed, even if the results for both BFD
and FFD are satisfactory in small-sized instances (with and without the local search), applying
the improvement procedure, we find solutions very close to the optimal ones, for instances up
to 500 orders, particularly for BFD + LS . When we consider instances with 500 orders, the
percentage deviation ∆% becomes less than or equal to 2%. Finally, we notice that for several
larger instances the optimality gap is reduced by about half, particularly for FFD + LS . For
example, when we consider instances with 2000 orders, three vehicles and five timeslots, the
FFD the percentage deviation drops from 5.38 to 3.62, while for the BFD it goes from 2.62 to
1.63, applying the local search.

Concerning the solution structure, 30% of the cost can be imputed to the satellite, 50% to
the delivery cost, and finally about 20% to the vehicle cost (we do not report the results, being
quite stable on all the instances). This cost split reflects the cost structure highlighted in different
papers (Manerba et al., 2018; Perboli and Rosano, 2019). Another important point is related to
the structure of the solution itself. Bin Packing problems, even in their classical generalized and
variable-sized versions, are affected by the symmetry property of the solutions (Baldi et al., 2012;
Crainic et al., 2011). Thus, we might have solutions with very similar (or even equal) objective
functions with a different structure in terms of vehicle types and timeslots distribution. This
aspect becomes more relevant when considering the usage of the heuristics to replace the MIP
model. If we have to make decisions or validate policies, we must check that the MIP solver and
the heuristics are giving a solution with an equivalent structure in terms of the tactical decisions,
i.e., the type of vehicles in use and their distribution in terms of vehicle number per type per
timeslot. We summarize this information in Table 2. The table reports, for each size of the order
set, the ratio of similarity of the best solution of the MIP model and the best heuristic, i.e., the
BFD+LS. In details, we give the ratio of vehicles types in use both in the MIP and the heuristic
solutions per timeslot (column 2) and the ratio of the number of vehicles in use for each vehicle
type in a timeslot, computed as the ratio between the difference of the number of vehicles in use
for each vehicle type in each timeslot between the two solutions and the number of vehicles in
use for each vehicle type in a timeslot in the MIP solution only (column 3). The reported values
are the mean over all the instances with the same number of orders. According to the numerical
results, the two solutions are equal in vehicle type usage, while they differ slightly in the number
of vehicles per vehicle type per timeslot. This gap can be attributed simply to the optimality
gap of the heuristic. Thus, the heuristic can be used in substitution of the MIP model to obtain
accurate results in a very short time.

Table 3 reports, for the instances with three vehicle types and for each combination of order
number and timeslots number, the average number of used vehicle types (Used VT) and the
average vehicle fill ratio (FR), expressed as a value between 0 (empty) and 1.0 (fully filled).
Generally speaking, the model tends to use between one and two vehicle types: the cargo bikes,
that are smaller but can be easily fully filled, and the small electric vans. In case the model
chooses to use only one vehicle type, the small electric vans are selected. In some instances (and
in the five timeslots case, in particular), the model has to use also the light-duty vehicles, mainly
due to their larger loading capacity.
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ORD VT TS MIP 180 ss MIP 3600 ss FFD BFD FFD+LS BFD+LS
# OPT % Gap Time # OPT % Gap Time ∆% ∆% ∆% ∆%

200 1 3 20 0.00 9.94 20 0.00 9.94 0.00 0.00 0.00 0.00
200 1 5 20 0.00 3.66 20 0.00 3.66 0.12 0.00 0.08 0.00
200 3 3 20 0.00 14.41 20 0.00 14.41 0.41 0.23 0.21 0.00
200 3 5 20 0.00 16.28 20 0.00 16.28 0.65 0.23 0.30 0.07
500 1 3 9 0.12 124.14 20 0.00 236.89 1.43 0.00 0.91 0.00
500 1 5 15 0.23 95.96 20 0.00 537.34 2.76 0.00 2.53 0.00
500 3 3 4 0.10 169.93 20 0.00 412.30 1.83 0.06 1.31 0.06
500 3 5 2 0.56 178.80 20 0.00 912.63 2.88 0.06 1.74 0.06

1000 1 3 0 0.45 180.00 5 0.06 2916.13 1.69 0.08 1.35 0.08
1000 1 5 0 2.03 180.00 16 0.04 2398.00 2.34 0.60 1.88 0.32
1000 3 3 0 1.84 180.00 12 0.01 2563.58 1.65 0.02 0.78 0.02
1000 3 5 0 43.07 180.00 17 0.20 3484.10 2.81 0.34 1.12 0.23
2000 1 3 0 54.01 180.00 3 0.05 3387.80 3.61 0.05 1.96 1.05
2000 1 5 0 85.70 180.00 0 0.23 3600.00 5.23 0.25 3.65 2.25
2000 3 3 0 69.52 180.00 0 0.91 3600.00 4.19 1.36 3.36 2.52
2000 3 5 0 N/A 180.00 0 4.78 3600.00 5.38 2.62 3.62 1.63

Table 1: Computational results of the model after 180 seconds, 3600 seconds, and the heuristics. For the computational
time and the gap, reported values are obtained as the mean over the instances with two order volumes mixes (namely T1
ad T2) and 10 randomly generated instances, for a total of 20 instances

Similarity
ORD VT TS
200 1.00 1.00
500 1.00 1.00

1000 1.00 0.99
2000 1.00 0.98

Table 2: Comparison of the solution structure between the MIP solver and the BFD+LS

ORD TS Used VT FR
200 3 1.75 0.98
200 5 1.9 0.97
500 3 1.6 0.99
500 5 1.9 0.99

1000 3 1.45 0.98
1000 5 1.55 0.99
2000 3 1.15 0.94
2000 5 1.5 0.92

Table 3: Vehicle types usage (based on the best-known solution)
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5. VCSBPP-TD and on-demand economy

In this section, we first compare the satellite consolidation strategy with a more traditional
single-echelon approach, analyzing the operational costs in both settings. Then, we present an
analysis of the impact of the customers’ choices on the sustainability of the delivery from the
operational, economic and environmental points of view. For the satellite consolidation policy,
we use the VCSBPP-TD, while the single-echelon approach is solved with the state-of-the-art
approach in Saint-Guillain et al. (2015), where a dynamic vehicle routing problem with time
windows and stochastic customers is considered. Following this approach customers may
request services online, even if vehicles have already started their tours. In the evaluation of the
impact of the satellite consolidation policy, we consider that the tariffs paid for stocking the
freight in the satellite and the delivery itself incorporate also the costs for the management of
the facility. The two settings are then integrated into a Monte Carlo based
simulation-optimization framework. The present version of the simulator implements a Monte
Carlo method, a module for georeferencing the data and a post-optimization software for
simulating the given routes with real traffic data from the network of sensors and the
crowdsensing data of the Municipality of Turin with a precision of 15 minutes provided by the
Municipality company 5T (5T Web Site, 2019).

Concerning the data and to reach a compromise between computational time and instance
size, we consider daily delivery instances with 500 orders. This number is compatible with the
average number of orders to deliver in a working day in the urban context, according to the real
practices (De Marco et al., 2017). Moreover, this number of orders allows us to use the MIP as a
solution method, avoiding the very limited, but present, optimality gap that affects the heuristic.
Concerning the cost per stop, we use the values from Brotcorne et al. (2019). Fleets with one and
three vehicle types are generated as before. In the instances with one vehicle type, we suppose
to use the electric vans. A set of 80 instances with 500 orders, one or three vehicle types,
three or five timeslots, two order volumes mix and 15 repetitions are randomly generated by a
Data-Fusion process (see more details on the data sources in Table 4). Concerning the satellite
location, we used a pericentral location given by the Municipality of Turin (Municipality of
Turin, 2018). The cost of the usage of a vehicle δh

k needs to incorporate the cost related to
the routing and the service delivery time. Thus, it is computed by 100 simulations mixing the
different sources of data and using the algorithm for the dynamic and stochastic vehicle routing
problem with time windows by Saint-Guillain et al. (2015) with the city of Turin as the road
network. The 100 simulations are performed for each type of vehicle and each timeslot separately
by integrating the data from Maggioni et al. (2014) for the time-dependent travel times (see
Figure 1) and then an empirical distribution of the costs is obtained. Following Maggioni et al.
(2014), we approximated the given experimental distribution with a deterministic approximation
derived from the Extreme Value theory, which leads to a good approximation of the underlying
distribution of probability. Even if anonymized, the data for these instances come from real
settings in parcel delivery and have been collected from different projects (see Table 4).

To incorporate the process of customers’ choice of the delivery timeslot, given one of the
120 instances, the simulator generates a series of additional instances where a percentage of
the orders are affected by the customers’ preferences on the timeslot. In more detail, being α
the percentage of the orders affected by the customers’ choices, it takes the values 10%, 30%,
50%, 70%, and 100%. For each instance and each value of α, 10 random instances are created,
by choosing randomly the timeslot in which the delivery must be completed. The timeslot is
chosen according to a Uniform distribution. This setting is suitable to model the case in which
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Figure 1: Generation of δh
k

no analytic or profiling was performed on the customers’ performances.
Thus, our Monte Carlo-based simulation-optimization algorithm follows the following steps

(see Figure 2 for a depiction of the overall system):

• The Monte Carlo simulation module repeats the following process for a given number |I|
of iterations.

– Given the different data of the operational context as well as eventual distributions of
the data themselves, the simulator generates a series of delivery instances, each one
corresponding to a full day of deliveries as previously discussed.

– Each instance is solved by one of the two policies, i.e., the single-echelon approach
optimized by dynamic and stochastic vehicle routing problem by Saint-Guillain et al.
(2015) and the satellite consolidation optimized by our VCSBPP-TD solved by the
BFS+LS. We are adopting the heuristic because it is able to provide high quality
solutions with a negligible computational time. Both in the satellite-based and in
the single-echelon policy, even if the delivery demand is known, the time period
during which it occurs results from a customer’s decision taken in a second step.
This is modeled as a random-chosen event between the start of the day (beginning
of the first timeslot) and the end of the timeslot before the delivery deadline defined
by the user. In the satellite-based policy, we do not make use of any information
concerning the probability distribution of the customers’ choices. Conversely, the
single-echelon model explicitly considers the uncertainty in the timeslot chosen by
the customer for the freight delivery, by means of the stochastic dynamic approach.
In this way, we compare the case of limited knowledge of the customers’ behaviors
of the satellite-based policy with a more standard single-echelon approach, but with
a short-term knowledge of the timeslots choices. To make a more accurate definition
of the delivery costs and the travel times and cost matrices, the georeference module
is used. The georeference feature is implemented by means of Google Earth APIs
and it is also used to graphically represent the results of the simulation itself.

• The distribution of the simulation-based optimization solutions is computed and statistical
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Data type Source
Satellite localization Municipality of Turin (2018); Perboli et al. (2018b)
Satellite operational costs and tariffs Municipality of Turin (2018); Perboli et al. (2018b)
Orders data Brotcorne et al. (2019); Crainic et al. (2011)
Spatial data of demand De Marco et al. (2017)
Time distribution of the orders De Marco et al. (2017)
Vehicles characteristics Perboli and Rosano (2019); Perboli et al. (2018b)
Road network OpenStreet, 5T Road Sensors’ data (5T Web Site, 2019)
Time-dependent travel times Maggioni et al. (2014)
Delivery cost estimation Delivery cost estimator, see Figure 1
Environmental costs Brotcorne et al. (2019); Giusti et al. (2019)

Table 4: Sources of data for the Data-Fusion phase

Figure 2: Monte Carlo simulation-optimization

data are collected.

• A post-optimization software module is devoted for the computation of additional Key
Performance Indicators (e.g., vehicle usage, CO2 and NOx emissions, stop per working
hour, service and travel times) (Brotcorne et al., 2019; Giusti et al., 2019). Concerning
the externalities evaluation, we follow the ISO/TS 14067 regulation ”Greenhouse gases —
Carbon footprint of products” Brotcorne et al. (2019); Perboli et al. (2018b).

Considering the computational effort, each run of the Monte Carlo (120 instances for every
single value of α) requires about 32 minutes when we are solving the optimization problem by
the dynamic and stochastic vehicle routing algorithm by Saint-Guillain et al. (2015), while 5
days of computations in the case of the MIP instead and about 3 minutes of the BFD+LS. Notice
that in the computational time it is considered also the overhead for the data fusion and the post-
optimization. Thus, there is a big advantage in using our heuristic both compared to the MIP
model and the dynamic and stochastic vehicle routing problem, an issue becoming more relevant
if larger instances would be considered.

Table 5 reports the gap in percentage between the objective functions of the single-echelon
policy versus the satellite consolidation defined by (OF(S E) − OF(S AT ))/OF(S E), where
OF(S E) is the optimal objective function of the single-echelon policy and OF(S AT ) the
optimal objective function of the satellite consolidation. Thus, a positive value means a gain in

17



VT TS 10% 30% 50% 70% 100%
1 3 17.37 16.69 18.38 19.77 18.93

5 19.27 20.62 22.52 21.35 22.25
3 3 26.02 24.85 28.42 30.51 31.32

5 35.19 44.74 42.58 52.49 57.26

Table 5: Percentage gain of the satellite consolidation policy with respect to the single-echelon one

VT TS 10% 30% 50% 70% 100%
1 3 6.53 20.51 33.99 46.27 65.34

5 24.63 72.40 114.85 161.61 252.93
3 3 6.76 21.54 35.76 48.47 70.03

5 29.47 84.22 132.63 187.13 295.34

Table 6: Cost increase due to a lack of customers’ preferences analysis

the percentage of the satellite-based policy on the single-echelon one. Column 1 reports the
number of vehicle types (VT ) and Column 2 the number of timeslots (TS ) considered. The
remaining columns give the results according to the different values of α, i.e., the percentage of
orders with delivery time restrictions. It is worth noting that a satellite consolidation policy has
always better performances than the single-echelon one. As expected, the gain is more limited
in the case of the adoption of a single vehicle type, while a satellite consolidation policy gives
sensibly better results (up to 57% of cost saving) than the single-echelon setup, proving the
effectiveness of the satellite-based paradigm. The gaps show how a proper policy might give
benefits even in an early stage, in which the limited knowledge of the customer’s preferences
might prevent a stochastic programming approach. Moreover, being the VCSBPP-TD still
deterministic, we would expect that a stochastic variant of the VCSBPP-TD model would
increase the gap, making the adoption of this approach more interesting. Even if the operational
costs of the satellite management can be incorporated in the tariff, there are infrastructure costs
due to the creation of the satellite which can be amortized with proper planning (see, for
example, Tadei et al. (2012)) and to the usage of industrial areas or unused public facilities.

Table 6 illustrates the dramatic effects that a lack of customers’ preferences or marketing
policies analysis may have on costs. With this aim, we have simulated the behaviour of the
model, solved without considering any customers’ preference (α = 0), under different operational
scenarios. In each row, we report the average increase of the objective function with respect to
the case with α = 0 computed in percentage. The base case reflects that a poor analysis of the
customers’ preferences may lead to an increase of the delivery costs up to 300% (three vehicle
types, 5 timeslots, α = 100%). In any case, even with a rather limited impact of the customers’
choices (α = 30%), the cost increase can be sufficiently high to require a specific redesign of
the business model toward the integration of big data and prescriptive analytics. As shown in
(Perboli and Rosano, 2019), allowing full freedom to the customers without any prevision on the
customers’ preferences may cost the e-commerce company between 0.5 and 2 millions of euros
per year in the case of a medium-sized city as Turin. While such inefficiency can still be accepted
in the present situation, in which the e-commerce market is growing of two digits per year, this
becomes unacceptable in a more saturated market situation, where the innovation curve moves
towards the full competition phase.

18



VT TS 10% 30% 50%
CB EV LD CB EV LD CB EV LD

3 3 2.37 28.10 0.03 7.47 24.70 0.00 11.43 22.33 0.00
5 4.22 2.52 18.91 7.38 1.81 17.62 10.05 2.81 15.05

VT TS 70% 100%
CB EV LD CB EV LD

3 3 15.03 19.77 0.00 36.50 5.43 0.00
5 13.86 3.43 12.90 26.86 5.67 5.00

Table 7: Effect of the customers’ choices over vehicle usage

Table 7 shows the usage of the vehicle in the delivery. Each row reports the average number
of vehicles for each type, i.e., CB for Cargo Bikes, EV for Electric Vans, and LD for Light
Duty. Notice that, being the values an average, they can be fractional. It is interesting to
highlight two aspects. First, when the customers can choose their timeslot, a small portion of
vans might be necessary to serve larger quantities of customers’ orders. Second, while the
percentage of on-demand deliveries increases, there is a strong shift towards the usage of cargo
bikes. This is not due to the unitary cost per volume (which is larger for the greater impact of
the freight dispersion and the consequent under-usage of the volume), but to their flexibility,
able to better answer to the erratic decisions of the customers. Thus, the strong investment of
Venture Capital on alternative and small-sized delivery options, as drones and small robots
swarms, cargo-bikes and other similar options are driven by the need of having more flexibility
as an answer to the partial knowledge of the customers’ behaviour. Moreover, the results show
what might be the main effect of the sharing of logistics resources as satellites and local delivery
fleets. A joint usage of the resources may allow the logistics provider to acquire the knowledge
base to perform customers’ preferences analysis. The main obstacles to this process are the
e-commerce companies themselves, and their unwillingness to share their information. For this
reason, it is important to highlight and remark the potential risks of this lack of sharing. The
companies should define a proper mechanism able to disclose the smallest amount of data that
enables the interaction of all the actors in the urban system. Examples of this mechanism can be
found in recent synchromodality platforms (Giusti et al., 2019; Perboli et al., 2017) and
Blockchain-based supply-chain management systems (Perboli et al., 2018a).

We finally analyze the satellite-based paradigm versus the single-echelon approach, in terms
of sustainability. The sustainability of the service is computed as a mix of environmental, social,
and operational impact. In particular, we show the changes in the solutions with respect to the
operational cost, the quality of service (in terms of the number of parcels per hour (nD/h)) and
the environmental cost. In this respect, we consider the CO2 emissions and costs of the overall
last-mile chain. According to the latest regulation, the ISO/TS 14067:2013 “Greenhouse gases -
Carbon footprint of product - Requirements and guidelines for quantification and
communication”, we consider three types of emissions: direct emissions from the fuel
combustion process, indirect emissions, emitted by the fuel production process and the
long-haul shipment of the fuel, CO2 equivalent to include other pollutants (e.g., NOx).

We consider the case of five timeslots and three vehicles types and, concerning the customers’
behaviour, three different scenarios, according to the Moore technology adoption curve (Moore,
2014):
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Table 8: Sustainability analysis

Market condition α = 15%
Costs [Euro] CO2 savings [ton] nD/h [%]

Current situation 155747 (-37%) 16.56 (-26%) 13%
Downturn 97943 (-24%) 15.48 (-24%) 8%

Growth 112489 (-24%) 19.8 (-32%) 18%

Market condition α = 50%
Costs [Euro] CO2 savings [ton] nD/h [%]

Current situation 204129 (-45%) 20.88 (-31%) 11%
Downturn 1745294 (-36%) 18.36 (-26%) 10%

Growth 2231202 (-36%) 23.04 (-37%) 15%

Market condition α = 85%
Costs [Euro] CO2 savings [ton] nD/h [%]

Current situation 224480 (-51%) 25.92 (-29%) 14%
Downturn 201675 (-43%) 24.12 (-23%) 9%

Growth 250611 (-55%) 33.48 (-38%) 21%

• Early phase of the penetration of the timeslot free choice service. It corresponds to the
middle of the “scale-up” phase of the innovation sigmoid, which corresponds to α = 15%;

• Market penetration of the timeslot free choice service. It corresponds to the beginning of
the “compete” phase of the innovation sigmoid, which corresponds to α = 50%;

• Maturity of the timeslot free choice service. It corresponds to the end of the “compete”
phase of the innovation sigmoid, which corresponds to α = 85%.

Table 8 reports the results of the sustainability analysis: the savings of the total cost (Column
3), CO2 savings (Column 4), and nD/h (Column 5). All the savings are reported in terms of
percentage gap with respect to the single-echelon scenario. For the total cost, the savings are
computed for the satellite by considering 360 working days. For CO2 we also report the ton
gained by the usage of the green vehicles compared to the fossil-fueled ones. As for the total
costs, the CO2 saving is computed per year with 360 working days.
From a pure cost point of view, there is a reduction of the gain in the case of a downturn of the
e-commerce, due to the relative reduction of the number of small orders. This led to a reduced
number of cargo bikes, and thus an increase in CO2 emissions. The e-commerce market growth
increases the number of cargo bikes needed to cope with the higher flows of mailers and small
orders, with a consequent increase in the operative costs. Generally speaking, the adoption of
the shared satellite with crowdsourced delivery leads to a consistent decrease of the operational
costs compared to the traditional delivery, with a gain up to the 55% in the case of the largest
diffusion of the service. Notice that, being this phase associated with the “compete” phase of the
technological penetration sigmoid, this reduction becomes more crucial. It gives the companies
adopting such a scheme in the early phase of their life a competitive advantage in terms of cost
structure and know-how. The nD/h increases, in line with the results by Perboli and Rosano
(2019), with an efficiency gain which is quite constant. Finally, we can notice how the need for
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more flexible solutions is in line with the increasing adoption of more eco-friendly solutions, as
cargo bikes and electric vans in the present, and drones, small automatic vehicles and automated
mobile lockers in the near future.

6. Conclusions and future research directions

In this paper, we addressed a new emerging problem in urban delivery and city logistics,
namely the joint management of satellite and the delivery process. The process is modeled as a
novel variant of the bin packing problem. The model introduced can be solved to optimality for
instances with limited size. For larger instances, with up to 2000 orders, efficient heuristics have
been proposed and tested. The paper has also provided a detailed analysis of the impact of the
emerging aspects of the on-demand economy, focusing in particular on the customers’ choices
of the delivery timeslots, highlighting the potential benefits of understanding the customers’
choice behavior patterns. The analysis of findings indicates the compelling need for an accurate
consumer’s preference structure analysis. The managerial insights coming from this work will
be part of the new Logistics and Mobility Plan to be activated in 2022 in the Piedmont region.

Future research directions come along different axes. First, we would like to investigate
the impact of having multiple timeslots in a more general problem, e.g., the generalized bin
packing problem. This problem is strictly related to the revenue management aspect, and thus
to the business modeling (Baldi et al., 2012). The second direction is related to the stochastic
nature of some parameters when the model is used as a strategic tool. They include the delivery
costs, as well as the customers’ preferences. Third, different methodological improvements
might be investigated. Promising directions are the usage of Constraint Programming, which
might be useful in very constrained settings, as well as Column Generation and Branch & Price
approaches. Finally, the impact of the tariff definition process should be explored. That might
be done by a combinatorial bilevel programming approach to model the hierarchical decision-
making process.
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